
Data Mining with  
Differential Privacy 

Arik Friedman, Assaf Schuster 
Technion – Israel Institute of Technology 



What this talk is about: 
balancing privacy with utility 

Strong privacy Weak privacy 

Expected 
error rate 

Pareto 
frontier 

Algorithm 3 

Algorithm 2 

Algorithm 1 

Pareto 
improvement 

Accuracy of data 
mining model 

? 



Differential Privacy *DMNS’06] 

A randomized computation M provides ε-differential privacy if for any datasets A and 
B with symmetric difference AB=1 and any set of possible outcomes SRange(M), 

Pr[M(A)S+ ≤ Pr*M(B) S+ x exp(ε). 
 

≈ 

M M 

A B AB=1  

M(A) M(B) 

≈1+ε  
for small ε 

Differential privacy requires that computations be insensitive to changes in any 
particular individual's record. Consequently, being opted in or out of the database 
should make little difference.  

 Worst case definition 

 No dependency on background knowledge 

 Maintains composability: 

k+k = 1  possible in k-anonymity 

ε+ε ≤ 2ε  always holds in differential privacy,  
  enables the concept of privacy budget 

Formally: 
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Logistic Regression *CM’08] 
Recommender systems *MM’09] 
Search queries and clicks *KKMN’09] 
Random forests *JPW’09] 
Frequent Patterns *BLST’10] 
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PINQ (Privacy Integrated Queries) *Mcsherry’09] 
SuLQ framework *BDMN’05] 
Median mechanism *RT’10] 
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Non-interactive Datsets *BLR’08] 
Complexity Results *DNRRV’09] 
Private Coresets [FFKN’09] 
Contingency Tables *BCDKMT’07] 
Location Histograms *MKAGV’08] 
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Laplace Mechanism 
Calibrating noise to sensitivity *DMNS’06] 

Given a function f:DRd over an arbitrary domain D, the computation 

M(X) = f(X) + (Laplace(S(f)/ε))d 

provides ε-differential privacy. 

S(f) 

Pr[M(A)S+ ≤ Pr*M(B) S+ x exp(ε). 

S S 

S 

f(A) f(B) 
AB=1 

Given a function f:DRd over an arbitrary domain D, the sensitivity of f is 

                                                                                           .      
1,  where 1

max
A B A B

S f f A f B
 

 

Examples: 

1. NoisyCount(D)   =  |D|+Laplace(1/ε). 

2. NoisySum(D)      =  di +Laplace(/ε). 

Examples: 

1. Count: for f(D)=|D|, S(f)=1. 

2. Sum: for f(D)=di, where di[0,], S(f)=. 



Exponential Mechanism *MT’07] 

Let q:DnxRℝ be a query function that, given a database dDn, assigns a 
score to each outcome rR.  
Then the exponential mechanism M, defined by  
 
 M(d,q) = {return r with probability  exp(εq(d,r)/2S(q))},  
 
maintains ε-differential privacy. 

 

Reminder:                     

 

 

Motivation:  
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Impact of changing a single 
record is within 1 

Sampling Probability Score (votes) 
Sensitivity=1 

Option 

ε=1 ε=0.1 ε=0 

0.88 0.4 0.25 27 Pizza 

0.12 0.33 0.25 23 Salad 

10-4 0.16 0.25 9 Hamburger 

10-6 0.11 0.25 0 Pie 

Example – private vote: what to order for lunch? 



Decision Trees 
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Pressure 
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Cough Class 

1 Low Overweight High False Sick 

2 Low Overweight High True Sick 

3 Normal Overweight High False Healthy 

4 High Normal High False Healthy 

5 High Underweight Normal False Healthy 

6 High Underweight Normal True Sick 

7 Normal Underweight Normal True Healthy 

8 Low Normal High False Sick 

9 Low Underweight Normal False Healthy 

10 High Normal Normal False Healthy 

11 Low Normal Normal False Healthy 

12 Normal Normal High True Healthy 

13 Normal Overweight Normal False Healthy 

14 High Normal High True Sick 



Decision Tree Induction with ID3 
*Quinlan’86] 

Given a set of transactions T  over the attributes A=(A1, A2, …, An) and the class C: 

1. If A= or  TT : T[C]=c  

Return a leaf labeled with majority class. 

2. Pick the “best” attribute A. 

3. Split T  to subsets {TT  :  T[A]=a} for each aA , 
and apply ID3 recursively on each subset. 
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Decision Tree Induction with 
Differential Privacy 

Given a dataset T, Attribute set , class attribute C and tree depth limit: 
 NT=NoisyCountε’(T) 
 if A=  or NT<threshold or reached tree depth limit 

  cC: Nc=NoisyCountε’(rT | rC=c) 
  return a leaf labeled with argmaxc(Nc) 
 else 
  Choose an attribute A for splitting T. 
  iA apply the algorithm recursively on  

 (Ti={rT | rA=i}, \A, C) to obtain Subtreei. 
  return a tree with root node labeled A,   

 and edges labeled 1 to |A| each going to the Subtreei. 
 

1. Limit tree depth to 
control privacy budget 

2. Use noisy counts to 
determine class. 

3. Set threshold on 
instance count to 

control noise impact 

4. Choose an attribute 
with noisy counts or 

exponential mechanism 



Splitting Criterion Query function Sensitivity 

Information gain *Q’86] S(qIG) = log(|T|+1)+1/ln2 

Gini Index *BFOS’84] S(qGINI) = 2 

Max  (based on resubstitution 

estimate *BFOS’84]) 
S(qMAX) = 1 

1. Use noisy count to approximate information gain *BDMN’05] 

 

 
 

2. Use the exponential mechanism with a query function based on a 
splitting criterion: 

Choosing an attribute 
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Notation: T – a set of records, rA and rC refer to the values that record rT takes on the attributes A 
and C respectively, A

j=|{rT : rA=j}|, A
j ,c=|{rT : rA=j  rC=c}|. For noisy counts substitute N for . 

,

,( ) log

A

j cA

j c A
j A c C j

N
V A N

N 

   
 A

j jN NoisyCount T

 , ,

A

j c j cN NoisyCount T



Experimental evaluation:  
a single split 

Figure 1. A single split: synthetic dataset with 10 binary 
attributes and a binary class, tree depth 1, ε=0.1,  noise 
rate in learning data 0.1. 
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Conclusions and Future Work 

Classifier reaches reasonable accuracy despite privacy constraints:  

taking privacy consideration into account when designing the algorithm is 
crucial to improving accuracy. 

 
Yet, there is plenty room for improvement: 

– Better budget management 

– Variance in results 

• Possible solution: forests (as in *JPW’09]) 

– Rapid progress in theory and mechanisms 

• Median mechanism *RT’10] 

• Wavelet transforms *XWG’10] 

• Optimizing Linear Counting queries *LHRMM’10] 

• Computational differential privacy *MPRV’09] 

• Propose-Test-Release *DL’09] 
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Thank you for your attention! 



Numeric attributes - example 

att[0,12] 

ε=1.0 

Splitting criterion: Max 

 
---+-+---+---+-----+-+-- 

   2 3   5   7    10 11 

   + +   -   -     - + 

 

Range Max score Score proportion  
(for range) 

Probability 

0 ≤ att < 2 3 exp(3)*2=40.2 0.063 

2 ≤ att < 3 4 exp(4)*1=54.6 0.085 

3 ≤ att < 5 5 exp(5)*2=296.8 0.467 

5 ≤ att < 7 4 exp(4)*2=109.2 0.172 

7 ≤ att < 10 3 exp(3)*3=60.3 0.095 

10 ≤ att < 11 4 exp(4)*1=54.6 0.086 

11 ≤ att ≤ 12 3 exp(3)*1=20.1 0.032 

Applying the exponential mechanism to choose a split point for a 
continuous attribute: 

The split point is sampled with the exponential 
mechanism in two phases:  
1. The domain is divided to ranges in which the 

score is constant. A range is chosen by 
applying the exponential mechanism.  

2. A point is sampled uniformly from the chosen 
range.  

In the first stage, the probability for each range 
Ri=[a’,b’+ is given by: 
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Experimental evaluation: 
deeper trees 
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Figure 2. Deeper trees: synthetic dataset with 7 binary 
attributes, 3 continuous attributes and a binary class, 
tree depth up to 5, ε=1.0,  no noise in learning data. 
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Experimental evaluation: 
real dataset 

Figure 3. Real dataset: Adult dataset, 8 nominal 
attributes, 6 continuous attributes, binary class 
attribute, trees of depth up to 5, 45,222 samples. 
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