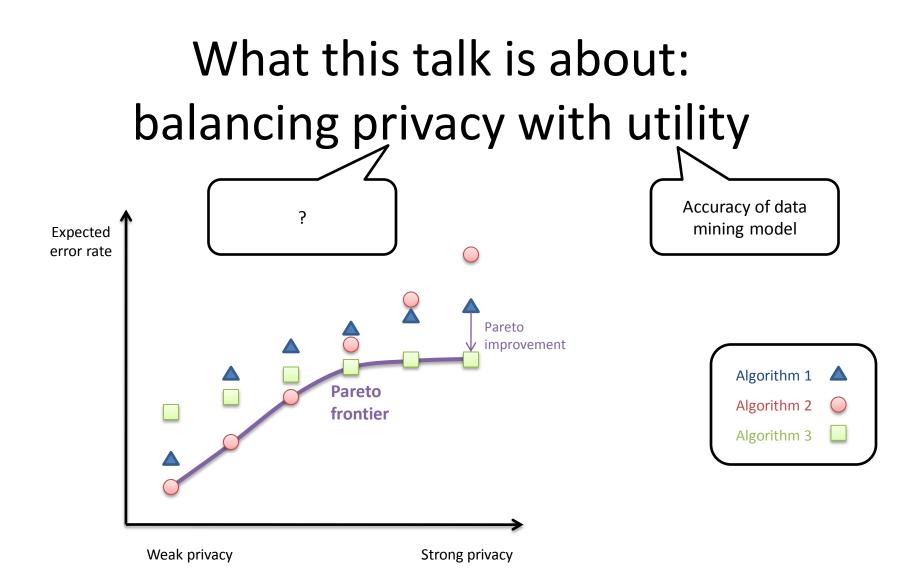
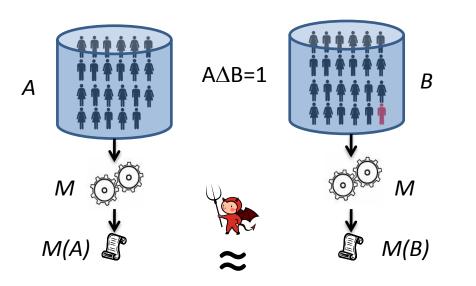
Arik Friedman, Assaf Schuster Technion – Israel Institute of Technology



Differential Privacy [DMNS'06]

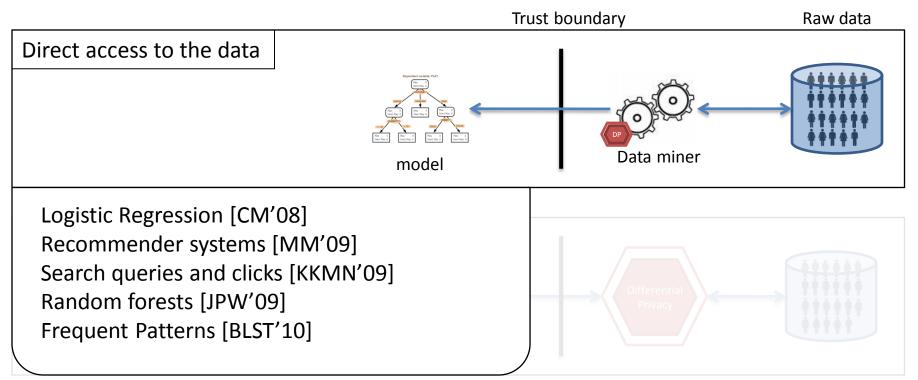
Differential privacy requires that computations be insensitive to changes in any particular individual's record. Consequently, being opted in or out of the database should make little difference. Formally:

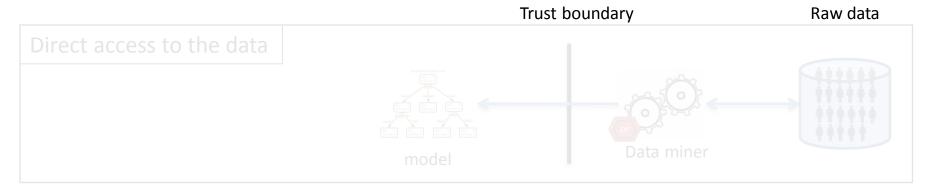
A randomized computation *M* provides ε -differential privacy if for any datasets A and B with symmetric difference A Δ B=1 and any set of possible outcomes S \in Range(M), Pr[M(A) \in S] \leq Pr[M(B) \in S] x exp(ε).

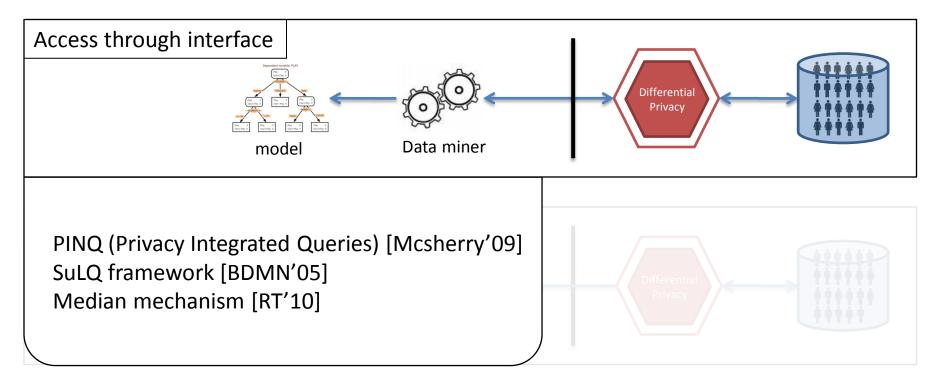


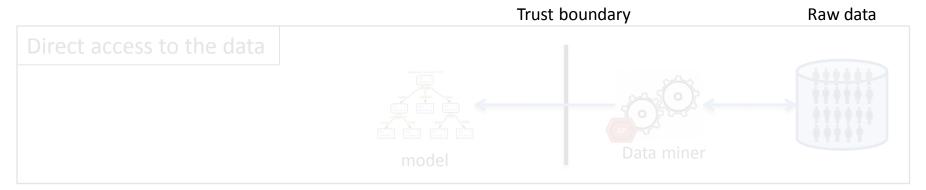
- \Rightarrow Worst case definition
- \Rightarrow No dependency on background knowledge
- \Rightarrow Maintains composability:
 - **k+k = 1** possible in *k*-anonymity
 - **ε+ε ≤ 2ε** always holds in differential privacy, enables the concept of **privacy budget**

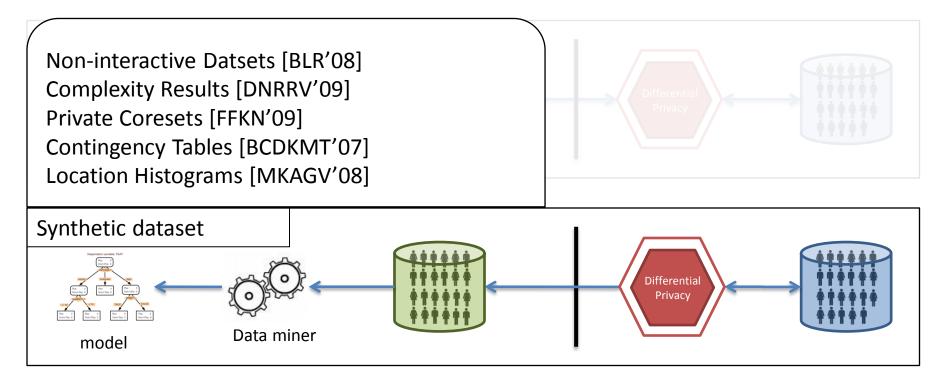
≈1+ε for small ε

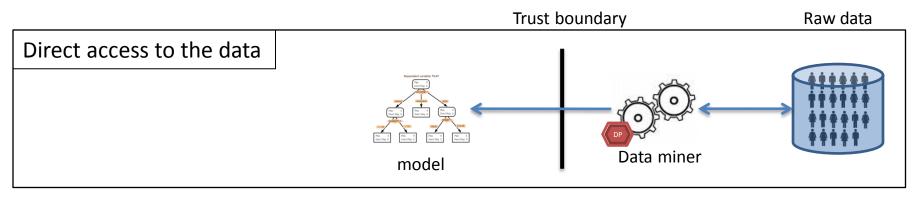


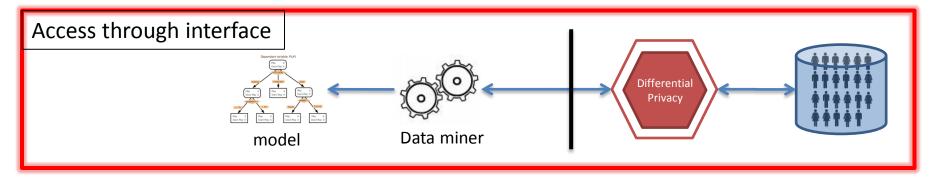


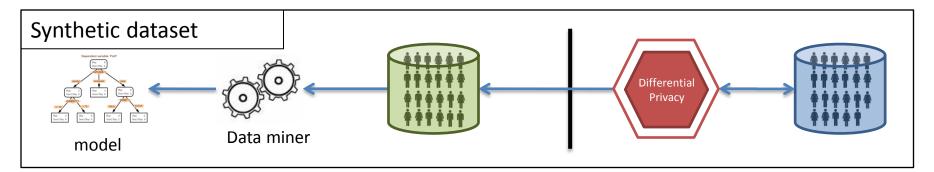












Laplace Mechanism

Calibrating noise to sensitivity [DMNS'06]

Given a function $f:D \rightarrow P^d$ over an arbitrary domain D, the sensitivity of f is $S(f) = \max_{A,B \text{ where } A \Delta B = 1} \|f(A) - f(B)\|_{1}$

Examples:

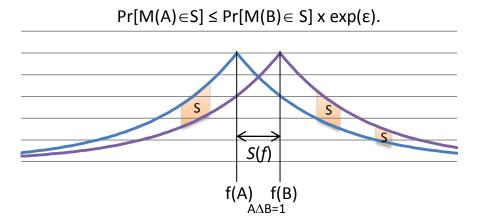
- 1. Count: for f(D) = |D|, S(f) = 1.
- 2. Sum: for $f(D)=\Sigma d_i$, where $d_i \in [0,\Lambda]$, $S(f)=\Lambda$.

Given a function $f:D \rightarrow P^d$ over an arbitrary domain D, the computation $M(X) = f(X) + (Laplace(S(f)/\epsilon))^d$

provides ε-differential privacy.

Examples:

- 1. NoisyCount(D) = |D|+Laplace(1/ ε).
- 2. NoisySum(D) = Σd_i +Laplace(Λ/ϵ).



Exponential Mechanism [MT'07]

Let $q:D^n \times R \to \mathbb{R}$ be a query function that, given a database $d \in D^n$, assigns a score to each outcome $r \in R$.

Then the **exponential mechanism** *M*, defined by

 $M(d,q) = \{\text{return r with probability } \propto \exp(\epsilon q(d,r)/2S(q))\},\$

maintains ε-differential privacy.

Reminder:
$$S(q) = \max_{A,B \text{ where } A \Delta B = 1} \left\| q(A) - q(B) \right\|_{1}$$

Motivation:

vation:
$$\Pr(r) \propto \exp\left(\varepsilon \frac{q(d,r)}{2S(q)}\right)$$

Impact of changing a single

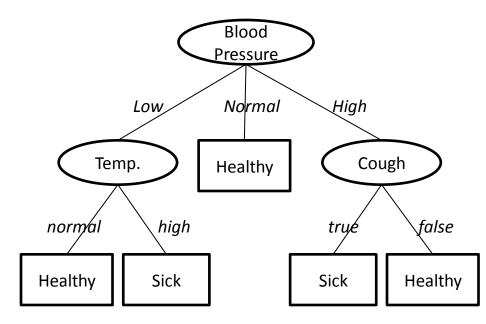
record is within +1

Example – private vote: what to order for lunch?

Option	Score (votes) Sensitivity=1	Sampling Probability		
		ε=0	ε=0.1	ε=1
Pizza	27	0.25	0.4	0.88
Salad	23	0.25	0.33	0.12
Hamburger	9	0.25	0.16	10-4
Pie	0	0.25	0.11	10 ⁻⁶

Decision Trees

No.	Blood Pressure	Weight	Temp.	Cough	Class
1	Low	Overweight	High	False	Sick
2	Low	Overweight	High	True	Sick
3	Normal	Overweight	High	False	Healthy
4	High	Normal	High	False	Healthy
5	High	Underweight	Normal	False	Healthy
6	High	Underweight	Normal	True	Sick
7	Normal	Underweight	Normal	True	Healthy
8	Low	Normal	High	False	Sick
9	Low	Underweight	Normal	False	Healthy
10	High	Normal	Normal	False	Healthy
11	Low	Normal	Normal	False	Healthy
12	Normal	Normal	High	True	Healthy
13	Normal	Overweight	Normal	False	Healthy
14	High	Normal	High	True	Sick



Decision Tree Induction with ID3

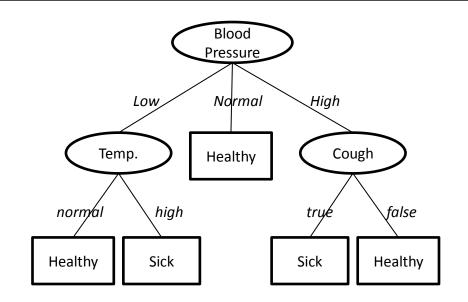
[Quinlan'86]

Given a set of transactions \mathcal{T} over the attributes $\mathcal{A}=(A_1, A_2, ..., A_n)$ and the class C:

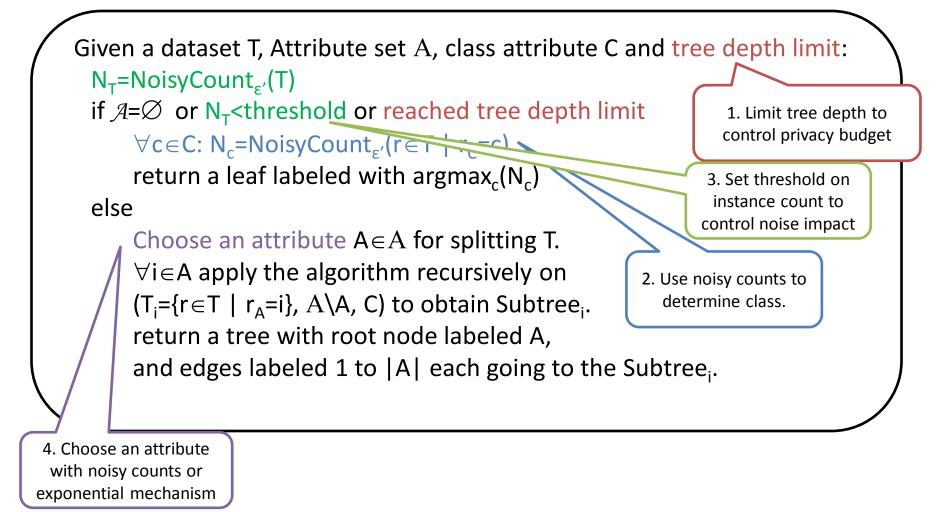
1. If $\mathcal{A}=\emptyset$ or $\forall T \in \mathcal{T}: T[C]=c$

Return a leaf labeled with majority class.

- 2. Pick the "best" attribute A.
- 3. Split \mathcal{T} to subsets {T $\in \mathcal{T}$: T[A]=a} for each a $\in A$, and apply ID3 recursively on each subset.



Decision Tree Induction with Differential Privacy



Choosing an attribute

1. Use noisy count to approximate information gain [BDMN'05]

$$V(A) = -\sum_{j \in A} \sum_{c \in C} -N_{j,c}^{A} \cdot \log \frac{N_{j,c}^{A}}{N_{j}^{A}} \qquad \qquad N_{j}^{A} = NoisyCount_{\varepsilon}(\mathcal{T}_{j})$$
$$N_{j,c}^{A} = NoisyCount_{\varepsilon}(\mathcal{T}_{j,c})$$

2. Use the exponential mechanism with a query function based on a splitting criterion:

Splitting Criterion	Query function	Sensitivity
Information gain [Q'86]	$q_{IG}(T,A) = -\sum_{j \in A} \sum_{j \in C} \tau_{j,c}^{A} \cdot \log \frac{\tau_{j,c}^{A}}{\tau_{j}^{A}}$	S(q _{IG}) = log(T +1)+1/ln2
Gini Index [BFOS'84]	$q_{GINI}(T, A) = -\sum_{j \in A} \tau_j^A \left(1 - \sum_{c \in C} \left(\frac{\tau_{j,c}^A}{\tau_j^A} \right)^2 \right)$	S(q _{GINI}) = 2
Max (based on resubstitution estimate [BFOS'84])	$q_{Max}(T,A) = \sum_{j \in A} \left(\max_{c} (\tau_{j,c}^{A}) \right)$	S(q _{MAX}) = 1

Notation: T – a set of records, r_A and r_c refer to the values that record $r \in T$ takes on the attributes A and C respectively, $\tau^A_j = |\{r \in T : r_A = j\}|$, $\tau^A_{j,c} = |\{r \in T : r_A = j \land r_c = c\}|$. For noisy counts substitute N for τ .

Experimental evaluation: a single split

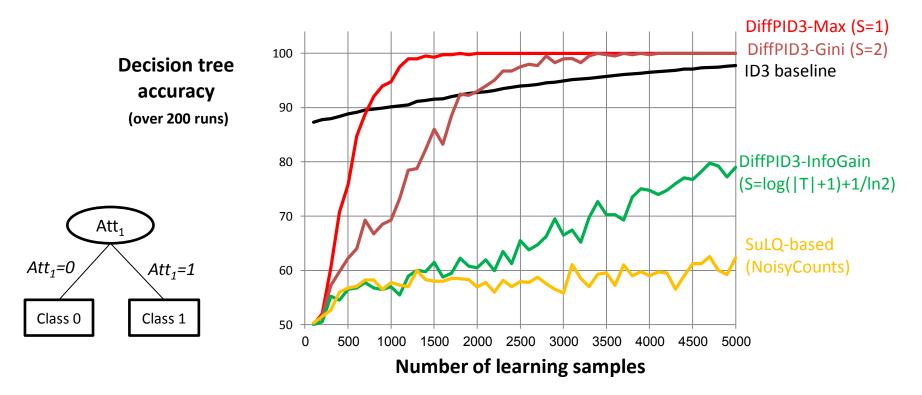


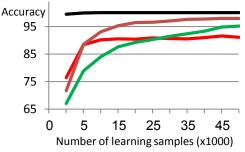
Figure 1. A single split: synthetic dataset with 10 binary attributes and a binary class, tree depth 1, ϵ =0.1, noise rate in learning data 0.1.

Conclusions and Future Work

Classifier reaches reasonable accuracy despite privacy constraints: taking privacy consideration into account when designing the algorithm is crucial to improving accuracy.

Yet, there is plenty room for improvement:

- Better budget management
- Variance in results
 - Possible solution: forests (as in [JPW'09])
- Rapid progress in theory and mechanisms
 - Median mechanism [RT'10]
 - Wavelet transforms [XWG'10]
 - Optimizing Linear Counting queries [LHRMM'10]
 - Computational differential privacy [MPRV'09]
 - Propose-Test-Release [DL'09]



Thank you for your attention!

Numeric attributes - example

Applying the exponential mechanism to choose a split point for a continuous attribute:

att∈[0,12] ε=1.0	Range	Max score	Score proportion (for range)	Probability
Splitting criterion: Max	0 ≤ att < 2	3	exp(3)*2=40.2	0.063
	2 ≤ att < 3	4	exp(4)*1=54.6	0.085
+-+++-+	3 ≤ att < 5	5	exp(5)*2= 296.8	0.467
2 3 5 7 10 11 + + +	5 ≤ att < 7	4	exp(4)*2=109.2	0.172
	7 ≤ att < 10	3	exp(3)*3=60.3	0.095
The split point is sampled with the exponential mechanism in two phases:	10 ≤ att < 11	4	exp(4)*1=54.6	0.086
 The domain is divided to ranges in which the score is constant. A range is chosen by applying the exponential mechanism. 	11 ≤ att ≤ 12	3	exp(3)*1=20.1	0.032
2. A point is sampled uniformly from the chosen				

range. In the first stage, the probability for each range $R_i=[a',b']$ is given by:

 $\int_{a}^{b} \exp(\varepsilon q(d,r)/2S(q))dr = \frac{\exp(\varepsilon c_{i})|R_{i}|}{\sum_{a}^{b} \exp(\varepsilon q(d,r)/2S(q))dr} = \frac{\exp(\varepsilon c_{i})|R_{i}|}{\sum_{j} \exp(\varepsilon c_{j})|R_{j}|}$

Experimental evaluation: deeper trees

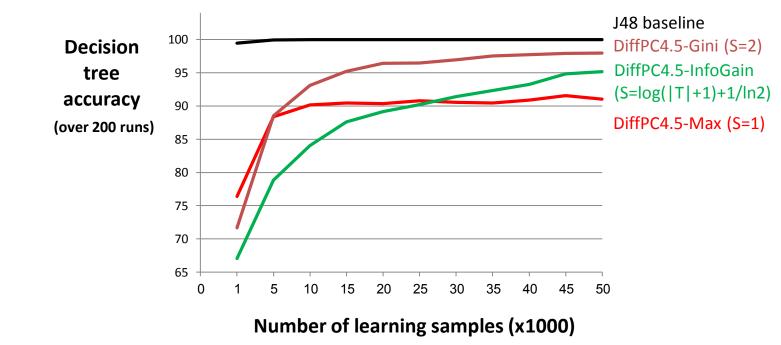


Figure 2. Deeper trees: synthetic dataset with 7 binary attributes, 3 continuous attributes and a binary class, tree depth up to 5, ε =1.0, no noise in learning data.

Experimental evaluation: real dataset

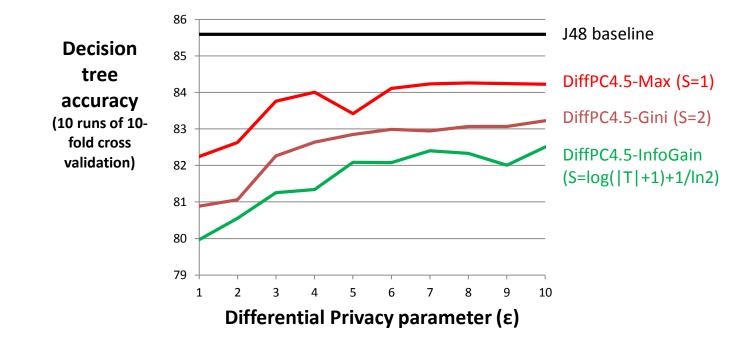


Figure 3. Real dataset: Adult dataset, 8 nominal attributes, 6 continuous attributes, binary class attribute, trees of depth up to 5, 45,222 samples.