
Data Mining using Genetic Programming: Classification and Symbolic
Regression
Eggermont, J.

Citation
Eggermont, J. (2005, September 14). Data Mining using Genetic Programming:
Classification and Symbolic Regression. IPA Dissertation Series. Retrieved from
https://hdl.handle.net/1887/3393

Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/3393

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3393

Data Mining using Genetic Programming
Classification and Symbolic Regression

J. Eggermont

Data Mining using Genetic Programming

Classification and Symbolic Regression

proefschrift

ter verkrijging van
de graad van Doctor aan de Universiteit Leiden,

op gezag van de Rector Magnificus Dr. D.D. Breimer,
hoogleraar in de faculteit der Wiskunde en

Natuurwetenschappen en die der Geneeskunde,
volgens besluit van het College voor Promoties
te verdedigen op woensdag 14 september 2005

klokke 15.15 uur

door

Jeroen Eggermont
geboren te Purmerend

in 1975

Promotiecommissie

Promotor: Prof. Dr. J.N. Kok
Co-promotor: Dr. W.A. Kosters
Referent: Dr. W.B. Langdon (University of Essex)
Overige leden: Prof. Dr. T.H.W. Bäck

Prof. Dr. A.E. Eiben (Vrije Universiteit Amsterdam)
Prof. Dr. G. Rozenberg
Prof. Dr. S.M. Verduyn Lunel

The work in this thesis has been carried out under the auspices of the re-
search school IPA (Institute for Programming research and Algorithmics).

ISBN-10: 90-9019760-5
ISBN-13: 978-90-9019760-9

Contents

1 Introduction 1
1.1 Data Mining . 2

1.1.1 Classification and Decision Trees 2
1.1.2 Regression . 3

1.2 Evolutionary Computation 3
1.3 Genetic Programming . 4
1.4 Motivation . 5
1.5 Overview of the Thesis . 6
1.6 Overview of Publications . 8

2 Classification Using
Genetic Programming 9
2.1 Introduction . 9
2.2 Decision Tree Representations for Genetic Programming . . . 10
2.3 Top-Down Atomic Representations 14
2.4 A Simple Representation . 15
2.5 Calculating the Size of the Search Space 16
2.6 Multi-layered Fitness . 18
2.7 Experiments . 19
2.8 Results . 22
2.9 Fitness Cache . 28
2.10 Conclusions . 30

3 Refining the Search Space 33
3.1 Introduction . 33
3.2 Decision Tree Construction 35

3.2.1 Gain . 35
3.2.2 Gain ratio . 38

i

ii CONTENTS

3.3 Representations Using Partitioning 40
3.4 A Representation Using Clustering 43
3.5 Experiments and Results . 44

3.5.1 Search Space Sizes . 45
3.5.8 Scaling . 53

3.6 Conclusions . 54

4 Evolving Fuzzy Decision Trees 57
4.1 Introduction . 57
4.2 Fuzzy Set Theory . 59

4.2.1 Fuzzy Logic . 60
4.3 Fuzzy Decision Tree Representations 61

4.3.1 Fuzzification . 62
4.3.2 Evaluation Using Fuzzy Logic 65

4.4 Experiments and Results . 66
4.4.7 Comparing Fuzzy and Non-Fuzzy 74

4.5 A Fuzzy Fitness Measure . 74
4.6 Conclusions . 77

5 Introns: Detection and Pruning 79
5.1 Introduction . 79
5.2 Genetic Programming Introns 80
5.3 Intron Detection and Pruning 81

5.3.1 Intron Subtrees . 84
5.3.2 Intron Nodes . 88
5.3.3 The Effect of Intron Nodes on the Search Space 91

5.4 Experiments and Results . 94
5.4.1 Tree Sizes . 95
5.4.2 Fitness Cache . 99

5.5 Conclusions . 105

6 Stepwise Adaptation of Weights 107
6.1 Introduction . 107
6.2 The Method . 109
6.3 Symbolic Regression . 111

6.3.1 Experiments and Results: Koza functions 112
6.3.2 Experiments and Results: Random Polynomials 117

6.4 Data Classification . 120

CONTENTS iii

6.4.1 Experiments and Results 121
6.5 Conclusions . 124

A Tree-based Genetic Programming 133
A.1 Initialization . 133

A.1.1 Ramped Half-and-Half Method 135
A.2 Genetic Operators . 136

A.2.1 Crossover . 138
A.2.2 Mutation . 139

Bibliography 141

Nederlandse Samenvatting 153

Acknowledgements 157

Curriculum Vitae 159

1 Introduction

Sir Francis Bacon said about four centuries ago: “Knowledge is Power”. If
we look at today’s society, information is becoming increasingly important.
According to [73] about five exabytes (5 × 1018 bytes) of new information
were produced in 2002, 92% of which on magnetic media (e.g., hard-disks).
This was more than double the amount of information produced in 1999 (2
exabytes). However, as Albert Einstein observed: “Information is not Knowl-
edge”.

One of the challenges of the large amounts of information stored in
databases is to find or extract potentially useful, understandable and novel
patterns in data which can lead to new insights. To quote T.S. Eliot: “Where
is the knowledge we have lost in information ?” [35]. This is the goal of a
process called Knowledge Discovery in Databases (KDD) [36]. The KDD
process consists of several phases: in the Data Mining phase the actual dis-
covery of new knowledge takes place.

The outline of the rest of this introduction is as follows. We start with an
introduction of Data Mining and more specifically the two subject areas of
Data Mining we will be looking at: classification and regression. Next we give
an introduction about evolutionary computation in general and tree-based
genetic programming in particular. In Section 1.4 we give our motivation for
using genetic programming for Data Mining. Finally, in the last sections we
give an overview of the thesis and related publications.

1

2 Data Mining

1.1 Data Mining

Knowledge Discovery in Databases can be defined as “the nontrivial process
of identifying valid, novel, potentially useful, and ultimately understandable
patterns in data”[36]. The KDD process consists of several steps one of which
is the Data Mining phase. It is during the Data Mining phase of the KDD
process that the actual identification, search or construction of patterns takes
place. These patterns contain the “knowledge” acquired by the Data Mining
algorithm about a collection of data. The goal of KDD and Data Mining is
often to discover knowledge which can be used for predictive purposes [40].
Based on previously collected data the problem is to predict the future value
of a certain attribute. We focus on two of such Data Mining problems: classi-
fication and regression. An example of classification or categorical prediction
is whether or not a person should get credit from a bank. Regression or nu-
merical prediction can for instance be used to predict the concentration of
suspended sediment near the bed of a stream [62].

1.1.1 Classification and Decision Trees

In data classification the goal is to build or find a model in order to predict the
category of data based on some predictor variables. The model is usually built
using heuristics (e.g., entropy) or some kind of supervised learning algorithm.
Probably the most popular form for a classification model is the decision
tree. Decision tree constructing algorithms for data classification such as ID3
[86], C4.5 [87] and CART [14] are all loosely based on a common principle:
divide-and-conquer [87]. The algorithms attempt to divide a training set T
into multiple (disjoint) subsets such that each subset Ti belongs to a single
target class. Since finding the smallest decision tree consistent with a specific
training set is NP-complete [58], machine learning algorithms for constructing
decision trees tend to be non-backtracking and greedy in nature. As a result
they are relatively fast but depend heavily on the way the data set is divided
into subsets.

Algorithms like ID3 and C4.5 proceed in a recursive manner. First an
attribute A is selected for the root node and each of the branches to the
child nodes corresponds with a possible value or range of values for this
attribute. In this way the data set is split up into subsets according to the
values of attribute A. This process is repeated recursively for each of the

Chapter 1 3

branches using only the records that occur in a certain branch. If all the
records in a subset have the same target class C the branch ends in a leaf
node predicting target class C.

1.1.2 Regression

In regression the goal is similar to data classification except that we are
interested in finding or building a model to predict numerical values (e.g.,
tomorrow’s stock prices) rather than categorical or nominal values. In our
case we will limit regression problems to 1-dimensional functions. Thus, given
a set of values X = {x1, . . . , xn} drawn from a certain interval and a set of
sample points S = {(xi, f(xi))|xi ∈ X} the object is to find a function g(x)
such that f(xi) ≈ g(xi) for all xi ∈ X.

1.2 Evolutionary Computation

Evolutionary computation is an area of computer science which is inspired by
the principles of natural evolution as introduced by Charles Darwin in “On
the Origin of Species: By Means of Natural Selection or the Preservation of
Favoured Races in the Struggle for Life” [17] in 1859. As a result evolutionary
computation draws much of its terminology from biology and genetics.

In evolutionary computation the principles of evolution are used to search
for (approximate) solutions to problems using the computer. The problems to
which evolutionary computation can be applied have to meet certain require-
ments. The main requirement is that the quality of that possible solution can
be computed. Based on these computed qualities it should be possible to sort
any two or more possible solutions in order of solution quality. Depending on
the problem, there also has to be a test to determine if a solution solves the
problem.

In Algorithm 1 we present the basic form of an evolutionary algorithm.
At the start of the algorithm a set or population of possible solutions to a
problem is generated. Each of those possible solutions, also called individuals,
is evaluated to determine how well it solves the problem. This evaluation
is called the fitness of the individual. After the initial population has been
created, the actual evolutionary process starts. This is essentially an iteration
of steps applied to the population of candidate solutions.

4 Genetic Programming

Algorithm 1 The basic form of an evolutionary algorithm.

initialize P0

evaluate P0

t = 0
while not stop criterion do

parents ← select parents(Pt)
offspring ← variation(parents)
evaluate offspring (and if necessary Pt)
select the new population Pt+1 from Pt and offspring
t = t + 1

od

The first step is to select which candidate solutions are best suited to
serve as the parents for the future generation. This selection is usually done
in such a way that candidate solutions with the best performance are chosen
the most often to serve as parent. In the case of evolutionary computation
the offspring are the result of the variation operator applied to the parents.
Just as in biology offspring are similar but generally not identical to their
parent(s). Next, these newly created individuals are evaluated to determine
their fitness, and possibly the individuals in the current population are re-
evaluated as well (e.g., in case the fitness function has changed). Finally,
another selection takes place which determines which of the offspring (and
potentially the current individuals) will form the new population. These steps
are repeated until some kind of stop criterion is satisfied, usually when a
maximum number of generations is reached or when the best individual is
“good” enough.

1.3 Genetic Programming

There is no single representation for an individual used in evolutionary com-
putation. Usually the representation of an individual is selected by the user
based on the type of problem to be solved and personal preference. Histori-
cally we can distinguish the following subclasses of evolutionary computation
which all have their own name:

- Evolutionary Programming (EP), introduced by Fogel et al. [37]. EP
originally was based on Finite State Machines.

Chapter 1 5

- Evolution Strategies (ES), introduced by Rechenberg [88] and Schwefel
[93]. ES uses real valued vectors mainly for parameter optimization.

- Genetic Algorithms (GA), introduced by Holland [55]. GA uses fixed
length bitstrings to encode solutions.

In 1992 Koza proposed a fourth class of evolutionary computation, named
Genetic Programming (gp), in the publication of his monograph entitled
“Genetic Programming: On the Programming of Computers by Natural Se-
lection” [66]. In his book Koza shows how to evolve computer programs, in
LISP, to solve a range of problems, among which symbolic regression. The
programs evolved by Koza are in the form of parse trees, similar to those used
by compilers as an intermediate format between the programming language
used by the programmer (e.g., C or Java) and machine specific code. Using
parse trees has advantages since it prevents syntax errors, which could lead
to invalid individuals, and the hierarchy in a parse tree resolves any issues
regarding function precedence.

Although genetic programming was initially based on the evolution of
parse trees the current scope of Genetic Programming is much broader. In
[4] Banzhaf et al. describe several gp systems using either trees, graphs or
linear data structures for program evolution and in [70] Langdon discusses
the evolution of data structures.

Our main focus is on the evolution of decision tree structures for data
classification and we will therefore use a classical gp approach using trees.
The specific initialization and variation routines for tree-based Genetic Pro-
gramming can be found in Appendix A.

1.4 Motivation

We investigate the potential of tree-based Genetic Programming for Data
Mining, more specifically data classification. At first sight evolutionary com-
putation in general, and genetic programming in particular, may not seem to
be the most suited choice for data classification. Traditional machine learning
algorithms for decision tree construction such as C4.5 [87], CART [14] and
OC1 [78] are generally faster.

The main advantage of evolutionary computation is that it performs a
global search for a model, contrary to the local greedy search of most tradi-
tional machine learning algorithms [39]. ID3 and C4.5, for example, evaluate

6 Overview of the Thesis

the impact of each possible condition on a decision tree, while most evolu-
tionary algorithms evaluate a model as a whole in the fitness function. As a
result evolutionary algorithms cope well with attribute interaction [39, 38].

Another advantage of evolutionary computation is the fact that we can
easily choose, change or extend a representation. All that is needed is a
description of what a tree should look like and how to evaluate it. A good
example of this can be found in Chapter 4 where we extend our decision tree
representation to fuzzy decision trees, something which is much more difficult
(if not impossible) for algorithms like C4.5, CART and OC1.

1.5 Overview of the Thesis

In the first chapters we look at decision tree representations and their effect
on the classification performance in Genetic Programming. In Chapter 2 we
focus our attention on decision tree representations for data classification.
Before introducing our first decision tree representation we give an overview
and analysis of other tree-based Genetic Programming (gp) representations
for data classification.

We introduce a simple decision tree representation by defining which (in-
ternal) nodes can occur in a tree. Using this simple representation we investi-
gate the potential and complexity of using tree-based gp algorithms for data
classification tasks.

Next in Chapter 3 we introduce several new gp representations which
are aimed at “refining” the search space. The idea is to use heuristics and
machine learning methods to decrease and alter the search space for our
gp classifiers, resulting in better classification performance. A comparison of
our new gp algorithms and the simple gp shows that when a search space
size is decreased using our methods, the classification performance of a gp
algorithm can be greatly improved.

Standard decision tree representations have a number of limitations when
it comes to modelling real world concepts and dealing with noisy data sets. In
Chapter 4 we attack these problems by evolving fuzzy decision trees. Fuzzy
decision trees are based on fuzzy logic and fuzzy set theory, unlike “standard”
decision trees which are based on Boolean logic and set theory. By using fuzzy
logic in our decision tree representations we intend to make our fuzzy decision
trees more robust towards faulty and polluted input data. A comparison
between the non-fuzzy representations of Chapter 3 and their fuzzy versions

Chapter 1 7

confirm this as our gp algorithms are especially good in those cases in which
the non-fuzzy gp algorithms failed.

In Chapter 5 we show how the understandability and speed of our gp
classifiers can be enhanced, without affecting the classification accuracy. By
analyzing the decision trees evolved by our gp algorithms, we can detect the
unessential parts, called (gp) introns, in the discovered decision trees. Our
results show that the detection and pruning of introns in our decision trees
greatly reduces the size of the trees. As a result the decision trees found
are easier to understand although in some cases they can still be quite large.
The detection and pruning of intron nodes and intron subtrees also enables us
to identify syntactically different trees which are semantically the same. By
comparing and storing pruned decision trees in our fitness cache, rather than
the original unpruned decision trees, we can greatly improve its effectiveness.
The increase in cache hits means that less individuals have to be evaluated
resulting in reduced computation times.

In the last chapter (Chapter 6) we focus our attention on another im-
portant part of our gp algorithms: the fitness function. Most evolutionary
algorithms use a static fitness measure f(x) which given an individual x al-
ways returns the same fitness value. Here we investigate an adaptive fitness
measure, called Stepwise Adaptation of Weights (saw). The saw technique
has been developed for and successfully used in solving constraint satisfaction
problems with evolutionary computation. The idea behind the saw method
is to adapt the fitness function of an evolutionary algorithm during an evo-
lutionary run in order to escape local optima, and improve the quality of
the evolved solutions. We will demonstrate how the saw mechanism can be
applied to both data classification and symbolic regression problems using
Genetic Programming. Moreover, we show how the different parameters of
the saw method influence the results for Genetic Programming applied to
regression and classification problems.

8 Overview of Publications

1.6 Overview of Publications

Here we give an overview of the way in which parts of this thesis have been
published.

Chapter 2: Classification using Genetic Programming
Parts of this chapter are published in the proceedings of the Fifthteenth
Belgium-Netherlands Conference on Artificial Intelligence (BNAIC’03) [25].

Chapter 3: Refining the Search Space
A large portion of this chapter is published in the proceedings of the Nine-
teenth ACM Symposium on Applied Computing (SAC 2004) [27].

Chapter 4: Evolving Fuzzy Decision Trees
The content of this chapter is based on research published in the Proceed-
ings of the Fifth European Conference on Genetic Programming (EuroGP’02)
[21]. An extended abstract is published in the Proceedings of the Fourteenth
Belgium-Netherlands Conference on Artificial Intelligence (BNAIC’02) [20].

Chapter 5: Introns: Detection and Pruning
Parts of this chapter are published in the Proceeding of the Eighth Inter-
national Conference on Parallel Problem Solving from Nature (PPSN VIII,
2004) [26].

Chapter 6: Stepwise Adaptation of Weights
The parts of this chapter concerning classification are based on research pub-
lished in the Proceedings of the Second European Workshop on Genetic Pro-
gramming (EuroGP’99) [22], Advances in Intelligent Data Analysis, Proceed-
ings of the Third International Symposium (IDA’99) [24], and as an extended
abstract in the Proceedings of the Eleventh Belgium-Netherlands Conference
on Artificial Intelligence (BNAIC’99) [23]. Parts of this chapter regarding
symbolic regression are published in the Proceedings the Twelfth Belgium-
Netherlands Conference on Artificial Intelligence (BNAIC’00) [28] and the
Proceedings of the Fourth European Conference on Genetic Programming
(EuroGP’01) [29].

2 Classification Using

Genetic Programming

We focus our attention on decision tree representations for data classification.
Before introducing our first decision tree representation we give an overview
and analysis of other tree-based Genetic Programming (gp) representations
for data classification.

Then we introduce a simple decision tree representation by defining which
internal and external nodes can occur in a tree. Using this simple representa-
tion we investigate the potential and complexity of tree-based gp algorithms
for data classification tasks and compare our simple gp algorithm to other
evolutionary and non-evolutionary algorithms using a number of data sets.

2.1 Introduction

There are a lot of possible representations for classifiers (e.g., decision trees,
rule-sets, neural networks) and it is not efficient to try to write a genetic
programming algorithm to evolve them all. In fact, even if we choose one
type of classifier, e.g., decision trees, we are forced to place restrictions on
the shape of the decision trees. As a result the final solution quality of our
decision trees is partially dependent on the chosen representation; instead of
searching in the space of all possible decision trees we search in the space
determined by the limitations we place on the representation. However, this
does not mean that this search space is by any means small as we will show
for different data sets.

9

10 Decision Tree Representations for Genetic Programming

The remainder of this chapter is as follows. In Section 2.2 we will give
an overview of various decision tree representations which have been used
in combination with Genetic Programming (gp) and discuss some of their
strengths and weaknesses. In the following section we introduce the notion of
top-down atomic representations which we have chosen as the basis for all the
decision tree representations used in this thesis. A simple gp algorithm for
data classification is introduced in Section 2.4. In Section 2.5 we will formu-
late how we can calculate the size of the search space for a specific top-down
atomic representation and data set. We will then introduce the first top-down
atomic representation which we have dubbed the simple representation. This
simple representation will be used to investigate the potential of gp for data
classification. The chapter continues in Section 2.7 with a description of the
experiments, and the results of our simple atomic gp on those experiments
in Section 2.8. In Section 2.9 we discuss how the computation time of our
algorithm can be reduced by using a fitness cache. Finally, in Section 2.10
we present conclusions.

2.2 Decision Tree Representations for Genetic

Programming

In 1992 Koza [66, Chapter 17] demonstrated how genetic programming can
be used for different classification problems. One of the examples shows how
ID3 style decision trees (see Figure 2.1) can be evolved in the form of LISP
S-expressions.

In another example the task is to classify whether a point (x, y) belongs to
the first or second of two intertwining spirals (with classes +1 and−1). In this
case the function set consists of mathematical operators (+,−,×, /, sin and
cos) and a decision-making function (if − less − then − else −). The
terminal set consists of random floating-point constants and variables x and
y. Since a tree of this type returns a floating-point number, the sign of the
tree outcome determines the class (+1,−1). The same approach is also used
in [44] and [98]. The major disadvantage of this type of representation is
the difficulty of humans in understanding the information contained in these
decision trees. An example of a decision tree using mathematical operators
is shown in Figure 2.2.

A problem of both representations described above is that neither repre-

Chapter 2 11

valueX2

valueY 2

valueX1

valueY 1 valueY 3

A B C

A V ariableY

V ariableX

Figure 2.1: An example of an ID3 style decision tree. The tree first splits the
data set on the two possible values of variable X (ValueX1 andValueX2). The
right subtree is then split into three parts by variable Y . The class outcome,
A, B or C, is determined by the leaf nodes.

X1

3.5

×

−

X2

Figure 2.2: An example of a decision tree using mathematical operators in
the function set and constants and variables in the terminal set. The sign of
the tree outcome determines the class prediction.

sentation is designed to be used with both numerical and categorical inputs.
For instance, if a variable X has 1,000 possible values then splitting the data
set into a thousand parts will not result in a very understandable tree. In
the case of the second represention, using mathematical functions, some op-
erators in the function set (e.g., +, −, ×) cannot be used with categorical
values such as Male, Female, Cold or Warm.

12 Decision Tree Representations for Genetic Programming

In an ideal case, a decision tree representation would be able to correctly
handle both numerical and categorical values. Thus, numerical variables and
values should only be compared to numerical values or variables and only be
used in numerical functions. Similarly, categorical variables and values should
only be compared to categorical variables or values. This is a problem for the
standard gp operators (crossover, mutation and initialization) which assume
that the output of any node can be used as the input of any other node. This
is called the closure property of gp which ensures that only syntactically
valid trees are created.

A solution to the closure property problem of gp is to use strongly typed
genetic programming introduced by Montana [77]. Strongly typed gp uses
special initialization, mutation and crossover operators. These special op-
erators make sure that each generated tree is syntactically correct even if
tree-nodes of different data types are used. Because of these special opera-
tors an extensive function set consisting of arithmetic (+,−,×, /), compar-
ison (≤, >) and logical operators (and , or , if) can be used. An example of
a strongly typed gp representation for classification was presented by Bhat-
tacharyya, Pictet and Zumbach [6].

Another strongly typed gp representation was introduced by Bot [11, 12]
in 1999. This linear classification gp algorithm uses a representation for
oblique decision trees [78]. An example tree can be seen in Figure 2.3.

In 1998 a new representation was introduced, independent of each other,
by Hu [57] and van Hemert [51] (see also [22, 24]) which copes with the
closure property in another way. Their atomic representation booleanizes all
attribute values in the terminal set using atoms. Each atom is syntactically
a predicate of the form (variable i operator constant) where operator is a
comparison operator (e.g., ≤ and > for continuous attributes, = for nominal
or Boolean attributes). Since the leaf nodes always return a Boolean value
(true or false) the function set consists of Boolean functions (e.g., and , or)
and possibly a decision making function (if − then − else). An example
of a decision tree using the atomic representation can be seen in Figure 2.4.

A similar representation was introduced by Bojarzcuk, Lopes and Fre-
itas [10] in 1999. They used first-order logic rather than propositional logic.
This first-order logic representation uses a predicate of the form (variable1

operator variable2) where variable1 and variable2 have the same data type.
In 2001 the first fuzzy decision tree representation for gp was introduced

by Mendes et al. [75]. This fuzzy decision tree representation is similar to
the atomic representation of Hu and van Hemert but it uses a function set

Chapter 2 13

CheckCondition2Vars

2.5 x10 −3.0 x4 2.1 CheckCondition3Vars A

1.1 x4 −3.5 x6 0.3 x1 1 B

Figure 2.3: An example of an oblique decision tree from [11]. The leftmost
children of function nodes (in this case CheckCondition2Vars and CheckCon-
dition3Vars) are weights and variables for a linear combination. The right-
most children are other function nodes or target classes (in this case A or B).
Function node CheckCondition2Vars is evaluated as: if 2.5x10 − 3.0x4 ≤ 2.1
then evaluate the CheckCondition3Vars node in a similar way; otherwise the
final classification is A and the evaluation of the decision tree on this partic-
ular case is finished.

OR

ANDV ariableX < V alueX

V ariableY = V alueY V ariableZ > V alueZ

Figure 2.4: An example of a decision tree using an atomic representation.
Input variables are booleanized by the use of atoms in the leaf nodes. The
internal nodes consist of Boolean functions and possibly a decision making
function.

consisting of fuzzy-logic operators (e.g., fuzzy and , fuzzy or , fuzzy not).
The terminal set consists of atoms. Each atom is of the form (variable =

14 Top-Down Atomic Representations

value). For a categorical attribute value corresponds to one of the possible
values. In the case of numerical attributes value is a linguistic value (such
as Low , Medium or High) corresponding with a fuzzy set [5, 101]. For each
numerical attribute a small number of fuzzy sets are defined and each possible
value of an attribute is a (partial) member of one or more of these sets. In
order to avoid generating invalid rule antecedents some syntax constraints
are enforced making this another kind of strongly typed gp.

In 2001 Rouwhorst [89] used a representation similar to that of decision
tree algorithms like C4.5 [87]. Instead of having atoms in the leaf nodes it
has conditional atoms in the internal nodes and employs a terminal set using
classification assignments.

In conclusion there is a large number of different possibilities for the repre-
sentation of decision trees. We will use a variant of the atomic representation
which we discuss in the next section.

2.3 Top-Down Atomic Representations

An atomic tree is evaluated in a bottom-up fashion resulting in a Boolean
value true or false corresponding with two classes. Because an atomic tree
only returns a Boolean value it is limited to binary classification problems.
In order to evolve decision trees for n-ary classification problems, without
having to split them into n binary classification problems, we propose a deci-
sion tree representation using atoms that is evaluated in a top-down manner.
Unlike the atomic representation of van Hemert which only employs atoms
in its terminal set, a top-down atomic representation uses atoms in both the
internal and leaf nodes. Each atom in an internal node is syntactically a
predicate of the form (attribute i operator value(s)), where operator is a com-
parison operator (e.g., <, > or =). In the leaf nodes we have class assignment
atoms of the form (class := C), where C is a category selected from the do-
main of the attribute to be predicted. A small example tree can be seen in
Figure 2.5. A top-down atomic tree classifies an instance I by traversing the
tree from root to leaf node. In each non-leaf node an atom is evaluated. If the
result is true the right branch is traversed, else the left branch is taken. This
is done for all internal nodes until a leaf node containing a class assignment
node is reached, resulting in the classification of the instance.

Chapter 2 15

class := A

class := Bclass := A

true

true

false

false

V ariableX < V alueX

V ariableY = V alueY

Figure 2.5: An example of a top-down atomic tree.

2.4 A Simple Representation

By using a top-down atomic representation we have defined in a general way
what our decision trees look like and how they are evaluated. We can define
the precise decision tree representation by specifying what atoms are to be
used. Here we will introduce a simple, but powerful, decision tree represen-
tation that uses three different types of atoms based on the data type of
an atom’s attribute. For non-numerical attributes we use atoms of the form
(variable i = value) for each possible attribute-value combination found in the
data set. For numerical attributes we also define a single operator: less-than
(<). Again we use atoms for each possible attribute-value combination found
in the data set. The idea in this approach is that the gp algorithm will be
able to decide the best value at a given point in a tree. This simple represen-
tation is similar to the representation used by Rouwhorst [89]. An example
of a simple tree can be seen in Figure 2.6.

Example 2.4.1 Observe the data set T depicted in Table 2.1.

In the case of our simple representation the following atoms are created:

• Since attribute A has four possible values {1,2,3,4} and is numerical
valued we use the less-then operator (<): (A < 1), (A < 2), (A < 3)
and (A < 4).

16 Calculating the Size of the Search Space

1

0

AGE < 27

class := A

class := B

LENGTH = 175

class := A

0

1

Figure 2.6: An example of a simple gp tree.

Table 2.1: A small data set with two input variables, A and B, and a target
variable class.

A B class
1 a yes
2 b yes
3 c no
4 d no

• Attribute B is non-numerical and thus we use the is-equal operator
(=): (B = a), (B = b), (B = c) and (B = d).

• Finally for the target class we have two terminal nodes: (class := yes)
and (class := no).

2.5 Calculating the Size of the Search Space

Since every decision tree using our top-down atomic representation is also a
full binary tree [15, Chapter 5.5.3] we can calculate the size of the search
space for each specific top-down atomic representation and data set. In order
to calculate the size of the search space for gp algorithms using a top-down
atomic representation and a given data set we will introduce two well-known
facts from discrete mathematics.

Chapter 2 17

Let N be the number of tree nodes. The total number of binary trees
with N nodes is the Catalan number

Cat(N) =
1

N + 1

(
2N

N

)
. (2.1)

In a full binary tree each node is either a leaf node (meaning 0 children) or
has two exactly 2 children. Let n be the number of internal tree nodes. The
total number of tree nodes N in a full binary tree with n internal tree nodes
is:

N = 2n + 1. (2.2)

We can now combine these two equations into the following lemma:

Lemma 2.5.1 The total number of full binary trees with 2n + 1 nodes is
1

n+1

(
2n
n

)
.

Proof Let B be a tree with n nodes. In order to transform this tree into a
full binary tree with 2n+ 1 nodes we need to add n+ 1 nodes. This can only
be done in one way. �

Since in a top-down atomic tree the contents of a node is dependent on
the set of internal nodes and the set of external nodes we can compute the
total number of top-down atomic trees with a maximum tree size of N nodes,
a set of internal nodes I and a set of terminal nodes T as follows.

Lemma 2.5.2 The total number of top-down atomic trees with at most N
nodes (N odd), a set of internal nodes I and a set of terminal nodes T is

N−1
2∑

n=1

Cat(n)× |I|n × |T |n+1.

Example 2.5.1 In Example 2.4.1 we showed which atoms are created for the
simple gp representation in the case of the example data set from Table 2.1.
Once we have determined the atoms for the simple gp representation we can
calculate the resulting search space size using Lemma 2.5.2. We will restrict
the maximum size of our decision trees to 63 nodes, which is the number of
nodes in a complete binary tree [15, Chapter 5.5.3] of depth 5.

Thus, given a maximum tree size of 63 nodes, the example data set in
Table 2.1 and a simple atomic representation we get:

18 Multi-layered Fitness

• I = {(A < 1), (A < 2), (A < 3), (A < 4), (B = a), (B = b), (B = c),
(B = d) }.

• T = {(class := yes), (class := no)}

• N = 63.

In this case the total number of possible decision trees, and thus the search
space, for our simple gp algorithm is 6.29× 1053.

2.6 Multi-layered Fitness

Although we will compare our top-down atomic gp algorithms to other data
classification algorithms based on their classification performance, there is a
second objective for our top-down atomic gps which is also important: un-
derstandability of the classifier. As we discussed in Section 2.2, some early
gp algorithms for data classification used the representations with mathe-
matical functions. The major disadvantage of this type of representation is
the difficulty with which humans can understand the information contained
in these decision trees. The simple representation introduced in the previ-
ous section is similar to the decision trees constructed by C4.5 and much
easier to understand. However, even the most understandable decision tree
representation can result in incomprehensible trees if the trees become too
large.

One of the problems of variable length evolutionary algorithms, such as
tree-based genetic programming, is that the genotypes of the individuals
tend to increase in size until they reach the maximum allowed size. This
phenomenon is, in genetic programming, commonly refered to as bloat [4, 97]
and will be discussed in more detail in Chapter 5.2.

There are several methods to counteract bloat [69, Chapter 11.6]. We use
a combination of two methods. The first method is a size limit: we use a built
in system which prunes decision trees that have more than a pre-determined
number of nodes, in our case 63.

The second method is the use of a multi-layered fitness. A multi-layered
fitness is a fitness which consists of several fitness measures or objectives
which are ranked according to their importance. In the case of our simple
representation we use a multi-layered fitness consisting of two fitness mea-

Chapter 2 19

sures which we want to minimize. The primary, and most important, fitness
measure for a given individual tree x is the misclassification percentage:

fitnessstandard(x) =

∑
r∈training set

χ(x, r)

|training set | × 100%, (2.3)

where χ(x, r) is defined as:

χ(x, r) =
{

1 if x classifies record r incorrectly;
0 otherwise.

(2.4)

The secondary fitness measure is the number of tree nodes. When the
fitness of two individuals is to be compared we first look at the primary
fitness. If both individuals have the same misclassification percentage we
compare the secondary fitness measures. This corresponds to the suggestion
in [46] that size should only be used as a fitness measure when comparing
two individuals with otherwise identical fitness scores.

2.7 Experiments

We will compare our top-down atomic gp representations to some other evo-
lutionary and machine learning algorithms using several data sets from the
uci machine learning data set repository [7]. An overview of the different
data sets is given in Table 2.2.

Table 2.2: An overview of the data sets used in the experiments.

data set records attributes classes
Australian Credit 690 14 2
German Credit 1000 23 2
Pima Indians Diabetes 768 8 2
Heart Disease 270 13 2
Ionosphere 351 34 2
Iris 150 4 3

Each algorithm is evaluated using 10-fold cross-validation and the per-
formance is the average misclassification error over 10 folds. In 10-fold cross-

20 Experiments

validation the total data set is divided into 10 parts. Each part is chosen once
as the test set while the other 9 parts form the training set.

In order to compare our results to other evolutionary techniques we
will also mention the results of two other evolutionary classification sys-
tems, cefr-miner [75] and esia [72], as reported in these respective papers.
cefr-miner is a gp system for finding fuzzy decision trees and esia builds
crisp decision trees using a genetic algorithm. Both also used a 10-fold cross-
validation.

We also mention the results as reported in [43] of a number of non-
evolutionary decision tree algorithms: Ltree[43], OC1 [78] and C4.5 [87]. We
also report a default classification performance which is obtained by always
predicting the class which occurs most in the data set. We performed 10
independent runs for our gp algorithms to obtain the results.

Table 2.3: The main gp parameters.

Parameter Value
Population Size 100
Initialization ramped half-and-half
Initial Maximum Tree Depth 6
Maximum Number of Nodes 63
Parent Selection tournament selection
Tournament Size 5
Evolutionary Model (100, 200)

Crossover Rate 0.9
Crossover Type swap subtree
Mutation Rate 0.9
Mutation Type branch mutation

Stop Condition 99 generations

The settings used for our gp system are displayed in Table 2.3. Most
surprising is probably the high mutation rate (0.9) we used. The reason
for choosing this high mutation rate is to explore a larger part of the search
space. Early experiments using smaller mutation rates (e.g., 0.1, 0.3, 0.5, 0.7)
showed that only a small number of the evaluated individuals were unique.

Chapter 2 21

In our gp system we use the standard gp mutation and recombination op-
erators for trees. The mutation operator replaces a subtree with a randomly
created subtree and the crossover operator exchanges subtrees between two
individuals. The population was initialized using the ramped half-and-half
initialization [4, 66] method to create a combination of full and non-full trees
with a maximum tree depth of 6.

One of the problems of supervised learning algorithms is finding the right
balance between learning a model that closely fits the training data and
learning a model that works well on unseen problem instances. If an algorithm
produces a model that focusses too closely on the training samples at the
expense of generalization power it is said to have overfitted the data.

A method to prevent overfitting during the training of an algorithm is to
use a validation set: a validation set is a part of the data set disjoint from
both the training and test set. When the classification performance on the
validation set starts to decrease the algorithm can be overfitting the training
set. If overfitting is detected the training is usually stopped. However, there
is no guarantee that using a validation set will result in optimal classification
performance on the test set. In the case of limited amounts of data this can be
problematic because it also decreases the number of records in the training
set. We will therefore try to prevent or reduce overfitting by other means
which we discuss next:

• In [83] Paris et al. explore several potential aspects of overfitting in
genetic programming. One of their conclusions is that big populations
do not necessarily increase the performance and can even decrease per-
formance.

• In [59] Jensen et al. show that overfitting occurs because a large number
of models gives a high probability that a model will be found that fits
the training data well purely by chance.

In the case of evolutionary computation the number of evaluated indi-
viduals is determined by population size, the number of generations and the
number of offspring produced per generation. In order to reduce the chance
of overfitting we have therefore chosen to run our simple gp algorithm with
a small population size and for a small number of generations. We use a
generational model (comma strategy) with population size of 100 creating
200 children per generation. The 100 children with the best fitness are se-
lected for the next generation. Parents are chosen by using 5-tournament

22 Results

selection. We do not use elitism as the best individual is stored outside the
population. Each newly created individual, whether through initialization or
recombination, is automatically pruned to a maximum number of 63 nodes.
The algorithm stops after 99 generations which means that at most 19.900
(100 + 99× 200) unique individuals are evaluated.

The simple gp algorithm was programmed using the Evolving Objects li-
brary (EOlib) [64]. EOlib is an Open Source C++ library for all forms of evolu-
tionary computation and is available from http://eodev.sourceforge.net.

2.8 Results

We performed 10 independent runs for our simple gp algorithm to obtain
the results (presented in Tables 2.4, 2.5, 2.6, 2.7, 2.8 and 2.9). To obtain the
average misclassification rates and standard deviations we first computed the
average misclassification rate for each fold (averaged over 10 random seeds).

When available from the literature the results of cefr-miner, esia,
Ltree, OC1 and C4.5 are reported. N/A indicates that no results were avail-
able. In each table the lowest average misclassification result (“the best re-
sult”) is printed in bold.

To determine if the results obtained by our simple gp algorithm are statis-
tically significantly different from the results reported for esia, cefr-miner,
Ltree, OC1 and C4.5, we have performed two-tailed independent samples t-
tests with a 95% confidence level (p = 0.05) using the reported mean and
standard deviations. The null-hypothesis in each test is that the means of
the two algorithms involved are equal.

2.8.1 The Australian Credit Data Set

The Australian Credit data set contains data from credit card applications
and comes from the statlog data set repository [76] (part of the UCI
data repository [7]). Since both attributes and classes have been encoded it
is impossible to interpret the trees found by our algorithms. In the original
data, on which the data set is based, 37 examples (≈ 5%) had missing values.
The UCI data repository reports that 8 of the 14 attributes are categorical
but our algorithms treat all numerical values in the same way. The two target
classes are quite evenly distributed with 307 examples (roughly 44.5%) for
class 1 and 383 examples for class 2 (≈ 55.5%). On this data set our simple

Chapter 2 23

gp constructed a set of internal nodes of size 1167 and a set of terminal nodes
of size 2 (the two classes). This means that the size of the search space of our
simple gp on the Australian Credit data set is approximately 7.5× 10120.

Table 2.4: Average misclassification rates (in %) with standard deviation,
using 10-fold cross-validation for the Australian Credit data set.

algorithm average s.d.
simple gp 22.0 3.9
Ltree 13.9 4.0
OC1 14.8 6.0
C4.5 15.3 6.0
cefr-miner N/A
esia 19.4 0.1
default 44.5

If we look at the results (see Table 2.4) of the Australian Credit data set
we see that average misclassification performance of our simple gp algorithm
is clearly not the best. Compared to the results of Ltree, OC1 and C4.5
our simple gp algorithm performs significantly worse while the difference in
performance with esia is not statistically significant. All algorithms definitely
offer better classification performance than default classification. The smallest
tree found by our simple gp can be seen in Figure 2.7. Although it is very
small it can classify the complete data set (no 10-fold cross-validation) with
a misclassification percentage of only 14.5%.

10

class := 0 class := 1

V ariable8 < 1

Figure 2.7: A simple tree found by our gp on the Australian Credit data set.

24 Results

2.8.2 The German Credit Data Set

The German Credit data set also comes from the statlog data set repos-
itory [76]. The original data set consisted of a combination of symbolic and
numerical attributes, but we used the version consisting of only numerical
valued attributes. The data set is the largest data set used in our experiments
with 1000 records of 24 attributes each. The two target classes are divided
into 700 examples for class 1 and 300 examples for class 2. Although the
data set itself is the largest one we used, the simple gp only constructed 269
possible internal nodes as well as 2 terminal nodes. As a result the search
space of our simple atomic gp on the German Credit data set is much smaller
(size ≈ 1.3× 10101) than on the Australian Credit data set.

Table 2.5: Average misclassification rates (in %) with standard deviation,
using 10-fold cross-validation for the German Credit data set.

algorithm average s.d.
simple gp 27.1 2.0
Ltree 26.4 5.0
OC1 25.7 5.0
C4.5 29.1 4.0
cefr-miner N/A
esia 29.5 0.3
default 30.0

Looking at the results on the German Credit data set (Table 2.5) we
see that our simple gp performs a little better than C4.5 on average and
a little worse than Ltree and OC1, but the differences are not statistically
significant. Our simple gp algorithm does have a significantly lower average
misclassification rate than esia which performs only slighlty better than
default classification.

2.8.3 The Pima Indians Diabetes Data Set

The Pima Indians Diabetes data set is an example of a data set from the
medical domain. It contains a number of physiological measurements and
medical test results of 768 females of Pima Indian heritage of at least 21

Chapter 2 25

years old. The classification task consists of predicting whether a patient
would test positive for diabetes according to criteria from the WHO (World
Health Organization). The data set contains 500 positive examples and 268
negative examples. In [76] a 12-fold cross-validation was used but we decided
on using a 10-fold cross-validation in order to compare our results to those
of the other algorithms. Because of the 10-fold cross validation the data set
was divided into 8 folds of size 77 and 2 folds of size 76. Our simple gp
constructed 1254 internal nodes as well as 2 terminal nodes for the target
classes. This results in a search space on the Pima Indians Diabetes data set
of size ≈ 7.0× 10121.

Table 2.6: Average misclassification rates (in %) with standard deviation,
using 10-fold cross-validation for the Pima Indians Diabetes data set.

algorithm average s.d.
simple gp 26.3 3.6
Ltree 24.4 5.0
OC1 28.0 8.0
C4.5 24.7 7.0
cefr-miner N/A
esia 29.8 0.2
default 34.9

Although this data set is reported to be quite difficult by [76] it is possible
to get good classification performance using linear discrimination on just one
attribute. Although the average misclassification performance of our simple
gp algorithm is somewhat higher than that of Ltree and C4.5, the difference
is not statistically significant. Our simple gp algorithm does again perform
significantly better than esia, while the difference in performance with OC1
is not significant.

2.8.4 The Heart Disease Data Set

The Heart Disease data set is another example of a medical data set. In the
data set results are stored of various medical tests carried out on a patient.
The data set is also part of the statlog [76] data set repository. The data

26 Results

set was constructed from a larger data set consisting of 303 records with 75
attributes each. For various reasons some records and most of the attributes
were left out when the Heart Disease data set of 270 records and 13 input
variables was constructed. The classification task consists of predicting the
presence or absence of Heart Disease. The two target classes are quite evenly
distributed with 56% of the patients (records) having no Heart Disease and
44% having some kind of Heart Disease present. The Heart Disease data set
is quite small with only 270 records and 13 input variables. However, our
simple gp still constructed 384 internal nodes as well as the 2 terminal nodes
for the target classes, resulting in a search space of size ≈ 8.1× 10105, which
is larger than that for the German Credit data set.

Table 2.7: Average misclassification rates (in %) with standard deviation,
using 10-fold cross-validation for the Heart Disease data set.

algorithm average s.d.
simple gp 25.2 4.8
Ltree 15.5 4
OC1 29.3 7
C4.5 21.1 8
cefr-miner 17.8 7.1
esia 25.6 0.3
default 44.0

On this data set our simple gp algorithm performs significantly worse
than the Ltree and cefr-miner algorithms. Compared to OC1, C4.5 and
esia the differences in misclassification performance are not statistically sig-
nificant.

2.8.5 The Ionosphere Data Set

The Ionosphere data set contains information of radar returns from the iono-
sphere. According to [7] the data was collected by a phased array of 16
high-frequency antennas with a total transmitted power in the order of 6.4
kilowatts. The target class consists of the type of radar return. A “good”
radar return shows evidence of some type of structure of electrons in the

Chapter 2 27

ionosphere while a “bad” return does not. Although the number of records
is quite small (351) the number of attributes is the largest (34) of the data
sets on which we have tested our algorithms. All attributes are continuous
valued. Because our simple gp constructs a node for each possible value of
continuous valued attributes it constructs no less than 8147 possible internal
nodes as well as 2 terminal nodes for the target classes. This results in a
search space of size ≈ 1.1 × 10147. One fold consists of 36 records while the
other 9 folds consist of 35 records each.

Table 2.8: Average misclassification rates (in %) with standard deviation,
using 10-fold cross-validation for the Ionosphere data set.

algorithm average s.d.
simple gp 12.4 3.8
Ltree 9.4 4.0
OC1 11.9 3.0
C4.5 9.1 5.0
cefr-miner 11.4 6.0
esia N/A
default 35.9

If we look at the results the performance of simple gp algorithm seems
much worse than that of Ltree and C4.5. However, the differences between the
simple gp algorithm and the other algorithms are not statistically significant.

2.8.6 The Iris Data Set

The Iris data set is the only data set, on which we test our algorithms,
with more than two target classes. The data set contains the sepal and petal
length and width of three types of iris plants: Iris Setosa, Iris Versicolour and
Iris Virginica. One of the plants is linearly separable from the others using
a single attribute and threshold value. The remaining two classes are not
linearly separable. All three classes are distributed equally (50 records each).
Because of the small number of records and attributes (only 4) the simple
gp constructs only 123 internal nodes and 3 terminal nodes for the 3 classes.
This results in a search space of size ≈ 1.7× 1096.

28 Fitness Cache

Table 2.9: Average misclassification rates (in %) with standard deviation,
using 10-fold cross-validation for the Iris data set.

algorithm average s.d.
simple gp 5.6 6.1
Ltree 2.7 3.0
OC1 7.3 6.0
C4.5 4.7 5.0
cefr-miner 4.7 7.1
esia 4.7 0.0
default 33.3

On this data set the results of all the algorithms are quite close together
and the differences between our simple gp algorithm and the other algorithms
are not statistically significant.

2.9 Fitness Cache

Evolutionary algorithms generally spend a lot of their computation time on
calculating the fitness of the individuals. However, if you look at the individ-
uals during an evolutionary run, created either randomly in the beginning
or as the result of recombination and mutation operators, you will often find
that some of the genotypes occur more than once. We can use these genotypi-
cal reoccurences to speedup the fitness calculations by storing each evaluated
genotype and its fitness in a fitness cache. We can use this cache by com-
paring each newly created individual to the genotypes in the fitness cache.
If an individual’s genotype is already in the cache its fitness can simply be
retrieved from the cache instead of the time consuming calculation which
would otherwise be needed.

In order to measure the percentage of genotypical reoccurences we will
use the resampling ratio introduced by van Hemert et al. [53, 52].

Definition 2.9.1 The resampling ratio is defined as the total number of hits
in a run divided by the total number of generated points in the same run:
resamplingratio = hits/evaluations. A hit is a point in the search space
that we have seen before, i.e., it is already present in the searched space.

Chapter 2 29

In our case the resampling ratio corresponds to the number of cache hits in
the fitness cache. The average resampling ratios and corresponding standard
deviations for our simple gp algorithm on the six data sets from the previous
section are shown in Table 2.10. Looking at the results it seems clear that
there is no direct relationship between the size of a search space and the
resampling ratio.

The lowest resampling ratio of 12.4% on the Ionosphere data set may
seem quite high for such a simple fitness cache but early experiments using
lower mutation and crossover rates resulted in even higher resampling ratio’s
for the different data sets. Although the resampling ratio does not give an
indication as to the evolutionary search process will be succesfull we did
not want it to become too high given the relatively small number of fitness
evaluations (19.900).

Note that the resampling ratio’s cannot be directly translated into de-
creased computation times. Not only do initialization, recombination and
statistics take time, the total computation time of our gp algorithms is also
heavily influenced by several other external factors such as computer plat-
form (e.g., processor type and speed) and implementation. As a result the
reductions in computation time achieved by the use of a fitness cache are less
than the resampling ratios of Table 2.10.

Table 2.10: The search space sizes and average resampling ratios with stan-
dard deviations for our simple gp algorithm on the different data sets.

resampling ratio search space
dataset avg. s.d. size
Australian Credit 16.9 4.3 7.5× 10120

German Credit 15.4 4.2 1.3× 10101

Pima Indian Diabetes 15.2 3.8 7.0× 10121

Heart Disease 13.7 3.1 8.1× 10105

Ionosphere 12.4 2.8 1.1× 10147

Iris 18.4 4.7 1.7× 1096

30 Conclusions

2.10 Conclusions

We introduced a simple gp algorithm for data classification. If we compare
the results of our simple gp to the other evolutionary approaches esia and
cefr-miner we see that on most data sets the results do not differ signifi-
cantly. On the German Credit and Pima Indian Diabetes data sets our simple
gp algorithm performs significantly better than esia. On the Ionosphere data
set simple gp performs significantly worse than cefr-miner. If we look at
the classification results of our simple gp algorithm and the non-evolutionary
algorithms we also see that our simple gp does not perform significantly bet-
ter or worse on most of the data sets. Only on the Australian Credit data set
does our simple gp algorithm perform significantly worse than all three de-
cision tree algorithms (Ltree, OC1 and C4.5). On the Heart Disease data set
the classification performance of our simple gp algorithm is only significantly
worse than Ltree.

The fact that on most data sets the results of our simple gp algorithm are
neither statistically significantly better or worse than the other algorithms is
partly due to the used two-tailed independent samples t-test we performed. In
[43] paired t-tests are performed to compare Ltree, C4.5 and OC1 which show
that some differences in performance between the algorithms are significant.
An independent samples t-test does not always show the same difference to
be statistically significant, and based on the data published in [43], [75] and
[72] we cannot perform a paired t-test.

Compared to the esia, cefr-miner, Ltree, OC1 and C4.5 algorithms the
classification performance of our simple gp algorithm is a little disappointing.
One of the main goals in designing a (supervised) learning algorithm for data
classification is that the trained model should perform well on unseen data
(in our case the test set). In the design of our simple gp algorithm and the
setup of our experiments we have made several choices which may influence
the generalization power of the evolved models.

As we discussed in Section 2.7 one of the problems of supervised learn-
ing algorithms is overfitting. By keeping the population size, the number of
offspring and the number of generations small we try to prevent this phe-
nomenon. As far as we can see these measures are successful since we have
not been able to detect overfitting during the training of our simple gp algo-
rithm. A down-side of the limited number of generations is that our simple
gp algorithm may not have enough time to find a good decision tree. This

Chapter 2 31

might explain the disappointing classification performance compared to the
other algorithms on some data sets.

In Section 2.6 we introduce a 2-layered fitness function both as a precau-
tion against bloat and because we believe smaller decision trees are easier
to understand than larger trees. For the same reasons we also employ a size
limit using the tree pruning system built into the Evolving Objects library
(EOlib) [64]. This size limit ensures that every tree which becomes larger
than a fixed number of tree nodes as a result of mutation or crossover, is
automatically pruned. However, according to Domingos [18, 19] larger more
complex models should be preferred over smaller ones as they offer better
classification accuracy on unseen data. Early experiments with and without
the 2-layered fitness function did not indicate any negative effects from using
the tree size as a secondary fitness measure. Other early experiments using
smaller maximum tree sizes did result in lower classification performance.

Besides overfitting and decision tree complexity, another influence on the
generalization power of our evolved decision trees might be the size of the
search spaces for the different data sets. As can be seen in Table 2.10 the
search space sizes of our simple gp algorithm for the different data sets
are large. Given the restrictions we place on the population size, number of
offspring and the maximum number of generations our simple gp algorithm is
only capable of evaluating a relatively very small number of possible decision
trees. In the next chapter we investigate if we can improve classification
performance by reducing the size of the search space.

3 Refining the Search Space

An important aspect of algorithms for data classification is how well they
can classify unseen data.

We investigate the influence of the search space size on the classification
performance of our gp algorithms. We introduce three new gp decision tree
representations. Two representations reduce the search space size for a data
set by partitioning the domain of numerical valued attributes using infor-
mation theory heuristics from ID3 and C4.5. The third representation uses
K-means clustering to divide the domain of numerical valued attributes into
a fixed number of clusters.

3.1 Introduction

At the end of Chapter 2 we discussed the influence of various aspects of
our simple gp algorithm on its predictive accuracy towards unseen data.
In [18, 19] Domingos argues, based on the mathematical proofs of Blumer
et al. [9], that: “if a model with low training-set error is found within a
sufficiently small set of models, it is likely to also have low generalization
error”. In the case of our simple gp algorithm the set of models, the search
space size, is determined by the maximum number of nodes (63), the number
of possible internal nodes and the number of terminals (see Lemma 2.5.2).

The easiest way to reduce the size of the search space in which our gp
algorithms operate, would be to limit the maximum number of tree nodes.
However, the maximum number of 63 tree nodes we selected for our exper-
iments is already quite small and early experiments with smaller maximum

33

34 Introduction

tree sizes resulted in lower classification performance. We will therefore re-
duce the size of the search spaces for the different data sets by limiting the
number of possible internal nodes for numerical valued attributes. There are
two reasons for only focusing on the numerical valued attributes. First, it is
difficult to reduce the number of possible internal nodes for non-numerical
attributes without detailed knowledge of the problem domain. Second, most
of the possible internal nodes created by our simple gp algorithm were for
the numerical valued attributes.

In order to limit the number of possible internal nodes for numerical
valued attributes we will group values together. By grouping values together
we in effect reduce the number of possible values and thus the number of
possible internal nodes. To group the values of an attribute together we will
borrow some ideas from other research areas.

The first technique we will look at is derived from decision tree algorithms,
particularly C4.5 and its predecessor ID3. Decision tree algorithms like these
two use information theory to decide how to construct a decision tree for
a given data set. We will show how the information theory based criteria
from ID3 and C4.5 can be used to divide the domain of numerical valued
attributes into partitions. Using these partitions we can group values together
and reduce the number of possible internal nodes and thus the size of the
search space for a particular data set.

The second technique we look at is supervised clustering. Clustering is a
technique from machine learning that is aimed at dividing a set of items into
a (fixed) number of “natural” groups. In our case we will use a form of K-
means clustering rather than an evolutionary algorithm as it is deterministic
and faster.

The outline of the rest of this chapter is as follows. In Section 3.2 we de-
scribe how machine learning algorithms for constructing decision trees work
in general, and we will examine C4.5 in particular. We will then introduce
two new representations which reduce the size of the search spaces for the
data sets by partitioning the domain of numerical valued attributes using the
information theory criteria from ID3 and C4.5. Then in Section 3.4 we will
introduce another representation which uses K-means clustering to divide
the domain of numerical valued attributes into a fixed number of clusters. In
Section 3.5 the results of the new representations will be compared with the
results of the algorithms from the previous chapter. In the final section we
will draw our conclusions.

Chapter 3 35

3.2 Decision Tree Construction

Decision tree constructing algorithms for data classification such as ID3 [86],
C4.5 [87] and CART [14] are all loosely based on a common principle: divide-
and-conquer [87]. The algorithms attempt to divide a training set T into
multiple (disjoint) subsets so that each subset Ti belongs to a single target
class. In the simplest form a training set consisting of N records is divided
into N subsets {T1, . . . , TN} such that each subset is associated with a single
record and target class. However, the predictive capabilities of such a classifier
would be limited. Therefore decision tree construction algorithms like C4.5
try to build more general decision trees by limiting the number of partitions
(and thereby limiting the size of the constructed decision tree). Since the
problem of finding the smallest decision tree consistent with a specific training
set is NP-complete [58], machine learning algorithms for constructing decision
trees tend to be non-backtracking and greedy in nature. Although the non-
backtracking and greedy nature of the algorithms has its advantages, such as
resulting in relatively fast algorithms, they do depend heavily on the way the
training set is divided into subsets. Algorithms like ID3 and C4.5 proceed
in a recursive manner. First an attribute is selected for the root node and
each of the branches to the child nodes corresponds with a possible value for
this attribute. In this way the data set is split up into subsets according to
the value of the attribute. This process is repeated recursively for each of
the branches using only the records that occur in a certain branch. If all the
records in a subset have the same target class the branch ends in a leaf node
with the class prediction. If there are no attributes left to split a subset the
branch ends in a leaf node predicting the class that occurs most frequent in
the subset.

3.2.1 Gain

In order to split a data set into two or more subsets ID3 uses an heuristic
based on information theory [16, 94] called gain. In information theory the
information criterion (or entropy) measures the amount of information (in
bits) that is needed to identify a class in a single data set. The information
measure info(T) for a single non-empty data set T is calculated as follows:

36 Decision Tree Construction

info(T) = −
#classes∑

i=1

freq(Ci, T)

|T | × log2

(
freq(Ci, T)

|T |
)

, (3.1)

where freq(Ci, T) is the number of cases in data set T belonging to class Ci.
If freq(Ci, T) happens to be 0 the contribution of this term is defined to be
0. The information is given in bits.

In order to determine the average amount of information needed to clas-
sify an instance after a data set T has been split into several subsets TX

i

using a test X we can compute the average information criterion. This aver-
age information criterion is calculated by multiplying the information values
of the subsets by their sizes relative to the size of the original data set. Thus

information[X|T] =

#subsets∑
i=1

|TX
i |
|T | × info(TX

i), (3.2)

where TX
i is the i-th subset after splitting data set T using a test X.

To decide which test should be used to split a data set ID3 employs the
gain criterion. The gain criterion measures the amount of information that
is gained by splitting a data set on a certain test. The information gained by
splitting a data set T using a test X is calculated as

gain[X |T] = info(T)− information[X|T]. (3.3)

In ID3 the test which offers the highest gain of information is chosen
to split a data set into two or more subsets. Although the use of the gain
criterion gives quite good results it has a major drawback. The gain criterion
has a strong bias towards tests which result in a lot of different subsets.

Example 3.2.1 Consider the data set T in Table 3.1.
When ID3 is used to construct a decision tree for this data set it starts

by calculating the amount of information needed to classify a record in data
set T . Thus

info(T) = −2

4
log2

2

4
− 2

4
log2

2

4
= 1 bit .

Now the amount of information that can be gained by splitting data set
T on either attribute A or B has to be calculated. Since attribute A is
numerical valued we look at tests of the form (A < threshold value) as is

Chapter 3 37

Table 3.1: A small example data set.

A B class
1 a yes
2 b yes
3 c no
4 d no

done by C4.5, although not in the original ID3 algorithm. Attribute B is
nominal valued so we use the attribute itself as a test. Note that we do not
look at 1 for a possible threshold value for attribute A as it does not split
the data set T .

1. Splitting on 2 as a threshold value gives:

information[A < 2|T] =
1

4
× (−1

1
log2

1

1
) +

3

4
× (−1

3
log2

1

3
− 2

3
log2

2

3
)

≈ 0.69 bits.

The gain now becomes gain[A < 2|T] ≈ 1− 0.69 = 0.31 bits.

2. Splitting on 3 as a threshold value gives:

information[A < 3|T] =
2

4
× (−2

2
log2

2

2
) +

2

4
× (−2

2
log2

2

2
)

= 0 bits.

The gain now becomes gain[A < 3|T] = 1− 0 = 1 bit .

3. Splitting on 4 as a threshold value gives:

information[A < 4|T] =
3

4
× (−2

3
log2

2

3
− 1

3
log2

1

3
) +

1

4
× (−1

1
log2

1

1
)

≈ 0.69 bits.

This gain now becomes gain[A < 4|T] ≈ 1− 0.69 ≈ 0.31 bits.

38 Decision Tree Construction

4. Splitting on attribute B gives:

information[B|T] = 4× (
1

4
× (−1

1
log2

1

1
))

= 0 bits ,

where, by abuse of notation, “information[B|T]” denotes the average
information needed to classify an instance in the original data set T
after splitting the data set on attribute B. Using a similar notation the
gain becomes gain[B|T] = 1− 0 = 1 bit .

In this case either (A < 3) or attribute B would be chosen as a possible
test for the root node by ID3. Since both tests can classify every instance in
the data set perfectly an ID3 style algorithm would return one of the decision
trees in Figure 3.1. This example also reveals a potential problem of the gain
criterion as it shows no preference for the smaller tree with (A < 3) as the
root node, although this tree offers more information about the data set.

yes no

yes no yes no noyes

a

b c

d

BA < 3

Figure 3.1: The two possible decision tree for Example 3.2.1 based on the
gain criterion.

�

3.2.2 Gain ratio

With the introduction of C4.5 came, among other improvements over ID3,
a new criterion called gain ratio. The gain ratio criterion addresses the defi-
ciency of the gain criterion expressed above, by dividing the information gain

Chapter 3 39

of a test by the split info of that test. The split info measure is similar to the
info measure in Equation 3.1, but instead of looking at the class distribution
of the subsets it only looks at the sizes of the subsets. In this way split info
measures the potential of information generated by dividing a data set into
several subsets. Thus

split info[X|T] = −
#subsets∑

i=1

|TX
i |
|T | × log2

|TX
i |
|T | , (3.4)

where as above TX
i is the i-th subset after splitting data set T using a test

X. The gain ratio criterion now becomes

gain ratio[X|T] =
gain[X|T]

split info[X|T]
. (3.5)

Unlike the gain criterion which measures the amount of information gained
from splitting a data set into subsets, the gain ratio criterion measures the
proportion of information gained that is useful for classification.

Example 3.2.2 Consider again the data set T in Table 3.1. In Example 3.2.1
we calculated the information and gain measures for the possible root nodes.
The C4.5 algorithm also computes these criteria but additionally calculates
the split info and gain ratio criteria.

Continuing Example 3.2.1 we assume that the gain criteria for the possible
tests are known. After calculating the gain for a possible test C4.5 computes
the split info measure for that test. The gain and split info measures are then
used to calculate the gain ratio measure for that test:

1. gain[A < 2|T] is approximately 0.31 bits.
The split info for this split would be
split info[A < 2|T] = −1

4
× log2

1
4
− 3

4
× log2

3
4
≈ 0.81 bits.

The gain ratio now becomes
gain ratio[A < 2|T] ≈ 0.31

0.81
≈ 0.38.

2. gain[A < 3|T] = 1 bit .
We can calculate the split info as
split info[A < 3|T] = −2

4
× log2

2
4
− 2

4
× log2

2
4

= 1 bit .
This results in a gain ratio of
gain ratio[A < 3|T] = 1

1
= 1.

40 Representations Using Partitioning

3. gain[A < 4|T] ≈ 0.31 bits.
The split info for this split would be
split info[A < 4|T] = −1

4
× log2

1
4
− 3

4
× log2

3
4
≈ 0.81 bits.

The gain ratio now becomes
gain ratio[A < 4|T] ≈ 0.31

0.81
≈ 0.38.

4. gain[B|T] = 1 bit .
In this case the split info becomes
split info = −4× 1

4
× (−1

4
log2

1
4
) = 2 bits.

This results in a gain ratio of
gain ratio[B|T] = 0.5,
where, by abuse of notation, “gain ratio[B|T]” denotes the gain ratio
after splitting the data set on attribute B.

Now, in the case of C4.5 it is clear that (A < 3) and not attribute B
should be chosen as the root node by C4.5 as it has the highest gain ratio.
Since this test can classify every instance in the data set perfectly, C4.5 would
return the decision tree in Figure 3.2.

yes no

yes no

A < 3

Figure 3.2: The optimal decision tree for Example 3.2.2 according to C4.5.

�

3.3 Representations Using Partitioning

In Section 2.4 we introduced the simple representation by specifying which
atoms can occur. One of the drawbacks of the simple representation is that
it creates a possible internal node for each combination of a numerical valued
attribute and value that occurs in the data set. In order to reduce the huge

Chapter 3 41

number of possible internal nodes that are generated in this way we can use
the gain and gain ratio criteria. In C4.5 a single threshold value is selected
to split the domain of a numerical valued attribute into two partitions. For
our new representations we do something similar. For each numerical valued
attribute Ai with domain Di let Vi = {vi

1, . . . , v
i
k−2}, with n ≤ k − 1 denote

a set of threshold values, where k is the maximum number of partitions.
In order to find the optimal set of threshold values we have to look at all
possible combinations of at most k − 1 threshold values and compare their
gain or gain ratio values so that gain(ratio)[Ai < vi

1, Ai ∈ [vi
1, v

i
2), . . . , Ai ≥

vi
n|T] is greater than or equal to any other combination of threshold values.

The gain ratio criterion should be especially useful as it is designed to find
a balance between information gained by splitting a data set into a large
number of data subsets and limiting the number of subsets.

Since the total number of sets of threshold values can become too large
to effectively compare them all and our main aim is to reduce the size of the
search spaces we will limit the maximum number of partitions to 5. If two sets
of threshold values have the same gain or gain ratio measures we will choose
the set containing the least number of threshold values. In order to use the
partitions specified by the optimal set of threshold values we need new types
of atoms. If the optimal set of threshold values consists for instance of the
three threshold values threshold1, threshold2 and threshold3 we can construct
atoms of the form

• attribute < threshold1,

• attribute ∈ [threshold1, threshold2),

• attribute ∈ [threshold2, threshold3), and

• attribute ≥ threshold3.

Note that in case the optimal set of threshold values consists of only one
threshold value just a single atom can be used (attribute < threshold1) (see
[25]).

42 Representations Using Partitioning

Example 3.3.1 Consider the example data set in Table 3.2.

Table 3.2: Example data set

A B class
1 a yes
2 b yes
3 a no
4 b no
5 a yes
6 b yes

In the case of the simple representation we get the following atoms:

• Since attribute A has six possible values {1,2,3,4,5,6} and is numerical
valued we use the < operator: (A < 1), (A < 2), (A < 3), (A < 4),
(A < 5) and (A < 6).

• Attribute B is non-numerical and thus we use the = operator: (B = a)
and (B = b).

• Finally for the target class we have two terminal nodes: (class := yes)
and (class := no).

Now, if we set our maximum number of parititions k to 2 or more, we
get the threshold values 3 and 5, using either the gain or gain ratio criterion.
In this case only two threshold values would be chosen as they result in
a “perfect” partitioning of the domain of attribute A. This results in the
following atoms for attribute A:

• A < 3,

• A ∈ [3, 5),

• A ≥ 5.

�

Chapter 3 43

3.4 A Representation Using Clustering

Another method to partition the domain of numerical valued attributes is
supervised clustering. Clustering algorithms are usually employed to group
collections of data together based on some measure of similarity. Each of
these groups is called a cluster. Unlike the partitioning methods described
in Section 3.3, clustering algorithms do not use the target class but rather
divide the instances into “natural” groups. For our purposes we limit the
clustering process to partitioning the domain of a single numerical valued
attribute rather than clustering entire instances in the data set. In our case
the clustering takes place in one-dimensional real space. Although we could
use some kind of evolutionary algorithm for clustering, we decided to use
K-means clustering algorithm since it is fast(er), easy to implement and
deterministic (and the results are satisfactory).

The basic K-means clustering algorithm [100] works as follows. One starts
by specifying the number of clusters k one wants to find and selects the initial
cluster centers. Then all instances in the data set are assigned to the cluster
center to which they are closest in Euclidean distance. Once all instances have
been assigned to a cluster, the new cluster center or centroid is calculated
as the mean of all instances assigned to that cluster. Next this process is
repeated with the newly calculated cluster centers until the same instances
are assigned to the same clusters in consecutive rounds.

In our approach all numerical valued attributes with a domain size larger
than k are clustered, where k is one of the parameters of the algorithm. If
the domain of a numerical valued attribute consists of k unique values or
less we simply use atoms of the form (attribute = value) for each attribute-
value pair instead of clustering. The performance of the K-means clustering
algorithm is dependent on the choice of the initial cluster centroids as well
as instance order. We have therefore chosen to use the Partition Around
Medioids initialization as proposed by Kaufman [61]. This initialization was
(empirically) found to be the best of four classical initialization methods
when looking at effectiveness, robustness and convergence speed [84].

After the clustering algorithm has determined the clusters, we can con-
struct atoms based on the minimum and maximum value assigned to each
cluster. Thus, if the K-means clustering algorithm has found three clusters
we can construct the following atoms:

44 Experiments and Results

• attribute ∈ [min1,max 1],

• attribute ∈ [min2,max 2], and

• attribute ∈ [min3,max 3].

where min i and max i are the minimum and maximum value of cluster i re-
spectively.

We will call this the clustering representation.

Example 3.4.1 Observe the data set in Example 3.3.1 (see Table 3.2).
Using our K-means clustering algorithm with k = 3 results in three clus-

ters for attribute A: [1, 2], [3, 4] and [5, 6]. Thus, in this case the following
atoms are constructed:

• A ∈ [1, 2],

• A ∈ [3, 4], and

• A ∈ [5, 6].

�

3.5 Experiments and Results

To compare the classification performance of our new representations with
the simple representation of the previous chapter we have conducted the same
experiments using the same settings and data sets (see Section 2.7). We will
also compare our results to Ltree, OC1 and C4.5 and the other evolution-
ary algorithms (esia and cefr-miner) already mentioned in the previous
chapter. The tables with results also contain an extra column, labeled k, to
indicate the number of clusters in the case of our clustering gp algorithms or
the maximum number of partitions in the case of the gain gp and gain ratio
gp algorithms. The best (average) result for each data set is printed in bold
font. The entry N/A indicates that no results were available.

To determine if the results obtained by our algorithms are statistically
significantly different from the results reported for esia, cefr-miner, Ltree,
OC1 and C4.5, we have performed two-tailed independent samples t-tests

Chapter 3 45

with a 95% confidence level (p = 0.05) using the reported mean and standard
deviations. The null-hypothesis in each test is that the means of the two
algorithms involved are equal. In order to determine whether the differences
between our gp algorithms are statistically significant we used paired two-
tailed t-tests with a 95% confidence level (p = 0.05) using the results of 100
runs (10 random seeds times 10 folds). In these tests the null-hypothesis is
also that the means of the two algorithms involved are equal.

3.5.1 Search Space Sizes

Table 3.3: The number of possible internal nodes and the resulting search
space sizes for the Australian Credit data set.

size of function set
algorithm k avg. min max search space size
clustering gp 2 28.0 28 28 4.6× 1070

clustering gp 3 38.0 38 38 5.9× 1074

clustering gp 4 46.0 46 46 2.2× 1077

clustering gp 5 54.0 54 54 3.2× 1079

gain gp 2 28.0 28 28 4.6× 1070

gain gp 3 38.0 38 38 5.9× 1074

gain gp 4 46.0 46 46 2.2× 1077

gain gp 5 54.0 54 54 3.2× 1079

gain ratio gp 2 28.0 28 28 4.6× 1070

gain ratio gp 3 29.7 29 30 1.4× 1071 . . . 3.9× 1071

gain ratio gp 4 31.2 30 33 3.9× 1071 . . . 7.5× 1072

gain ratio gp 5 32.7 31 36 1.1× 1072 . . . 1.1× 1074

simple gp 1167.0 1167 1167 7.5× 10120

In Table 3.3 the average, minimum and maximum number of internal
nodes used by our new gp algorithms for the Australian Credit data set are
shown with the resulting search space sizes. In the case of our clustering gp
algorithms the number of possible internal nodes is constant for all 10 folds
and random seeds depending on the value of k. We see a clear distinction
between the gain gp and gain ratio gp algorithms. Because the gain criterion
does not take the number of subsets into consideration it always results in

46 Experiments and Results

the maximum number of partitions allowed, similar to the clustering gp
algorithm. Since the gain ratio criteria also takes the number of partitions
into consideration the number of partitions for each variable differs per fold.
As a result using the gain ratio criterion leads to a much smaller increase
in maximum number of possible internal nodes if we increase the allowed
maximum number of partitions k.

Table 3.4: The number of possible internal nodes and the resulting search
space sizes for the Iris data set.

internal nodes
algorithm k avg. min max search space size
clustering gp 2 8.0 8 8 2.7× 1059

clustering gp 3 12.0 12 12 7.7× 1064

clustering gp 4 16.0 16 16 5.8× 1068

clustering gp 5 20.0 20 20 5.8× 1071

gain gp 2 8.0 8 8 2.7× 1059

gain gp 3 12.0 12 12 7.7× 1064

gain gp 4 16.0 16 16 5.8× 1068

gain gp 5 20.0 20 20 5.8× 1071

gain ratio gp 2 8.0 8 8 2.7× 1059

gain ratio gp 3 8.0 8 8 2.7× 1059

gain ratio gp 4 8.0 8 8 2.7× 1059

gain ratio gp 5 8.0 8 8 2.7× 1059

simple gp 123.0 123 123 1.7× 1096

For the other data sets the results are similar. Both our clustering gp and
gain gp algorithms have the same search space sizes for the same maximum
number of partitions or clusters k. In the case of the gain ratio gp algorithm
the search space size increases only slightly as we increase the maximum
allowed number of partitions. The only exception is the Iris data set where
the search space size did not increase (see Table 3.4).

3.5.2 The Australian Credit Data Set

The results on the Australian Credit data set are displayed in Table 3.5.
On this data set our new gp algorithms perform significantly better than

Chapter 3 47

our simple gp algorithm, regardless of the number of clusters or partitions
used. More interestingly, the best performing gp algorithm, clustering gp
with 2 clusters per numerical valued attribute, also has a significantly lower
misclassification rate than our other gp algorithms with the exception of our
gain gp algorithm with k = 2.

If we compare the results of our new gp algorithms with esia we see
that all our gp algorithms perform significantly better, based on a two-tailed
independent samples t-test. The differences between our new gp algorithms
and the decision tree algorithms Ltree, OC1 and C4.5 are not statistically
significant.

Table 3.5: Average misclassification rates (in %) with standard deviation,
using 10-fold cross-validation for the Australian Credit data set.

algorithm k average s.d.
clustering gp 2 13.7 3.0
clustering gp 3 14.8 2.6
clustering gp 4 14.8 2.9
clustering gp 5 15.2 2.6
gain gp 2 14.2 2.7
gain gp 3 15.1 2.7
gain gp 4 14.9 3.6
gain gp 5 15.1 3.8
gain ratio gp 2 15.7 3.2
gain ratio gp 3 15.5 3.4
gain ratio gp 4 15.5 3.2
gain ratio gp 5 15.6 3.7
simple gp 22.0 3.9
Ltree 13.9 4.0
OC1 14.8 6.0
C4.5 15.3 6.0
cefr-miner N/A
esia 19.4 0.1
default 44.5

48 Experiments and Results

3.5.3 The German Credit Data Set

When we consider the results on the German Credit data set in Table 3.6
we see that both our simple gp and gain gp algorithm with k = 3 perform
significantly better than our other gp algorithms, with the exception of our
clustering gp algorithm with k = 2. The differences with the decision tree
algorithms Ltree, OC1 and C4.5 are not statistically significant.

If we compare the results of our gp algorithms with esia we see that the
differences between our simple gp and clustering gp algorithms and esia are
statistically significant. In the case of our gain gp algoritms the differences
with esia are also statistically significant except for k = 4. Differences be-
tween esia and our gain ratio gp algorithms are not statistically significant.

Table 3.6: Average misclassification rates (in %) with standard deviation,
using 10-fold cross-validation for the German Credit data set.

algorithm k average s.d.
clustering gp 2 27.8 1.3
clustering gp 3 28.0 1.4
clustering gp 4 27.9 1.5
clustering gp 5 28.4 1.5
gain gp 2 28.1 1.9
gain gp 3 27.1 1.9
gain gp 4 28.3 1.9
gain gp 5 28.2 1.6
gain ratio gp 2 28.3 1.9
gain ratio gp 3 28.5 2.3
gain ratio gp 4 28.6 2.3
gain ratio gp 5 28.5 2.2
simple gp 27.1 2.0
Ltree 26.4 5.0
OC1 25.7 5.0
C4.5 29.1 4.0
cefr-miner N/A
esia 29.5 0.2
default 30.0

Chapter 3 49

3.5.4 The Pima Indians Diabetes Data Set

The results for the Pima Indians Diabetes data set are displayed in Table 3.7.
Although not particularly good, the results of the gain ratio gp algorithms
are the most surprising. For k = 2 and k = 3 these algorithms have exactly
the same misclassification performance per fold, although the sets of possible
internal nodes differ as a result of the maximum allowed number of partitions
per numerical valued attribute. The same behavior is seen for k = 4 and k =
5. In all cases the discovered decision trees differ syntactically per fold and
random seed. The most likely reason is that the evolved trees are similar and
contain mostly atoms from attributes of which the domain was partitioned
into 2 (or 4) parts.

Table 3.7: Average misclassification rates (in %) with standard deviation,
using 10-fold cross-validation for the Pima Indians Diabetes data set.

algorithm k average s.d.
clustering gp 2 26.3 3.2
clustering gp 3 26.3 3.4
clustering gp 4 26.7 3.2
clustering gp 5 26.5 4.4
gain gp 2 27.0 4.3
gain gp 3 26.5 3.4
gain gp 4 25.9 3.4
gain gp 5 25.9 4.2
gain ratio gp 2 27.6 4.6
gain ratio gp 3 27.6 4.6
gain ratio gp 4 27.7 4.7
gain ratio gp 5 27.7 4.7
simple gp 26.3 3.6
Ltree 24.4 5.0
OC1 28.0 8.0
C4.5 24.7 7.0
cefr-miner N/A
esia 29.8 0.2
default 34.9

50 Experiments and Results

On the Pima Indians Diabetes data set the results of the gain ratio gp al-
gorithms are significantly worse than the results of our other gp algorithms,
except for our gain gp algorithm with k = 2. The differences between our
other gp algorithms are not statistically significant, except for the differ-
ence between our clustering gp algorithm with k = 4 and our gain ratio gp
algorithms with k = 4 or k = 5.

Our simple gp and clustering gp algorithms perform significantly bet-
ter on this data set than esia. With the exception of k = 2 our gain gp
algorithms are also significantly better. The differences in misclassification
performance between our new gp algorithms and Ltree, OC1 and C4.5 are
not statistically significant.

Table 3.8: Average misclassification rates (in %) with standard deviation,
using 10-fold cross-validation for the Heart Disease data set.

algorithm k average s.d.
clustering gp 2 19.9 4.6
clustering gp 3 21.3 5.4
clustering gp 4 22.5 4.3
clustering gp 5 22.1 4.0
gain gp 2 19.9 4.8
gain gp 3 22.8 4.3
gain gp 4 22.1 4.5
gain gp 5 21.5 4.7
gain ratio gp 2 18.7 4.5
gain ratio gp 3 20.3 5.3
gain ratio gp 4 20.6 5.8
gain ratio gp 5 19.8 4.1
simple gp 25.2 4.8
Ltree 15.5 4.0
OC1 29.3 7.0
C4.5 21.1 8.0
cefr-miner 17.8 7.1
esia 25.6 0.3
default 44.0

Chapter 3 51

3.5.5 The Heart Disease Data Set

The results on the Heart Disease data set are displayed in Table 3.8. All our
new gp algorithms show a significant improvement in misclassification per-
formance over our simple gp algorithm. Our best performing gp algorithm,
gain ratio gp with k = 2, is significantly better than all our other gp algo-
rithms, with the exception of the gain gp algorithm with k = 2. Based on
the results it seems clear that two clusters or partitions per numerical valued
attribute offer the best performance for our gp algorithms.

With the exception of the gain gp algorithm using k = 3, all our new
gp algorithms have a significantly lower misclassification rate than esia.
The differences between our new gp algorithms and cefr-miner are not
significant.

The differences in classification performance between Ltree and our gp
algorithms are statistically significant except for the two best performing
gain ratio gp algorithms. OC1 performs very badly on this data set and as
a result all our new gp algorithms are significantly better. The differences
between C4.5 and our gp algorithms are not statistically significant.

3.5.6 The Ionosphere Data Set

When we consider the results of our gp algorithms on the Ionosphere data
set in Table 3.9 we see that our gain ratio gp algorithms perform the best.
Together with the gain gp algorithm with k = 2 they are significantly better
than our other gp algorithms. If we look at the results of our new gp algo-
rithms with respect to k we see that the misclassification rate increases with
k, except for our clustering gp with k = 2.

Our three best gain ratio gp algorithms are also significantly better than
OC1. Compared to the results of Ltree and C4.5 the differences in perfor-
mance with our new gp algorithms are not statistically significant, except
for the worst performing gp algorithm, clustering gp with k = 5. The differ-
ences between cefr-miner and our new algorithms are also no statistically
significant.

52 Experiments and Results

Table 3.9: Average misclassification rates (in %) with standard deviation,
using 10-fold cross-validation for the Ionosphere data set.

algorithm k average s.d.
clustering gp 2 13.1 4.1
clustering gp 3 10.5 5.1
clustering gp 4 12.1 3.0
clustering gp 5 13.3 3.8
gain gp 2 8.3 4.7
gain gp 3 10.5 4.8
gain gp 4 10.8 4.2
gain gp 5 11.6 4.4
gain ratio gp 2 7.6 4.2
gain ratio gp 3 8.1 4.3
gain ratio gp 4 8.3 4.4
gain ratio gp 5 9.1 3.6
simple gp 12.4 3.8
Ltree 9.4 4.0
OC1 11.9 3.0
C4.5 9.1 5.0
cefr-miner 11.4 6.0
esia N/A
default 35.9

3.5.7 The Iris Data Set

When we consider the results of our new gp algorithms on the Iris data set
in Table 3.10 we see that our clustering gp algorithm with k = 3 has a signif-
icantly lower misclassification rate than our other gp algorithms. If we look
at Table 3.4 we see that the gain ratio gp algorithms all split the domain
of the numerical valued attributes into 2 partitions regardless of the maxi-
mum allowed number of partitions. This is probably the reason for the bad
misclassification rate of these algorithms as both other new top-down atomic
representations also classify badly when the domain of the numerical valued
attributes is split into 2 partitions or clusters. As a result these algorithms
perform significantly worse than the other algorithms.

Chapter 3 53

Table 3.10: Average misclassification rates (in %) with standard deviation,
using 10-fold cross-validation for the Iris data set.

algorithm k average s.d.
clustering gp 2 21.1 9.4
clustering gp 3 2.1 4.2
clustering gp 4 5.2 4.8
clustering gp 5 6.0 5.5
gain gp 2 29.6 6.3
gain gp 3 6.3 6.1
gain gp 4 5.1 6.4
gain gp 5 6.5 5.6
gain ratio gp 2 31.7 5.0
gain ratio gp 3 31.7 5.0
gain ratio gp 4 31.7 5.0
gain ratio gp 5 31.7 5.0
simple gp 5.6 6.1
Ltree 2.7 3.0
OC1 7.3 6.0
C4.5 4.7 5.0
cefr-miner 4.7 0.0
esia 4.7 7.1
default 33.3

3.5.8 Scaling

In Table 3.11 the run-times of our algorithms on the Ionosphere data set are
shown relative to the run-time of our clustering gp algorithm using 2 clusters
per numerical valued attribute. Our clustering gp algorithm is the fastest
and scales quite well when we increase the maximum number of partitions.
When we look at the relative run-times of our gain gp and gain ratio gp
algorithms we see that they only scale well until k = 3. The problem with
these gp algorithms is that they have to calculate the gain and gain ratio
criteria for each possible set of threshold values. Thus, as we increase the
maximum number of partitions per numerical valued attribute the number
of combinations of threshold values increases exponentially.

54 Conclusions

Table 3.11: The average relative run-times on the Ionosphere data set.

k clustering gp gain gp gain ratio gp
2 1 1.05 1.09
3 1.01 1.09 1.12
4 1.09 3.54 3.63
5 1.13 214.22 231.84

3.6 Conclusions

The results of our experiments reported above are a clear indication that de-
ciding which atoms are going to be used when evolving decision trees can be
crucial. However, it seems that even a sub-optimal refinement of the search
space, whether through clustering or partitioning, can result in significantly
better decision trees compared to the simple gp algorithms of Chapter 2.
In the case of the Australian Credit and Heart Disease data sets all of our
clustering and partitioning gp algorithms have a significantly lower misclas-
sification rate than our simple gp algorithm, regardless of the number of
clusters or partitions. On the Ionosphere data most of the new algorithms
perform significantly better than simple gp, and none perform significantly
worse.

On the other data sets we see that a smaller search space does not guar-
antee better classification performance. On the Iris data set the algorithms
that use only two clusters or partitions for each numerical valued attribute
fail to offer a reasonable classification performance. The method used to split
the domain of numerical valued attributes into clusters or partitions also in-
fluences the classification performance. On the German Credit data set our
gain gp algorithm with 2 partitions per numerical valued attribute performs
similar to our simple gp algorithm while our other gp algorithms using k = 2
perform significantly worse. In the case of the Iris data set our clustering gp
algorithm using k = 3 outperforms all our other gp algorithms regardless of
the value of k. It seems that the method used to “refine” the search space is
much more important than the actual reduction in search space size.

If we consider how well the clustering and partitioning parts of the al-
gorithms scale with respect to the number of partitions it is clear that our
clustering gp algorithm outperforms the partitioning gp algorithms (gain

Chapter 3 55

gp and gain ratio gp, see Table 3.11). However, if we look at the results in
Section 3.5 we see that either two or three clusters or partitions for each
numerical valued attribute generally offers the best results. This means that
the scaling problems of our refined gp algorithms may not be an issue as long
as the maximum number of partitions is restricted.

4 Evolving Fuzzy Decision Trees

Standard decision tree representations have difficulties when it comes to mod-
elling real world concepts and dealing with polluted data sets. To solve some
of these problems we extend our basic full atomic representation to include
fuzzy decision trees. Fuzzy decision trees are based on fuzzy logic and fuzzy
set theory unlike “standard” decision trees which are based on Boolean logic
and set theory. Together with this new fuzzy representation we will introduce
a new fitness measure based on fuzzy logic. The new fuzzy gp algorithms
will be compared with the algorithms of the previous chapters to see if they
improve classification performance.

4.1 Introduction

In the previous chapters we evolved decision trees based on our top-down
atomic representation. These decision tree representations, as well as the
representations used in ID3, C4.5 and CART, have a number of limitations.

First of all, they are used to model aspects of the real world from a
“Boolean” point of view. In a “Boolean” view of the world everything is ei-
ther true or false, black or white. This does not conform to the real world in
which often many “shades of grey” exist. The Boolean top-down atomic rep-
resentations used in the previous chapters cannot handle these intermediate
values.

Secondly, the decision tree representations are based on the assumption
that the data in the training set is precise, while in real world scenarios
this is often not the case. In some cases the original data on which a data

57

58 Introduction

set is based may have contained missing or empty values which have been
replaced in the data preparation phase of the knowledge discovery process
[85, Chapter 8]. There is also the possiblity of typing errors while inserting
the data into the data base. Another potential problem is that the values in
a data set may be the result of measurements which can be inaccurate. As
a result there is often a degree of uncertainty as to whether the values in a
data set are 100% accurate.

In this chapter we will show how we can evolve fuzzy decision trees based
on the top-down atomic representations from Chapter 3 by using fuzzy sets
and fuzzy logic [5]. Fuzzy set theory and fuzzy logic are generalizations of
classical (Boolean) set theory and Boolean logic. They can be used to help
computer programs deal with the uncertainty of the real world. By using
fuzzy sets and fuzzy logic we aim to improve two aspects of the Boolean
top-down atomic representations:

1. Classification accuracy: By using fuzzy sets in the atoms of our new
fuzzy decision trees and evaluating those trees using fuzzy logic, they
should be more robust towards faulty training data.

2. Understandability: The use of fuzzy terms in the atoms of our new fuzzy
decision trees, instead of numerical values and “crisp” comparisons,
should make the trees more intuitive.

Other work on discovering fuzzy decision trees using tree-based genetic
programming was performed by Mendes, Voznika, Freitas and Nievola [75].
They used an innovative co-evolutionary approach employing strongly-typed
Genetic Programming [77] and evolution strategies [92, 3] . They used strongly-
typed Genetic Programming to evolve a population of fuzzy decision trees
for binary classification while a (1 + 5)-evolution strategy was used to evolve
the fuzzy membership functions for the continuous attributes. The results
of their Co-Evolutionary Fuzzy Rule Miner (cefr-miner) system were very
promising and we will compare the results of our own approach to theirs.

In Section 4.2 we discuss the basics of fuzzy set theory and fuzzy logic.
Then in Section 4.3 we describe the new fuzzy representations. The results
of the experiments are discussed in Section 4.4. In Section 4.5 we introduce
a fuzzy fitness measure in order to try to improve the classification results
and compare it with the standard “Boolean” fitness measure. Conclusions
are reported in Section 4.6.

Chapter 4 59

4.2 Fuzzy Set Theory

Fuzzy set theory [101, 5] is an extension of classical set theory. In classical
set theory an element is either a member of a set, with all the characteristics
of that set, or not. However, in the real world it is often not desirable or
possible to define a set with all its characteristics. Consider, for example, the
set of young people, described by

Young = {x ∈ People | age(x) < 28}. (4.1)

According to this set a person under 28 is considered to be young. The
membership function for the class of young people is then:

mYoung(x) =

⎧⎨
⎩

1 if age(x) < 28;

0 if age(x) ≥ 28.
(4.2)

In fuzzy set theory an element can be a partial member of a (fuzzy) set.
The degree to which an element is a member of a fuzzy set is determined by a
fuzzy membership function. More general than a membership function from
classical set theory, a fuzzy membership function returns a real value between
0 and 1 including the endpoints, indicating the degree of membership. An
example of a fuzzy membership function for a fuzzy set Young is given in
Equation 4.3:

μYoung(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if age(x) ≤ 25;

1− age(x)−25
30−25

if 25 < age(x) ≤ 30;

0 if age(x) > 30.

(4.3)

A person younger than 25 is always considered to be young (see Fig-
ure 4.1), but as that person becomes older he or she becomes less young and
thus less a member of the set of young people. For instance a person of age
27 is young to a degree of 1 − 27−25

30−25
= 0.6. At the same time that person

also becomes older and thus his or her membership of set old increases. If
that person becomes 28, and thus less young, the degree of membership of
set Young decreases to 1− 28−25

30−25
= 0.4.

60 Fuzzy Set Theory

25

1

0
30

µYoung

age

Figure 4.1: A graphical representation of the fuzzy membership function of
Equation 4.3.

4.2.1 Fuzzy Logic

In classical set theory the basic operators conjunction, disjunction and com-
plement are defined using Boolean logic. For example, the (classical) set of
people who are both young and tall can be defined by the following member-
ship function:

mYoung∧Tall(x) =

⎧⎨
⎩

1 if mYoung(x) = 1 and mTall(x) = 1,

0 otherwise,
(4.4)

where mYoung(x) is the membership function defining the set of young people
and mTall(x) is the membership function of the set of Tall people.

Now assume that Young and Tall are fuzzy sets and an individual x
belongs to set Young to a degree of 0.9 and to set Tall to a degree of 0.8.
To what degree should individual x belong to the fuzzy set of young and tall
people? These questions can be answered using fuzzy logic.

Fuzzy logic is an extension of Boolean logic just as fuzzy set theory is an
extension of classical set theory. In 1965 Lofti Zadeh [101] defined the three
basic operators conjunction, disjunction and complement as follows:

• conjunction: Let μA(x) and μB(x) be fuzzy membership functions of
fuzzy sets A and B respectively. The conjunction of fuzzy sets A and
B is given by:

μA∧B(x) = min{μA(x), μB(x)}. (4.5)

Chapter 4 61

• disjunction: Let μA(x) and μB(x) be fuzzy membership functions of
fuzzy sets A and B respectively. The disjunction of fuzzy sets A and B
is given by:

μA∨B(x) = max{μA(x), μB(x)}. (4.6)

• complement: Let μA(x) be the fuzzy membership function of a fuzzy
set A. The fuzzy membership function of the complement of fuzzy set
A is given by:

μ¬A(x) = 1− μA(x). (4.7)

According to Equation 4.5 an individual x which belongs to fuzzy set
Young to a degree of 0.9 and to fuzzy set Tall to a degree of 0.8 would belong
to a fuzzy set of young and tall people to a degree of 0.8 (= min(0.9, 0.8)).

One of the problems with the definitions of conjunction and disjunction
in Equations 4.5 and 4.6 is that some tautologies from Boolean logic are not
true for the fuzzy case. For instance, “A or not A” (A ∨ ¬A) results in true
in the case of Boolean logic. In fuzzy logic the result is max{μ(A), 1−μ(A)}
which only results in “true” or “1” if μ(A) is either 0 or 1. We will therefore
use the following two functions for conjunction and disjunction which have
been proposed instead of the functions described above:

• conjunction: Let μA(x) and μB(x) be fuzzy membership functions of
fuzzy sets A and B respectively. The conjunction of fuzzy sets A and
B is given by:

μA∧B(x) = μA(x)× μB(x). (4.8)

• disjunction: Let μA(x) and μB(x) be fuzzy membership functions of
fuzzy sets A and B respectively. The disjunction of fuzzy sets A and B
is given by:

μA∨B(x) = min{μA(x) + μB(x), 1}. (4.9)

With these functions μA∨¬A = 1 for the fuzzy case. However, some laws
from Boolean logic (e.g., A ∧ ¬A = 0(false)) are not true for the fuzzy case.

4.3 Fuzzy Decision Tree Representations

In Chapter 3 we introduced several top-down atomic representations which
were aimed at refining the search space by clustering or partitioning the do-
main of numerical valued attributes. In this section we will show how the

62 Fuzzy Decision Tree Representations

“Boolean” representations of Chapter 3 can be changed into fuzzy repre-
sentations. An example of a fuzzy decision tree is shown in Figure 4.2, its
meaning will be explained in Section . In a fuzzy decision tree we do not
have the less-than (<), greater-equal-than (≥) and set operators used by
the clustering and partitioning representations for the numerical valued at-
tributes, but instead we use more intuitive fuzzy terms like Young and Tall
which correspond to specific fuzzy sets. These fuzzy sets are defined through
a process, called fuzzification, which defines a (fixed) maximum number of
fuzzy sets for the domain of each numerical valued attribute.

class := A

class := Bclass := A

AGE = Y oung

Yes

YesNo

No

LENGTH = Tall

Figure 4.2: An example of a fuzzy tree.

4.3.1 Fuzzification

In our fuzzy representations the partitions and clusters of the partitioning
and clustering gp algorithms are converted into fuzzy sets by a process called
fuzzification. The fuzzification process (see Figure 4.3) used here is based on
the method that was used for fuzzy association rule mining in [48, 80]. We first
select all the numerical attributes and cluster or partition each attribute’s
possible values into a finite and fixed maximum number of partitions or
clusters as described in Sections 3.3 and 3.4. Once we have determined the
“Boolean” clusters and partitions we can convert them into fuzzy sets using
fuzzy membership functions.

Chapter 4 63

K−Means
ClusteringNumerical Input Variables

Crisp Clusters

Fuzzification
Sets

Fuzzy

Figure 4.3: An overview of the fuzzification process.

Definition 4.3.1 Let F = {F1, . . . , Fk} be the set of fuzzy sets for a par-
ticular numerical valued attribute and let C = {c1, . . . , ck} be the set of its
corresponding cluster or partition centroids, then we define the following fuzzy
membership functions:

μF1(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if x ≤ c1,

c2−x
c2−c1

if c1 < x < c2,

0 if x ≥ c2;

(4.10)

μFi
(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if x ≤ ci−1,

ci−1−x
ci−1−ci

if ci−1 < x < ci,

1 if x = ci,

ci+1−x
ci+1−ci

if ci < x < ci+1,

0 if x ≥ ci+1;

(4.11)

μFk
(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if x ≤ ck−1,

ck−1−x

ck−1−ck
if ck−1 < x < ck,

1 if x ≥ ck,

(4.12)

where i = 2, 3, . . . , k − 1 (see Figure 4.4).

64 Fuzzy Decision Tree Representations

Note that the centroids of clusters are calculated during the K-means clus-
tering process. In the case of partitioning using the gain or gain ratio criteria
the average value within a partition is used as the centroid. Also note that
the distances between the different centroids ci are not necessarily equal.
By using simple triangular membership functions instead of the often used
trapezium shaped functions we avoid the need for extra parameters. Finally
note that for every x-value the sum of all membership function equals 1.

F1 F2 Fk−1 FkFi

X

µ(X)

0

1

c1 c2 ckck−1

.

Figure 4.4: The k fuzzy membership functions μF1 , . . . , μFk
for a numerical

valued attribute.

Sailing Swimming

Sailing

no

no yes

yes

Temperature > 25

Wind Force < 16

Figure 4.5: An example of a simple top-down atomic decision tree.

Chapter 4 65

4.3.2 Evaluation Using Fuzzy Logic

Every top-down atomic tree or other “Boolean” decision tree can be rewritten
as a set of classification rules using Boolean logic. For instance, the tree in
Figure 4.5 can be written as:

If (T > 25) ∧ (WF < 16) then class := Swimming (4.13)

and

If (T 	> 25) ∨ (T > 25 ∧ WF 	< 16) then class := Sailing, (4.14)

where T stands for Temperature and WF stands for Wind Force. If we would
do the same for the similar fuzzy decision tree in Figure 4.6 we would get:

If (T = Warm) ∧ (WF = Light) then class := Swimming (4.15)

and

If (T 	= Warm)∨ (T = Warm ∧ WF 	= Light) then class := Sailing. (4.16)

Sailing Swimming

Sailing

no

no yes

yes

Temperature = Warm

WindForce = Light

Figure 4.6: Example of Figure 4.5, recast as a fuzzy decision tree.

However, since the result of a fuzzy atom is a fuzzy membership value
rather than a Boolean value we use fuzzy logic operators. By replacing
the Boolean operators with their fuzzy logic counterparts defined in Equa-
tions 4.7, 4.8 and 4.9, Equations 4.15 and 4.16 become:

66 Experiments and Results

μSwimming := μ(T=Warm) × μ(WF=Light) (4.17)

and

μSailing := μ(T�=Warm) + (μ(T=Warm) × μ (WF �=Light)). (4.18)

Note that we can use μA∨B = μA + μB instead of Equation 4.9 because
the sum of the membership values for the possible target classes is always
1 for our decision (sub)trees. We also no longer have a simple “If − then”
statement but a fuzzy membership function defining each class.

Example 4.3.1 Observe the fuzzy decision tree depicted in Figure 4.6. Sup-
pose we need to classify an instance I with the attributes ITemperature and
IWindForce; assume the fuzzy membership function μWarm(ITemperatute) returns
0.9 and μLight(IWindForce) returns 0.3. We can then calculate the class mem-
bership values μSwimming and μSailing using the fuzzy membership functions in
Equations 4.17 and 4.18. This gives us:

μSwimming := 0.9× 0.3 = 0.27

and

μSailing := (1− 0.9) + (0.9× (1− 0.3)) = 0.73.

Thus in this case we could say that the tree in Figure 4.6 “predicts” the
class of instance I to be Sailing (since 0.73 > 0.27). It also gives a sort of
confidence of 73% to this classification. �

4.4 Experiments and Results

In order to assess the performance of our fuzzy representations we will com-
pare them to our non-fuzzy representations from the previous chapters as well
as with the other evolutionary (cefr-miner and esia) and non-evolutionary
(Ltree, OC1 and C4.5) classification algorithms introduced in Chapter 2. N/A
indicates that no results were available. The experimental setup and data sets
are the same as in the previous chapters and are described in Sections 2.7
and 2.8. An overview of the most important gp parameters can be found in
Table 4.1. In the case of our partitioning gp algorithms the criterion used,

Chapter 4 67

either gain or gain ratio, is indicated between brackets ‘(’ and ‘)’. The tables
with results contain a column, labeled k, to indicate the number of clusters
in the case of our clustering gp algorithms or the maximum number of parti-
tions in the case of the partitioning gp algorithms. The best (average) result
for each data set is printed in bold font. Because the partitioning gp algo-
rithms do not scale well with parameter k we will only look at a maximum
of three partitions, clusters or fuzzy sets per numerical valued attribute.

Table 4.1: The main gp parameters.

Parameter Value
Population Size 100
Initialization ramped half-and-half
Initial maximum tree depth 6
Maximum number of nodes 63
Parent Selection Tournament Selection
Tournament Size 5
Evolutionary model (μ, λ)
Offspring Size 200

Crossover Rate 0.9
Crossover Type swap subtree
Mutation Rate 0.9
Mutation Type branch mutation

Stop condition 99 generations

To determine if the results obtained by our algorithms are statistically
significantly different from the results reported for esia, cefr-miner, Ltree,
OC1 and C4.5, we have performed two-tailed independent samples t-tests
with a 95% confidence level (p = 0.05) using the reported mean and standard
deviations. The null-hypothesis in each test is that the means of the two
algorithms involved are equal. In order to determine whether the differences
between our gp algorithms are statistically significant we used paired two-
tailed t-tests with a 95% confidence level (p = 0.05) using the results of 100
runs (10 random seeds times 10 folds). In these tests the null-hypothesis is
also that the means of the two algorithms involved are equal.

68 Experiments and Results

4.4.1 The Australian Credit Data Set

If we look at the results of our new fuzzy gp representations on the Australian
Credit data set in Table 4.2 we see that the fuzzy and non-fuzzy algorithms
perform similarly.

Table 4.2: Average misclassification rates (in %) with standard deviation,
using 10-fold cross-validation for the Australian Credit data set.

algorithm k average s.d.
fuzzy clustering gp 2 13.8 2.6
fuzzy clustering gp 3 14.7 3.0
fuzzy gain gp 2 14.3 2.8
fuzzy fain gp 3 14.7 2.8
fuzzy gain ratio gp 2 15.5 3.1
fuzzy gain ratio gp 3 15.2 3.3
clustering gp 2 13.7 3.0
clustering gp 3 14.8 2.6
gain gp 2 14.2 2.7
gain gp 3 15.1 2.7
gain ratio gp 2 15.7 3.2
gain ratio gp 3 15.5 3.4
simple gp 22.0 3.9
Ltree 13.9 4.0
OC1 14.8 6.0
C4.5 15.3 6.0
cefr-miner N/A
esia 19.4 0.1
default 44.5

4.4.2 The German Credit Data Set

On the German Credit data set (see Table 4.3) our fuzzy gain ratio gp al-
gorithms perform significantly better than their non-fuzzy counterparts. The
differences in performance between our fuzzy and non-fuzzy clustering gp
algorithms are not significant. In the case of the fuzzy and non-fuzzy gain

Chapter 4 69

gp algorithms we see that for k = 2 the fuzzy gain gp algorithm is better,
for k = 3 the non-fuzzy version is better.

All our fuzzy gp algorithms are significantly better than esia while the
differences with Ltree, OC1 and C4.5 are not statistically significant.

Table 4.3: Average misclassification rates (in %) with standard deviation,
using 10-fold cross-validation for the German Credit data set.

algorithm k average s.d.
fuzzy clustering gp 2 27.4 1.5
fuzzy clustering gp 3 27.5 1.1
fuzzy gain gp 2 26.8 2.3
fuzzy gain gp 3 28.0 1.7
fuzzy gain ratio gp 2 26.7 2.7
fuzzy gain ratio gp 3 26.8 2.4
clustering gp 2 27.8 1.3
clustering gp 3 28.0 1.4
gain gp 2 28.1 1.9
gain gp 3 27.1 1.9
gain ratio gp 2 28.3 1.9
gain ratio gp 3 28.5 2.3
simple gp 27.1 2.0
Ltree 26.4 5.0
OC1 25.7 5.0
C4.5 29.1 4.0
cefr-miner N/A
esia 29.5 0.2
default 30.0

70 Experiments and Results

4.4.3 The Pima Indians Diabetes Data Set

If we look at the results in Table 4.4 we see that all the fuzzy gp algorithms
have a significantly better classification performance for k = 2 than their
respective Boolean versions. For k = 3 the differences are only statistically
significant for our fuzzy and non-fuzzy gain ratio gp algorithms.

Compared to esia all our fuzzy gp algorithms perform better. The dif-
ferences in classification performance between Ltree, OC1 and C4.5 and our
fuzzy gp algorithms are not statistically significant.

Table 4.4: Average misclassification rates (in %) with standard deviation,
using 10-fold cross-validation for the Pima Indians Diabetes data set.

algorithm k average s.d.
fuzzy clustering gp 2 24.2 4.2
fuzzy clustering gp 3 25.8 3.8
fuzzy gain gp 2 24.7 4.2
fuzzy gain gp 3 26.6 4.4
fuzzy gain ratio gp 2 25.5 4.1
fuzzy gain ratio gp 3 25.7 4.3
clustering gp 2 26.3 3.2
clustering gp 3 26.3 3.4
gain gp 2 27.0 4.3
gain gp 3 26.5 3.4
gain ratio gp 2 27.6 4.6
gain ratio gp 3 27.6 4.6
simple gp 26.3 3.6
Ltree 24.4 5.0
OC1 28.0 8.0
C4.5 24.7 7.0
cefr-miner N/A
esia 29.8 0.2
default 34.9

Chapter 4 71

4.4.4 The Heart Disease Data Set

The results on the Heart Disease dataset are displayed in Table 4.5. The
differences between the fuzzy gp algorithms and their non-fuzzy versions
are very similar and not statistically significant. All fuzzy gp algorithms
perform significantly better than our simple gp algorithms, esia and OC1.
Only the performance of our fuzzy gain ratio gp algorithm with k = 3 is not
significantly worse than Ltree.

Table 4.5: Average misclassification rates (in %) with standard deviation,
using 10-fold cross-validation for the Heart Disease data set.

algorithm k average s.d.
fuzzy clustering gp 2 19.8 4.1
fuzzy clustering gp 3 20.9 4.4
fuzzy gain gp 2 19.6 4.3
fuzzy gain gp 3 21.8 3.1
fuzzy gain ratio gp 2 20.6 5.0
fuzzy gain ratio gp 3 19.6 5.0
clustering gp 2 19.9 4.6
clustering gp 3 21.3 5.4
gain gp 2 19.9 4.8
gain gp 3 22.8 4.3
gain ratio gp 2 18.7 4.5
gain ratio gp 3 20.3 5.3
simple gp 25.2 4.8
Ltree 15.5 4.0
OC1 29.3 7.0
C4.5 21.1 8.0
cefr-miner 17.8 7.1
esia 25.6 0.3
default 44.0

72 Experiments and Results

4.4.5 The Ionosphere Data Set

On the Ionosphere data set (Table 4.6) we see again that fuzzification has
a negative effect on classification performance when the performance of the
original Boolean gp algorithms is quite good. Only in the case of our clus-
tering gp algorithm using k = 2 does fuzzification significantly improve the
performance. In the case of the gain gp and gain ratio gp algorithms fuzzi-
fication significantly decreases the classification performance.

Table 4.6: Average misclassification rates (in %) with standard deviation,
using 10-fold cross-validation for the Ionosphere data set.

algorithm k average s.d.
fuzzy clustering gp 2 11.4 3.8
fuzzy clustering gp 3 10.8 3.4
fuzzy gain gp 2 10.6 4.1
fuzzy gain gp 3 11.8 3.7
fuzzy gain ratio gp 2 10.5 4.7
fuzzy gain ratio gp 3 10.6 4.2
clustering gp 2 13.1 4.1
clustering gp 3 10.5 5.1
gain gp 2 8.3 4.7
gain gp 3 10.5 4.8
gain ratio gp 2 7.6 4.2
gain ratio gp 3 8.1 4.3
simple gp 12.4 3.8
Ltree 9.4 4.0
OC1 11.9 3.0
C4.5 9.1 5.0
cefr-miner 11.4 6.0
esia N/A
default 35.9

Chapter 4 73

Table 4.7: Average misclassification rates (in %) with standard deviation,
using 10-fold cross-validation for the Iris data set.

algorithm k average s.d.
fuzzy clustering gp 2 6.8 5.5
fuzzy clustering gp 3 5.3 5.1
fuzzy gain gp 2 6.0 5.7
fuzzy gain gp 3 4.7 4.7
fuzzy gain ratio gp 2 5.9 5.2
fuzzy gain ratio gp 3 5.9 5.2
clustering gp 2 21.1 9.4
clustering gp 3 2.1 4.2
gain gp 2 29.6 6.3
gain gp 3 6.3 6.1
gain ratio gp 2 31.7 5.0
gain ratio gp 3 31.7 5.0
simple gp 5.6 6.1
Ltree 2.7 3.0
OC1 7.3 6.0
C4.5 4.7 5.0
cefr-miner 4.7 0.0
esia 4.7 7.1
default 33.3

4.4.6 The Iris Data Set

In Table 4.7 the results on the Iris data set are displayed. On this data set
our clustering gp algorithms using k = 3 is still significantly better than
all our other gp algorithms. In the case of the other fuzzy gp algorithms
the fuzzy versions are significantly better than the non-fuzzy versions. We
already noted above that it seems that fuzzification improves classification
performance when the original clusters or partitions result in sub-optimal
performance. However, on the Iris data set the performance increase for our
non-fuzzy clustering and partitioning gp algorithms is huge. Fuzzification re-
duces the misclassificaton rate for our clustering gp algorithm with k = 2
by more than two-thirds, the misclassification rate of our partitioning gp

74 A Fuzzy Fitness Measure

algorithm using the gain criterion and k = 2 by a factor of 5 and the mis-
classification rates for our partitioning gp algorithms using the gain ratio
criterion also with more than 80%. The differences between our fuzzy gp
algorithms and the other algorithms are not statistically significant.

4.4.7 Comparing Fuzzy and Non-Fuzzy

To compare our fuzzy gp algorithms with their non-fuzzy counterparts we
have calculated the average misclassification rate of each algorithm for the
six data sets regardless of the number of clusters or partitions. As can be
seen in Table 4.8 there is very little difference between the fuzzy and non-
fuzzy versions. Only on the Pima Indians Diabetes and Iris data set can we
see any real improvement of our fuzzy gp algorithms over their non-fuzzy
counterparts. On the Ionosphere data set fuzzification has a negative effect
on both the gain gp and gain ratio gp algorithms.

Table 4.8: The average misclassification rates (in %) of the different algo-
rithms for all six data sets.

data set clustering gp gain gp gain ratio gp
fuzzy normal fuzzy normal fuzzy normal

Australian Credit 14.3 14.3 14.5 14.7 15.4 15.6
German Credit 27.5 27.9 27.4 27.6 26.8 28.4
Pima Indians 25.0 26.3 25.7 26.8 25.6 27.6
Heart disease 20.4 20.6 20.7 21.4 20.1 19.5
Ionosphere 11.1 11.8 11.2 9.4 10.6 7.9
Iris 6.1 11.6 5.4 18.0 5.9 31.7

4.5 A Fuzzy Fitness Measure

In Section 2.6 we introduced a multi-layered fitness for data classification
consisting of two fitness measures: misclassification percentage and decision
tree size. The misclassification percentage measure for an individual x is
calculated by:

Chapter 4 75

fitnessstandard(x) =

∑
r∈training set

χ(x, r)

|training set | × 100%, (4.19)

where
χ(x, r) =

{
1 if x classifies record r incorrectly;
0 otherwise.

(4.20)

However, in the case of our fuzzy representation each individual returns
a set of class membership values for each record to be classified. We can use
these membership values in order to try to compute a more precise fuzzy
fitness value:

fitness fuzzy(x) =

∑
r∈training set

(1− μc(x, r))

|training set | × 100%, (4.21)

where μc(x, r) is the membership value for the target class c of record r
returned by individual x. For Example 4.3.1, we would have μSailing(x, I) =
0.73 for the tree x under consideration. Note that this fuzzy fitness equals
the standard fitness for non-fuzzy representations.

We can add this fuzzy fitness measure as the primary fitness measure
to our multi-layered fitness. The secondary fitness measure is now the orig-
inal standard fitness and the size of the decision tree (the number of tree
nodes) becomes the third and last fitness measure. Since our algorithms are
compared based on the number of misclassifications on the test set we have
two choices when selecting the best individual found by our gp algorithms.
We can use all three fitness values (fuzzy, standard and tree size) to select
the best individual of an evolutionary run, but alternatively we can only use
the second (standard fitness) and third (tree size) fitness measures as is done
above and in the previous chapters.

In Table 4.9 the results for the three fitness configurations on all six data
sets are displayed. In most cases the differences are very small. Only on the
German Credit and Iris data sets we can see a clear distinction between using
a fuzzy fitness measure or not. On the German Credit data set only using
the standard fitness measure works best. However, on the Iris data set using
the fuzzy fitness measure as primary fitness value both during evolution and
selecting the final best individual seems to work best. In the case of the other
data sets there is no clear best fitness measure for either evolution or selecting
the best individual at the end of the evolutionary process.

76 A Fuzzy Fitness Measure

Table 4.9: The average misclassification rates (in %) for the data sets using
different fitness schemes.

primary select best fuzzy
data set k fitness fitness clustering gain gain ratio
Australian Credit 2 standard standard 13.8 14.3 15.5
Australian Credit 2 fuzzy fuzzy 14.3 14.3 15.4
Australian Credit 2 fuzzy standard 14.2 14.0 15.4
Australian Credit 3 standard standard 14.7 14.7 15.2
Australian Credit 3 fuzzy fuzzy 14.4 15.0 15.3
Australian Credit 3 fuzzy standard 14.5 15.1 15.4
German Credit 2 standard standard 27.4 26.8 26.7
German Credit 2 fuzzy fuzzy 27.7 28.1 27.9
German Credit 2 fuzzy standard 27.6 27.7 27.1
German Credit 3 standard standard 27.5 28.0 26.8
German Credit 3 fuzzy fuzzy 28.5 28.7 27.9
German Credit 3 fuzzy standard 28.3 28.2 27.5
Pima Indians 2 standard standard 24.2 24.7 25.5
Pima Indians 2 fuzzy fuzzy 24.6 24.9 25.6
Pima Indians 2 fuzzy standard 24.8 24.6 25.3
Pima Indians 3 standard standard 25.8 26.6 25.7
Pima Indians 3 fuzzy fuzzy 25.2 25.5 24.7
Pima Indians 3 fuzzy standard 25.6 25.8 24.6
Heart Disease 2 standard standard 19.8 19.6 20.6
Heart Disease 2 fuzzy fuzzy 19.2 20.3 19.4
Heart Disease 2 fuzzy standard 19.0 19.5 19.2
Heart Disease 3 standard standard 20.8 21.8 19.6
Heart Disease 3 fuzzy fuzzy 19.5 20.3 19.6
Heart Disease 3 fuzzy standard 20.0 20.8 19.1
Ionosphere 2 standard standard 11.4 10.6 10.6
Ionosphere 2 fuzzy fuzzy 11.1 10.5 10.7
Ionosphere 2 fuzzy standard 10.9 9.9 10.4
Ionosphere 3 standard standard 10.8 11.8 10.6
Ionosphere 3 fuzzy fuzzy 9.8 10.8 10.7
Ionosphere 3 fuzzy standard 10.1 11.0 10.4
Iris 2 standard standard 6.8 6.0 5.9
Iris 2 fuzzy fuzzy 4.4 4.7 4.6
Iris 2 fuzzy standard 5.2 5.5 5.3
Iris 3 standard standard 5.3 4.7 5.9
Iris 3 fuzzy fuzzy 5.2 3.7 4.6
Iris 3 fuzzy standard 4.6 4.3 5.3

Chapter 4 77

4.6 Conclusions

We have introduced new representations using a combination of clustering,
partitioning and fuzzification for classification problems using genetic pro-
gramming. By evolving fuzzy decision trees we have a method for dealing
with continuous valued attributes in an intuitive and natural manner. In
theory the use of fuzzy atoms should make our decision trees more compre-
hensible. Additionally the fuzzy membership functions found for the target
classes can give additional information about the relations, if any, between
those classes.

Looking at the results we see that in general our fuzzy gp algorithms
perform similar to or better than their non-fuzzy counterparts. Our fuzzy
gp algorithms are especially good in cases where our non-fuzzy algorithms
failed. On the Iris data set using only 2 partitions or clusters our partitioning
and clustering gp algorithms failed while fuzzy versions of the algorithms
have a misclassification rate which is 3 to 5 times lower. However, in some
cases where a non-fuzzy algorithm managed to perform very well fuzzification
seems to have a negative effect. A possible explanation is that the fuzzification
process, which is meant to make our fuzzy decision trees more robust towards
faulty and polluted input data, also makes the fuzzy decision trees more
robust towards non-optimal clustering and partitioning. It is also possible
that the data sets on which our fuzzy gp algorithms outperformed the non-
fuzzy algorithms contained more faulty or polluted attributes.

We also experimented with a new fuzzy fitness measure in combination
with the new fuzzy representation. At this point there is no clear indication
whether this fuzzy fitness measure should be used, or when.

5 Introns: Detection and Pruning

We show how the understandability and speed of genetic programming clas-
sification algorithms can be improved, without affecting the classification
accuracy. By analyzing the decision trees evolved we can remove unessential
parts, called gp introns, from the discovered decision trees. The resulting
trees are smaller and easier to understand. Moreover, by using these pruned
decision trees in a fitness cache we can reduce the number of fitness calcula-
tions.

5.1 Introduction

Algorithms for data classification are generally assessed on how well they can
classify one or more data sets. However, good classification performance alone
is not always enough. Almost equally important can be the understandability
of the results. Another aspect is the time it takes them to learn to classify a
data set.

In the previous chapters we focussed mainly on improving the classifica-
tion accuracy of our gp algorithms. The classification accuracy is generally
the most important aspect when comparing algorithms for data classifica-
tion. However, other characteristics of classification algorithms can also be
important. An algorithm which classifies a data set perfectly (0% misclassifi-
cation rate) but takes a long time to find an answer, might be less attractive
than a fast algorithm with an acceptable (e.g., 5%) misclassification rate.
Another (perhaps more critical) aspect for data classification algorithms is
the understandability of the results.

79

80 Genetic Programming Introns

We already applied several methods to improve/optimize the understand-
ability of the decision trees evolved by our gp algorithms. All our gp classi-
fiers use a maximum tree size, thereby limiting not only the size of the search
space but also the size of the solutions found. We also introduced the tree
size fitness measure, as part of our multi-layered fitness, such that smaller,
and thus often easier to understand, decision trees are favored over equally
good classifying larger trees. The fuzzy decision trees evolved by our fuzzy
gp algorithms in Chapter 4 are designed to be more intuitive, which not only
results in more accurate classifiers but also in decision trees which should be
easier to understand.

Unfortunately, despite the use of the tree size fitness measure the deci-
sion trees are on average still larger than strictly necessary. Analysis of the
decision trees evolved by our gp algorithms shows that the trees sometimes
contain parts, nodes or subtrees, which can be removed without influencing
the classification outcome of the tree. In this chapter we introduce meth-
ods to detect and prune these extraneous parts, called introns or ineffective
code [71], of our top-down atomic trees (see Section 2.3) and investigate to
what extent their removal decreases the size of our decision trees. Addition-
ally, we will show how, in combination with the fitness cache introduced in
Section 2.9, the detection and pruning methods allow us to reduce the time
spent on fitness evaluations.

The outline of the rest of this chapter is as follows. In Section 5.2 we give
a short introduction regarding introns. Then in Section 5.3 we describe the
intron detection and pruning process. The results of several different intron
detection and pruning strategies are discussed in Section 5.4. In Section 5.5
we draw our conclusions.

5.2 Genetic Programming Introns

One of the problems of variable length evolutionary algorithms, such as tree-
based Genetic Programming, is that the genotypes of the individuals tend to
increase in size until they reach the maximum allowed size. This phenomenon
is, in Genetic Programming, commonly refered to as bloat [97, 4] and is
caused by gp introns [79, 96, 95, 71]. The term introns was first introduced in
the field of Genetic Programming, and evolutionary computation in general,
by Angeline [1] who compared the emergence of extraneous code in variable
length gp structures to biological introns. In biology the term introns is used

Chapter 5 81

for parts of the DNA, sometimes referred to as junk DNA, which do not
have any apparent function as they are not transcribed to RNA. In Genetic
Programming, the term introns is used to indicate parts of an evolved solution
which do not influence the result produced by, and thus fitness of, the solution
(other than increasing its size).

As our gp classifiers use variable length (decision) tree structures they
are also subject to bloat and they will thus also contain introns. In the case of
our top-down atomic decision tree representations we can distinguish between
two types of introns:

1. intron subtrees: subtrees which are never traversed
(e.g., if (true) then normal subtree else intron subtree),
and

2. intron nodes: nodes which do not influence the outcome
(e.g., if (X > 1) then class:= A else class:= A).

The occurrence of introns in variable length evolutionary algorithms has
both positive and negative effects. A positive effect of introns is that they can
offer protection against the destructive effects of crossover operators [79, 74].
However, earlier studies [79, 96, 95] also show that more than 40% of the
code in a population can consist of introns.

In the case of our top-down atomic gp algorithms the negative effects
of bloat and introns are two-fold. The bloated decision trees found by our
algorithms can contain introns which make them less understandable than
semantically equivalent trees without introns. The second problem of introns
in our decision trees is related to computation times. Although intron nodes
do not influence the classification outcome of a decision tree their evalua-
tion takes time. More importantly, introns also reduce the effectiveness of
our fitness cache (see Section 2.9) since it does not recognize semantically
equivalent but syntactically different trees.

In the next section we will discuss methods to detect introns in our deci-
sion trees so the trees can be pruned, removing most of the introns and their
negative effects from the trees.

5.3 Intron Detection and Pruning

In [60] Johnson proposes to replace the standard fitness measures gener-
ally used with evolutionary algorithms with static analysis methods: by us-

82 Intron Detection and Pruning

ing static analysis techniques it should be possible to evaluate an individ-
ual’s behaviour across the entire input space instead of a limited number of
test cases. However, for data classification replacing the fitness measure with
static analysis techniques does not seem feasible due to the high dimensional
nature of the search space. Instead of replacing the fitness function with static
analysis methods, Keijzer [63] showed that static analysis can also be used
as a pre-processing step for fitness evaluations. By using interval arithmetic
to calculate the bounds of regression trees, functions containing undefined
values are either deleted or assigned the worst possible performance value.

We will use a combination of static analysis techniques and (semantic)
pruning to detect and remove introns from our top-down atomic decision trees
in order to address the problem caused by gp introns. A schematic overview
of the gp intron detection and pruning process can be seen in Figure 5.1
where the black nodes indicate an intron subtree and the gray node indicates
an intron node.

After a new individual is created, either as a result of initialization or
as the result of recombination and mutation of its parent(s), it is usually
evaluated in order to determine its fitness. In our case we first scan the
individual for the different types of introns using static analysis, resulting in
an individual in which the different types of introns are marked. Depending
on the types of introns the individual is pruned into a more condensed decision
tree which is semantically the same as the original individual. The condensed
decision tree is then used to evaluate the individual. Additionally, we will use
the condensed trees in our fitness cache. This should improve the effectiveness
of the cache as several syntactically different decision trees have the same
condensed form. For the evolutionary process (e.g., crossover and mutation)
as well as the tree size fitness measure we will still use the original top-down
atomic trees so that the classification performance of our algorithms remains
the same as without intron detection and pruning.

The approach described above is related to several code-editing tech-
niques [69, Section 11.6]. In [13] Brameier and Banzhaf distinguish two types
of introns in their Linear Genetic Programming (LGP) system. The first
type, structural introns, are single noneffective intructions that manipulate
variables that are not used to calculate the outcome of their genetic pro-
grams. The second type, semantical introns, are instructions or sequences of
instructions in which the state of the relevant variables remains constant. By
removing all structural introns from a genetic program before executing it
during fitness calculation they achieve a “significant decrease in runtime”.

Chapter 5 83

Intron Detection

Intron Pruning

Figure 5.1: The intron detection and pruning process. The upper left tree
is presented to the intron detection algorithm. The gray node in the upper
right tree indicates an intron node that has been detected in the original left
subtree. The black nodes indicate a detected intron subtree. After the introns
have been detected they are pruned resulting in the lower left tree. The gray
intron node is replaced by one of its child nodes (with an extra circle inside).
The intron subtree is replaced by the (non-intron) child of the root node of
the intron subtree, in this case the white leaf node without extra circle.

Since the altered genetic programs are not written back there are no changes
to the individuals in the population, similar to our approach.

There are also approaches in which the geneotypes of the individuals in
the population are altered. In [8] Blickle investigates the use of a deleting
crossover on regression problems. This crossover operator replaces all sub-
trees that were not traversed during the evaluation in the fitness function
with a randomly chosen terminal. This operator was found to only work for
discrete regression problems and not for continuous ones. In [56] Hooper and
Flann use expression simplification to replace introns with simpler but equiv-
alent expressions in order to improve accuracy and robustness. To control the
application of expression simplification they use a simplification rate param-
eter that defines the probability that an individual in a generation will be
simplified.

84 Intron Detection and Pruning

5.3.1 Intron Subtrees

Intron subtrees are parts (subtrees) of non-fuzzy top-down atomic decision
trees which can and will never be traversed because of the outcome of nodes
higher up in the tree. An example of an intron subtree is shown in Figure 5.2.

X > 3

class:= A

class := B class := C

truefalse

false true

X < 2

Figure 5.2: A top-down atomic decision tree containing an intron subtree
(class := C).

Once the root node containing X > 3 has been evaluated either the left
or the right branch is traversed depending on the value of X. If X is less
than or equal to 3 the left branch is traversed resulting in class A. If X has
a value higher than 3 the right branch is traversed and the second internal
node X < 2 is reached. Normally this node would be evaluated for every
possible data record (with a value of X greater than 3). However, an analysis
of the decision tree traversed so far shows that this node will always result
in false since node X < 2 is reached only if X has a value higher than 3.
Therefore, the right branch of node (X < 2) will never be traversed, making
it an intron subtree since it does not influence the behaviour of the decision
tree.

In order to detect intron subtrees, we recursively propagate the possible
domains of the attributes through the decision trees in a top-down manner.
Given a certain data set we determine for each attribute Xi the domain D(Xi)
of possible values. By propagating the domain of each attribute Xi recursively
through the non-fuzzy top-down atomic trees we can identify situations in
which the domain of an attribute becomes empty (∅), indicating the presence
of an intron subtree.

Chapter 5 85

X > 3

class:= A

class := B class := C

X < 2

D(X) = [0, 10]

D(X) = [0, 3] D(X) = (3, 10]

D(X) = ∅D(X) = (3, 10]

Figure 5.3: A top-down atomic decision tree containing an intron subtree
with the domain of attribute X displayed at each point in the tree.

Observe the top-down atomic decision tree in Figure 5.3. Let X be a
continuous valued attribute in the range [0, 10]. Before evaluation of the
atom in the root node (X > 3) the domain of X is [0, 10]. Just as the atom
splits a data set into two parts, the domain of possible values of X is split
into two. In the left subtree the domain of X is limited to [0, 3] and in the
right subtree the domain of possible values for X is (3, 10]. Thus if the second
internal node of the tree is reached it means that X has a value greater than
3 and less than or equal to 10. After the evaluation of the second internal
node (X < 2) of the decision tree in Figure 5.3 the possible domain of X
for the left tree is the same as before the atom was evaluated. However, the
possible domain of X for the right subtree is reduced to ∅. Since the domain
of X for the right subtree of this node is empty this subtree is marked as an
intron subtree (see Figure 5.4).

After all possible intron subtrees in a top-down atomic decision tree have
been detected and marked the tree can be pruned. During the pruning phase
the marked intron subtrees are removed and their originating root node (X <
2 in our example) is replaced by the remaining valid subtree. The resulting
subtree for the example can be seen in Figure 5.5.

After the intron subtrees in a Boolean top-down atomic decision tree have
been pruned a smaller, but semantically the same, top-down atomic tree
remains. By using these smaller trees in our fitness cache rather than the

86 Intron Detection and Pruning

X > 3

class:= A

class := B class := C

truefalse

false true

X < 2

Figure 5.4: A top-down atomic decision tree containing a marked intron sub-
tree.

X > 3

class:= A

false true

class := B

Figure 5.5: A pruned top-down atomic decision tree.

original trees the number of cache hits should increase resulting in shorter
computation times. The smaller trees should also easier be to understand.
Note that since several syntactically different trees can be semantically the
same the semantic search space of our Boolean top-down atomic representa-
tions is smaller than the syntactic search space.

Note that we assume that all attributes in our data sets are independent.
In real life there may be some relation between attributes (e.g., attribute
X is always greater than attribute Y) in which case intron subtrees may go
undetected.

Chapter 5 87

Intron Subtrees in Fuzzy Representations

The detection of intron subtrees as described above only works for Boolean
top-down atomic trees. In the case of our fuzzy gp algorithms introduced in
Chapter 4 there are no intron subtrees as a result of the manner in which
fuzzy decision trees are evaluated. Consider the two fuzzy top-down atomic
trees in Figure 5.6. The trees are similar to the Boolean trees in Figures 5.2
and 5.5. However, since the trees in Figure 5.6 are fuzzy trees they are not
semantically the same.

class:= A

class := Bclass := C

X = High

X = High class:= A class := B

X = High

Figure 5.6: Two fuzzy top-down atomic trees which are syntactically and
semantically different.

The fuzzy decision tree on the left contains two internal nodes containing
the same atom (X = High). If we transform the left fuzzy decision tree into
fuzzy membership functions for each target class using fuzzy logic we get:

• μA(X) = 1− μHigh(X)

• μB(X) = μHigh(X)× μHigh(X)

• μC(X) = μHigh(X)× (1− μHigh(X))

However, in the case of the fuzzy decision tree on the right the fuzzy
membership functions for the possible target classes are:

• μA(X) = 1− μHigh(X)

• μB(X) = μHigh(X)

88 Intron Detection and Pruning

Not only will the right decision tree never return a fuzzy membership
value for class C other than 0, but the fuzzy membership function for class
B also differs. Thus, in the case of a fuzzy top-down atomic tree all subtrees
influence the classification outcome of the tree and intron subtrees cannot
occur. This also means that, given the same number of internal and leaf
nodes, the semantic search space for fuzzy top-down atomic decision trees
is larger than that of Boolean top-down atomic trees although the syntactic
search spaces are the same.

5.3.2 Intron Nodes

Intron nodes are root nodes of subtrees of which each leaf node contains the
same class assignment atom (e.g., class := A). Regardless of the path tra-
versed through such trees, as a result of the tests in the root node or internal
nodes, the resulting target class will always be the same (e.g., A). Since the
internal nodes in such a subtree do not influence the classification outcome
and can be replaced by any other possible internal node without affecting
the classification outcome, they are called intron nodes. The negative effects
of intron subtrees are mostly related to the size and thus understandability
of our decision trees. However, intron nodes also have a negative influence
on the computation time needed to evaluate a tree since intron nodes are
evaluated but do not contribute to the classification outcome of a tree.

class:= A

class := B

class:= A

X > 3

Y < 2

false true

false true

Figure 5.7: A top-down atomic tree containing an intron node (Y < 2) since
both its children result in the same class.

Chapter 5 89

Consider the top-down atomic tree displayed in Figure 5.7. Regardless of
the outcome the second internal node (Y < 2) the right subtree will always
result in a class assignment node for class A. In this case the second internal
node of the tree is an intron node.

class:= A

class := B

class:= A

{A,B}

{A}

{A} {A}

{B}

X > 3

Y < 2

Figure 5.8: A top-down atomic tree with the set of possible target classes for
each node.

class:= A

class := B

class:= A

X > 3

Y < 2

false true

false true

Figure 5.9: A top-down atomic tree containing a marked (dotted) intron node.

In order to detect all intron nodes in a top-down atomic decision tree we
recursively propagate the set of possible class outcomes through the tree in a
bottom-up manner. A class assignment node always returns a set containing
a single class. In each internal node the sets of possible classes of its children
are joined. If the set of possible class outcomes for an internal node contains

90 Intron Detection and Pruning

only a single class the node is marked as an intron node. Once all the intron
nodes have been detected the tree can be pruned. During the pruning phase
the tree is traversed in a top-down manner and subtrees with an intron node
as the root node are replaced by class assignment nodes corresponding to
their possible class outcome detected earlier.

Observe the top-down atomic tree in Figure 5.8. The set of possible class
outcomes for each leaf node consists of a single class, namely the target
class. In the case of the second internal node (Y < 2), the set of possible
class outcomes depends on the sets of possible class outcomes of its subtrees.
Since the sets of possible class outcomes for both subtrees are the same and
contain only a single class outcome, the set of possible class outcomes for the
second internal node also contains only a single value (A) and it is therefore
marked as an intron node (see Figure 5.9). In the case of the root node
(X > 3) the set of possible class outcomes consists of two classes and this
node is therefore not an intron node.

After all the intron nodes have been detected they can be pruned. The
resulting tree for the example can be seen in Figure 5.10.

class := Bclass:= A

X > 3

false true

Figure 5.10: A pruned top-down atomic tree

Note that the pruned decision trees in Figures 5.10 and 5.5 are both
semantically and syntactically the same although they are derived from syn-
tactically different trees (Figures 5.7 and 5.2). When intron node detection
and pruning is used in conjunction with intron subtree detection it is im-
portant to apply both detection and pruning strategies in the right order.
Intron nodes should be detected and pruned after intron subtrees to assure
that all introns are found as the pruning of intron subtrees can influence the
detection of intron nodes (see Figure 5.11). Note that in the original (left)
tree no intron nodes would be detected before intron subtree detection and
pruning. However, after intron subtree detection an intron node is detected
(see the center tree) which can be pruned (right tree).

Chapter 5 91

class:= AX > 3

class:= A

false true

class := AX > 3

X > 3

class:= A

class := B

truefalse

false true

class := A

Figure 5.11: Example of the intron detection and pruning process. Detected
introns are shown with dotted lines.

5.3.3 The Effect of Intron Nodes on the Search Space

In Section 2.5 we demonstrated how Lemma 2.5.2 can be used to calculate
the number of syntactically different top-down atomic decision trees given
a specific top-down atomic representation, maximum tree size and data set.
However, as demonstrated above, several syntactically different trees can have
the same semantic behaviour. Using discrete mathematics we can calculate
the number of syntactically different top-down atomic decision trees with-
out intron nodes (but possibly still containing intron subtrees). A top-down
atomic tree contains one or more intron nodes if one of the internal nodes in
the tree has two leaf nodes as children and both leaf nodes contain the same
class assignment.

Depending on the shape of a top-down atomic decision tree there are
between 1 and �n/2� nodes with two leaf nodes as children, where n is the
total number of internal nodes. If a node has two leaf nodes as children then
in 1

|T |th of the cases the two leaf nodes will contain the same class assignment
node, where T is the set of possible terminal nodes.

In Lemma 2.5.2 the total number of syntactically different top-down
atomic decision trees with at most N nodes (N odd) is given as:

N−1
2∑

n=1

1

n + 1

(
2n

n

)
× |I|n × |T |n+1. (5.1)

Here I is the set of possible internal nodes.
Let M(n, i) denote the number of top-down atomic decision trees with n

internal nodes of which i nodes have two children which are leaf nodes. The
total number of syntactically different top-down atomic trees not containing

92 Intron Detection and Pruning

intron nodes with at most N nodes (N odd), a set of internal nodes I and a
set of terminal nodes T then becomes:

N−1
2∑

n=1

�n/2�∑
i=1

M(n, i)× (1− 1

|T |)
i × |I|n × |T |n+1. (5.2)

We know from Lemma 2.5.1 that the number of full binary trees with n
internal nodes equals the number of binary trees with n nodes. Thus, the
number of full binary trees with n internal nodes of which i nodes have two
leaf nodes as children is the same as the number of binary trees with n nodes
with i leaf nodes (with no children). Therefore, M(n, i) equals the number of
binary trees with n nodes in which i nodes have no children. To determine
M(n, i) we will use the following lemma from combinatorics [49, Chapter 21].

Theorem 5.3.1 The number of k-tuples of ordered trees in which a total of
nj nodes have j children equals:

k

n

(
n

n0, n1, n2, . . .

)
, (5.3)

where n =
∑

j nj, if
∑

j jnj = n− k, and 0 otherwise.

Thus the total number of ordered binary trees with n nodes in which a
total of nj nodes have j children is:

1

n

(
n

n0, n1, n2

)
, (5.4)

where n =
∑

j nj, if
∑

j jnj = n− k, and 0 otherwise.
This can be rewritten as:

Cat(n0 − 1)

(
n− 1

2(n0 − 1)

)
, (5.5)

where n1 = n− 2n0 + 1 and n2 = n0 − 1.
However, the subtree of all internal nodes of a top-down atomic decision

tree is not an ordered tree. In normal (positional) binary trees, if a node
has only one child that node is either the left or the right child. In ordered
binary trees there is no distinction between left and right child nodes. Thus
the number of binary trees with n nodes is:

On × 2n1 ,

Chapter 5 93

where On is the number of ordered binary trees with n nodes of which n1

nodes have one child.

Thus the number of binary trees in which a total of i (= n0) nodes have
no children is:

Cat(i− 1)×
(

n− 1

2(i− 1)

)
× 2n−2i+1 = M(n, i). (5.6)

This means that:

Lemma 5.3.2 The total number of syntactically different top-down atomic
trees not containing intron nodes with at most N nodes (N odd), a set of
internal nodes I and a set of terminal nodes T is:

N−1
2∑

n=1

�n/2�∑
i=1

Cat(i−1)×
(

n− 1

2(i− 1)

)
×2n−2i+1× (1− 1

|T |)
i×|I|n×|T |n+1. (5.7)

Note that since our fuzzy decision tree representations cannot contain
intron subtrees Lemma 5.3.2 can be used to calculate the semantic search
space size of a fuzzy gp algorithm on a specific data set. Since our non-fuzzy
gp algorithms can also contain intron subtrees their semantic search spaces
sizes can be smaller.

Example 5.3.1 To demonstrate the influence of intron nodes on the syntac-
tic and semantic search space sizes of our fuzzy gp algorithms we give both
the syntactic search space sizes (including introns) according to Lemma 2.5.2
as well as the semantic search space sizes (without intron nodes) according
to Lemma 5.3.2 on the Australian Credit data set. The average, minimum
and maximum number of possible internal nodes are given in Table 3.3.

When we look at Table 5.1 we see that on the Australian Credit data set
the syntactic search spaces of our fuzzy gp algorithms are around 170 times
larger than the semantic search spaces. On the Iris data set we found the
semantic search space size to be approximately 23 times smaller than the
syntactic search space size.

94 Experiments and Results

Table 5.1: The approximate syntactic and semantic search sizes for our fuzzy
gp algorithms on the Australian Credit data set.

syntactic semantic
algorithm k search space size search space size
fuzzy clustering gp 2 4.6× 1070 2.6× 1068

fuzzy clustering gp 3 5.9× 1074 3.4× 1072

fuzzy clustering gp 4 1.1× 1077 1.3× 1075

fuzzy clustering gp 5 3.2× 1079 1.8× 1077

fuzzy refined gp (gain) 2 4.6× 1070 2.6× 1068

fuzzy refined gp (gain) 3 5.9× 1074 3.4× 1072

fuzzy refined gp (gain) 4 1.1× 1077 1.3× 1075

fuzzy refined gp (gain) 5 3.2× 1079 1.8× 1077

fuzzy refined gp (gain ratio) 2 4.7× 1070 92.6× 1068

fuzzy refined gp (gain ratio) 3 1.4× 1071 . . . 3.9× 1071 7.7× 1068 . . . 2.2× 1069

fuzzy refined gp (gain ratio) 4 3.9× 1071 . . . 7.5× 1072 2.2× 1069 . . . 4.2× 1070

fuzzy refined gp (gain ratio) 5 1.1× 1072 . . . 1.1× 1074 6.1× 1069 . . . 6.3× 1071

5.4 Experiments and Results

In order to determine the effects of introns on our gp algorithms we have
repeated the experiments of the previous chapters for two of our gp clas-
sifiers using various combinations of intron detection and pruning. For the
algorithms we have chosen the simple gp algorithm, since it has the largest
(syntactic) search space on each of the data sets, and our clustering gp al-
gorithm with 2 clusters for each numerical valued attribute, which has the
smallest search space size for each of the data sets.

On each data set we have applied the two algorithms without intron
detection, with intron node detection, with intron subtree detection and with
intron subtree detection followed by intron node detection. The results of
the experiments are split into two parts. First, we will report on the effect
of intron detection and pruning on the size of our top-down atomic decision
trees. In the second part we show how intron detection and pruning increases
the effectiveness of our fitness cache.

Chapter 5 95

5.4.1 Tree Sizes

To determine the effect of intron detection and pruning we have measured
the average size of all trees after pruning during an evolutionary run. We also
measured the size of trees found to be the best, based on the classification
performance on the training set, at the end of an evolutionary run. The
results are given in Tables 5.2, 5.3, 5.4, 5.5, 5.6 and 5.7. The average
(avg), minimum (min) and maximum (max) sizes are computed over a 100
runs (10 random seeds times 10 folds). Note that when no intron detection
and pruning strategy is used the pruned tree size equals the original non-
pruned tree size.

Australian Credit

Table 5.2: The pruned tree sizes of the best and average trees for the simple
gp and clustering gp algorithms on the Australian Credit data set.

algorithm intron pruned tree size
detection best tree average tree
scheme avg min max avg min max

simple gp none 43.9 3 63 33.4 16.0 43.6
simple gp nodes 40.4 3 63 28.2 13.0 37.6
simple gp subtrees 34.8 3 55 22.4 9.8 32.8
simple gp both 33.1 3 55 19.4 8.1 28.9
clustering gp none 39.2 7 63 30.8 12.5 40.4
clustering gp nodes 36.9 7 61 26.3 10.2 34.6
clustering gp subtrees 31.7 7 53 20.3 7.6 28.6
clustering gp both 30.8 7 49 17.8 6.2 25.4

The tree size results for the Australian Credit data set are displayed in
Table 5.2. As can be seen there is virtually no effect of the representation
(simple or cluster) on the sizes of the evolved decision trees. There is also
no visible relation between the size of the (syntactic) search space and the
occurrence of introns. If we look at the effect of the different intron detection
and pruning strategies we see that detecting and pruning intron subtrees has
the largest effect on the size of the trees. As expected, the combination of

96 Experiments and Results

detecting both intron subtrees and intron nodes reduces the size of the trees
the most. When we compare the tree sizes of the best trees with the average
trees we see that the average tree is generally a little smaller but contains
relatively more introns. The detection of intron nodes and intron subtrees
reduces the average size of the best found trees by approximately 25% while
the average size of all (evolved) trees is reduced by approximately 40%.

German Credit

On the German Credit data set (see Table 5.3) both algorithms evolve larger
trees on average. Whereas on the Australian Credit data set the clustering gp
algorithm evolved smaller trees on average, here it is the simple gp algorithm.
The difference in size is again very small and indicates that the number of
possible internal nodes has no real influence on the size of evolved decision
trees. If we look at the effect of our intron detection and pruning methods
on the average and best tree sizes we observe the same effects as on the
Australian Credit data set.

Table 5.3: The pruned tree sizes of the best and average trees for the simple
gp and clustering gp algorithms on the German Credit data set.

algorithm intron pruned tree size
detection best tree average tree
scheme avg min max avg min max

simple gp none 50.0 23 63 36.1 29.8 44.3
simple gp nodes 46.4 23 63 30.9 25.3 37.9
simple gp subtrees 37.8 19 51 22.2 16.1 32.4
simple gp both 36.3 19 47 19.7 14.2 28.6
clustering gp none 53.1 35 63 36.3 29.9 44.3
clustering gp nodes 49.1 35 61 30.8 24.7 37.4
clustering gp subtrees 44.4 31 59 27.0 19.1 38.2
clustering gp both 41.9 31 53 23.4 17.2 32.5

Chapter 5 97

Pima Indians Diabetes

When we look at the results on the Pima Indians diabetes data in Table 5.4
we see that the differences in best found tree size between the simple gp
algorithm and clustering gp algorithm are a bit larger than on the Credit
data sets above. However, if we look at the average, minimum and maximum
sizes for the average tree we see that the results are virtually the same.

Table 5.4: The pruned tree sizes of the best and average trees for the simple
gp and clustering gp algorithms on the Pima Indians Diabetes data set.

algorithm intron pruned tree size
detection best tree average tree
scheme avg min max avg min max

simple gp none 53.0 29 63 36.4 24.0 44.5
simple gp nodes 49.2 27 61 31.1 20.2 38.8
simple gp subtrees 40.8 23 51 24.1 14.3 33.0
simple gp both 39.3 23 49 21.2 12.5 28.9
clustering gp none 44.1 25 63 36.4 23.4 42.6
clustering gp nodes 42.0 23 63 31.4 19.7 37.6
clustering gp subtrees 34.5 23 45 22.2 13.8 28.1
clustering gp both 33.9 23 45 20.1 12.0 25.3

Heart Disease

On the Heart Disease data set (see Table 5.5) we see the same results as on
the previous data sets. There is virtually no difference in tree sizes between
the simple gp and clustering gp algorithms, and the detection and pruning
of intron subtrees leads to a larger reduction in tree size than the pruning
(and detection) of intron nodes.

98 Experiments and Results

Table 5.5: The pruned tree sizes of the best and average trees for the simple
gp and clustering gp algorithms on the Heart Disease data set.

algorithm intron pruned tree size
detection best tree average tree
scheme avg min max avg min max

simple gp none 47.8 27 63 36.5 27.9 44.2
simple gp nodes 45.1 27 61 31.2 23.4 37.4
simple gp subtrees 38.5 23 53 24.8 17.3 33.7
simple gp both 37.1 23 49 21.9 15.1 29.4
clustering gp none 47.9 23 63 38.7 28.4 44.1
clustering gp nodes 45.7 23 59 33.2 24.1 37.7
clustering gp subtrees 39.6 23 53 26.5 17.0 34.5
clustering gp both 38.4 23 51 23.4 14.7 30.8

Ionosphere

The search spaces for our gp algorithms are the largest for the Ionosphere
data set because of the large number of real-valued attributes and the number
of unique values per attribute. This seems to have a small effect on the sizes
of both the best trees and average trees as given in Table 5.6. The difference
between detecting and pruning both types of introns and no intron detection
is less than on the previous data sets for both the best and average trees.

Iris

The Iris data set resulted in the smallest search space sizes since it only
has 4 attributes and 150 records. Because of the small number of possible
internal nodes (8) used by the clustering gp algorithm we see a relatively large
difference in average, minimum and maximum tree sizes for both the best
and average trees compared with the simple gp algorithm. However, both
algorithms evolve trees which are a lot smaller than on the previous data
sets, and the relative effects of the intron detection and pruning strategies
on the sizes of the average trees is about the same for both algorithms. The
fact that all the trees found to be the best by our clustering gp algorithm,
regardless of fold or random seed, consisted of exactly 5 nodes might be
caused by the use of the tree size in the multi-layered fitness meassure.

Chapter 5 99

Table 5.6: The pruned tree sizes of the best and average trees for the simple
gp and clustering gp algorithms on the Ionosphere data set.

algorithm intron pruned tree size
detection best tree average tree
scheme avg min max avg min max

simple gp none 48.6 23 63 39.0 24.8 45.3
simple gp nodes 45.1 21 61 33.0 20.9 38.8
simple gp subtrees 43.2 15 61 32.1 17.8 42.3
simple gp both 40.5 13 59 27.3 15.1 35.3
clustering gp none 44.4 15 61 34.2 21.0 44.3
clustering gp nodes 41.5 15 57 29.1 17.4 38.1
clustering gp subtrees 37.9 15 55 25.6 14.5 38.9
clustering gp both 36.2 15 49 22.1 12.2 33.5

Table 5.7: The pruned tree sizes of the best and average trees for the simple
gp and clustering gp algorithms on the Iris data set.

algorithm intron pruned tree size
detection best tree average tree
scheme avg min max avg min max

simple gp none 12.9 5 35 20.7 12.4 30.0
simple gp nodes 12.6 5 33 18.4 10.7 27.2
simple gp subtrees 11.7 5 23 11.5 6.8 18.3
simple gp both 11.6 5 21 10.3 5.9 16.9
clustering gp none 5.0 5 5 9.8 9.0 12.2
clustering gp nodes 5.0 5 5 8.6 7.9 10.9
clustering gp subtrees 5.0 5 5 5.2 4.9 6.8
clustering gp both 5.0 5 5 4.6 4.3 6.1

5.4.2 Fitness Cache

In Section 2.9 we introduced a fitness cache to reduce the time spent on
fitness evaluations by storing the fitness of each (syntactically) unique indi-
vidual. We can improve the effectiveness of this cache by storing the pruned

100 Experiments and Results

trees with their fitness rather than the original trees, since several syntacti-
cally different trees can be “mapped” to a single pruned tree. The results of
the fitness experiments cache are displayed in Tables 5.8, 5.9, 5.10, 5.11,
5.12 and 5.13. The results are computed over a 100 runs (10 random seeds
times 10 folds). For each algorithm and intron detection and pruning vari-
ant the average (avg), minimum (min) and maximum (max) percentage of
cache hits is reported. Note that when no intron detection and pruning is
used the number of cache hits equals the resampling ratio’s (as reported in
Section 2.9). We also report the runtime for each algorithm relative to the
runtime of the algorithm without intron detection and pruning.

Australian Credit

When we look at the cache hit percentages of both algorithms it is clear that
detecting and pruning intron subtrees results in a larger increase in cache
hits than detecting and pruning intron nodes. As expected the combination
of detecting and pruning both intron subtrees and intron nodes offers the
highest number of cache hits (around 50% on average). Since the difference
between detecting and pruning both types of introns on the one hand and
detecting and pruning only intron subtrees on the other hand is larger than
the difference between no intron detection and detecting and pruning intron
nodes it is clear that first removing the intron subtrees allows for a better
detection of intron nodes.

Looking at the relative runtimes of our gp algorithms in combination
with the different intron detection and pruning strategies we see that the
detection and pruning of intron subtrees is more expensive than detecting
and pruning intron nodes. As expected we can see a relationship between the
number of cache hits and the relative runtimes. Unfortunately, the relative
increase in cache hits is much larger than the relative decrease in computa-
tion times. This difference can partially be explained by the time spent by
our gp algorithms on initialization (e.g., clustering), and other parts of the
evolutionary process (e.g., crossover, mutation and selection).

German Credit

On the German Credit data set the influence of our intron detection and
pruning strategies on the fitness cache is similar to the results on the Aus-
tralian Credit data set, except that our clustering gp algorithm does not

Chapter 5 101

Table 5.8: The number of cache hits for the simple gp and clustering gp
algorithms on the Australian Credit data set.

algorithm intron % cache hits relative
detection avg min max runtime

simple gp none 16.9 10.3 31.7 1.0
simple gp nodes 21.5 12.9 41.0 0.9
simple gp subtrees 39.0 24.7 53.8 1.0
simple gp both 46.8 28.9 64.7 0.9
clustering gp none 20.4 12.0 41.2 1.0
clustering gp nodes 24.6 14.4 49.9 0.9
clustering gp subtrees 47.3 30.0 68.7 0.9
clustering gp both 53.3 37.6 75.8 0.8

benefit as much as it did on the Australian Credit data set. This reduced
effectiveness of the fitness cache can partially be explained if we look at the
pruned tree sizes. For our clustering gp algorithm the average pruned tree
contains three nodes more after both intron subtrees and intron nodes have
been detected and pruned than the average pruned tree in our simple gp
algorithm.

Table 5.9: The number of cache hits for the simple gp and clustering gp
algorithms on the German Credit data set.

algorithm intron % cache hits relative
detection avg min max runtime

simple gp none 15.4 9.5 24.7 1.0
simple gp nodes 19.0 11.8 29.2 0.9
simple gp subtrees 44.1 25.4 56.9 0.7
simple gp both 51.1 30.1 65.2 0.6
clustering gp none 19.1 10.8 30.2 1.0
clustering gp nodes 22.6 12.9 33.5 0.9
clustering gp subtrees 34.2 18.3 46.9 0.8
clustering gp both 39.9 22.6 53.9 0.8

102 Experiments and Results

If we look at the relative runtimes of our algorithms on the German Credit
data set we see again a relation with the number of cache hits. The detecting
and pruning of both types of introns more than triples the number of cache
hits for our simple gp algorithm, resulting in a decrease in computation
time of more than 37%. The same strategy doubles the number of cache hits
for our clustering gp algorithm, decreasing the computation time by 15%.
Compared to the results on the Australian Credit data set above we see that
an increase in cache hits does have a larger impact on the runtimes.

Pima Indians Diabetes

The results of the Pima Indians Diabetes data set are similar to the results on
the Australian Credit data set. The average number of cache hits increases by
at least a factor of 3 when both intron subtrees and intron nodes are detected
and pruned.

If we look at the relative runtimes we see that detecting and pruning
intron subtrees applied to our simple gp algorithm actually increases the
computation time by almost 10%. For our clustering gp algorithm detecting
and pruning intron subtrees does decrease the computation time probably
because the number of cache hits is much larger.

Table 5.10: The number of cache hits for the simple gp and clustering gp
algorithms on the Pima Indians Diabetes data set.

algorithm intron % cache hits relative
detection avg min max runtime

simple gp none 15.2 9.0 24.7 1.0
simple gp nodes 19.1 11.7 29.4 0.9
simple gp subtrees 38.6 23.3 57.9 1.1
simple gp both 45.7 27.6 65.9 1.0
clustering gp none 15.0 11.0 27.2 1.0
clustering gp nodes 18.0 12.9 30.7 0.9
clustering gp subtrees 52.3 41.9 68.5 0.9
clustering gp both 59.0 47.9 73.9 0.8

Chapter 5 103

Heart Disease

Although on the Heart Disease data set the percentage of cache hits is gen-
erally lower than on the data sets above, the effect of intron detection and
pruning is similar. The combination of intron subtree and intron node detec-
tion and pruning triples the number of cache hits and reduces the pruned
tree sizes by 40%.

The detection and pruning of introns does not result in a large decrease
in computation times but on the Heart Disease data set this was also not to
be expected because of the small number of records (270).

Table 5.11: The number of cache hits for the simple gp and clustering gp
algorithms on the Heart Disease data set.

algorithm intron % cache hits relative
detection avg min max runtime

simple gp none 13.7 8.9 22.9 1.0
simple gp nodes 17.3 11.2 27.8 0.9
simple gp subtrees 35.3 22.4 49.7 1.0
simple gp both 42.1 26.4 58.5 0.9
clustering gp none 13.4 9.7 23.3 1.0
clustering gp nodes 16.1 11.5 26.1 1.0
clustering gp subtrees 38.0 23.4 54.1 0.9
clustering gp both 44.6 27.7 61.9 0.8

Ionosphere

On the Ionosphere data set the search spaces for our gp algorithms are the
largest because of the large number of real-valued attributes. As a result the
increase in the percentage of cache hits doubles rather than triples as it did
on most of the data sets above.

The large number of attributes combined with the small number of records
has a negative effect on the effects of intron detection and pruning. Only our
clustering gp algorithm combined with intron node detection and pruning
manages to decrease the computation time. In all other cases the computation
time increases by up to 50%.

104 Experiments and Results

Table 5.12: The number of cache hits for the simple gp and clustering gp
algorithms on the Ionosphere data set.

algorithm intron % cache hits relative
detection avg min max runtime

simple gp none 12.4 8.8 21.6 1.0
simple gp nodes 16.1 11.4 28.7 1.0
simple gp subtrees 22.7 12.0 45.9 1.5
simple gp both 28.1 15.2 54.6 1.4
clustering gp none 17.8 9.6 28.8 1.0
clustering gp nodes 21.8 11.5 35.7 0.9
clustering gp subtrees 33.9 15.5 52.4 1.3
clustering gp both 40.2 18.7 61.4 1.2

Iris

Table 5.13: The number of cache hits for the simple gp and clustering gp
algorithms on the Iris data set.

algorithm intron % cache hits relative
detection avg min max runtime

simple gp none 18.4 9.1 30.8 1.0
simple gp nodes 21.5 10.4 36.4 1.0
simple gp subtrees 53.0 33.2 65.0 0.7
simple gp both 58.0 36.1 70.4 0.7
clustering gp none 46.8 38.7 50.4 1.0
clustering gp nodes 50.5 42.4 54.1 0.9
clustering gp subtrees 82.2 76.0 84.9 0.5
clustering gp both 84.7 79.6 87.0 0.5

On the Iris data set we see very high cache hit rates for the clustering gp
algorithm which is probably caused by the small number of possible internal
nodes (in this case only 8). The cache hit rates for our simple gp algorithm
are also a little higher than on the previous data sets. However, even with-

Chapter 5 105

out intron detection and pruning our clustering gp algorithm with only two
clusters per attribute has a cache hit percentage (also known as resampling
ratio) which is almost three times as high as that of our simple gp algorithm.

If we look at the relative runtimes we see that especially intron subtree
detection and pruning greatly reduces the computation times for our algo-
rithms. The relatively large decrease in computation time is clearly caused
by the large number of cache hits despite the small number of records of the
Iris data set.

5.5 Conclusions

Looking at the results in Section 5.4 it is clear that the detection and pruning
of introns in our decision trees reduces the effective size of the trees. As a
result the decision trees found should be easier to understand although in
some cases they can still be quite large. The detection and pruning of intron
nodes and intron subtrees also enables us to identify syntactically different
trees which are semantically the same. By comparing and storing pruned
decision trees in our fitness cache, rather than the original unpruned decision
trees, we can improve its effectiveness. The increase in cache hits means that
less individuals have to be evaluated resulting in reduced computation times.
As a consequence our algorithms will probably scale better with larger data
sets.

If we compare the runtimes of the algorithms we note that the combina-
tion of both intron detection and pruning methods has a noticeable effect on
the computation times. The decrease in computation time is different from
what we would expect when looking at the increase in cache hits and the
reduction in tree sizes achieved by our detection and pruning strategies. This
difference can be partially explained by taking into account the time spent
by our algorithms on detecting and pruning the introns, mutation, crossover,
selection and initialization. The main reason for the small difference in run-
times compared to the large increase in cache hits is probably due to certain
(unfortunate) choices made in the implementation of the algorithms.

Nevertheless, on the smallest data set (Iris) detecting and pruning both
intron subtrees and intron nodes reduces the computation times of our clus-
tering gp and simple gp algorithms by approximately 50% and 30%, respec-
tively. On the German Credit data set, which contains the most records, the
detection and pruning of both types of introns reduces the average compu-

106 Conclusions

tation time by over 37% for our simple gp and 15% for our clustering gp
algorithm. However, the computation time increases on the Pima Indians
and Ionosphere data sets show that intron detection and pruning does not
always work as expected. This can partially be explained by the number and
nature of the attributes relative to number of records in those data sets.

Based on the results in Section 5.4 we think that the combination of
a fitness cache combined with intron detection and pruning strategies can
potentially substantially reduce the runtimes of variable-length evolutionary
algorithms such as our tree-based gp, especially in cases where relatively
much computation time is spent on fitness evaluations. Another important
factor is the number of different types of introns occurring and the compu-
tation time needed to detect the different types of introns.

6 Stepwise Adaptation of Weights

The Stepwise Adaptation of Weights (saw) technique has been successfully
used in solving constraint satisfaction problems with evolutionary compu-
tation. It adapts the fitness function during the evolutionary algorithm in
order to escape local optima and hence to improve the quality of the evolved
solutions. We will show how the saw mechanism can be applied to both data
classification and symbolic regression problems using Genetic Programming.
Moreover, we investigate the influence of the saw parameters on the results.

6.1 Introduction

In the previous chapters we looked at decision tree representations and their
effect on the classification performance in Genetic Programming. In this chap-
ter we focus our attention on another important part of our gp algorithms:
the fitness function. Most evolutionary algorithms use a static fitness mea-
sure f(x) which given an individual x always returns the same fitness value.
Here we investigate an adaptive fitness measure which should allow our gp
algorithms to escape local optima and improve classification performance.

Previous studies [2, 30, 31, 32, 33, 52] on constraint satisfaction problems
show that the Stepwise Adaptation of Weights (saw) technique can be used
to boost the performance of evolutionary algorithms (eas). The saw method
gathers information about a problem during the run of an evolutionary algo-
rithm. At certain moments during the run it uses this information to identify
the parts of a problem that are the hardest to solve and to adjust the fitness
function accordingly. By focussing on different parts of a problem at differ-

107

108 Introduction

ent times during an evolutionary run the ea should be able to escape local
optima and potentially improve the quality of the evolved solutions.

In this chapter we identify the underlying principles of the saw method
and demonstrate how they can be applied to data classification and symbolic
regression problems. We start by describing the general Stepwise Adapta-
tion of Weights technique and discuss its underlying ideas in Section 6.2.
Apart from showing the general applicability of the Stepwise Adaptation of
Weights technique to different data mining tasks we investigate influence and
robustness of the saw parameters.

The saw method shares some characteristics with the Dynamic Subset
Selection (DSS) [44, 45] and limited-error fitness (LEF) [47] approaches of
Gathercole and Ross. The main goal of Dynamic Subset Selection is to re-
duce the number of records needed for fitness evaluations, thereby decreasing
computation time. In every generation the DSS method randomly selects a
number of cases from the whole training set using a bias, so that cases which
are “difficult” to classify or have not been selected for several generations are
more likely to be selected. The LEF method uses an error limit to determine
on how many training set examples an individual is evaluated. Once this
error limit is exceeded all remaining training set examples are counted as
misclassified. This way only “good” individuals are evaluated on the entire
training set. After each generation the error limit is altered and the training
set is re-ordered depending on the performance of the best individual in the
preceding generation.

Stepwise Adaptation of Weights also has some similarities with (compet-
itive) artificial co-evolution. Research conducted by for instance Hillis [54]
and Paredis [81, 82] incorporates predator-prey interactions to evolve solu-
tions for static problems. In competitive co-evolution a second population
is introduced which contains a subset of the test cases (problems). These
problems may evolve in the same fashion as the solutions. As a result their
algorithms create an arms-race between both populations, i.e., the population
of problems evolves and tries to outsmart the population of solutions.

Boosting [41, 42, 91] is also a technique which assigns weights to examples
in the training set based on their difficulty, similar to saw. Alternatively,
only a subset of training set examples is used, similar to DSS, to train a
weak classifier. Boosting differs from both saw and DSS in that it combines
several weak classifiers using a weighted majority vote into a final hypothesis.

In Section 6.3 we start by showing how saw can be applied to symbolic
regression. Moreover, we show how we can use the real-valued results of our

Chapter 6 109

regression trees to make saw more “precise”. We compare the different saw
strategies on two functions from literature as well as randomly generated
polynomials.

Then in Section 6.4 we investigate the usefulness of the saw technique
when applied to some of our gp classifiers from the previous chapters. Apart
from determining the influence saw has on the (mis)classification perfor-
mance of our algorithms we also investigate the influence of one of the saw
parameters. Finally, general conclusions will be drawn in Section 6.5.

6.2 The Method

The Stepwise Adaptation of Weights method is a technique which adapts the
fitness function during an evolutionary run with the purpose of escaping local
optima and boost search efficiency and effectiveness. It was first introduced
by Eiben et al. [34] and is designed to aid evolutionary algorithms with solv-
ing constraint satisfaction problems (csps) [68, 90]. A contraint satisfaction
problem is defined by a finite fixed set of variables V , each variable vi ∈ V
with a finite fixed size domain Di, and a finite fixed set of constraints C.
Each constraint cj ∈ C specifies for a subset of variables the allowable com-
binations of values for that subset. The goal is to find instantiations for all
variables vi such that none of the contraints cj ∈ C is violated.

In evolutionary computation constraint satisfaction problems can be ap-
proached using penalty functions. Each penalty function checks whether a
contraint has been violated and returns the appropriate penalty in the case of
a constraint violation. The fitness of an arbitrary candidate is computed by
adding up the penalties of the given contraints. Formally, the fitness measure
f for a candidate solution x is defined as:

f(x) =

|C|∑
j=1

wj · Φ(x, cj) , (6.1)

where wj is the penalty (or weight) assigned to constraint cj, and

Φ(x, cj) =

{
1 if x violates constraint cj,
0 otherwise.

(6.2)

One of the problems in solving constraint satisfaction problems using the
penalty approach is finding the correct weights for the contraints. The weights

110 The Method

should ideally correspond with the difficulty of meeting the contraints since
an evolutionary algorithm will primarily focus on solving the constraints
resulting in the highest penalties when violated. The problem is that the
difficulty of meeting an individual constraint is often not available or only at
substantial costs.

The Stepwise Adaptation of Weights (saw) method is designed to circum-
vent this problem by learning the contraint hardness during an evolutionary
run and adapt the weights in the fitness function accordingly. In a saw-ing
ea the weights wj of the contraints are initially set to a default value (typ-
ically wj = 1). These weights are periodically updated every ΔT iterations
or generations, in the case of a steady-state or generational model respec-
tively, during the run. The weight update takes place by evaluating the then
best individual in the population and increasing the weight of the constraints
that are violated with a certain step size Δw (also typically 1). A general
evolutionary algorithm using saw is given in Algorithm 2.

Algorithm 2 Stepwise Adaptation of Weights (saw).

set initial weights (thus fitness function f)
set G = 0
while not termination do

run one generation of ea with f
G = G + 1
if G ≡ 0 mod ΔT then

redefine f and recalculate fitness of individuals
fi

od

The Stepwise Adaptation of Weights mechanism has been shown to im-
prove the performance of evolutionary algorithms on different types of con-
straint satisfaction problems such as randomly generated binary csps [33,
51, 52], graph 3-colouring [31, 32, 52] and 3-sat [2, 30].

If we look at the basic concept behind the Stepwise Adaptation of Weights
method we can conclude that it is not restricted to constraint satisfaction
problems.

To use saw the only requirement is that the solution for a certain prob-
lem is determined by its performance on some elementary unit of quality
judgement (e.g., constraint violations). The quality or fitness of the solution
candidate can then be defined as the weighted sum of these elementary units

Chapter 6 111

of quality judgement, where the weights indicate their hardness or impor-
tance.

In the rest of this chapter we investigate the usability of Stepwise Adapta-
tion of Weights on tree-based Genetic Programming algorithms. First, we will
show how saw can be applied to gp algorithms for solving simple symbolic re-
gression problems. Second, we will show how Stepwise Adaptation of Weights
can be applied to the gp algorithms of the previous chapters for solving data
classification problems. Since Stepwise Adaptation of Weights depends on
two parameters (ΔT and Δw) we will test their robustness through their
influence on the performance of our algorithms.

6.3 Symbolic Regression

In a regression problem the goal is to find a function that matches an un-
known function defined by a finite set of sample points on a certain interval.
In our case we will be looking at 2-dimensional functions. Thus, given a set of
values X = {x1, . . . , xn} drawn from a certain interval and a corresponding
set of sample points S = {(xi, f(xi) | xi ∈ X} the object is to find a function
g(x) such that f(xi) = g(xi) for all xi ∈ X.

To represent the candidate solutions we use a tree representation with
unary (e.g., y �→ y3, abbreviated y3) and binary (e.g., +,−,×) operators in
internal nodes and variables and constants in the terminal nodes. An example
tree is given in Figure 6.1.

x 1 x

− y3

+

Figure 6.1: A regression tree representing the function (x− 1) + x3.

112 Symbolic Regression

In order to determine the quality of a candidate solution we need to define
a fitness function. In symbolic regression we want to minimize the total error
over all sample points. This is

fitness(g,X) =
∑
xi∈X

|f(xi)− g(xi)|, (6.3)

where X is the set of values for variable x in a certain interval.
Note that instead of this absolute error measure other fitness functions

are possible, for instance based on the mean squared error.
As we observed in Section 6.2 the saw technique is not restricted to

one type of problem. The only requirement for the saw method is that the
overall quality of the candidate solution depends on its performance on some
elementary units of quality judgement. In the case of symbolic regression each
sample point (xi, f(xi)) can be seen as such. Thus, by assigning a weight wi

to each sample point, we can transform Equation 6.3 into

fitnesssaw(g,X) =
∑
xi∈X

wi |f(xi)− g(xi)|, (6.4)

where X is the set of values for variable x in a certain interval and wi is a
weight corresponding to the hardness of the sample point.

In constraint satisfaction problems a constraint is either violated or not
and we can observe a similar thing for regression problems. For each sample
point (xi, f(xi)) for which f(xi) 	= g(xi) we can increase the weight by 1.
However, unlike constraint satisfaction problems, we can also determine a
distance measure to indicate if g(xi) is close to f(xi) or not. Therefore, instead
of a fixed weight increase we can add a penalty Δwi = |f(xi)−g(xi)| to each
weight wi. This way the error on each sample point xi is used to update the
corresponding weight. We call this approach Precision saw (psaw).

6.3.1 Experiments and Results: Koza functions

To compare the saw and psaw methods to a standard gp algorithm we will
use two functions introduced by Koza [67, pages 109–120]:

• quintic polynomial:

f(x) = x5 − 2x3 + x, x ∈ [−1, 1]. (6.5)

Chapter 6 113

• sextic polynomial:

f(x) = x6 − 2x4 + x2, x ∈ [−1, 1]. (6.6)

Each of the three gp algorithms (standard gp, gp+saw and gp+psaw)
is tested using two different population sizes as shown in Table 6.1. On each
of the six combinations of population size and number of generations we per-
formed 99 independent runs in which we measure the mean, median, stan-
dard deviation, minimum and maximum absolute error (standard fitness).
We will also consider the number of successful runs, whereby a successful
run means that the algorithm has found a function with a standard fitness
below 10−6. The set of sample points consists of 50 points uniformly drawn
from the domain [−1, 1]. Note that unlike the data classification experiments
of the previous chapters we do not split the set of sample points into a test
and training set but use the whole set for both the fitness calculations and
determining the absolute error.

Table 6.1: Experiment parameters: six different experiments where each
experiment consists of 99 independent runs.

experiment populations size number of generations

1 100 100
2 100 200
3 100 500
4 100 1000
5 500 100
6 500 200

The Genetic Programming parameters are displayed in Table 6.2. We use
a generational model and a very small function set including a protected
divide function (pdiv). This special division function is needed to prevent
errors when dividing a number by zero. The pdiv function is defined by:

pdiv(a, b) =
{

a/b if b 	= 0;
0 otherwise.

(6.7)

The terminal set consists only of variable x. The saw and psaw weights were
updated every 5 generations (ΔT = 5). The program for the Koza functions

114 Symbolic Regression

Table 6.2: Parameters and characteristics of the Genetic Programming
algorithms for experiments with the Koza functions.

Parameter value

Evolutionary Model (μ, 7μ)
Stop Criterion maximum generations or perfect fit
Functions Set {×, pdiv,−, +}
Terminal Set {x}
Populations Size (μ) see Table 6.1
Initial Depth 3
Maximum Depth 5
Maximum Generations see Table 6.1
Parent Selection random
ΔT (for saw) 5

was created with the gp kernel from the Data to Knowledge research project
of the Danish Hydraulic Institute (http://www.dhi.dk).

Quintic Polynomial

The quintic polynomial is defined by Equation 6.5 and displayed in Fig. 6.2.
Since the number of succesfull runs (a standard fitness below 10−6) differs
per algorithm and experiment it is difficult to determine which algorithm is
the best. A closer look at the individual runs of experiment 4 (population
size of 100 and 1000 generations) shows that gp has 76 successful runs out of
99, gp+saw has 78 successful runs out of 99 and gp+psaw has 85 successful
runs out of 99. On experiments 5 and 6 both the gp+saw and gp+psaw
algorithms are successful on all 99 independent runs, while the gp algorithm
fails 2 times. However, none of these differences are statistically significant
with a 95% confidence level. Based on the median results it would seem that
gp+psaw is the best choice but the differences are very small.

Chapter 6 115

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

-1 -0.5 0 0.5 1

f(
x)

x

Figure 6.2: The quintic polynomial on the interval [−1, 1].

Table 6.3: Experimental results for the quintic polynomial (all measurements
with standard fitness function).

experiment median mean st. deviation minimum maximum
×10−7 ×10−7

1. gp 4.610 1.351×10−1 2.679×10−1 2.640 1.050
gp+saw 4.605 1.339×10−1 2.599×10−1 2.445 1.102
gp+psaw 4.391 1.286×10−1 2.972×10−1 2.598 1.559

2. gp 4.354 1.274×10−1 2.610×10−1 2.640 1.034
gp+saw 4.303 1.226×10−1 2.376×10−1 2.445 0.853
gp+psaw 4.200 1.049×10−1 2.254×10−1 2.543 1.317

3. gp 3.972 1.120×10−1 2.571×10−1 2.640 1.034
gp+saw 4.019 1.107×10−1 2.204×10−1 1.704 0.853
gp+psaw 3.855 7.785×10−2 2.049×10−1 2.449 1.111

4. gp 3.763 1.161×10−1 2.547×10−1 2.324 1.034
gp+saw 3.693 8.323×10−2 1.803×10−1 1.704 0.6.97
gp+psaw 3.669 6.513×10−2 1.856×10−1 2.114 1.111

5. gp 3.465 2.045×10−3 1.544×10−2 1.965 0.143
gp+saw 3.465 3.570×10−7 8.463×10−8 2.412 9.965×10−7

gp+psaw 3.395 3.382×10−7 4.384×10−8 1.974 5.071×10−7

6. gp 3.343 2.045×10−3 1.544×10−2 1.965 0.143
gp+saw 3.446 3.512×10−7 8.337×10−8 2.412 9.965×10−7

gp+psaw 3.325 3.331×10−7 4.533×10−8 1.937 5.071×10−7

116 Symbolic Regression

Sextic polynomial

The sextic polynomial is also taken from [67] and is defined in Equation 6.6.
Figure 6.3 shows this function on the interval [−1, 1].

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

-1 -0.5 0 0.5 1

f(
x)

x

Figure 6.3: The sextic polynomial on the interval [−1, 1].

In Table 6.4 we give the results of the experiments on this sextic polyno-
mial. Similar to the quintic polynomial we see that the differrent algorithms
have a different number of succesful runs. On experiment 4 (population size of
100 and 1000 generations) gp has 84 successful runs out of 99, gp+saw has
81 successful runs and gp+psaw has 87 successful runs. On experiment 6 we
have a different outcome compared to the quintic polynomial. Here gp+saw
fails twice, gp+psaw fails once and gp always succeeds. Again these results
are not statistically significant with a 95% confidence level. Although the dif-
ferences in the number of successful runs are not statistically significant, they
do have a large impact on the mean and standard deviations. If we compare
the median results of the different algorithms we see very little difference and
in some cases no difference at all.

Chapter 6 117

Table 6.4: Experimental results for the sextic polynomial (all measurements
with standard fitness function).

experiment median mean st. deviation minimum maximum
×10−7 ×10−7

1. gp 2.182 1.490×10−1 3.987×10−1 1.723 2.844
gp+saw 2.182 1.525×10−1 4.036×10−1 1.353 2.844
gp+psaw 2.182 1.212×10−1 2.569×10−1 1.213 1.720

2. gp 2.182 1.179×10−1 2.882×10−1 1.172 1.730
gp+saw 2.098 1.244×10−1 3.626×10−1 1.244 2.491
gp+psaw 2.115 1.135×10−1 2.495×10−1 1.013 1.720

3. gp 1.953 8.001×10−2 2.318×10−1 1.171 1.730
gp+saw 1.916 8.366×10−2 2.328×10−1 1.172 1.222
gp+psaw 1.984 8.403×10−2 2.226×10−1 1.013 1.720

4. gp 1.888 6.963×10−2 2.258×10−1 1.135 1.730
gp+saw 1.824 6.100×10−2 1.741×10−1 1.048 1.161
gp+psaw 1.899 5.084×10−2 1.418×10−1 1.013 0.547

5. gp 1.385 1.507×10−7 3.280×10−8 1.087 2.912×10−7

gp+saw 1.385 3.390×10−3 2.500×10−2 1.013 0.226
gp+psaw 1.385 2.485×10−3 2.460×10−2 1.125 0.246

6. gp 1.260 1.417×10−7 3.029×10−8 1.087 2.912×10−7

gp+saw 1.363 3.390×10−3 2.500×10−2 1.013 0.226
gp+psaw 1.260 2.485×10−3 2.460×10−2 1.115 0.246

6.3.2 Experiments and Results: Random Polynomials

In the previous section we tested the performance of the saw and psaw
techniques on only two symbolic regression problems from literature, with
somewhat dissapointing results. To study the performance of saw enhanced
gp algorithms on a large set of regression problems of a higher degree we will
randomly generate polynomials.

We generate the polynomials using a model of two integer parameters
〈a, b〉, where a stands for the highest possible degree and b determines the
domain size from which every coefficient is chosen. Using these parameters,
we are able to generate polynomials of the form as shown in (6.8).

f(x)
a∑

i=0

eix
i, where ei ∈ {w | w ∈ Z ∧ −b ≤ w ≤ b}, (6.8)

118 Symbolic Regression

where Z is the set of positive and negative integers including 0. The func-
tion f(x) is presented to the regression algorithms by generating 50 points
(x, f(x)) uniformly from the domain [−1, 1]. The values ei are drawn uniform
random from the integer domain bounded by −b and b.

The parameters of the underlying gp system are given in Table 6.5. Since
we will be looking at higher order polynomials with constant values we have
extended the function set with two unary functions, negation (e.g., x �→ −x)
and y �→ y3, compared to the Koza functions. The terminal set consists of
variable x and all possible constant integer values from the domain [−b, b]
that may occur in the polynomials.

Table 6.5: Parameters and characteristics of the Genetic Programming algo-
rithms for experiments with the random polynomials.

Parameter value

Evolutionary Model steady state (μ + 1)
Fitness Standard gp see Equation (6.3)
Fitness saw Variants see Equation (6.4)
Stop Criterion maximum evaluations or perfect fit
Functions Set {×, pdiv,−, +, x �→ −x, y �→ y3}
Terminal Set {x} ∪ {w | w ∈ Z ∧ −b ≤ w ≤ b}
Populations Size 100
Initial Maximum Depth 10
Maximum Size 100 nodes
Maximum Evaluations 20,000
Survivors Selection reverse 5-tournament
Parent Selection 5-tournament
ΔT (for saw) 1000, 2000 and 5000 evaluations

We generate polynomials randomly using parameters 〈12, 5〉. We generate
100 polynomials and do 85 independent runs of each algorithm where each
run is started with a unique random seed. The gp algorithm was programmed
using the Evolving Objects library (EOlib) [64]. EOlib is an Open Source
C++ library for all forms of evolutionary computation and is available from
http://eodev.sourceforge.net.

Chapter 6 119

To determine whether the differences between our gp algorithms are sta-
tistically significant we used paired two-tailed t-tests with a 95% confidence
level (p = 0.05) using the results of 8500 runs (100 random functions times
85 random seeds). In these tests the null-hypothesis is that the means of the
two algorithms involved are equal.

Table 6.6: Experimental results for 100 randomly generated polynomials,
results are averaged over the 85 independent runs.

algorithm ΔT mean stddev minimum maximum

gp 21.20 10.30 5.82 48.60
gp+saw 1000 21.55 10.33 5.79 48.05
gp+saw 2000 21.21 10.24 5.83 48.74
gp+saw 5000 21.25 10.47 5.75 49.31
gp+psaw 1000 21.46 10.52 6.41 50.80
gp+psaw 2000 20.45 10.05 5.90 48.06
gp+psaw 5000 20.28 9.87 5.96 48.18

We present the results for the set of randomly generated polynomials in
Table 6.6. The gp+saw algorithm with a stepsize of 1000 performs signifi-
cantly worse than the standard gp algorithm. The gp+psaw algorithm with
stepsizes 2000 and 5000 perform significantly better than any of the other gp
algorithms. It looks like the new variant gp-psaw performs better if we do
not update the saw weights too many times. This seems like a contradiction
as we would expect the saw mechanism to improve performance. However,
we should not forget that after updating the weights the fitness function has
changed (much like in a dynamic environment), so we need to give the gp
algorithm time to adapt. It is also important to note that every extra weight
update has less influence than the previous one as the relative weight differ-
ence between the sample points decreases with every weight update. Thus,
the fitness function becomes “less dynamic” over time. Based on the results
in Table 6.6 it seems that the saw method is to some degree dependent on
both the weight update (Δw) and the number of generations between weight
updates (ΔT). In the next section we will perform a more thorough inves-
tigation into the influence of the stepsize parameter on our tree-based gp
algorithms.

120 Data Classification

6.4 Data Classification

In the previous section we showed how Stepwise Adaptation of Weights can
be applied to symbolic regression problems. Here we show how saw can also
be applied to data classification problems. The goal in data classification is to
either minimize the number of misclassifications or maximize the number of
correct classifications. For our gp algorithms we defined the standard fitness
measure of a gp classifier x in Equation 2.3 as:

fitnessstandard(x) =

∑
r∈trainingset

χ(x, r)

|trainingset| × 100%, (6.9)

where χ(x, r) is defined as:

χ(x, r) =
{

1 if x classifies record r incorrectly;
0 otherwise.

(6.10)

As we concluded in Section 6.2 the basic concept of the Stepwise Adapta-
tion of Weights is not restricted to constraint satisfaction problems. The only
requirement needed in order to use the saw method is that the overall qual-
ity of a candidate solution is based on its performance on some elementary
units of quality judgement (typically constraint violations). However, if we
look at the standard misclassification fitness measure in Equation 6.9 and we
compare it to the fitness measure used for constraint satisfaction problems
(see Equation 6.1) we see that they are very similar. Instead of constraint
violations we count misclassified records. Another difference between the two
equations comes from the unknown penalties or weights that were used with
constraint satisfaction problems. In constraint satisfaction problems these
weights correspond to the hardness of the various constraints. In the case
of data classification we can add a weight to each data record. We will use
these weights to correspond to the classification hardness of the various data
records. Thus we can transform Equation 6.9 to:

fitnesssaw(x) =

∑
r∈trainingset

wr × χ(x, r)

|trainingset| × 100%, (6.11)

where wr corresponds to the classification hardness of record r.

Chapter 6 121

Initially all weights wr will be set to 1. Since our gp algorithms use a
generational model the weights wr will be updated every ΔT generations.
Similar to constraint satisfaction the weights of the records misclassified by
the then best individual in the population are increased by Δw = 1.

We should note that the weights wr specified here are different from the
weights usually specified in a data set cost matrix. A cost matrix determines
the penalties assigned to false positive misclassifications and false negative
misclassifications. One could for instance specify that classifying somebody
as ill when he or she is healthy is not as bad as classifying somebody who
is ill as healthy. Here we only consider data sets with default cost matrices
where every misclassification has the same penalty.

We will add the saw fitness measure as the primary fitness value to
our multi-layered fitness. Thus, the primary fitness measure becomes Equa-
tion 6.11, the secondary fitness value becomes Equation 6.9 and the third
and final fitness measure is the number of nodes in the tree.

We only use the saw fitness measure during the evolutionary process.
For selecting the best individual of an evolutionary run we first look at the
standard fitness and if necessary the number of tree nodes (originally the
third fitness measure). The reason for ignoring the saw fitness is that it is
dependent on the weights while we are interrested in finding a decision tree
which offers the best (unweighted) classification performance.

6.4.1 Experiments and Results

According to extensive tests performed on graph colouring and 3-sat [50, 99]
fine tuning the parameters for saw, ΔT and Δw, is not necessary. However,
the results in Section 6.3 indicate that both the choice of stepsize and weight
function can influence the predictive capabilities of our gp algorithms. To
check the influence of the stepsize parameter for Genetic Programming ap-
plied to Data Classification we will fix Δw on 1 but test 25 different settings
of ΔT (1 till 25). All other parameters are left unchanged and are the same
as in the previous chapters (see Table 6.7). We applied saw to the simple gp
algorithm and clustering gp algorithm with k = 2. Instead of a table with
the results outcomes are shown in graphs in Figures 6.4 through 6.9 at the
end of this chapter. Each graph has the stepsize on the x-axis and the mis-
classification rate on the y-axis and contains two lines. A solid horizonatal
line indicates the misclassification rate of the algorithm without saw. The
dashed line indicates the misclassification rate of the algorithms using saw.

122 Data Classification

To determine whether the differences between our gp algorithms are sta-
tistically significant we used paired two-tailed t-tests with a 95% confidence
level (p = 0.05) using the results of 100 runs (10 random seeds times 10
folds). In these tests the null-hypothesis is also that the means of the two
algorithms involved are equal.

Table 6.7: The main gp parameters.

Parameter Value
Population Size 100
Initialization ramped half-and-half
Initial Maximum Tree Depth 6
Maximum Number of Nodes 63
Parent Selection tournament selection
Tournament Size 5
Evolutionary Model (100, 200)

Crossover Rate 0.9
Crossover Type swap subtree
Mutation Rate 0.9
Mutation Type branch mutation

Stop Condition 99 generations

Australian Credit

In Figure 6.4 the average misclassification rates on the Australian Credit data
set for our simple gp algorithm and clustering gp algorithm with k = 2 are
plotted for stepsizes 1 to 25. When used in combination with our simple gp
algorithm saw seems to improve the misclassification performance for all but
one value of ΔT . For stepsizes 1, 2, 3, 8, 10, 17, 18 and 24 these differences
are statistically significant.

If we look at the influence of saw on our clustering gp algorithm using
k = 2 we see that saw has a negative effect. In 12 of the stepsizes gp+saw has
a significantly higher misclassification rate. A possible reason for the different
effect saw has on the two algorithms is that on the Australian Credit data
set our clustering using k = 2 performs the best of all our gp representations
while the performance of our simple gp algorithm was the worst. It is easier

Chapter 6 123

for saw to improve the bad performance of our simple gp than to improve
the already good performance of our clustering gp algorithm.

German Credit

The results for the German Credit data set are plotted in Figure 6.5. On the
Australian Credit data set saw seemed to improve the performance of our
simple gp algorithm but on the German Credit data set saw significantly
decreases the performance in some cases. However, on the Australian Credit
data set our simple gp algorithm had the worst performance of all our gp
algorithms, whereas on the German Credit data set our simple gp algorithm
performed the best. Thus, again Stepwise Adaptation of Weights doesn’t
improve an already “optimal” gp classifier. Our clustering gp algorithms
using k = 2 also performed better than most of our gp algorithms on this data
set and only saw in combination with a stepsize of 7 performs significantly
worse.

Pima Indians Diabetes

The average misclassification rates on the Pima Indians Diabetes data set
(see Figure 6.6) were virtually the same for our simple and clustering gp
algorithms. However, when saw is applied to our simple gp algorithm we
see no significant difference in performance. In the case of our clustering gp
algorithm saw significantly decreases the misclassification rate for stepsizes
2, 9, 12, 20 and 21. This could indicate that the classification performance
of our clustering gp algorithm with k = 2 was close to optimal given the
restrictions on the representation.

Heart Disease

Observe Figure 6.7 which shows the results for the Heart Disease data set.
On this data set applying saw to both gp algorithms seems to improve the
misclassification rates for most stepsizes. However, in the case of our simple
gp algorithm the differences are not statistically significant. Our clustering
gp performed better than most of our gp classifiers but apparently did not
achieve its best performance using the standard fitness measure. Using saw
with stepsizes 14 and 23 resulted in a significantly lower misclassification
performance.

124 Conclusions

Ionosphere

The results for the Ionosphere data set are plotted in Figure 6.8. The combi-
nation of our simple gp algorithm and saw significantly reduces classifiction
performance for 10 of the 24 tested stepsizes. In the case of our clustering gp
algorithm saw with a stepsize of 16 significantly improves the classification
results.

Iris

In Figure 6.9 the average misclassificaton rates for the Iris data set are plot-
ted. Although the classification performance of the simple gp algorithm on
the Iris data set was better than average, the application of saw shows that
it could have been even better. In the case of our clustering gp algorithm
using k = 2 the results clearly show that the bad classification performance is
caused by the restrictions of the representation rather than the evolutionary
process or the fitness measures. However, according to a paired t-test, apply-
ing saw to our clustering gp algorithm with a stepsize of 2 does significantly
improve classification performance. Combined with our simple gp algorithm
saw only significantly improves performance with a stepsize of 14.

6.5 Conclusions

We have shown how the saw technique can be applied to genetic program-
ming for symbolic regression and data classification problems. For symbolic
regression, we compared two variants of Stepwise Adaptation of Weights. The
first variant, standard saw, updates the weight using a constant value. This is
similar to the way saw is used for constraint satisfaction problems. Although
this variant occassionally improves the performance (e.g., for randomly cre-
ated polynomials) compared to a standard gp algorithm, it is outperformed
by our more “precise” weight update method in most experiments. This sec-
ond saw variant, precision saw (psaw), updates the weights based on the
distance between the target function and the best individual. Unlike saw
which increases the weight of a sample point (xi, f(xi)) by 1 if the current
best individual g(x) fails to predict f(xi) exactly, psaw increases the weights
based on the absolute difference between f(xi) and g(xi). This way, if there
is only a small difference between f(xi) and g(xi), the weight of the corre-
sponding sample point will be only slightly increased.

Appendix 125

The experiments on the two functions from Koza [67] are inconclusive
since the differences in the number of successful runs are not statistically
significant. If we look at the results on the randomly created polynomials we
see that the gp+psaw algorithm perform the best, as long as there is enough
time between weight updates.

In Section 6.4 we investigated the influence of the stepsize parameter ΔT
on the classification outcome. Although earlier research [50, 99] on constraint
satisfaction and 3-sat problems indicated that fine-tuning the stepsize (ΔT)
and weight-update (Δw) parameters is not necessary, this does not seem
to be the case for genetic programming applied to data classification. On
virtually all data set/algorithm combinations there was a value for ΔT which
significantly increased or decreased the classification performance. Looking
at the result graphs it is clear that selecting the optimal stepsize parameter
setting for a certain data set and algorithm is virtually impossible. Moreover,
given the small difference between the best and worst misclassification results
per data set for each algorithm using saw, it is questionable whether saw is
useful for data classification problems. It is difficult to speculate about the
reasons why Stepwise Adaptation of Weights performs as it does for data
classification problems. One potential reason could be the relatively small
number of generations we use to evolve decision trees. As a result the gp
algorithms may not have enough time to adapt to the changing of the saw
weights.

We like to point out that the simple concept behind saw makes it very
easy to implement the technique in existing algorithms, thereby making it
suitable for doing quick “try outs” to improve the performance of an evolu-
tionary algorithms. As saw solely focuses on the fitness function it can be
used in virtually any evolutionary algorithm. However, it is up to the user
to find a good way of updating the weights mechanism depending on the
problem at hand.

126 Conclusions

18.5

19

19.5

20

20.5

21

21.5

22

22.5

5 10 15 20 25

m
is

cl
as

si
fic

at
io

n
ra

te

stepsize

Australian Credit Simple GP

No SAW
SAW

13.7

13.8

13.9

14

14.1

14.2

14.3

14.4

14.5

14.6

14.7

5 10 15 20 25

m
is

cl
as

si
fic

at
io

n
ra

te

stepsize

Australian Credit Clustering GP k=2

No SAW
SAW

Figure 6.4: The average misclassification rates for the simple and clustering
gp algorithms with k = 2 with stepsizes 1 through 25 on the Australian
Credit data set.

Appendix 127

27

27.2

27.4

27.6

27.8

28

28.2

28.4

5 10 15 20 25

m
is

cl
as

si
fic

at
io

n
ra

te

stepsize

German Credit Simple GP

No SAW
SAW

27.2

27.4

27.6

27.8

28

28.2

28.4

28.6

28.8

29

5 10 15 20 25

m
is

cl
as

si
fic

at
io

n
ra

te

stepsize

German Credit Clustering GP k=2

No SAW
SAW

Figure 6.5: The average misclassification rates for the simple and clustering
gp algorithms with k = 2 with stepsizes 1 through 25 on the German Credit
data set.

128 Conclusions

25.9

26

26.1

26.2

26.3

26.4

26.5

26.6

26.7

26.8

26.9

27

5 10 15 20 25

m
is

cl
as

si
fic

at
io

n
ra

te

stepsize

Pima Indians Diabetes Simple GP

No SAW
SAW

26.2

26.3

26.4

26.5

26.6

26.7

26.8

26.9

27

5 10 15 20 25

m
is

cl
as

si
fic

at
io

n
ra

te

stepsize

Pima Indians Diabetes Clustering GP k=2

No SAW
SAW

Figure 6.6: The average misclassification rates for the simple and clustering
gp algorithms with k = 2 with stepsizes 1 through 25 on the Pima Indians
Diabetes data set.

Appendix 129

23.5

24

24.5

25

25.5

26

26.5

27

5 10 15 20 25

m
is

cl
as

si
fic

at
io

n
ra

te

stepsize

Heart Disease Simple GP

No SAW
SAW

18

18.5

19

19.5

20

20.5

21

5 10 15 20 25

m
is

cl
as

si
fic

at
io

n
ra

te

stepsize

Heart Disease Clustering GP k=2

No SAW
SAW

Figure 6.7: The average misclassification rates for the simple and clustering
gp algorithms with k = 2 with stepsizes 1 through 25 on the Heart Disease
data set.

130 Conclusions

12.2

12.4

12.6

12.8

13

13.2

13.4

13.6

13.8

14

14.2

5 10 15 20 25

m
is

cl
as

si
fic

at
io

n
ra

te

stepsize

Ionosphere Simple GP

No SAW
SAW

12

12.2

12.4

12.6

12.8

13

13.2

13.4

13.6

5 10 15 20 25

m
is

cl
as

si
fic

at
io

n
ra

te

stepsize

Ionosphere Clustering GP k=2

No SAW
SAW

Figure 6.8: The average misclassification rates for the simple and clustering
gp algorithms with k = 2 with stepsizes 1 through 25 on the Ionosphere data
set.

Appendix 131

4.8

5

5.2

5.4

5.6

5.8

6

6.2

5 10 15 20 25

m
is

cl
as

si
fic

at
io

n
ra

te

stepsize

Iris Simple GP

No SAW
SAW

20.8

20.85

20.9

20.95

21

21.05

21.1

21.15

5 10 15 20 25

m
is

cl
as

si
fic

at
io

n
ra

te

stepsize

Iris Clustering GP k=2

No SAW
SAW

Figure 6.9: The average misclassification rates for the simple and clustering
gp algorithms with k = 2 with stepsizes 1 through 25 on the Iris data set.

A Tree-based Genetic Programming

The main differences between the different subclasses of evolutionary com-
putation are their representations. In order to use a specific representation
for an evolutionary algorithm one needs to specify the initialization method
and variation operators. In this appendix we discuss the (standard) initializa-
tion and variation routines we used for our tree-based Genetic Programming
algorithms. We start with the initialization methods in Section A.1. In Sec-
tion A.2 we continue with the variation process and the genetic operators.

A.1 Initialization

The first step of an evolutionary algorithm is the initialization of the popu-
lation. In the case of tree-based Genetic Programming this means we have to
construct syntactically valid trees. The main parameter for the initialization
method is the maximum tree depth. This parameter is used to restrict the
size of the initialized trees. Apart from the maximum tree depth parameter
the initialization function needs a set of possible terminals T and a set of
possible internal nodes I (non-terminals). For tree-based gp there are two
common methods to construct trees: the grow method and the full method.

The grow method is given in Algorithm 3 as a recursive function returning
a node and taking the depth of the node to be created as argument. The func-
tion is initially called with depth 0. If depth is smaller than the maximum tree
depth a node is chosen randomly from the set of terminals and non-terminals.
Next depending on whether node is a terminal (without child nodes) or in-
ternal node the grow method is called to create the children of node. If depth
does equal maximum tree depth a node is chosen from the set of terminals.

133

134 Initialization

Algorithm 3 node grow(depth)

if depth < maximum tree depth
node ← random(T ∪ I)
for i = 1 to number of children of node do

child i = grow(depth+1)
od

else
node ← random(T)

fi
return node

An example of the grow method with a maximum tree depth of 2 can be seen
in Figure A.1. The root node with non-terminal I5 is created first. The first
child of the root node becomes a terminal T3 while the second child becomes
another internal node containing non-terminal I1. Because of the limitations
set by the maximum tree depth both children of node I1 become terminals.

I5 I5 I5

I5I5

T3 T3

T3T3

I1

I1I1

T1T3T1

Figure A.1: An example of a tree constructed using the grow method.

Appendix A 135

Algorithm 4 node full(depth)

if depth < maximum tree depth
node ← random(I)
for i = 1 to number of children of node do

child i = full(depth+1)
od

else
node ← random(T)

fi
return node

The full method, given in Algorithm 4, is similar to the grow method with
one important exception. If depth is smaller than the maximum allowed tree
depth a node is chosen randomly from the set of internal nodes I and not
from the combined set of terminals (T) and non-terminals (I). An example
of a tree created using the full method with maximum tree depth 2 can be
seen in Figure A.2. First a root node containing non-terminal I5 is created,
which has two children. The first child is created with non-terminal I2 which
has only a single child which becomes a terminal. The second child is created
with non-terminal I1 which has two terminals as children.

A.1.1 Ramped Half-and-Half Method

To ensure that there is enough diversity in the population a technique has
been devised called Ramped Half-and-Half [65] which combines the grow and
full initialization methods. Given a maximum tree depth D the Ramped Half-
and-Half method divides the population size into D − 1 groups. Each group
uses a different maximum tree depth (2, . . . , D), whereby half of each group
is created using the grow method and the other half using the full method.
The result is a mix of irregular trees of different depths created by the grow
method and more regular trees created by the full method.

136 Genetic Operators

I5 I5

T2

I2

I5

I2

I5

I1

T2

I2

I5

I1

T2 T1

I2

I5

I1

T2 T1

I2

T3

Figure A.2: An example of a tree constructed using the full method.

A.2 Genetic Operators

After the initial population has been initialized and evaluated by a fitness
function the actual evolutionary process starts. The first step of each gener-
ation is the selection of parents from the current population. These parents
are employed to produce offspring using one or more genetic operators. In
evolutionary computation we can distinguish between two different types of
operators: crossover and mutation:

• The crossover or recombination operator works by exchanging “genetic
material” between two or more parent individuals and may result in
several offspring individuals.

• The mutation operator is applied to a single individual at a time and
makes (small) changes in the genetic code of an individual. Mutation
is often applied to the individuals produced by the crossover operator.

Appendix A 137

The combination of crossover and mutation mimics procreation in nature
where the DNA of a child is a combination of the DNA of its parents whereby
as a result of DNA copying errors also small mutations arise. An overview of
the variation process can be seen in Figure A.3.

Mutation

Crossover

Figure A.3: Overview of the variation process.

138 Genetic Operators

A.2.1 Crossover

There are several different crossover operators possible for tree-based Genetic
Programming [4]. In this thesis we use the standard tree-crossover operator
used for gp: subtree exchange crossover. A schematic example of subtree ex-
change crossover can be seen in Figure A.4. After two parent individuals
have been selected, in this case the “round” tree and the “square” tree, a
subtree is randomly chosen in each of the parents. Next the two subtrees are
exchanged resulting in two trees each of which is a different combination of
the two parents.

Figure A.4: Subtree crossover.

Appendix A 139

A.2.2 Mutation

After the crossover operator we apply the mutation operator. In this thesis
we use subtree replacement as mutation operator. A schematic example of
subtree replacement mutation can be seen in Figure A.5. Subtree replacement
mutation selects a subtree in the individual to which it is applied and replaces
the subtree with a randomly created tree. This subtree is usually created
using one of the initialization methods described in Section A.1.

Figure A.5: Subtree mutation.

Bibliography

[1] P.J. Angeline. Genetic programming and emergent intelligence. In
K.E. Kinnear, Jr., editor, Advances in Genetic Programming, chapter 4,
pages 75–98. MIT Press, 1994.

[2] T. Bäck, A.E. Eiben, and M.E. Vink. A superior evolutionary algo-
rithm for 3-SAT. In V. W. Porto, N. Saravanan, D. Waagen, and A.E.
Eiben, editors, Proceedings of the 7th Annual Conference on Evolu-
tionary Programming, volume 1477 of LNCS, pages 125–136. Springer-
Verlag, 1998.

[3] T. Bäck, D.B. Fogel, and Z. Michalewicz. Handbook of Evolutionary
Computation. IOP Publishing Ltd., 1997.

[4] W. Banzhaf, P. Nordin, R.E. Keller, and F.D. Francone. Ge-
netic Programming — An Introduction; On the Automatic Evolu-
tion of Computer Programs and its Applications. Morgan Kaufmann,
dpunkt.verlag, 1998.

[5] M. Berthold. Fuzzy logic. In M. Berthold and D.J. Hand, editors,
Intelligent Data Analysis, An Introduction, pages 269–298. Springer,
1999.

[6] S. Bhattacharyya, O. Pictet, and G. Zumbach. Representational se-
mantics for genetic programming based learning in high-frequency fi-
nancial data. In J.R. Koza, W. Banzhaf, K. Chellapilla, K. Deb,
M. Dorigo, D.B. Fogel, M.H. Garzon, D.E. Goldberg, H. Iba, and
R. Riolo, editors, Genetic Programming 1998: Proceedings of the Third
Annual Conference, pages 11–16, University of Wisconsin, Madison,
Wisconsin, USA, 1998. Morgan Kaufmann.

141

142 BIBLIOGRAPHY

[7] C.L. Blake and C.J. Merz. UCI repository of machine learning
databases, 1998.

[8] T. Blickle. Evolving compact solutions in genetic programming: A case
study. In H.-M. Voigt, W. Ebeling, I. Rechenberg, and H.-P. Schwefel,
editors, Parallel Problem Solving From Nature IV. Proceedings of the
International Conference on Evolutionary Computation, volume 1141
of LNCS, pages 564–573. Springer-Verlag, 1996.

[9] A. Blumer, A. Ehrenfeucht, D. Haussler, and M.K. Warmuth. Occam’s
razor. Inf. Process. Lett., 24:377–380, 1987.

[10] C.C. Bojarczuk, H.S. Lopes, and A.A. Freitas. Discovering comprehen-
sible classification rules by using genetic programming: A case study
in a medical domain. In W. Banzhaf, J. Daida, A.E. Eiben, M.H.
Garzon, V. Honavar, M. Jakiela, and R.E. Smith, editors, Proceedings
of the Genetic and Evolutionary Computation Conference, volume 2,
pages 953–958, Orlando, Florida, USA, 1999. Morgan Kaufmann.

[11] M. Bot. Application of genetic programming to the induction of linear
programming trees. Master’s thesis, Vrije Universiteit, Amsterdam,
The Netherlands, 1999.

[12] M.C.J. Bot and W.B. Langdon. Application of genetic programming
to induction of linear classification trees. In R. Poli, W. Banzhaf, W.B.
Langdon, J.F. Miller, P. Nordin, and T.C. Fogarty, editors, Genetic
Programming, Proceedings of EuroGP’2000, volume 1802 of LNCS,
pages 247–258, Edinburgh, 2000. Springer-Verlag.

[13] M. Brameier and W. Banzhaf. A comparison of linear genetic program-
ming and neural networks in medical data mining. IEEE Transactions
on Evolutionary Computation, 5:17–26, 2001.

[14] L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and
Regression Trees. Wadsworth and Brooks, Monterey, CA, 1984.

[15] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction
to Algorithms. MIT Press, second edition, 2001.

[16] T.M. Cover and J.A. Thomas. Elements of Information Theory. John
Wiley, New York, 1991.

BIBLIOGRAPHY 143

[17] C. Darwin. On the origin of species: By Means of Natural Selection or
the Preservation of Favoured Races in the Struggle for Life. Murray,
London, 1859.

[18] P. Domingos. Occam’s two razors: The sharp and the blunt. In
R. Agrawal and P. Stolorz, editors, Proceedings of the Fourth Inter-
national Conference on Knowledge Discovery and Data Mining, pages
37–43. AAAI Press, 1998.

[19] P. Domingos. The role of Occam’s razor in knowledge discovery. Data
Mining and Knowledge Discovery, 3:409–425, 1999.

[20] J. Eggermont. Evolving fuzzy decision trees for data classification.
In H. Blockeel and M. Denecker, editors, Proceedings of the 14th Bel-
gium/Netherlands Conference on Artificial Intelligence (BNAIC’02),
pages 417–418, Leuven, Belgium, 2002.

[21] J. Eggermont. Evolving fuzzy decision trees with genetic programming
and clustering. In J.A. Foster, E. Lutton, J. Miller, C. Ryan, and
A.G.B. Tettamanzi, editors, Proceedings on the Fifth European Con-
ference on Genetic Programming (EuroGP’02), volume 2278 of LNCS,
pages 71–82, Kinsale, Ireland, 2002. Springer-Verlag.

[22] J. Eggermont, A.E. Eiben, and J.I. van Hemert. Adapting the fitness
function in GP for data mining. In R. Poli, P. Nordin, W.B. Lang-
don, and T.C. Fogarty, editors, Genetic Programming, Proceedings of
EuroGP’99, volume 1598 of LNCS, pages 195–204, Goteborg, Sweden,
1999. Springer-Verlag.

[23] J. Eggermont, A.E. Eiben, and J.I. van Hemert. Comparing ge-
netic programming variants for data classification. In E. Postma and
M. Gyssens, editors, Proceedings of the Eleventh Belgium/Netherlands
Conference on Artificial Intelligence (BNAIC’99), pages 253–254,
Maastricht, The Netherlands, 1999.

[24] J. Eggermont, A.E. Eiben, and J.I. van Hemert. A comparison of ge-
netic programming variants for data classification. In D.J. Hand, J.N.
Kok, and M.R. Berthold, editors, Advances in Intelligent Data Anal-
ysis, Third International Symposium, IDA-99, volume 1642 of LNCS,
pages 281–290, Amsterdam, The Netherlands, 1999. Springer-Verlag.

144 BIBLIOGRAPHY

[25] J. Eggermont, J.N. Kok, and W.A. Kosters. Genetic programming for
data classification: Refining the search space. In T. Heskes, P. Lucas,
L. Vuurpijl, and W. Wiegerinck, editors, Proceedings of the 15th Bel-
gium/Netherlands Conference on Artificial Intelligence (BNAIC’03),
pages 123–130, 2003.

[26] J. Eggermont, J.N. Kok, and W.A. Kosters. Detecting and prun-
ing introns for faster decision tree evolution. In X. Yao, E. Burke,
J.A. Lozano, J.Smith, J.J. Merelo-Guervós, J.A. Bullinaria, J.Rowe,
P. Tiňo, A. Kabán, and H.-P. Schwefel, editors, Parallel Problem Solv-
ing from Nature — PPSN VIII, volume 3242 of LNCS, pages 1071–
1080, Birmingham, United Kingdom, 2004. Springer-Verlag.

[27] J. Eggermont, J.N. Kok, and W.A. Kosters. Genetic programming
for data classification: Partitioning the search space. In Proceedings
of the 2004 Symposium on applied computing (ACM SAC’04), pages
1001–1005, Nicosia, Cyprus, 2004.

[28] J. Eggermont and J. I. van Hemert. Stepwise adaptation of weights
for symbolic regression with genetic programming. In A. van den
Bosch and H. Weigand, editors, Proceedings of the Twelfth Bel-
gium/Netherlands Conference on Artificial Intelligence (BNAIC’00),
pages 259–267, Kaatsheuvel, The Netherlands, 2000.

[29] J. Eggermont and J. I. van Hemert. Adaptive genetic programming
applied to new and existing simple regression problems. In J. Miller,
M. Tomassini, P.L. Lanzi, C. Ryan, A.G.B. Tetamanzi, and W.B. Lang-
don, editors, Proceedings on the Fourth European Conference on Ge-
netic Programming (EuroGP’01), volume 2038 of LNCS, pages 23–35.
Springer-Verlag, 2001.

[30] A.E. Eiben and J.K. van der Hauw. Solving 3-SAT with adaptive
Genetic Algorithms. In Proceedings of the 4th IEEE Conference on
Evolutionary Computation, pages 81–86. IEEE Press, 1997.

[31] A.E. Eiben and J.K. van der Hauw. Adaptive penalties for evolutionary
graph-coloring. In J.-K. Hao, E. Lutton, E. Ronald, M. Schoenauer,
and D. Snyers, editors, Artificial Evolution ’97, number 1363 in LNCS,
pages 95–106. Springer-Verlag, 1998.

BIBLIOGRAPHY 145

[32] A.E. Eiben, J.K. van der Hauw, and J.I. van Hemert. Graph coloring
with adaptive evolutionary algorithms. Journal of Heuristics, 4:25–46,
1998.

[33] A.E. Eiben, J.I. van Hemert, E. Marchiori, and A.G. Steenbeek. Solving
binary constraint satisfaction problems using evolutionary algorithms
with an adaptive fitness function. In A.E. Eiben, T. Bäck, M. Schoe-
nauer, and H.-P. Schwefel, editors, Proceedings of the 5th Conference
on Parallel Problem Solving from Nature, number 1498 in LNCS, pages
196–205. Springer-Verlag, 1998.

[34] A.E. Eiben, P.-E. Raué, and Zs. Ruttkay. GA-easy and GA-hard con-
straint satisfaction problems. In M. Meyer, editor, Proceedings of the
ECAI-94 Workshop on Constraint Processing, number 923 in LNCS,
pages 267–284. Springer-Verlag, 1995.

[35] T.S. Eliot. The Rock. Faber and Faber, London, 1934.

[36] U.M. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. From data mining
to knowledge discovery: An overview. In U.M. Fayyad, G. Piatetsky-
Shapiro, P. Smyth, and R. Uthurusamy, editors, Advances in Knowledge
Discovery and Data Mining, pages 1–30. AAAI Press, 1996.

[37] L.J. Fogel, A.J. Owens, and M.J. Walsh. Artificial Intelligence Through
Simulated Evolution. John Wiley & Sons, Inc., New York, 1966.

[38] A.A. Freitas. Understanding the crucial role of attribute interaction in
data mining. Artif. Intell. Rev., 16:177–199, 2001.

[39] A.A. Freitas. Evolutionary computation. In W. Klösgen and J. Zytkow,
editors, Handbook of Data Mining and Knowledge Discovery, pages
698–706. Oxford University Press, 2002.

[40] A.A. Freitas. A survey of evolutionary algorithms for data mining and
knowledge discovery. In A. Ghosh and S. Tsutsui, editors, Advances in
Evolutionary Computation, pages 819–845. Springer-Verlag, 2002.

[41] Y. Freund and R.E. Schapire. A decision-theoretic generalization of
on-line learning and an application to boosting. In Proceedings of the
Second European Conference on Computational Learning Theory, vol-
ume 904 of LNCS, pages 23–37. Springer-Verlag, 1995.

146 BIBLIOGRAPHY

[42] Y. Freund and R.E. Schapire. Experiments with a new boosting al-
gorithm. In Proceedings 13th International Conference on Machine
Learning, pages 148–146. Morgan Kaufmann, 1996.

[43] J. Gama. Oblique linear tree. In X. Liu, P. Cohen, and M. Berthold, ed-
itors, IDA ’97: Proceedings of the Second International Symposium on
Advances in Intelligent Data Analysis, Reasoning about Data, volume
1280 of LNCS, pages 187–198. Springer-Verlag, 1997.

[44] C. Gathercole and P. Ross. Dynamic training subset selection for super-
vised learning in genetic programming. In Y. Davidor, H.-P. Schwefel,
and R. Männer, editors, Parallel Problem Solving from Nature III, vol-
ume 866 of LNCS, pages 312–321, Jerusalem, 1994. Springer-Verlag.

[45] C. Gathercole and P. Ross. Some training subset selection methods for
supervised learning in genetic programming. Presented at ECAI’94
Workshop on Applied Genetic and other Evolutionary Algorithms,
1994.

[46] C. Gathercole and P. Ross. An adverse interaction between crossover
and restricted tree depth in genetic programming. In J.R. Koza, D.E.
Goldberg, D.B. Fogel, and R.L. Riolo, editors, Genetic Programming
1996: Proceedings of the First Annual Conference, pages 291–296, Stan-
ford University, CA, USA, 1996. MIT Press.

[47] C. Gathercole and P. Ross. Tackling the boolean even N parity prob-
lem with genetic programming and limited-error fitness. In J.R. Koza,
K. Deb, M. Dorigo, D.B. Fogel, M. Garzon, H. Iba, and R.L. Riolo,
editors, Genetic Programming 1997: Proceedings of the Second Annual
Conference, pages 119–127, Stanford University, CA, USA, 1997. Mor-
gan Kaufmann.

[48] J.M. de Graaf, W.A. Kosters, and J.J.W. Witteman. Interesting
fuzzy association rules in quantitative databases. In L. de Raedt and
A. Siebes, editors, 5th European Conference on Principles and Prac-
tice of Knowledge Discovery in Databases (PKDD’01), volume 2168 of
LNAI, pages 140–151. Springer-Verlag, 2001.

[49] R.L. Graham, M. Grötschel, and L. Lovász. Handbook of Combinatorics
— Volume II. Elsevier, 1995.

BIBLIOGRAPHY 147

[50] J.K. van der Hauw. Evaluating and improving steady state evolutionary
algorithms on constraint satisfaction problems. Master’s thesis, Leiden
University, 1996.

[51] J.I. van Hemert. Applying adaptive evolutionary algorithms to hard
problems. Master’s thesis, Leiden University, 1998.

[52] J.I. van Hemert. Application of Evolutionary Computation to Con-
straint Satisfaction and Data Mining. PhD thesis, Universiteit Leiden,
2002.

[53] J.I. van Hemert and T. Bäck. Measuring the searched space to guide
efficiency: The principle and evidence on constraint satisfaction. In J.J.
Merelo, A. Panagiotis, H.-G. Beyer, J.-L. Fernández-Villacañas, and
H.-P. Schwefel, editors, Proceedings of the 7th International Conference
on Parallel Problem Solving from Nature, number 2439 in LNCS, pages
23–32. Springer-Verlag, 2002.

[54] W. Hillis. Co-evolving parasites improve simulated evolution as an
opimization procedure. Artificial Life II, pages 313–324, 1992.

[55] J.H. Holland. Adaptation in natural artificial systems. University of
Michigan Press, Ann Arbor, 1975.

[56] D. Hooper and N.S. Flann. Improving the accuracy and robustness of
genetic programming through expression simplification. In J.R. Koza,
D.E. Goldberg, D.B. Fogel, and Rick L. Riolo, editors, Genetic Pro-
gramming 1996: Proceedings of the First Annual Conference, page 428,
Stanford University, CA, USA, 1996. MIT Press.

[57] Y. Hu. A genetic programming approach to constructive induction.
In J.R. Koza, W. Banzhaf, K. Chellapilla, K. Deb, M. Dorigo, D.B.
Fogel, M.H. Garzon, D.E. Goldberg, H. Iba, and R. Riolo, editors, Ge-
netic Programming 1998: Proceedings of the Third Annual Conference,
pages 146–151, University of Wisconsin, Madison, Wisconsin, USA,
1998. Morgan Kaufmann.

[58] L. Hyafil and R.L. Rivest. Constructing optimal binary decision trees
is NP-complete. Information Processing Letters, 5:15–17, 1976.

148 BIBLIOGRAPHY

[59] D.D. Jensen and P.R. Cohen. Multiple comparisons in induction algo-
rithms. Mach. Learn., 38:309–338, 2000.

[60] C. Johnson. Deriving genetic programming fitness properties by static
analysis. In J.A. Foster, E. Lutton, J. Miller, C. Ryan, and A.G.B. Tet-
tamanzi, editors, Genetic Programming, Proceedings of the 5th Euro-
pean Conference, EuroGP 2002, volume 2278 of LNCS, pages 298–307,
Kinsale, Ireland, 2002. Springer-Verlag.

[61] L. Kaufman. Finding Groups in Data: An Introduction to Cluster Anal-
ysis. Wiley, New York, 1990.

[62] M. Keijzer. Scientific Discovery Using Genetic Programming. PhD
thesis, Danish Technical University, 2002.

[63] M. Keijzer. Improving symbolic regression with interval arithmetic and
linear scaling. In C. Ryan, T. Soule, M. Keijzer, E. Tsang, R. Poli, and
E. Costa, editors, Genetic Programming, Proceedings of EuroGP’2003,
volume 2610 of LNCS, pages 71–83, Essex, 2003. Springer-Verlag.

[64] M. Keijzer, J. J. Merelo, G. Romero, and M. Schoenauer. Evolv-
ing objects: A general purpose evolutionary computation library. In
P. Collet, C. Fonlupt, J.K. Hao, E. Lutton, and Schoenauer M, ed-
itors, Proceedings of Evolution Artificielle’01, volume 2310 of LNCS.
Springer-Verlag, 2001.

[65] J.R. Koza. A genetic approach to the truck backer upper problem and
the inter-twined spiral problem. In Proceedings of IJCNN International
Joint Conference on Neural Networks, volume IV, pages 310–318. IEEE
Press, 1992.

[66] J.R. Koza. Genetic Programming. MIT Press, 1992.

[67] J.R. Koza. Genetic Programming II: Automatic Discovery of Reusable
Programs. MIT Press, Cambridge, MA, 1994.

[68] V. Kumar. Algorithms for constraint-satisfaction problems: A survey.
AI Magazine, 13:32–44, 1992.

[69] W. B. Langdon and R. Poli. Foundations of Genetic Programming.
Springer-Verlag, 2002.

BIBLIOGRAPHY 149

[70] W.B. Langdon. Genetic Programming + Data Structures = Automatic
Programming! Kluwer, 1998.

[71] W.B. Langdon, T. Soule, R. Poli, and J.A. Foster. The evolution of
size and shape. In L. Spector, W.B. Langdon, U-M. O’Reilly, and
P.J. Angeline, editors, Advances in Genetic Programming 3, chapter 8,
pages 163–190. MIT Press, Cambridge, MA, USA, 1999.

[72] J.J. Liu and J.T. Kwok. An extended genetic rule induction algo-
rithm. In Proceedings of the 2000 Congress on Evolutionary Computa-
tion, pages 458–463, Piscataway, NJ, 2000. IEEE.

[73] P. Lyman and H.R. Varian. How Much Information? 2003.
http://www.sims.berkeley.edu/how-much-info-2003, 2004.

[74] N.F. McPhee and J.D. Miller. Accurate replication in genetic program-
ming. In L. Eshelman, editor, Genetic Algorithms: Proceedings of the
Sixth International Conference (ICGA95), pages 303–309, Pittsburgh,
PA, USA, 1995. Morgan Kaufmann.

[75] R.R.F. Mendes, F.B. Voznika, A.A. Freitas, and J.C. Nievola. Dis-
covering fuzzy classification rules with genetic programming and co-
evolution. In L. de Raedt and A. Siebes, editors, 5th European Confer-
ence on Principles and Practice of Knowledge Discovery in Databases
(PKDD’01), volume 2168 of LNAI, pages 314–325. Springer-Verlag,
2001.

[76] D. Michie, D.J. Spiegelhalter, and C.C. Taylor (eds).
Machine Learning, Neural and Statistical Classification.
http://www.amsta.leeds.ac.uk/˜charles/statlog, 1994.

[77] D.J. Montana. Strongly typed genetic programming. Evolutionary
Computation, 3(2):199–230, 1995.

[78] S.K. Murthy, S. Kasif, and S. Salzberg. A system for induction of
oblique decision trees. Journal of Artificial Intelligence Research, 2:1–
32, 1994.

[79] P. Nordin, F. Francone, and W. Banzhaf. Explicitly defined introns and
destructive crossover in genetic programming. In J.P. Rosca, editor,
Proceedings of the Workshop on Genetic Programming: From Theory

150 BIBLIOGRAPHY

to Real-World Applications, pages 6–22, Tahoe City, California, USA,
1995.

[80] D. Palomo van Es. Fuzzy association rules and promotional sales data.
Master’s thesis, Leiden University, 2001.

[81] J. Paredis. Co-evolutionary constraint satisfaction. In PPSN III: Pro-
ceedings of the International Conference on Evolutionary Computation.
The Third Conference on Parallel Problem Solving from Nature, vol-
ume 866 of LNCS, pages 46–55. Springer-Verlag, 1994.

[82] J. Paredis. Coevolutionary computation. Artif. Life, 2:355–375, 1995.

[83] G. Paris, D. Robilliard, and C. Fonlupt. Exploring overfitting in ge-
netic programming. In P. Liardet, P. Collet, C. Fonlupt, E. Lutton,
and M. Schoenauer, editors, Evolution Artificielle, 6th International
Conference, volume 2936 of LNCS, pages 267–277, Marseilles, France,
2003. Springer-Verlag.

[84] J. Pena, J. Lozano, and P. Larranaga. An empirical comparison of four
initialization methods for the k-means algorithm. Pattern Recognition
Letters, 20:1027–1040, 1999.

[85] D. Pyle. Data Preparation for Data Mining. Morgan Kaufmann, 1999.

[86] J. R. Quinlan. Induction of decision trees. Machine Learning, 1:81–106,
1986.

[87] J.R. Quinlan. C4.5 Programs for Machine Learning. Morgan Kauf-
mann, 1993.

[88] I. Rechenberg. Evolutionsstrategie: Optimierung technischer Systeme
nach Prinzipien der biologischen Evolution. Fromman-Holzboog Ver-
lag, Stuttgart, 1973.

[89] S.E. Rouwhorst and A.P. Engelbrecht. Searching the forest: Using de-
cision trees as building blocks for evolutionary search in classification
databases. In Proceedings of the 2001 Congress on Evolutionary Com-
putation CEC2001, pages 633–638, Seoul, Korea, 2001. IEEE Press.

[90] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach.
Prentice Hall, second edition, 2003.

BIBLIOGRAPHY 151

[91] R.E. Schapire. A brief introduction to boosting. In T. Dean, editor,
Proceedings of the Sixteenth International Joint Conference on Artifi-
cial Intelligence, pages 1401–1406, Stockholm, Sweden, 1999. Morgan
Kaufmann.

[92] H.-P. Schwefel. Numerical Optimization of Computer Models. John
Wiley & Sons, Inc., 1981.

[93] H.-P. Schwefel. Evolution and Optimum Seeking. Wiley, New York,
1995.

[94] C.E. Shannon. A mathematical theory of communication. Bell System
Technical Journal, 27:379–423 and 623–656, 1948.

[95] T. Soule and J.A. Foster. Code size and depth flows in genetic program-
ming. In J.R. Koza, K. Deb, M. Dorigo, D.B. Fogel, M. Garzon, H. Iba,
and R.L. Riolo, editors, Genetic Programming 1997: Proceedings of the
Second Annual Conference, pages 313–320, Stanford University, CA,
USA, 1997. Morgan Kaufmann.

[96] T. Soule, J.A. Foster, and J. Dickinson. Code growth in genetic pro-
gramming. In J.R. Koza, D.E. Goldberg, D.B. Fogel, and R.L. Riolo,
editors, Genetic Programming 1996: Proceedings of the First Annual
Conference, pages 215–223, Stanford University, CA, USA, 1996. MIT
Press.

[97] W.A. Tacket. Recombination, Selection, and the Genetic Construction
of Computer Programs. PhD thesis, University of Southern California,
1994.

[98] W.A. Tackett. Genetic programming for feature discovery and image
discrimination. In S. Forrest, editor, Proceedings of the 5th Interna-
tional Conference on Genetic Algorithms, ICGA-93, pages 303–309,
University of Illinois at Urbana-Champaign, 1993. Morgan Kaufmann.

[99] M. Vink. Solving combinatorial problems using evolutionary algo-
rithms. Master’s thesis, Leiden University, 1997.

[100] I. Witten and E. Frank. Data Mining: Practical Machine Learning
Tools and Techniques with Java Implementations. Morgan Kaufmann,
2000.

152 BIBLIOGRAPHY

[101] L. Zadeh. Fuzzy sets. Information and Control, 8:338–353, 1965.

Nederlandse Samenvatting

Sir Francis Bacon zei ongeveer vier eeuwen geleden: “knowledge is power”
(kennis is macht). Als we kijken naar de huidige maatschapij, dan zien we
dat informatie steeds belangrijker wordt. Volgens [73] werd er in 2002 onge-
veer 5 exabytes (5×1018 bytes ≈ 600 miljard (dual-layer, single-side) DVD’s)
aan informatie geproduceerd, waarvan het meeste digitaal is opgeslagen. Dit
is meer dan twee maal zoveel als de hoeveelheid informatie die in 1999 werd
geproduceerd (2 exabytes). Echter, zoals Albert Einstein opmerkte: “infor-
mation is not knowledge” (informatie is geen kennis).

Eén van de uitdagingen van de grote hoeveelheden informatie die ligt
opgeslagen in databases is het vinden van mogelijk nuttige, begrijpelijke en
nieuwe patronen in gegevens, die kunnen leiden tot nieuwe inzichten. Zoals
T.S. Eliot schreef: “Where is the knowledge we have lost in information?” [35]
(Waar is de kennis die we zijn kwijt geraakt in de informatie?). Dit is het doel
van een process genaamd Knowledge Discovery in Databases (KDD, kennis-
ontdekking in databases). Dit process bestaat uit verschillende stappen: in
de Data Mining fase vindt de eigenlijke ontdekking van nieuwe kennis plaats.
Het doel van KDD en Data Mining is het vinden van verbanden die gebruikt
kunnen worden om voorspellingen te doen op basis van gegevens uit het ver-
leden. Wij richten ons op twee van zulke Data Mining gebieden: classificatie
en regressie. Een voorbeeld van een classificatie probleem is of iemand wel
of geen krediet moet krijgen bij een bank. Een voorbeeld van een regressie
probleem, ook wel numerieke voorspelling genoemd, is het voorspellen van
de waterhoogte bij verschillende weersomstandigheden en maanstanden.

Evolutionary computation (evolutionaire rekenmethoden) is een gebied
binnen de informatica dat is gëınspireerd door de principes van natuurlijke
evolutie zoals die door Charles Darwin zijn gëıntroduceerd in 1859 [17]. In
evolutionary computation gebruiken we principes uit de evolutietheorie om
te zoeken naar zo goed mogelijke oplossingen voor problemen met behulp
van de computer.

153

154 Nederlandse Samenvatting

In dit proefschrift onderzoeken we het gebruik van “tree-based Gene-
tic Programming” (een specifieke vorm van evolutionary computation) voor
Data Mining doeleinden, voornamelijke classificatie-problemen. Zo op het
eerste gezicht lijkt evolutionary computation in het algemeen, en Genetic
Programming in het bijzonder, wellicht niet de meest voor de hand liggende
keuze voor data classificatie. Traditionele algoritmen om beslissingsbomen te
bouwen zoals C4.5, CART en OC1 zijn over het algemeen sneller. Echter deze
algoritmen zoeken/vinden/bouwen beslissingsbomen door middel van lokale
optimalisatie. Een voordeel van evolutionairy computation is dat het een glo-
bale optimalisator is die beslissingsbomen in hun geheel evalueert, in plaats
van iedere knoop/tak/blad apart te optimaliseren. Daardoor zouden evolu-
tionaire algoritmen voor Data Mining beter met attribuut-interactie moeten
kunnen omgaan [38, 39]. Een ander voordeel van evolutionary computation
is dat het relatief simpel is om een representatie van een beslissingsboom te
kiezen, veranderen of uitbreiden. De enige vereiste is een beschrijving van
hoe de boom eruit moet zien en hoe de boom geëvalueerd moet worden. Een
voorbeeld hiervan is Hoofdstuk 4 waar we onze beslissingsboom-representatie
uitbreiden naar “fuzzy” (vage) beslissingsbomen: iets wat veel moeilijker is,
of zelfs wellicht onmogelijk, voor algoritmen zoals C4.5, CART en OC1.

Hoofdstukken 2 en 3 richten zich vooral op het effect van de beslissings-
boom-representatie (mogelijke keuzes) op het classificatie-vermogen. We la-
ten zien dat door de zoekruimte, het totaal aan mogelijke beslissingsbomen,
te beperken de nauwkeurigheid van de classificatie een kan worden verbeterd.

In Hoofstuk 4 beschrijven we hoe we onze algoritmen kunnen aanpas-
sen om “fuzzy” (vage) beslissingsbomen te laten evolueren. Doordat zulke
“fuzzy” beslissingsbomen niet beperkt zijn tot beslissingen als waar en niet
waar zijn ze robuuster ten aanzien van fouten in de invoergegevens. Ook
kunnen vage “menselijke” begrippen als koud, warm, jong en oud beter in de
modellen worden verwerkt.

Behalve de classificatie-nauwkeurigheid zijn ook de snelheid van een al-
goritme en de begrijpelijkheid van de uitkomst belangrijk bij Data Mining
algoritmen. In Hoofstuk 5 laten we zien hoe we deze aspecten van onze algo-
ritmen kunnen verbeteren. Door onze algoritmen geëvolueerde beslissingsbo-
men te analyseren kunnen we onnodige delen, genaamd introns, verwijderen.
Hierdoor worden de beslissingsbomen kleiner, en dus begrijpelijker, zonder de
nauwkeurigheid van de classificatie aan te tasten. Op deze manier kunnen we
ook beslissingsbomen herkennen die syntactisch (uiterlijk) verschillen maar
semantisch (qua gedrag) hetzelfde zijn. Door niet meer iedere syntactisch

Nederlandse Samenvatting 155

unieke beslissingsboom te evalueren, maar alleen nog maar alle semantisch
unieke beslissingsbomen, kunnen we rekentijd besparen waardoor onze algo-
ritmen sneller worden.

In het laatste hoofstuk richten we onze aandacht op een ander belangrijk
onderdeel van evolutionaire algoritmen: de fitness functie. De fitness functie
bepaald van iedere mogelijke oplossing hoe goed die oplossing is ten opzichte
van andere kandidaat-oplossingen. In Hoofdstuk 6 passen we een adaptieve
fitness methode genaamd “Stepwise Adaptation of Weights” (saw) toe op
classificatie en regressie problemen. De saw techniek verandert de fitness
waarden van individuen gedurende het evolutie process zodat moeilijke deel-
problemen een zwaarder gewicht krijgen dan makkelijke deelproblemen. We
introduceren een nieuwe variant van het saw algoritme, genaamd precision
saw, dat beter werkt voor regressie problemen en we onderzoeken de effecten
van de parameters van het saw algoritme op de werking.

Acknowledgements

First and foremost I would like to thank my parents and brother for their
support during the years I worked on this thesis.

Furthermore I would like to thank Tom and Jano for all the work we did
together, and Rudy for his help on counting trees.

Last but not least I would like to thank all my fellow PhD students for
all the fun we had together, especially my roommates over the years Jano,
Martijn, Robert and Peter.

157

Curriculum Vitae

Jeroen Eggermont is geboren in Purmerend, Noord-Holland, op 27 mei 1975.
Van 1987 tot 1993 doorliep hij het atheneum (VWO) op het Alfrink College
te Zoetermeer. Van 1993 tot 1998 studeerde hij Informatica aan de Universi-
teit Leiden. De laatste drie jaar gaf hij als student-assistent ook werkgroepen
en practicum-assistentie aan studenten. Vanaf 1998 was hij verbonden aan
het Leiden Insititute of Advanced Computer Science waar hij zijn promotie-
onderzoek uitvoerde en betrokken was bij onderwijs en contract-onderzoek.

159

Titles in the IPA Dissertation Series

J.O. Blanco. The State Operator in Pro-
cess Algebra. Faculty of Mathematics and
Computing Science, TUE. 1996-01

A.M. Geerling. Transformational Devel-
opment of Data-Parallel Algorithms. Fac-
ulty of Mathematics and Computer Sci-
ence, KUN. 1996-02

P.M. Achten. Interactive Functional Pro-
grams: Models, Methods, and Implemen-
tation. Faculty of Mathematics and Com-
puter Science, KUN. 1996-03

M.G.A. Verhoeven. Parallel Local
Search. Faculty of Mathematics and Com-
puting Science, TUE. 1996-04

M.H.G.K. Kesseler. The Implementa-
tion of Functional Languages on Paral-
lel Machines with Distrib. Memory. Fac-
ulty of Mathematics and Computer Sci-
ence, KUN. 1996-05

D. Alstein. Distributed Algorithms for
Hard Real-Time Systems. Faculty of Math-
ematics and Computing Science, TUE.
1996-06

J.H. Hoepman. Communication, Syn-
chronization, and Fault-Tolerance. Faculty
of Mathematics and Computer Science,
UvA. 1996-07

H. Doornbos. Reductivity Arguments and
Program Construction. Faculty of Math-
ematics and Computing Science, TUE.
1996-08

D. Turi. Functorial Operational Seman-
tics and its Denotational Dual. Faculty
of Mathematics and Computer Science,
VUA. 1996-09

A.M.G. Peeters. Single-Rail Handshake
Circuits. Faculty of Mathematics and
Computing Science, TUE. 1996-10

N.W.A. Arends. A Systems Engineering
Specification Formalism. Faculty of Me-
chanical Engineering, TUE. 1996-11

P. Severi de Santiago. Normalisation
in Lambda Calculus and its Relation to
Type Inference. Faculty of Mathematics
and Computing Science, TUE. 1996-12

D.R. Dams. Abstract Interpretation and
Partition Refinement for Model Checking.
Faculty of Mathematics and Computing
Science, TUE. 1996-13

M.M. Bonsangue. Topological Dualities
in Semantics. Faculty of Mathematics and
Computer Science, VUA. 1996-14

B.L.E. de Fluiter. Algorithms for Graphs
of Small Treewidth. Faculty of Mathemat-
ics and Computer Science, UU. 1997-01

W.T.M. Kars. Process-algebraic Trans-
formations in Context. Faculty of Com-
puter Science, UT. 1997-02

P.F. Hoogendijk. A Generic Theory of
Data Types. Faculty of Mathematics and
Computing Science, TUE. 1997-03

T.D.L. Laan. The Evolution of Type The-
ory in Logic and Mathematics. Faculty
of Mathematics and Computing Science,
TUE. 1997-04

C.J. Bloo. Preservation of Termination
for Explicit Substitution. Faculty of Math-
ematics and Computing Science, TUE.
1997-05

J.J. Vereijken. Discrete-Time Process
Algebra. Faculty of Mathematics and Com-
puting Science, TUE. 1997-06

F.A.M. van den Beuken. A Functional
Approach to Syntax and Typing. Faculty of

Mathematics and Informatics, KUN. 1997-
07

A.W. Heerink. Ins and Outs in Refusal
Testing. Faculty of Computer Science, UT.
1998-01

G. Naumoski and W. Alberts. A
Discrete-Event Simulator for Systems En-
gineering. Faculty of Mechanical Engineer-
ing, TUE. 1998-02

J. Verriet. Scheduling with Communica-
tion for Multiprocessor Computation. Fac-
ulty of Mathematics and Computer Sci-
ence, UU. 1998-03

J.S.H. van Gageldonk. An Asyn-
chronous Low-Power 80C51 Microcon-
troller. Faculty of Mathematics and Com-
puting Science, TUE. 1998-04

A.A. Basten. In Terms of Nets: System
Design with Petri Nets and Process Alge-
bra. Faculty of Mathematics and Comput-
ing Science, TUE. 1998-05

E. Voermans. Inductive Datatypes with
Laws and Subtyping – A Relational Model.
Faculty of Mathematics and Computing
Science, TUE. 1999-01

H. ter Doest. Towards Probabilistic
Unification-based Parsing. Faculty of Com-
puter Science, UT. 1999-02

J.P.L. Segers. Algorithms for the Simula-
tion of Surface Processes. Faculty of Math-
ematics and Computing Science, TUE.
1999-03

C.H.M. van Kemenade. Recombinative
Evolutionary Search. Faculty of Mathemat-
ics and Natural Sciences, UL. 1999-04

E.I. Barakova. Learning Reliability: a
Study on Indecisiveness in Sample Selec-
tion. Faculty of Mathematics and Natural
Sciences, RUG. 1999-05

M.P. Bodlaender. Scheduler Optimiza-
tion in Real-Time Distributed Databases.

Faculty of Mathematics and Computing
Science, TUE. 1999-06

M.A. Reniers. Message Sequence Chart:
Syntax and Semantics. Faculty of Math-
ematics and Computing Science, TUE.
1999-07

J.P. Warners. Nonlinear approaches to
satisfiability problems. Faculty of Math-
ematics and Computing Science, TUE.
1999-08

J.M.T. Romijn. Analysing Industrial
Protocols with Formal Methods. Faculty of
Computer Science, UT. 1999-09

P.R. D’Argenio. Algebras and Automata
for Timed and Stochastic Systems. Faculty
of Computer Science, UT. 1999-10

G. Fábián. A Language and Simulator for
Hybrid Systems. Faculty of Mechanical En-
gineering, TUE. 1999-11

J. Zwanenburg. Object-Oriented Con-
cepts and Proof Rules. Faculty of Math-
ematics and Computing Science, TUE.
1999-12

R.S. Venema. Aspects of an Integrated
Neural Prediction System. Faculty of
Mathematics and Natural Sciences, RUG.
1999-13

J. Saraiva. A Purely Functional Imple-
mentation of Attribute Grammars. Faculty
of Mathematics and Computer Science,
UU. 1999-14

R. Schiefer. Viper, A Visualisation Tool
for Parallel Program Construction. Faculty
of Mathematics and Computing Science,
TUE. 1999-15

K.M.M. de Leeuw. Cryptology and
Statecraft in the Dutch Republic. Faculty of
Mathematics and Computer Science, UvA.
2000-01

T.E.J. Vos. UNITY in Diversity. A strat-
ified approach to the verification of dis-
tributed algorithms. Faculty of Mathemat-
ics and Computer Science, UU. 2000-02

W. Mallon. Theories and Tools for the
Design of Delay-Insensitive Communicat-
ing Processes. Faculty of Mathematics and
Natural Sciences, RUG. 2000-03

W.O.D. Griffioen. Studies in Computer
Aided Verification of Protocols. Faculty of
Science, KUN. 2000-04

P.H.F.M. Verhoeven. The Design of the
MathSpad Editor. Faculty of Mathematics
and Computing Science, TUE. 2000-05

J. Fey. Design of a Fruit Juice Blending
and Packaging Plant. Faculty of Mechani-
cal Engineering, TUE. 2000-06

M. Franssen. Cocktail: A Tool for De-
riving Correct Programs. Faculty of Math-
ematics and Computing Science, TUE.
2000-07

P.A. Olivier. A Framework for Debug-
ging Heterogeneous Applications. Faculty
of Natural Sciences, Mathematics and
Computer Science, UvA. 2000-08

E. Saaman. Another Formal Specifica-
tion Language. Faculty of Mathematics
and Natural Sciences, RUG. 2000-10

M. Jelasity. The Shape of Evolution-
ary Search Discovering and Representing
Search Space Structure. Faculty of Mathe-
matics and Natural Sciences, UL. 2001-01

R. Ahn. Agents, Objects and Events
a computational approach to knowledge,
observation and communication. Faculty
of Mathematics and Computing Science,
TU/e. 2001-02

M. Huisman. Reasoning about Java pro-
grams in higher order logic using PVS and
Isabelle. Faculty of Science, KUN. 2001-03

I.M.M.J. Reymen. Improving Design
Processes through Structured Reflection.
Faculty of Mathematics and Computing
Science, TU/e. 2001-04

S.C.C. Blom. Term Graph Rewriting:
syntax and semantics. Faculty of Sciences,
Division of Mathematics and Computer
Science, VUA. 2001-05

R. van Liere. Studies in Interactive Vi-
sualization. Faculty of Natural Sciences,
Mathematics and Computer Science, UvA.
2001-06

A.G. Engels. Languages for Analysis
and Testing of Event Sequences. Faculty
of Mathematics and Computing Science,
TU/e. 2001-07

J. Hage. Structural Aspects of Switching
Classes. Faculty of Mathematics and Nat-
ural Sciences, UL. 2001-08

M.H. Lamers. Neural Networks for Anal-
ysis of Data in Environmental Epidemiol-
ogy: A Case-study into Acute Effects of Air
Pollution Episodes. Faculty of Mathemat-
ics and Natural Sciences, UL. 2001-09

T.C. Ruys. Towards Effective Model
Checking. Faculty of Computer Science,
UT. 2001-10

D. Chkliaev. Mechanical verification of
concurrency control and recovery protocols.
Faculty of Mathematics and Computing
Science, TU/e. 2001-11

M.D. Oostdijk. Generation and presen-
tation of formal mathematical documents.
Faculty of Mathematics and Computing
Science, TU/e. 2001-12

A.T. Hofkamp. Reactive machine con-
trol: A simulation approach using χ. Fac-
ulty of Mechanical Engineering, TU/e.
2001-13

D. Bošnački. Enhancing state space re-
duction techniques for model checking. Fac-
ulty of Mathematics and Computing Sci-
ence, TU/e. 2001-14

M.C. van Wezel. Neural Networks for In-
telligent Data Analysis: theoretical and ex-
perimental aspects. Faculty of Mathematics
and Natural Sciences, UL. 2002-01

V. Bos and J.J.T. Kleijn. Formal Spec-
ification and Analysis of Industrial Sys-
tems. Faculty of Mathematics and Com-
puter Science and Faculty of Mechanical
Engineering, TU/e. 2002-02

T. Kuipers. Techniques for Understand-
ing Legacy Software Systems. Faculty of
Natural Sciences, Mathematics and Com-
puter Science, UvA. 2002-03

S.P. Luttik. Choice Quantification in
Process Algebra. Faculty of Natural Sci-
ences, Mathematics, and Computer Sci-
ence, UvA. 2002-04

R.J. Willemen. School Timetable Con-
struction: Algorithms and Complexity. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2002-05

M.I.A. Stoelinga. Alea Jacta Est: Verifi-
cation of Probabilistic, Real-time and Para-
metric Systems. Faculty of Science, Mathe-
matics and Computer Science, KUN. 2002-
06

N. van Vugt. Models of Molecular Com-
puting. Faculty of Mathematics and Natu-
ral Sciences, UL. 2002-07

A. Fehnker. Citius, Vilius, Melius: Guid-
ing and Cost-Optimality in Model Checking
of Timed and Hybrid Systems. Faculty of
Science, Mathematics and Computer Sci-
ence, KUN. 2002-08

R. van Stee. On-line Scheduling and Bin
Packing. Faculty of Mathematics and Nat-
ural Sciences, UL. 2002-09

D. Tauritz. Adaptive Information Filter-
ing: Concepts and Algorithms. Faculty of
Mathematics and Natural Sciences, UL.
2002-10

M.B. van der Zwaag. Models and Log-
ics for Process Algebra. Faculty of Natural
Sciences, Mathematics, and Computer Sci-
ence, UvA. 2002-11

J.I. den Hartog. Probabilistic Extensions
of Semantical Models. Faculty of Sciences,
Division of Mathematics and Computer
Science, VUA. 2002-12

L. Moonen. Exploring Software Systems.
Faculty of Natural Sciences, Mathematics,
and Computer Science, UvA. 2002-13

J.I. van Hemert. Applying Evolution-
ary Computation to Constraint Satisfac-
tion and Data Mining. Faculty of Math-
ematics and Natural Sciences, UL. 2002-14

S. Andova. Probabilistic Process Algebra.
Faculty of Mathematics and Computer Sci-
ence, TU/e. 2002-15

Y.S. Usenko. Linearization in μCRL.
Faculty of Mathematics and Computer Sci-
ence, TU/e. 2002-16

J.J.D. Aerts. Random Redundant Storage
for Video on Demand. Faculty of Mathe-
matics and Computer Science, TU/e. 2003-
01

M. de Jonge. To Reuse or To Be
Reused: Techniques for component compo-
sition and construction. Faculty of Natural
Sciences, Mathematics, and Computer Sci-
ence, UvA. 2003-02

J.M.W. Visser. Generic Traversal over
Typed Source Code Representations. Fac-
ulty of Natural Sciences, Mathematics, and
Computer Science, UvA. 2003-03

S.M. Bohte. Spiking Neural Networks.
Faculty of Mathematics and Natural Sci-
ences, UL. 2003-04

T.A.C. Willemse. Semantics and Veri-
fication in Process Algebras with Data and
Timing. Faculty of Mathematics and Com-
puter Science, TU/e. 2003-05

S.V. Nedea. Analysis and Simulations of
Catalytic Reactions. Faculty of Mathemat-
ics and Computer Science, TU/e. 2003-06

M.E.M. Lijding. Real-time Scheduling of
Tertiary Storage. Faculty of Electrical En-
gineering, Mathematics & Computer Sci-
ence, UT. 2003-07

H.P. Benz. Casual Multimedia Process
Annotation – CoMPAs. Faculty of Electri-
cal Engineering, Mathematics & Computer
Science, UT. 2003-08

D. Distefano. On Modelchecking the Dy-
namics of Object-based Software: a Foun-
dational Approach. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2003-09

M.H. ter Beek. Team Automata – A For-
mal Approach to the Modeling of Collabo-
ration Between System Components. Fac-
ulty of Mathematics and Natural Sciences,
UL. 2003-10

D.J.P. Leijen. The λ Abroad – A Func-
tional Approach to Software Components.
Faculty of Mathematics and Computer Sci-
ence, UU. 2003-11

W.P.A.J. Michiels. Performance Ra-
tios for the Differencing Method. Faculty
of Mathematics and Computer Science,
TU/e. 2004-01

G.I. Jojgov. Incomplete Proofs and
Terms and Their Use in Interactive Theo-
rem Proving. Faculty of Mathematics and
Computer Science, TU/e. 2004-02

P. Frisco. Theory of Molecular Computing
– Splicing and Membrane systems. Faculty
of Mathematics and Natural Sciences, UL.
2004-03

S. Maneth. Models of Tree Translation.
Faculty of Mathematics and Natural Sci-
ences, UL. 2004-04

Y. Qian. Data Synchronization and
Browsing for Home Environments. Faculty
of Mathematics and Computer Science and
Faculty of Industrial Design, TU/e. 2004-
05

F. Bartels. On Generalised Coinduction
and Probabilistic Specification Formats.
Faculty of Sciences, Division of Mathemat-
ics and Computer Science, VUA. 2004-06

L. Cruz-Filipe. Constructive Real Analy-
sis: a Type-Theoretical Formalization and
Applications. Faculty of Science, Mathe-
matics and Computer Science, KUN. 2004-
07

E.H. Gerding. Autonomous Agents in
Bargaining Games: An Evolutionary In-
vestigation of Fundamentals, Strategies,
and Business Applications. Faculty of
Technology Management, TU/e. 2004-08

N. Goga. Control and Selection Tech-
niques for the Automated Testing of Reac-
tive Systems. Faculty of Mathematics and
Computer Science, TU/e. 2004-09

M. Niqui. Formalising Exact Arithmetic:
Representations, Algorithms and Proofs.
Faculty of Science, Mathematics and Com-
puter Science, RU. 2004-10

A. Löh. Exploring Generic Haskell. Fac-
ulty of Mathematics and Computer Sci-
ence, UU. 2004-11

I.C.M. Flinsenberg. Route Planning
Algorithms for Car Navigation. Faculty
of Mathematics and Computer Science,
TU/e. 2004-12

R.J. Bril. Real-time Scheduling for Me-
dia Processing Using Conditionally Guar-
anteed Budgets. Faculty of Mathematics
and Computer Science, TU/e. 2004-13

J. Pang. Formal Verification of Dis-
tributed Systems. Faculty of Sciences, Di-
vision of Mathematics and Computer Sci-
ence, VUA. 2004-14

F. Alkemade. Evolutionary Agent-Based
Economics. Faculty of Technology Man-
agement, TU/e. 2004-15

E.O. Dijk. Indoor Ultrasonic Position Es-
timation Using a Single Base Station. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2004-16

S.M. Orzan. On Distributed Verification
and Verified Distribution. Faculty of Sci-
ences, Division of Mathematics and Com-
puter Science, VUA. 2004-17

M.M. Schrage. Proxima - A
Presentation-oriented Editor for Struc-
tured Documents. Faculty of Mathematics
and Computer Science, UU. 2004-18

E. Eskenazi and A. Fyukov. Quanti-
tative Prediction of Quality Attributes for
Component-Based Software Architectures.
Faculty of Mathematics and Computer Sci-
ence, TU/e. 2004-19

P.J.L. Cuijpers. Hybrid Process Algebra.
Faculty of Mathematics and Computer Sci-
ence, TU/e. 2004-20

N.J.M. van den Nieuwelaar. Super-
visory Machine Control by Predictive-
Reactive Scheduling. Faculty of Mechanical
Engineering, TU/e. 2004-21

E. Ábrahám. An Assertional Proof Sys-
tem for Multithreaded Java -Theory and
Tool Support- . Faculty of Mathematics
and Natural Sciences, UL. 2005-01

R. Ruimerman. Modeling and Remodel-
ing in Bone Tissue. Faculty of Biomedical
Engineering, TU/e. 2005-02

C.N. Chong. Experiments in Rights Con-
trol - Expression and Enforcement. Faculty

of Electrical Engineering, Mathematics &
Computer Science, UT. 2005-03

H. Gao. Design and Verification of Lock-
free Parallel Algorithms. Faculty of Math-
ematics and Computing Sciences, RUG.
2005-04

H.M.A. van Beek. Specification and
Analysis of Internet Applications. Faculty
of Mathematics and Computer Science,
TU/e. 2005-05

M.T. Ionita. Scenario-Based System Ar-
chitecting - A Systematic Approach to
Developing Future-Proof System Architec-
tures. Faculty of Mathematics and Com-
puting Sciences, TU/e. 2005-06

G. Lenzini. Integration of Analysis Tech-
niques in Security and Fault-Tolerance.
Faculty of Electrical Engineering, Mathe-
matics & Computer Science, UT. 2005-07

I. Kurtev. Adaptability of Model Trans-
formations. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2005-08

T. Wolle. Computational Aspects of
Treewidth - Lower Bounds and Network
Reliability. Faculty of Science, UU. 2005-
09

O. Tveretina. Decision Procedures for
Equality Logic with Uninterpreted Func-
tions. Faculty of Mathematics and Com-
puter Science, TU/e. 2005-10

A.M.L. Liekens. Evolution of Finite
Populations in Dynamic Environments.
Faculty of Biomedical Engineering, TU/e.
2005-11

J. Eggermont. Data Mining using Ge-
netic Programming: Classification and
Symbolic Regression. Faculty of Mathemat-
ics and Natural Sciences, UL. 2005-12

