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In this paper, data from 105 soil and groundwater remediation projects at BP gasoline service

stations located in the state of Illinois were mined for lessons to reduce cost and improve

management of remediation sites. Data mining software called D2K was used to train decision

tree, stepwise linear regression and instance-based weighting models that relate hydrogeologic,

sociopolitical, temporal and remedial factors in the site closure reports to remediation cost. The

most important factors influencing cost were found to be the amount of soil excavated and the

number of groundwater monitoring wells installed, suggesting that better management of

excavation and well placement could result in significant cost savings. The best model for

predicting cost classes (low, medium and high cost) was the decision tree, which had a

prediction accuracy of approximately 73%. The misclassification of approximately 27% of the sites

by even the best model suggests that remediation costs at service stations are influenced by

other site-specific factors that may be difficult to accurately predict in advance.
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INTRODUCTION

Federal and state regulations in theUnited States require that

leaks from underground storage tanks (USTs) be reported

and remediated. The federal rules were promulgated in 1984

under Subtitle I of the Hazardous and Solid Waste Amend-

ments (HSWA) to the Resource Conservation and Recovery

Act (RCRA - 40 CFR Part 280). In general, these rules are

administered under state programs. Oil companies can incur

sizable penalties as a result of violation of environmental

regulations; emissions from leaking underground storage

tanks into the atmosphere and the release of hydrocarbons

into lakes and rivers can result in fines being levied against

companies. Additional expense is incurred if settlements are

necessary because of migration onto non-company-owned

properties. In 2003, the US-based branch of BP (formerly

British Petroleum) reported an expenditure of $5.6million in

fines due to alleged underground storage tank and waste
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management violations as well as settlements to govern-

mental organizations and members of the public.

This study investigates the use of datamining, specifically

text mining, for improving management and reducing costs

associated with remediating gasoline station sites in the US.

Better management of clean-up procedures and reducing the

costs associated with liabilities allows businesses to be more

competitive on a worldwide scale and potentially be more

proactive in addressing environmental problems associated

with their operations. An understanding of which factors

affect cost is critical if this is to be achieved.

Data mining is one step in the process of knowledge

discovery in databases (KDD). KDD involves:

† data cleaning (where inconsistent data are removed),

† data integration (where multiple data sources may be

combined),

† data selection (the retrieval of relevant data),

† data transformation (where data are converted into a

form suitable for mining),

† data mining (the application of statistical methods in

order to discover patterns in the data),

† pattern evaluation (the identification of interesting

patterns), and

† knowledge presentation (the use of various visualization

and knowledge presentation techniques).

In a broader sense, however, data mining can be defined as

the process of discovering interesting patterns from large

amounts of data (Han & Kamber 2001).

Data mining is a powerful approach for the analysis of

trends when the quantity of data is large; with hundreds of

BP service station sites in Illinois (and thousands more

globally), the amount of data for analysis can become

overwhelming. In this study, a manageable subset of the

available data is used to investigate whether data mining

can be used to recognize patterns and interesting phenom-

ena that may lead to better management of these sites in the

future, focusing particularly on factors that influence the

remediation cost of sites. Future work can then extend

the study to a broader set of service stations.

To the authors’ knowledge, no previous work has been

done on this particular topic, although the use of data

mining for other environmental applications has been

explored. Michael et al. (2005) evaluated the use of different

data mining methods to more effectively combine different

types of data and models for predicting hydraulic heads. Su

et al. (2002) used a data mining approach to investigate the

relationship between environmental factors and the distri-

bution pattern of living organisms. More recently, Bessler

et al. (2003), as well as Anderton et al. (2004), applied

decision trees to water resources problems.

METHODOLOGY

The first step in the methodology involved working with BP

staff and consultants from Delta Environmental Consult-

ants Inc. (BP’s environmental management consultants

who managed the sites in this study) to identify which

features and sites should be investigated. This process was

iterative, as shown in Figure 1, with these experts also

providing ongoing interpretation and evaluation of initial

results and identifying additional factors affecting remedia-

tion cost (“features”) that should be included in the analysis.

The next section discusses this aspect of the study.

Figure 1 | Site locations.

108 D. M. Farrell et al. | Data mining to improve management and reduce costs Journal of Hydroinformatics | 09.2 | 2007

Downloaded from http://iwaponline.com/jh/article-pdf/9/2/107/392856/107.pdf
by guest
on 16 August 2022



Once appropriate features and sites were identified,

data mining software called D2K was used to select,

transform, and analyze the data. Three different models

were considered: decision trees, stepwise linear regression

and instance-based weighting. A later section gives an

overview of D2K and the following subsections discuss the

models within D2K that were used for this work.

Data collection and site selection

Table 1 shows the features (attributes) that were chosen for

analysis following consultation with BP management and

Delta Environmental consultants. Features have been

grouped into categories of cost, time, hydrogeologic

characteristics, contaminant characterization, remediation

approach and political/social/legal characteristics.

The reader may be familiar with most of the features

listed; the less familiar terms are explained in the following

paragraphs. Once all program requirements and remedia-

tion objectives have been satisfied, a “no further remedia-

tion” letter is issued by the state Environmental Protection

Agency (EPA) and no further corrective action is required

by the company. The feature, “Time until the EPA granted

no further remediation (NFR) status” is the time until the

“no further remediation” letter is received by BP. The

groundwater classification of a site is a factor in determining

the level of remediation required for a site. The “Hydro-

geologic characteristics” category takes this into account

with the feature “class of groundwater”. The three classes of

groundwater, as defined by Illinois regulation, are:

Class I – potable resource groundwater,

Class II – general resource groundwater,

Class III – special resource groundwater.

The features in the “Political/legal/social character-

istics” category attempt to capture factors related to the

sociopolitical status of the site, such as what types of

institutional controls (ICs) are granted and through which

body they are obtained. Institutional controls are legal and

administrative means of controlling human exposure to

residual site contaminants, such as the posting of warning

signs and notices as well as the implementation of zoning

restrictions. If there are pre-existing agreements for the

granting of institutional controls, then there may be cost

Table 1 | List of attributes

Attributes

Cost

Total cost of site remediation from initiation to case closure

Time

Time until EPA granted “no further remediation” (NFR) status

Assessment time

Year of closure

Hydrogeologic characteristics

Was groundwater encountered?

Hydraulic gradient

Hydraulic conductivity

Porosity

Class of groundwater

Contaminant characterization

Was BTEX (benzene, toluene, ethylbenzene, xylenes) a site
contaminant?

Were PNA’s (polynuclear aromatics) site contaminants?

Were metals site contaminants?

Was free product documented at the site?

Offsite migration?

Remediation approach

Were remediation technologies used?

Did natural attenuation occur?

Was there excavation?

Amount of soil excavated

Were tanks removed from the site?

Number of tanks removed

Number of geoprobes/borings installed

Were wells installed (remediation and monitoring)?

Number of wells (remediation and monitoring)

Political/cocial/legal characteristics

Municipal/non-municipal

Was an agreement in place between the company and other
governing agencies?

Was the site owned by company originally?

Were institutional controls (ICs) applied to groundwater?

Were ICs applied to soil?

Classification of site location (either mixed or commercial)

109 D. M. Farrell et al. | Data mining to improve management and reduce costs Journal of Hydroinformatics | 09.2 | 2007

Downloaded from http://iwaponline.com/jh/article-pdf/9/2/107/392856/107.pdf
by guest
on 16 August 2022



savings because closure can be obtained more quickly.

There may be some differences in the savings achieved if the

ICs are granted by a municipal or non-municipal body, such

as different requirements in the ICs, and this is captured by

the “Municipal/non-municipal” attribute.

This study focuses on BP-owned sites in the US, since

company records show that the US branch of its operations

contributes heavily to the overall expenditure of the

international organization. All sites selected for analysis

are service stations located in the state of Illinois whose

remediation projects have been closed under consent

orders. A consent order is a legally binding agreement

between a state enforcement agency (in this case the Illinois

EPA) and a company; it lists the remediation activities to be

performed while specifying a timeframe for their com-

pletion. Sites matching these criteria were randomly

selected and information on each site was gathered from

closure reports submitted to the Illinois Environmental

Protection Agency (IEPA). Some additional data that were

recorded regularly as a part of the site documentation were

also included. These data included whether or not offsite

migration of the plume occurred, all of the time character-

istics given in Table 1 and all of the political/legal/social

characteristics included in Table 1 except for the classifi-

cation of site location.

The general distribution of the 105 selected sites is

shown in Figure 1. It can be seen that most of the sites are

located around the Chicago metropolitan area. This is to be

expected because most of BP’s service station sites are

located in the urban and suburban areas of Chicago.

Additionally, because Chicago has an ordinance restricting

the installation of water wells, it is easier to get the

institutional controls required to obtain closure in this

area and it should be expected that a high percentage of the

closed sites in Illinois would be located in this area.

D2K

Data selection, transformation, and analysis were com-

pleted using D2K – a Java-based machine learning system

created by the National Center for Supercomputing

Applications (NCSA) (Welge et al. 2003). D2K combines

analytical data mining methods of prediction, discovery and

deviation detection with data and information visualization

in a powerful computational infrastructure which enables

the use of distributed computing and the running of

processor-intensive and data-intensive applications. Its

visual programming environment increases its user-friendli-

ness; the user is allowed to create other programs through a

graphical environment. Users connect software com-

ponents (“modules”) together to produce “itineraries”

(programs) that perform the desired task.

While D2K can be used as a stand-alone application (as

in this study), developers can also utilize the D2K

infrastructure modules to build applications (employing

D2K functionality in the background and allowing for the

use of specialized user interfaces).

Users will appreciate the low overhead (time, cost and

resources) associated with module execution and the

functionality and portability of this Java-based system.

Additional information on D2K can be found by referring

to Welge et al. (2003).

D2K offers many modules that can aid the knowledge

discovery process, including modules for naive Bayesian,

neural networks, decision trees, and cleaning and trans-

forming of data. This study utilized feature extraction and

selection methods, and model fitting and testing modules

with decision trees, stepwise linear regression and instance-

based weighting modules. The following subsections

describe each of these data mining approaches in turn.

Feature extraction and selection

Because of the large volume of data in the closure reports to

be processed, D2K’s text extraction itinerary (for details see

Farrell (2004)) is used to provide semi-automation of the

data extraction process. Figure 2 summarizes the steps

involved in the data extraction itinerary.

In this algorithm, keywords are specified in one input

file and this list, along with the closure reports, was fed into

the itinerary. Each closure report is “parsed” or separated

into “tokens” (words, or symbols such as commas and

parentheses) within the documents. These tokens are then

matched with the keywords specified in the input file. The

output consists of all occurrences of the keywords along

with the five closest words on either side of the occurrence

of the keywords; this is called the context and allows the
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user to determine if these keyword occurrences contain

valuable information. The user then reads the program’s

output (the keywords in their context) and uses his/her

judgment to determine what data should be input into the

training set.

Consider an example: in order to determine the amount

of soil excavated at a site, the keyword “excavated” could be

entered in the input file. Because the amount of soil could

be represented in text form in a number of different ways,

the algorithm would search through all the closure reports

and display all occurrences of the word “excavated” along

with the five closest words on either side. The user would

then look at the program’s output and identify the amount

of soil excavated from the extracted text.

Read in name of directory where closure
reports are stored and output the names

of all the files in the directory

Read all the files and output as an object
for later processing

Parse all text into "tokens"

Read in the file name of a file
that contains a list of keywords

to search for in the reports

Read the file and output an object
containing the list of keywords

Pair each document object with the
word list

Search document for the specified keywords and output
these keywords in the context in which they appear. The
user can specify the number of tokens that are reported

with the keywords.

Is the document the last
in the directory?

END

YES

NO

Figure 2 | Summary of data extraction process.
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Although this extraction process is only semi-auto-

mated, the user still saves time by quickly and simul-

taneously isolating text sections of interest in a large

number of documents.

Features with non-numerical values need to be trans-

formed in order to be analyzed with the data-driven models

in D2K. Table 2 shows how the values for each feature are

encoded. In the cases where a “yes/no” response is given,

this is encoded in binary form, with 1 meaning “yes” and “0”

meaning “no”. In other cases (for example, for the feature

“classification of site location”), the numbers represent a

classification.

The training data are then read into an “input file

creation itinerary” in D2K (see Farrell (2004) for itinerary

details); the user specifies which columns of the training

dataset are input (or independent) variables and which are

output (or dependent) variables. The data are then stored as

a serializable object to facilitate ready access to the data

using object-oriented programming.

Model fitting and testing

Three types of models are considered: decision trees

(Quinlan 1986), stepwise linear regression and instance-

based weighting. The optimal parameter settings for each

model were found using a model-fitting itinerary created in

D2K. For each type of learning machine, twenty cross-

validation experiments are performed (automatically in the

D2K itinerary using random search within a user-defined

range) to identify good model parameters for the learning

machines (i.e. the ones that yield the lowest cross-validation

error). The specific model parameters selected vary for each

experiment, but ranges are given in the following subsections.

In the cross-validation experiments, 15 of the 105 sites are

reserved for testing. The learning machine is then trained to

predict cost from the attributes describing the remaining data

(90 sites) and tested in its predictions of site remediation cost

using the testing set. The cross-validation error is calculated to

be the mean of the absolute difference between the predicted

values and the actual values in the testing set.

Once the optimal parameters are identified, the entire

training set and its optimized learning model parameters are

fed into a model builder in the “optimal model itinerary”

(see Farrell (2004) for details) and the resulting model is

used to predict site costs. The resubstitution error (the sum

of the differences between the actual and predicted costs

when the model is applied to all of the data) is also

calculated.

Model predictions are also grouped into classes to test

the ability of the models to predict broad classes of cost

(high, medium and low) rather than exact costs. The class

boundaries were selected based on recommendations from

BP staff. It should be noted that this method of class

prediction is not the same as training and testing directly on

classification error, where the model predicts the prob-

ability of each class. Direct class prediction is not currently

possible within the data mining itineraries in D2K, so this

approach was not investigated here. Classification accuracy

is defined here as the percentage of correctly classified sites.

To assess the performance of each model, the resub-

stitution error is compared to the resubstitution error from

the simplest possible model, where the mean cost of all the

sites (found by summing the costs for all sites and dividing

by the total number of sites) is used as the predicted cost for

a given site. The cross-validation errors are also quoted for

comparison between methods. To test whether the predic-

tions made by the models are significantly different from

simply using the mean as the cost estimation, a t-test is used

to test the significance of the predictions.

Decision trees

A decision tree may be described as a flowchart-like tree

structure, where each node denotes a test on an attribute

and each branch represents the outcome of that test (Han &

Kamber 2001). Generally the form can be described as a

series of IF–THEN statements, hence the rules obtained by

the use of decision trees are often readily understood.

Additionally the use of decision trees is advantageous

because the learning and classification steps are generally

quite fast.

Decision trees are constructed by recursively selecting the

mostpredictive features (“attributes”)andsplitting the training

sets into subsets. Splitting continues until the information in

the inputs is exhausted and the terminal nodes are the

classification of the final instances (Matheus 1990). In the

decision tree each node represents an input and each branch a

possible value of that input. The end nodes (or leaves) on the
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Table 2 | Data transformation

Attributes Encoding

Cost

Total cost of site remediation Numerical value

Time

Time until EPA granted “no further remediation” (NFR) status Numerical value

Assessment time Numerical value

Year of closure Numerical value

Hydrogeologic characteristics

GW encountered Binary

Hydraulic gradient Numerical value

Hydraulic conductivity Numerical value

Porosity Numerical value

Class of groundwater Numerical value (coded 1,2,3)

Characterization of contamination

Was BTEX (benzene, toluene, ethylbenzene, xylenes) a site contaminant? Binary

Were PNA’s (polynuclear aromatics) site contaminants? Binary

Were metals site contaminants? Binary

Was free product documented at the site? Binary

Offsite migration? Binary

Remediation approach

Were remediation technologies used? Binary

Did natural attenuation occur? Binary

Was there excavation? Binary

Amount of soil excavated Numerical value

Were tanks removed from the site? Binary

Number of tanks removed Numerical value

Number of geoprobes/borings installed Numerical value

Were wells installed (remediation and monitoring)? Binary

Number of wells (remediation and monitoring) Numerical value

Political/social/legal characteristics

Municipal/non-municipal Binary

Was an agreement in place between the company and other governing agencies? Binary

Was the site owned by company originally? Binary

Were institutional controls (ICs) applied to groundwater? Binary

Were ICs applied to soil? Binary

Classification of site location (either mixed or commercial) Binary
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tree specify the output value for the combination of input

values that prescribe the path to that end node.

The decision tree algorithm within D2K (which is of

the type first introduced by Tcheng et al. (1989)) is

summarized in Figure 3. This process was discussed in

Michael et al. (2005).

A single node is first used to represent all training

samples. Then, the predicted output (in this case, remedia-

tion cost) is designated as the mean output across all of the

training data, �x0. The initial error, E0, is calculated using

E0 ¼
Xn
i¼1

xi 2 �x0j j ð1Þ

where:

n ¼ total number of training data points,

xi ¼ actual output value for training data point i, and

�x0 ¼ predicted output (mean of the training output).

Using the mean of the attribute as the splitting criterion,

the data are split into two candidate groups for each of the k

attributes being analyzed. The average error associated with

each prospective new split, k, is calculated thus:

Ek ¼
nk

n

� �Xni

i¼1

xi 2 �xnk

�� ��þ n2 nk

n

� �Xn
i¼nk

xi 2 �xn2nk

�� �� ð2Þ

where:

nk ¼ number of training points in the first group

associated with split k,

�xnk
¼ mean output for the first group associated with

split k, and

�xn2nk
¼ mean output for the second group associated

with split k.

In Equation (2), the group errors are weighted by the

fraction of the population in each group. The algorithm uses

the calculated errors for each split, k, to choose the split

with the greatest error reduction when compared to the

previous error. For the first split, the reuction in error for

each split, DEk, is

DEk ¼ E0 2 Ek: ð3Þ

The split with the greatest reduction in error is then

chosen for that node. This process is repeated at each leaf

(end node) until there is no further reduction in error or

when splitting the node would result in less than the

minimum number of examples per leaf specified by the user

(Michael et al. 2005). This parameter (minimum number of

training data at the end of each leaf) is selected from a range

between 1 and 50 during the training experiments.

The decision tree algorithm described above is a greedy

algorithm: each split is chosen based solely on the greatest

reduction in error for only that split – a “standard practice”

for decision tree formulation. The algorithm does not seek

to ensure that the overall prediction error is minimized;

however, this method does allow for rapid formation of the

decision tree (Michael et al. 2005).

Stepwise linear regression

Stepwise linear regression is a modelling technique to

develop an optimal linear equation for the prediction of a

dependent variable (in this case remediation cost) from

several independent variables. The basic procedure involves

iteratively adding or removing attributes to an initial model

(“stepping”), in accordance with the user’s “stepping”

criteria.

In this study step-up regression was used: features were

iteratively added to a model containing only one feature.

Models were allowed to range in size from one feature

(a linear equation with only one independent variable and

Represent all training data
with single node

Compute initial error

Split each nodal attribute into
two subsets

Compute error associated
with each split

Select split creating the
greatest reduction in error

Error
unchanged
or # of data

points at
each leaf
less than

maximum?

Stop training

Yes

No

Figure 3 | Decision tree training process (from Michael et al. 2005).
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one dependent variable – cost) to a maximum of eight

features (eight independent variables and one dependent

variable – cost).

Instance-based weighting

An instance-based weighting model is trained on the input

data and then predicts based on the feature values of these

stored cases. When asked to make a prediction for a test

case (in this case, a particular site), the values of the features

in the test case are compared with the stored values from

the training set and the degree of match is computed. The

value of the new prediction is a weighted average of the

“nearest neighbours” (the closest points in the dataset based

on the distance metric chosen by the user). This is known as

instance-based learning.

A weighting coefficient (factor) is used to represent the

importance of each feature to the match. Inverse distance

weighting was chosen because it makes sense that features

closer to the input should have more impact on the

prediction. The weighting factors are calculated as

wi ¼
1

di
ð4Þ

where the distance di is the Euclidean distance between the

desired point and the ith closest stored point. Instance-

based weighting is quite fast and can learn complex

functions. The Euclidean distance is calculated as

di ¼
Dx21 þ Dx22 þ · · ·þ Dx2m

m

 !1=2

ð5Þ

where m is the number of inputs and Dxm is the difference

between the values of the mth input and its nearest

neighbour. The number of neighbours, n, is allowed to

range from a minimum of 1 to a maximum of 100 and is

selected by the learning machine to minimize the cross-

validation error on the training data.

RESULTS

This section presents the results from the conducted

experiments; discussion of the findings can be found in

the next section. A summary of performance of the three

methods is given below. The next two subections then

present the optimal models found using decision trees and

stepwise linear regression, respectively, and discuss the

implications of the features included in those models.

Instance-based models do not have explicit representations

of features. As such, they are not as useful for providing

insights on the factors that influence site cost and will not

be discussed in detail in the later subsections.

Experimentswereperformed for two feature sets. Feature

set 1 contained all of the attributes documented in Table 1,

while feature set 2 omitted the “Time” attributes. These

attributes, such as year of closure, would not be known in

advanceof completionof the remediation.Hence, themodels

made using feature set 2would bemost useful formaking cost

predictions for estimating future liabilities, while those made

with feature set 1 represent the best possible case of full

knowledge of all information in the closure reports.

The cross-validation error (the mean of the absolute

difference between the predicted values and the actual

values in the testing set) results for each model are

summarized in Figures 4 and 5. For all models (the decision

tree, linear regression and instance-based models), the

cross-validation error is always lower than the simplest

prediction model (i.e. when the mean is used as the

predicted cost), indicating that all of the models provide

more accurate estimates than simply using the mean cost

per site. The decision tree and stepwise linear regression

models have the lowest cross-validation errors.

Figures 6 and 7 show the resubstitution error (the sum

of the differences between the actual and predicted costs

when the model is applied to all of the data, expressed as a

percentage of the actual cost) for each model tested. These

charts show the percentile errors (line graphs), including

65000

70000

75000

80000

85000

Mean Decision tree Stepwise
linear

regression

Instance-based

Model

$

Figure 4 | Cross-validation errors for feature set 1.
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the 5th, 50th and 95th percentiles, as well as the mean

errors (bars). The decision tree model performs the best, but

still has relatively high mean and 95th percentile errors

given that the costs for the sites can range from approxi-

mately $13 000 to more than $650 000. For a low cost site

(around the $13 000 range), an error of 41.8% (the average

percentage error for the decision tree model under feature

set 2 and the lowest average error of all the models used in

this study) represents a large margin of error.

The models were able to achieve more success in

predicting cost classes (given in Table 3) rather than

absolute costs. The classification accuracies of the models

are compared for feature set 1 and feature set 2 in Figure 8;

the decision tree and the stepwise linear regression models

had the highest classification accuracies. Since the results

from class prediction are better, details in the following

sections will focus primarily on the class prediction models.

For the decision tree, the cross-validation and resub-

stitution errors obtained when using feature set 2 are lower

and the classification accuracy is higher than when using

feature set 1; the opposite is observed for both the stepwise

linear regression and the instance-based models. Since the

models are fit using greedy approaches, global optimality is

not guaranteed and it is possible that a better model may

exist for feature set 1. It is also possible that the time

attributes included in feature set 1 were redundant relative

to other features. Additional experiments were performed to

determine whether removing other features that were less

correlated to cost (based on correlations found using one

attribute at a time) improved predictions further; no

improved trees were found.

The results from the t-tests, which show the confidence

levels at which the predictions of each model are signifi-

cantly different from the simplest model (the mean), are

shown in Table 4. The t-test experiments showed that, in all

cases, the predictions from each model were significantly

different from the mean at confidence levels over 95%.
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Figure 5 | Cross-validation errors for feature set 2 (no time attributes).
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Figure 6 | Summary of cost prediction results using feature set 1.
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Figure 7 | Summary of cost prediction results using feature set 2 (no time attributes).

Table 3 | Cost classes

Symbol Classification

^ High cost (.$250 000)

Medium cost (.$100 000 and ,$250 000)

q Low cost (,$100 000)
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Decision tree results

Figure 9 shows the decision tree obtained when all of the

attributes were included (feature set 1). As discussed

previously, the branch level on the decision tree indicates

the importance or influence of the feature – the higher the

branch level, themore important the attribute is to themodel.

Hence, the most important attributes are the amount of soil

excavated and the time until no further remediation (NFR) is

required. Also important are whether remediation technol-

ogy is applied to the site and the classification of the site

location (i.e. commercial or mixed). In Figure 9, the

classification of cost is noted by the symbols given in Table 3.

The decision tree given in Figure 9 represents the best

possible case, where all information in the closure reports is

known. However, at the beginning of remediation, when

estimates of cost liabilities are most needed, it is difficult to

know when no further remediation will be achieved and it is

for this reason that this attribute and others in the Time

category (as shown in Table 1) were omitted from feature

set 2. The tree that resulted when these features were

removed is shown in Figure 10.

The attribute “the amount of soil excavated” remains

very prominent in the tree, appearing not only at the top

branch level, but also at the second, third and fourth levels.

However the number of wells (both remediation and

monitoring) has replaced the attribute “Time until NFR”.

Whether or not remediation technology is used at the site

remains an important factor in the model.

Stepwise linear regression results

As discussed previously, in step-up linear regression

features are successively added to an initial model to create

an optimal linear equation to predict a dependent variable

(in this case, cost) from several independent variables (for

example, the amount of soil excavated, the number of

geoprobes, the number of wells, etc.). Up to four features,

shown in Table 5, were chosen by the models before the

prediction error became worse than the error obtained

when the mean was used for cost estimation.

The first data set (feature set 1) included “Time”

attributes and the optimal model contained two dependent

variables: the time until NFR and the amount of soil

excavated. The optimal equation was

Cost ¼ 54:5 £ Time until NFR ðdÞ

þ 29:20 £Amount excavated2 54400: ð6Þ

As previously, the time attributes were removed in

feature set 2 and another model was developed with the

remaining features. This model contains only one feature,

the amount of soil excavated.

The optimal equation was

Cost ¼ 33:8 £Amount excavatedþ 127000: ð7Þ

DISCUSSION

In this section the implications of the results are discussed

in greater detail and recommendations are made for

improving cost management of the type of sites studied.
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Figure 8 | Classification accuracies for all models and both feature sets.

Table 4 | Confidence levels from t-test experiments

Decision tree

Stepwise linear

regression Instance-based

Feature set 1 99.1% 97.8% 99.96%

Feature set 2
(no time attributes)

99.1% 97.1% 99.96%

117 D. M. Farrell et al. | Data mining to improve management and reduce costs Journal of Hydroinformatics | 09.2 | 2007

Downloaded from http://iwaponline.com/jh/article-pdf/9/2/107/392856/107.pdf
by guest
on 16 August 2022



Given that it appears at the top tier of the decision trees and

was also selected in both regression models, the amount of

soil excavated is the most influential attribute in cost

prediction at these sites. Additionally, according to the

decision tree models, the number of wells installed and

whether remediation technology is applied are also quite

important. These three attributes can be used to predict

whether a site will be high cost, low cost or medium cost.

The time until no further remediation is attained, though

not particularly useful as a predictive feature, is correlated

with cost because the longer the site remains “open”, the

more costs accrue because of sampling and labour costs.

Therefore its inclusion in the models where the time

attributes were included is reasonable.

Discussions with the site consultants at Delta Environ-

mental revealed that the amount of soil excavated can vary

widely depending on legal drivers, the time frame in the

project that the excavation occurred (for example, whether

excavation was done immediately or later in the project

timeline), the date of excavation and current environmental

regulations. Though the potential high cost of excavation is

well known, especially when large amounts of soil must be

removed, it is often still selected because there is complete

removal of the source of contamination, which is thought to

facilitate relatively rapid cleanup (Wood 1997; Lambert et al.

2003). To test this hypothesis, a decision tree model that

included only the time attributes and the attribute “was

there excavation” was developed. The results from this

model show that, if excavation is done, then the time until

NFR is actually longer. This decision tree is shown below

(Figure 11). It can be seen from the “Time until NFR”

branch that, when excavation was done, the average time

until NFR was approximately 200d longer than if exca-

vation was not done. However, 68% of the sites investigated

in this study that were excavated also had existing

groundwater contamination. In only 7% of the sites was

Amt. excavated<973.89 Amt. excavated>=973.89

Time until NFR (days)<3300.66 Time until NFR (days)>=3300.66

Amt. excavated<186.65 Amt. excavated>=186.65 

IC’s applied<0.45
IC’s applied

Classification of location of site
<0.72 

#wells>=10#wells<10

Classification of location of site
>=0.72 

Amt. excavated<2260.29 Amt. excavated>=2260.29

Remediation technology<0.25 Remediation technology>=0.25

Amt. excavated<1404.57 Amt. excavated>=1404.57

Figure 9 | Decision tree when all of the attributes are included (feature set 1).

Amt. excavated<973.89 Amt. excavated>=973.89

#wells<8.11 #wells>=8.11 

#geoprobes/borings<11.37 

#wells<14.4 

Offsite migration?<0.43 

Amt. excavated>=2260.29
Amt. excavated<2260.29

Remediation technology<0.25
Remediation technology>=0.25

Amt. excavated<1404.57 
Amt. excavated>=1404.57

#geoprobes/borings<10.83 #geoprobes/borings>=10.83 Offsite migration?<0.31 

#geoprobes/borings>=11.37

#wells>=14.4

Offsite migration?>=0.43

Amt. excavated<206.53 

#geoprobes/borings>=9.19 

Offsite migration?>=0.31 

#geoprobes/borings<9.19 

Amt. excavated>=206.53

IC-soil<0.24 
IC-soil>=0.24

Figure 10 | Optimal decision tree without remediation time attributes (feature set 2).
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excavation carried out in the absence of groundwater

contamination. This suggests that excavation is more likely

to occur when there is contaminated groundwater and/or

later in the lifecycle of the site. Since groundwater treatment

can be a lengthy process, this may have contributed to the

extended time until NFR. Nonetheless, given the high cost

of excavation, its benefits in terms of reducing cleanup times

should be carefully considered in light of these results.

Perhaps there are cases where over-excavation could be

avoided in favor of in situ treatment alternatives, particu-

larly when groundwater is already contaminated and hence

a lengthy remediation is likely.

The second attribute that was shown to be important in

affecting cost – the number and placement of wells and

borings during site delineation – is influenced by the site

lithology. Typically sites with clay-type geologies (low

hydraulic conductivities) do not have extensive offsite

migration and fewer wells and borings may be needed.

Care should be taken to minimize the number of wells while

still obtaining adequate information for plume delineation.

The third attribute that was shown to be highly correlated

with cost was the use of remediation technologies. Remedia-

tion technologies can be quite costly and, if used, the final site

remediation cost will be higher. From the second tier in the

decision tree shown in Figure 9, it can be seen that, if

remediation technology is appliedwhensignificant excavation

has alreadybeendone, the site cost classificationchanges from

“medium” to “high”. However, in the data set used for this

study,onlyabout19%of the sites requiredbothexcavationand

the use of remediation technology. This indicates that the use

of both excavation and remediation technology is a relatively

rare, and expensive, occurrence.

Although the amount of soil excavated, the number of

wells installed and whether remediation technology was

used are clearly the most important features for predicting

cost, the inclusion of the other features identified in the

decision tree and regression models can also be rational-

ized. The features “number of geoprobes/borings” and

whether offsite migration occurred have been selected by

both the decision tree and the stepwise linear regression

models as being indicative of cost. The number of

geoprobes/borings has an effect on cost for much the

same reason that the number of installed wells is important

– for sites that require further sampling and delineation,

more borings must be completed and additional cost is

incurred. Offsite migration could necessitate the placement

of more wells and more borings, or settlements may need to

be paid to affected parties, driving cost up.

Using decision trees, the attributes included in this

study were able to predict the level of cost in three classes

with up to 73.3% accuracy, a substantial improvement over

the default mean value that is only 50% accurate. Stepwise

linear regression and nearest-neighbour approaches were

less successful at making reasonable predictions. However,

even decision trees, the most successful approach, predicted

the wrong cost class nearly 30% of the time. Moreover,

none of these approaches were able to give good predictions

of the actual site cost. These difficulties are likely to occur

because the approach to closure and hence the amount of

money spent on each site can be very site-dependent, with

factors such as those listed below having influence.

Table 5 | Attributes included in each regression model (both feature sets)

Round Attributes included in regression models

1 Amount of soil excavated

2 Amount of soil excavated, no. ofgeoprobes/borings,
no. of wells, presence of free product, use of
remediation technology

3 Amount of soil excavated, no. of geoprobes/borings,
no. of wells, presence of free product, use of
remediation technology, hydraulic conductivity,
whether there was offsite migration

4 Amount of soil excavated, no. of geoprobes/borings,
no. of wells, presence of free product, use of
remediation technology, hydraulic conductivity,
whether there was offsite migration, presence of
PNA’s, no. of tanks removed

excavation? NO excavation? YES

Time until NFR (days) = 3232
Time until NFR (days) = 3479

Figure 11 | Decision tree testing relationship between features “Time until NFR” and

“Was there excavation”.
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† Differences in professional opinion. Each site is unique

and remediation professionals are often required to use

their professional judgment on a case by case basis.

† Resampling. Sites where the period of assessment and

closure covers an extended period of time or active

remediation has occurred are often re-sampled to

confirm current conditions at the time of closure to

accommodate natural attenuation and remedial activi-

ties. The number of samples that must be analyzed varies

from site to site. This may increase site cost.

† Type of remediation technology employed. In this study we

only consideredwhether remediation technologywas used

and not the type of technology. There are cost differences

in the type of remediation technology employed and this

may affect the overall site remediation cost.

† Institutional controls. The total costs of institutional

controls necessary to bring a site to closure can vary

widely and can be subject to the individual parties

involved. Timeframes involved in reaching successful

resolution to negotiations with third parties can delay

closure and increase site cost.

The results of this study suggest that costs can be

controlled at sites such as those investigated here if more

stringent and consistent policies can be adopted for

deciding how much soil to excavate and where wells should

be placed. Perhaps more effort could be put into optimizing

well placement for plume delineation.

CONCLUSIONS

This studyhas shown that textminingof closure reports canbe

useful in identifying features that influence cost at remediation

sites. Decision trees are particularly useful because the model

is not only produced quickly and is easily understood, but it is

able to predict costs more accurately than the other

approaches. The best decision tree was 73% accurate in

predicting thecost in threecategories,while thebest regression

model was only 67% accurate and the instance-based model

was only 53% accurate. These results can be compared with

the simplest possible model, using the mean cost for all sites

under consideration, whichwas approximately 50% accurate.

Further research is needed to investigate whether other

features that were not included in the closure reports would

provide additional insights. One such feature could be the

number of extensions granted. At times, companies may

need additional time to comply with regulatory require-

ments; however, more extensions may mean that more cost

is incurred. Other useful features could be created from

more detailed cost information related to wells, which were

found to be a major cost driver. With more details on well

installation and mobilization costs (for drillers, geologists,

sampling crews and analyses), the most important features

could be identified that cause increased costs with increas-

ing numbers of wells. This could lead to insights on how to

better manage these costs.

To increase the models’ prediction accuracy and

usefulness, more sites could also be included in the analysis.

However, including more sites will be tedious and time-

consuming unless the data extraction process can be fully

automated. Much work is being done both in the US and

internationally in the field of text extraction that may be

useful for increasing the automation of data extraction. As

more sites move to electronic storage of information in

databases, perhaps less emphasis can be placed on data

stored in closure reports and other paper documents and

more use can be made of data already stored electronically

in databases. In this study, features related to political/

social/legal aspects of the site (see Table 1) were collected

from database records, making incorporation of these

attributes quite simple. As the remediation industry moves

towards more extensive and efficient data manage4132#-

ment methods, the data extraction process will be aided

greatly.

Finally, additional work could be done to investigate the

extent to which the models and methods utilized in this

study are applicable to other gasoline station sites in the

US and globally. Data could be collected to determine if

there are lessons to be learned from other countries and

other states on how to manage similar sites. The models

utilized here could be useful in answering questions such as

whether the differences in liability costs between the US and

other branches of BP worldwide are due to differences in

the regulatory environments or other factors such as cost of

labour. Any patterns in costs associated with using different

consulting firms could also be assessed in such a broader

study. This feature was not addressed in this study, since all

of the sites were managed by a single contractor.
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