
Data mining with cellular automata

Tom Fawcett
Center for the Study of Language and Information

Stanford University
Stanford, CA 94305 USA

tfawcett@acm.org

ABSTRACT

A cellular automaton is a discrete, dynamical system com-
posed of very simple, uniformly interconnected cells. Cel-
lular automata may be seen as an extreme form of simple,
localized, distributed machines. Many researchers are famil-
iar with cellular automata through Conway’s Game of Life.
Researchers have long been interested in the theoretical as-
pects of cellular automata. This article explores the use of
cellular automata for data mining, specifically for classifica-
tion tasks. We demonstrate that reasonable generalization
behavior can be achieved as an emergent property of these
simple automata.

1. INTRODUCTION
A cellular automaton (CA) is a discrete, dynamical system
that performs computations in a finely distributed fashion
on a spatial grid. Probably the best known example of a
cellular automaton is Conway’s Game of Life introduced by
Gardner [8] in Scientific American. Cellular automata have
been studied extensively by Wolfram [22; 23] and others.
Though the cells in a CA are individually very simple, col-
lectively they can give rise to complex emergent behavior
and are capable of some forms of self-organization. In gen-
eral, they are of interest to theoreticians and mathemati-
cians who study their behavior as computational entities, as
well as to physicists and chemists who use them to model
processes in their fields. Some attention has been given to
them in research and industrial applications [2]. They have
been used to model phenomena as varied as the spread of
forest fires [14], the interaction between urban growth and
animal habitats [15] and the spread of HIV infection [3].
Cellular automata have also been used for computing lim-
ited characteristics of an instance space, such as the so-called
density and ordering problems1[13]. CAs have also been
used in pattern recognition to perform feature extraction
and recognition [5]. Other forms of biologically inspired
computation have been used for data mining, such as ge-
netic algorithms, evolutionary programming and ant colony
optimization.
In this paperwe explore the use of cellular automata for data
mining, specifically for classification. Cellular automatamay

1The density problem involves judging whether a bit se-
quence contains more than 50% ones. The ordering problem
involves sorting a bit sequence such that all zeroes are on
one end and all ones are on the other.

appeal to the data mining community for several reasons.
They are theoretically interesting and have attracted a great
deal of attention, due in large part to Wolfram’s [23] exten-
sive studies in A New Kind of Science . They represent a
very low-bias data mining method. Because all decisions are
made locally, CAs have virtually no modeling constraints.
They are a simple but powerful method for attaining mas-
sively fine-grained parallelism. Because they are so simple,
special purpose cellular automata hardware has been devel-
oped [16]. Perhaps most importantly, nanotechnology and
ubiquitous computing are becoming increasingly popular.
Many nanotechnology automata ideas are currently being
pursued, such as Motes, Swarms [11], Utility Fog [9], Smart
Dust [20] and Quantum Dot Cellular Automata [19]. Each
of these ideas proposes a network of very small, very numer-
ous, interconnected units. These will likely have processing
aspects similar to those of cellular automata. In order to
understand how data mining might be performed by such
“computational clouds”, it is useful to investigate how cel-
lular automata might accomplish these same tasks.
The purpose of this study is not to present a new, practi-
cal data mining algorithm, nor to propose an extension to
an existing one; but to demonstrate that effective general-
ization can be achieved as an emergent property of cellular
automata. We demonstrate that effective classification per-
formance, similar to that produced by complex data mining
models, can emerge from the collective behavior of very sim-
ple cells. These cells make purely local decisions, each op-
erating only on information from its immediate neighbors.
Experiments show that cellular automata perform well with
relatively little data and that they are robust in the face of
noise.
The remainder of this paper is organized as follows. Sec-
tion 2 provides background on cellular automata, sufficient
for this paper. Section 3 describes an approach to using
CA for data mining, and discusses some of the issues and
complications that emerge. Section 4 presents some exper-
iments on two-dimensional patterns, where results can be
visualized easily, comparing CAs with some common data
mining methods. It then describes the extension of CAs to
more complex multi-dimensional data and presents experi-
ments comparing CAs against other data mining methods.
Section 5 discusses related work, and Section 6 concludes.

2. CELLULAR AUTOMATA
Cellular automata are discrete, dynamical systems whose
behavior is completely specified in terms of local rules [16].
Many variations on cellular automata have been explored;

Page 32SIGKDD Explorations Volume 10, Issue 1

here we will describe only the simplest and most common
form, which is also the form used in this research. Sarkar
[12] provides a good historical survey.
A cellular automaton (CA) consists of a grid of cells, usually
in one or two dimensions. Each cell takes on one of a set
of finite, discrete values. For concreteness, in this paper
we shall refer to two-dimensional grids, although section 4.3
relaxes this assumption. Because we will deal with two-class
problems, each cell will take on one of the values 0 (empty,
or unassigned), 1 (class 1) or 2 (class 2).
Each cell has a finite and fixed set of neighbors, called its
neighborhood. Various neighborhood definitions have been
used. Two common two-dimensional neighborhoods are the
von Neumann neighborhood, in which each cell has neigh-
bors to the north, south, east and west; and the Moore
neighborhood, which adds the diagonal cells to the north-
east, southeast, southwest and northwest2 . Figure 1 shows
these two neighborhoods in two dimensions. In general, in
a d-dimensional space, a cell’s von Neumann neighborhood
will contain 2d cells and its Moore neighborhood will contain
3d − 1 cells.
A grid is “seeded” with initial values, and then the CA
progresses through a series of discrete timesteps. At each
timestep, called a generation , each cell computes its new
contents by examining the cells in its immediate neighbor-
hood. To these values it then applies its update rule to
compute its new state. Each cell follows the same update
rule, and all cells’ contents are updated simultaneously and
synchronously. A critical characteristic of CAs is that the
update rule examines only its neighboring cells so its pro-
cessing is entirely local; no global or macro grid character-
istics are computed. These generations proceed in lock-step
with all the cells updating at once. Figure 2 shows a CA
grid seeded with initial values (far left) and several succes-
sive generations progressing to the right. At the far right is
the CA after twenty generations and all cells are assigned a
class.
The global behavior of a CA is strongly influenced by its
update rule. Although update rules are quite simple, the
CA as a whole can generate interesting, complex and non-
intuitive patterns, even in one-dimensional space.

In some cases a CA grid is considered to be circular or
toroidal, so that, for example, the neighbors of cells on the
far left of the grid are on the far right, etc. In this paper we
assume a finite grid such that points off the grid constitute
a “dead zone” whose cells are permanently empty.

3. CELLULARAUTOMATA FOR DATA MIN­

ING
We propose using cellular automata as a form of instance-
based learning in which the cells are set up to represent
portions of the instance space. The cells are organized and
connected according to attribute value ranges. The instance
space will form a (multi-dimensional) grid over which the CA
operates. The grid will be seeded with training instances,
and the CA run to convergence. The state of each cell of
the CA will represent the class assignment of that point in
the instance space. The intention is that cells will organize

2In data mining terms, the von Neummann neighborhood
allows each cell to be influenced only by immediately adja-
cent attribute values, whereas a Moore neighborhood allows
adjacent pairwise interactions.

themselves into regions of similar class assignment.
We use a simple voting rule that locally reduces entropy.
A voting rule examines a cell’s neighbors and sets the cell
according the number of neighbors that are set to a given
class, but voting rules are insensitive to the location of these
neighbors. In this work we use the von Neumann neighbor-
hood because it is linear in the number of dimensions of the
instance space, so it scales well.
It is instructive to examine a simple example of a cellular
automaton in action. Figure 3 shows the effect of a CA
update rule called n4 V1. This rule examines each cell’s
four neighbors and sets its class to the majority class. It is
a stable rule in that once the cell’s class has been set it will
not change. Figure 3a shows a grid with four cells initially
set, two for each class. The remainder of the cells in the
grid are blank, i.e., their class is unassigned. Informally, the
effect of the rule is to spread the class activation outward
in a diamond pattern from each set cell. Figures 3b and c
show this progression after the first and second timesteps;
Figure 3d shows the grid after it has been completely filled.
The color of each cell indicates the class that will be assigned
to a point that falls into that grid position.
The global effect of the n4 V1 update rule is that each cell in
the grid becomes assigned with the class of the nearest initial
point as measured by Manhattan distance. The Manhattan
distance aspect stems from the fact that the CA uses the
von Neumann neighborhood, so each cell’s influence spreads
outward along the two dimensions. The first neighbor of a
cell that changes state, from empty to a class, will result
in that cell changing state in the next timestep. Given the
initial points in figure 3a, this results in the cell assignments
shown in figure 3d.

Note that in the experiments below, a different, more com-
plex update rule is used. The rule, called n4 V1 nonstable,
Is a non-stable update rule in which a cell may change its
class if the majority changes. The definition of this rule is
shown in figure 4.

4. EXPERIMENTS IN TWO DIMENSIONS
In the literature, CAs typically use only one or two dimen-
sions. They have been generalized to three and more di-
mensions, but complexity issues of space and time become
problematic, and visualization is difficult. Because of this,
the first experiments below were designed to illustrate and
visualize the operation of cellular automata as a classifica-
tion method and to compare them with well-known classifier
induction algorithms.

4.1 Qualitative experiments intwo dimensions
As a test, a set of two-dimensional geometric patterns of (ap-
proximately) increasing complexity were created: an axis-
parallel line, a line of arbitrary slope, a parabola, a closed
convex polygon, a closed concave polygon, and a disjunc-
tive set of multiple closed concave polygons. Each target
concept was generated in a square two-dimensional plane
x ∈ [0, 4], y ∈ [0, 4], sectioned into cells .05 on a side, pro-
ducing a grid of 81 × 81 = 6561 cells. Figure 5 shows four
of the target patterns.
A two-class problem was created from each pattern by us-
ing the pattern as a boundary that divided the space. For
example, for the parabolic pattern in 5b, points above the
parabola were assigned class 1 and points below it are as-

Page 33SIGKDD Explorations Volume 10, Issue 1

? ?

(a) von Neumann neighborhood (b) Moore neighborhood

Figure 1: Two examples of a cell with a one-step update. The center cell examines its neighborhood and applies the update
rule (in this case, it sets itself to the majority value of its neighbors).

Initial Generation 2 Generation 3 Generation 4 Generation 20

Figure 2: Several generations of a cellular automaton (parabola target concept)

signed class 2. For polygons, point interiors versus exteriors
were used to determine classes. Examples were created from
each problem by randomly sampling a cell and labeling each
cell with the class of its region; in data mining terms, each
example was a tuple 〈x, y, class〉. A total of 6561 cells yielded
6561 total examples for each target concept. Varying num-
bers of training examples were sampled, as explained below.

For comparison with cellular automata, several other com-
mon induction algorithms were chosen from the Weka pack-
age [21]. J48, a decision tree induction algorithm, is a com-
mon and popular symbolic learning algorithm. kNN, an
nearest-neighbor learning algorithm, was chosen to provide
a “lazy” instance-based method to contrast with the CA.
SMO, an implementation of support vector machines, was
chosen because of their generally good performance.3 The
CA used the n4 V1 nonstable rule discussed above.

Space limitations prohibit showing all of these experiments,
but figure 6 shows typical results with the parabolic pattern.
Figure 6a shows the full target concept, and 6b shows a
scatterplot of 200 data points randomly sampled from it,
comprising a training set. Figures 6c-f shows the hypotheses
generated by J48, SMO, kNN and CA, respectively. These
diagrams were created by sampling 200 examples from the
target concept then testing on the entire set4

Most of these results should be unsurprising. Because J48
is a decision tree learner which creates axis-parallel splits
in the instance space, its hypothesis region will always be
composed of horizontal and vertical line segments. SMO
was used with a kernel that could fit up to third degree
polynomials, so it is able to model the target form, though

3Specifically, kNN was allowed to use up to five neighbors
(-K 5), with cross-validation (-X) used to select k. SMO was
used with a polynomial kernel with exponents up to 3 (-E
3). Otherwise, Weka’s default settings were used.
4Strictly speaking, testing on an example set that includes
the training examples is poor experimental methodlogy.
This was only done for the visualization experiments so that
the entire 2-D plane could be shown; the quantitative exper-
iments used a stricter regimen.

its fit is not exact. Both kNN and CA are low-bias learners
which have much greater latitude in approximating regions.
Consequently their boundaries are usually more erratic and
they risk over-fitting, but when irregular boundaries are re-
quired these methods can come closer to modeling the true
boundary region. Note that although both are instance-
space methods and their hypotheses look similar, the bound-
aries are not identical.

4.2 Quantitative results in two dimensions
The preceding diagrams are useful for visualization but they
provide no estimates of modeling quality or variation due to
sampling. For this we perform a standard data mining em-
pirical validation: ten-fold cross-validation of the example
set using hold-one-out sampling.
The first experiment was designed to test the sensitivity
of CAs to the training set size. Because CAs are a non-
parametric, low-bias method, we may expect them to be
sensitive to the number of examples. In this experiment
we performed ten-fold cross validation varying instance set
sizes from 50 through 500 incrementing by 50. We measure
the mean accuracy and standard deviation. The results are
shown in figure 7. The error bars around each point mark
the 95% confidence interval.
Based on the accuracy figures, these patterns are approx-
imately increasing in difficulty for all induction methods,
with the disjunctive concept posing the greatest difficulty.
All methods perform erratically if given only a few examples,
with the confidence increasing steadily as more examples are
provided. The CA method performs about as well as kNN,
the other instance space method. SMO’s performance trails
in many experiments, perhaps because its polynomial kernel
cannot capture the irregular regions used here.
The second experiment was designed to test the sensitivity
to noise of cellular automata compared with the other mod-
eling methods. Given the patterns above, the example set
size was fixed at 100 points and class noise was injected ran-
domly into the instance sets by inverting class labels. For
example, with noise at 0.1, a randomly chosen 10% of the

Page 34SIGKDD Explorations Volume 10, Issue 1

(a) (b) (c) (d)

Figure 3: A 2D cellular automaton with the n4 V1 rule

n4 V1 nonstable =

8

>

>

<

>

>

:

0 : class 1 neighbors + class 2 neighbors = 0
1 : class 1 neighbors > class 2 neighbors
2 : class 1 neighbors < class 2 neighbors

rand({1, 2}) : class 1 neighbors = class 2 neighbors

Figure 4: The rule n4 V1 nonstable

training instances would have their labels inverted. Using
ten-fold cross-validation, the effect of this noise introduction
was measured as the drop in accuracy.
The results are shown in figure 8. All methods degrade with
increasing amounts of noise, as should be expected. SMO,
the support vector machine implementation, degrades most
slowly. It is model based, so it has a higher bias than the
other induction methods. The cellular automaton (CA) is
more sensitive to noise and degrades similarly to the near-
est neighbor (kNN) method; again, since they are low-bias
methods they are more strongly influenced by individual
noisy examples.

4.3 Multi­dimensional data mining
Cellular automata are a natural fit to two dimensional prob-
lems. Up to this pointwe have dealt with CAs in two dimen-
sions. To be a general data mining method, they must be
extended to multiple dimensions. Several issues arise when
doing so.

4.3.1 Grid definition
One issue is how to map the instance space onto a grid so as
to define cell neighborhoods for the CA. A solution is to as-
sign one grid dimension to each attribute. For d attributes,
we create a d-dimensional grid for the CA and partition
each grid dimension by the attribute’s values. Each grid
point (cell) then corresponds to a specific value or range of
values in instance space. Each cell is connected to 2d neigh-
bors. For ordinal attributes, the values naturally form a
gradient which can constitute a neighborhood. Continuous
attributes can be discretized so that each cell is responsi-
ble for a particular range of values. Thus, for example, a
problem with six independent variables would give rise to a
six-dimensional grid.

4.3.2 Grid size

Another issue is how large the grid should be, i.e., how may
cells each attribute should occupy. One solution is to assume
that adjacent cells should be able to distinguish the mini-
mum non-zero difference between data items. To do this we

can simply measure the range of an attribute’s values in the
data, find the minimum distance between any two adjacent
values, then use this value to determine the size of the grid
along that dimension:

Number of cells for attributeA =
max(A) −min(A)
minimum distance

This assures a minimal separation among attribute values.

4.3.3 Convergence

Another issue is how many generations to let the CA run.
When using a stable (i.e., monotonic) update rule, in which
cells do not change state once they are set, the CA may
simply be run until no new cells change state. With a non-
stable update rule, oscillation may occur at boundary cells,
so the CA as a whole may never stabilize. This is addressed
by running the CA until no cells are left empty (unassigned),
and then continuing until either no changes are made or a
fixed threshold is exceeded. In the experiments below, the
CA was run for a maximum of ten generations once all cells
were assigned.
Table 1 describes the domains used in experiments and the
accuracy scores achieved by each technique. Each of the
domains was taken from the UCI data repository [4], though
some were modified as described below.

1. Abalone is a version of the Abalone domain in which
abalone are described by the length, diameter and height
of the abalone shell. The dependent variable is the
number of rings, discretized into < 9 rings (class 1)
and ≥ 9 rings (class 2).

2. Breast-wisc is a two-class problem in which the task
is to classify breast tumor instances into benign (class 2)
and malignant (class 4).

3. Iris is a two-class problem using only instances of class
1 (Iris Setosa) and 2 (Iris Versicolour).

4. New-thyroid is a variant of the Thyroid domain us-
ing only classes 1 (Normal) and 3 (Hypo).

Page 35SIGKDD Explorations Volume 10, Issue 1

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 0.5 1 1.5 2 2.5 3 3.5 4
 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 0.5 1 1.5 2 2.5 3 3.5 4
 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 0.5 1 1.5 2 2.5 3 3.5 4
 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 0.5 1 1.5 2 2.5 3 3.5 4

(a) Linear (b) Parabolic (c) Closed concave (d) Disjunctive

Figure 5: Four of the two-dimensional concept targets

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 0.5 1 1.5 2 2.5 3 3.5 4 0 1 2 3 4

0

1

2

3

4

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 0.5 1 1.5 2 2.5 3 3.5 4

(a) Parabolic target (b) Training instances (c) J48 hypothesis

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 0.5 1 1.5 2 2.5 3 3.5 4
 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 0.5 1 1.5 2 2.5 3 3.5 4
 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 0.5 1 1.5 2 2.5 3 3.5 4

(d) SMO hypothesis (e) kNN hypothesis (f) CA hypothesis

Figure 6: Two-dimensional parabolic target and the hypotheses generated by various learning methods.

5. Pima is a database for diagnosing diabetes mellitus
from a population of Pima Indians. It is unaltered
from the UCI version.

The size of the domains was constrained by practical time
and space considerations. Simulating CAs with hundreds of
thousands of cells is time consuming on a serial computer.
Since the number of cells is proportional to the number of
dimensions, problems were chosen with relatively few (less
than ten) attributes. The CA was given a total of 300,000
cells, which were allocated to each attribute on the basis
of their value separations, as described in the discussion of
“grid size,” above. The CA was then seeded with examples
from the training set, and the CA run to convergence. The
test set examples were then evaluated by mapping them to
cells in the resulting CA and checking the true class against
the cell’s class.
Strict statistical testing (e.g., T-tests) was not performed

with these results. The intention was not to show that CAs
are superior to other methods, but to demonstrate that they
can achieve similar generalization performance. Indeed, all
methods tested here achieved fairly close levels of accuracy
on these domains. The mean accuracies of the CA trail
slightly on new-thyroid and pima, but the standard devi-
ations on all methods are high enough that the differences
are likely insignificant. These basic experiments show that a
cellular automaton is able to demonstrate performance ap-
proximately equal to that of other data mining techniques
on these domains.

5. RELATED WORK
The use of CAs presented here is a form of instance-space
classification, whereby the classifier operates directly in the
instance space of the data rather than creating a model of
the data. Instance-space classifiers are not new in data min-

Page 36SIGKDD Explorations Volume 10, Issue 1

0 50 100 150 200 250 300 350 400 450 500

Number of examples

0

10

20

30

40

50

60

70

80

90

100

A
c
c
u

r
a
c
y

CA
kNN
SVM
J48

0 50 100 150 200 250 300 350 400 450 500

Number of examples

0

10

20

30

40

50

60

70

80

90

100

A
c
c
u

r
a
c
y

CA
kNN
SVM
J48

0 50 100 150 200 250 300 350 400 450 500

Number of examples

0

10

20

30

40

50

60

70

80

90

100

A
c
c
u

r
a
c
y

CA
kNN
SVM
J48

Linear Closed concave Closed convex

0 50 100 150 200 250 300 350 400 450 500

Number of examples

0

10

20

30

40

50

60

70

80

90

100

A
c
c
u

r
a
c
y

CA
kNN
SVM
J48

0 50 100 150 200 250 300 350 400 450 500

Number of examples

0

10

20

30

40

50

60

70

80

90

100

A
c
c
u

r
a
c
y

CA
kNN
SVM
J48

Parabolic Disjunctive

Figure 7: Generalization performance on two-dimensional target concepts as a function of training set size

Domain Classes Attributes Instances kNN Dtree SVM CA
abalone 2 (34/66) 3 4177 78.9± 2.4 81.7 ± 2.0 80.2 ± 1.9 79.1 ± 2.5
breast-wisc 2 (35/65) 9 683 96.8± 2.5 95.7 ± 1.8 96.2 ± 2.1 96.4 ± 3.0
iris 2 (50/50) 4 100 100 ± 0 99 ± 6.3 100 ± 0 99± 3.2
new-thyroid 2 (86/14) 5 215 97.5± 3.5 95 ± 6.2 96± 4.6 95± 3.3
pima 2 (35/65) 8 768 74.1± 3.8 72.9 ± 4.3 76.4 ± 3.1 73.1 ± 3.4

Table 1: Domains

ing. Such classifiers have long been prevalent in machine
learning, pattern recognition and statistics in the form of
instance-based learning and nearest neighbor classifiers [1;
6]. These classifiers store some portion of the labeled in-
stances presented to them. Given a new instance to be clas-
sified, they retrieve one or more close neighbors in the in-
stance space and form a class hypothesis from the labels of
these neighbors. However, these methods are distinguished
from CAs in that they are not strictly local: there is no no-
tion of a bounded and fixed neighborhood, and an instance’s
nearest neighbor may be arbitrarily far away. As such, they
are not bounded in their connectivity or in the information
they use.
Cellular automata have been employed in data mining and
pattern recognition in various ways. In reviewingprior work,
it is important to distinguish between work that uses a CA
as a performance engine versus work that uses a CA as an in-
duction technique. Much work is of the first type, in which a

CA is developed or evolved, usually by a genetic algorithm
or a genetic programming technique, to solve a particular
task [7; 10]. In such work, the induction is performed by a
separate process, which searches a space of possible cellular
automata. The output of the induction process is a specific
cellular automaton adapted to perform the task character-
ized by the set of examples.
The second approach uses CAs as an induction technique.
Ultsch’s work [17, 18] is the closest in spirit to the work de-
scribed in this paper. He described “Databots” as a kind of
autonomous minirobot that can roam across a two-dimensional
grid called a UD-Matrix. Their actions are influenced by
their neighbor’s grid contents. One significant difference
with the work described here is that the grid was simple
but the messages passed between nodes—n-dimensional in-
put vectors—were complex. Ultsch applied his technique
to a dataset describing Italian olive oils and showed that
it was able to cluster the oils geographically by their point

Page 37SIGKDD Explorations Volume 10, Issue 1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Noise

0

10

20

30

40

50

60

70

80

90

100

A
c
c
u
r
a
c
y

CA
kNN
SVM
J48

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Noise

0

10

20

30

40

50

60

70

80

90

100

A
c
c
u
r
a
c
y

CA
kNN
SVM
J48

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Noise

0

10

20

30

40

50

60

70

80

90

100

A
c
c
u
r
a
c
y

CA
kNN
SVM
J48

Linear Closed concave Closed convex

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Noise

0

10

20

30

40

50

60

70

80

90

100

A
c
c
u
r
a
c
y

CA
kNN
SVM
J48

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Noise

0

10

20

30

40

50

60

70

80

90

100

A
c
c
u
r
a
c
y

CA
kNN
SVM
J48

Disjunctive Parabolic

Figure 8: Generalization performance on two-dimensional target concepts as a function of class noise

of origin. However, Ultsch did not compare his method to
other techniques, and did not address questions of how the
method would scale to more than two dimensions and how
those dimensions should be defined for problems that are
not inherently spatial or geographical.

6. DISCUSSION
As stated earlier, the purpose of this study is to demonstrate
that effective classification performance can be achieved by
very simple (cellular) automata that make purely local de-
cisions. To the best of our knowledge, this has not been
demonstrated in prior work. We show that effective classi-
fication performance, similar to that produced by complex
data mining models, can emerge from the collective behavior
of very simple cells. These cells make local decisions, each
operating only on information from its immediate neighbors,
and each performs a simple, uniform calculation.
Many of the choices made in this initial work were inten-
tionally simple and straightforward. Open issues remain
concerning alternative choices. We have defined grid neigh-
borhoods such that every attribute is a separate dimension.
This makes mapping instances onto cells very convenient,
but the grid size is exponential in the number of attributes.
There are other ways to accomplish this mapping, and fu-
ture work should experiment with this.
Similarly, the domains chosen used only continuous attributes
because they could be discretized into ranges so that a grid
could be constructed easily. Other data mining methods
(e.g., logistic regression) make similar requirements of at-

tributes. However, a general data mining method should
ideally handle discrete and ordinal attributes as well, and
future work should address this. It is likely that techniques
from nearest neighbor methods could be used, since they
must address similar representation problems.
For simplicity and efficiency we have chosen the von Neu-
mann neighborhood with a simple (but non-stable)majority-
vote update rule. This seems to perform reasonably well in
practice, but future work could experiment with other up-
date rules to determine their effects.
This study is not intended to promote an immediately ap-
plicable data mining technique. Although CA hardware is
available now, it is still not commonplace, and simulating
networks of cells on a serial computer is not a good use of
such processing power. However, nanotechnology is becom-
ing increasingly important, with researchers exploring ideas
such as motes, Smart Dust and Utility Fog [20; 9]. These
concepts involve very large collections of tiny interconnected
processing units. It is likely that units will collectively per-
form some form of data mining and self-organization, either
as their sole purpose or as an instrumental part of it. We
hope that the ideas in this paper can serve as a foundation
for such work.

7. REFERENCES

[1] D. W. Aha, D. Kibler, and M. K. Albert. Instance-
based learning algorithms. Machine Learning, 6:37–66,
1991.

Page 38SIGKDD Explorations Volume 10, Issue 1

[2] S. Bandini and G. Mauri, editors. Proceedings of the
Second Conference on Cellular Automata for Research
and Industry. Springer-Verlag, October 1996.

[3] A. Benyoussef, N. E. HafidAllah, A. ElKenz, H. Ez-
Zahraouy, and M. Loulidi. Dynamics of HIV infection
on 2d cellular automata. Physica A: Statist ical Mechan-
ics and its Applications, 322:506–520, May 2003.

[4] C. Blake and C. Merz. UCI repository of machine
learning databases, 1998. http://www.ics.uci.edu/

~mlearn/MLRepository.html.

[5] M. Brady, R. Raghavan, and J. Slawny. Probabilistic
cellular automata in pattern recognition. In Interna-
tional Joint Conference on Neural Networks, pages 177–
182, 1989.

[6] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Clas-
sification . Wiley, 2000.

[7] N. Ganguly. Cellular Automata Evolution: Theory and
Applications in Pattern Classification and Recognition.
PhD thesis, Bengal Engineering College, June 2004.

[8] M. Gardner. Mathematical games: The fantastic
combinations of John Conway’s new solitaire game
”life”. Scientific American, 223:120–123, October
1970. Available: http://hensel.lifepatterns.net/
october1970.html.

[9] J. S. Hall. Utility fog: The stuff that dreams are
made of. Available: http://www.kurzweilai.net/

articles/art0220.html?m=18, July 2001.

[10] P. Maji, B. K. Sikdar, and P. P. Chaudhuri. Cellular
automata evolution for distributed data mining. Lecture
Notes in Computer Science, 3305:40–49, 2004.

[11] V. Ramos and A. Abraham. Swarms on continuous
data. In Proceedings of CEC-03 - Congress on Evo-
lutionary Computation, pages 1370–1375. IEEE Press,
2003.

[12] P. Sarkar. A brief history of cellular automata. ACM
Computing Surveys, 32(1), March 2000.

[13] M. Sipper, M. S. Capcarrere, and E. Ronald. A simple
cellular automaton that solves the density and order-
ing problems. International Journal of Modern Physics,
9(7), 1998.

[14] A. L. Sullivan and A. K. Knight. A hybrid cellular
automata/semi-physical model of fire growth. In The
7th Asia-Pacific Conference on Complex Systems, 2004.

[15] A. D. Syphard, K. C. Clark, and J. Franklin. Using
a cellular automaton model to forecast the effects of
urban growth on habitat pattern in southern California.
Ecological Complexity, 2:185–203, 2005.

[16] T. Toffoli and N. Margolus. Cellular Automata Ma-
chines. MIT Press, 1987.

[17] A. Ultsch. An artificial life approach to data mining.
In Proc. European Meeting of Cybernetics and Systems
Research (EMCSR), July 2000.

[18] A. Ultsch. Data mining as an application for artificial
life. In Proc. Fifth German Workshop on Artificial Life,
pages 191–197, 2002.

[19] K. Walus and G. A. Jullien. Design tools for an emerg-
ing soc technology: Quantum-dot cellular automata.
Proceedings of the IEEE, 94(6):1225–1244, 2006.

[20] B. Warneke, M. Last, B. Liebowitz, and K. S. J. Pister.
Smart dust: Communicating with a cubic-millimeter
computer. Computer, 34(1):44–51, 2001.

[21] I. Witten and E. Frank. Data mining: Practical ma-
chine learning tools and techniques with Java imple-
mentations. Morgan Kaufmann, San Francisco, 2000.
Software available from http://www.cs.waikato.ac.
nz/~ml/weka/.

[22] S. Wolfram. Cellular Automata and Complexity: Col-
lected Papers. Westview Press, 1994.

[23] S. Wolfram. A New Kind of Science. Wolfram Media,
Inc., Champaign, IL, 2002.

Page 39SIGKDD Explorations Volume 10, Issue 1

