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Abstract: Data normalisation is essential for decision-making methods because 
data has to be numerical and comparable to be aggregated into a single score 
per alternative. In multi-criteria decision-making (MCDM), normalisation must 
convert criteria values into a common scale, thus, enabling rating and ranking 
of alternatives. Therefore, it is a challenge to select a suitable normalisation 
technique to represent an appropriate mapping from source data to a common 
scale. There are some attempts in the literature to address the subject of 
normalisation, but it is still an open question which technique is more 
appropriate for any MCDM method. Our research contribution is an assessment 
approach for evaluating normalisation techniques. Here, we focus on six  
well-known normalisation techniques and on TOPSIS method. The proposed 
assessment process provides a more robust evaluation and selection of the best 
normalisation technique for usage in TOPSIS. 
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1 Introduction 

In most multi-criteria decision-making (MCDM) problems, criteria have different scales 
(e.g., comfort, fuel consumption, design, etc. in selecting a car problem). As such, we 
should use some pre-processing to obtain a common scale, which will enable aggregation 
of numerical and comparable criteria to obtain a final score for each alternative. 

In general, MCDM models (sometimes also called multiple attribute  
decision-making, MADM) consist of a set of alternatives Ai (i = 1, …, m), a set of criteria 
Cj (j = 1, …, n) and their corresponding weights Wj. Further, rij is the cell value in the 
decision matrix, which rates alternative i with respect to criteria j. By normalising the 
decision matrix values, rij, we obtain dimensionless elements, therefore enabling 
aggregation to obtain ratings per alternative (Jahan and Edwards, 2014; Triantaphyllou, 
2000). Summarising, the first step for modelling and applying MCDM methods, to solve 
decision problems, is to choose a suitable normalisation technique for the problem at 
hand. 

There are many performance metrics to assess classification problems (see for 
example, Eftekhary et al., 2012) but unfortunately, there are very few studies on 
assessing normalisation techniques for MCDM methods and the question of how to 
choose the appropriate one is still an open one. In classification problems of the type 
‘finding features’ or ‘classifying objects’, we can have access to ground-truth results for 
comparison, however, in MCDM, we only obtain a rating for the candidate alternatives 
and this rating depends both on the method and normalisation technique used. 

Furthermore, if the normalisation technique is not suitable for the decision problem or 
for the chosen MCDM method, the best decision solution may be overlooked (Chatterjee 
and Chakraborty, 2014). As Chatterjee and Chakraborty (2014) say “In fact, while the 
normalisation process scales the criteria values to be approximately of the same 
magnitude, different normalisation techniques may yield different solutions and, 
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therefore, may cause deviation from the originally recommended solutions”. These 
considerations are the motivation for this article. 

In this work, we propose an assessment approach for evaluating six common 
normalisation techniques (see Table 1), using an illustrative example solved with TOPSIS 
method (Triantaphyllou, 2000). We chose TOPSIS because it is a well-known and widely 
used MCDM method (Tzeng and Huang¸2011; Hwang and Yoon, 1981; Yoon and 
Hwang, 1981), but we plan to perform the same study for other MCDM methods in the 
future. 

Our novel assessment approach combines important aspects of Celen (2014) and 
Chakraborty and Yeh (2009) processes, such as calculating the ranking consistency index 
(RCI) to rank normalisation technique; evaluating normalisation techniques with four 
conditions borrowed from Celen (2014); calculate consistency of techniques with 
statistical methods such as descriptive statistics and Kolmogorov-Smirnov test; and 
calculating Pearson and Spearman correlation for both rank of alternatives and closeness 
of alternatives. Specifically, we propose three steps: 

a determining the RCI from Chakraborty and Yeh (2009) 

b analysis and evaluation of normalisation techniques consistency with three 
conditions, borrowed from Celen (2014) 

c comparative study between ranking of alternatives using Pearson [as proposed in 
Celen (2014)] and Spearman correlation (Wang and Luo, 2010) to determine the 
mean value. 

At the current stage, we focused on the TOPSIS method to ensure that our assessment 
approach is robust, because we compare it with results from Celen (2014). Further, here 
we only used an illustrative example to check the robustness of the assessment method. 
This study is a first contribution for finding the most suitable normalisation technique for 
MCDM methods. In the near future, we will extend this study for other MCDM methods 
(Triantaphyllou, 2000), such as the simple additive method, ELECTRE, and so forth and 
we will use simulations for generalising the conclusion about the most suitable technique 
for each method. 

The paper is organised as follows. The next section provides the background and 
related work for normalisation techniques. Section 3 provides the background for the 
MCDM method, TOPSIS, used in this work. Section 4 presents a numerical example that 
is used for illustrating the results obtained with six normalisation techniques, using the 
TOPSIS method. Section 5 presents a new assessment method that is used for comparing 
the results and answers the question of which normalisation is more suitable for usage 
with TOPSIS. Finally, Section 6 summarises this work and points future directions for 
research on the topic. 

2 Normalisation techniques 

Normalisation is a transformation process to obtain numerical and comparable input data 
by using a common scale. After collecting input data, we must do some pre-processing to 
ensure comparability of data, thus making it useful for decision modelling (Etzkorn, 
2015). This pre-processing should consider two important points: 
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1 all non-numeric data should first be converted into numerical data to allow 
normalisation (standardisation) (Etzkorn, 2015) 

2 choosing a suitable normalisation technique to ensure a common scale and 
appropriate modelling representation (benefit or cost criteria) as well as 
comparability on criteria aggregation to obtain alternative ratings (Etzkorn, 2015). 

In general, data normalisation and data standardisation means mapping the data values to 
a common scale, usually within the unity interval [0, 1]. Since some models collapse at 
the value of zero, sometimes an arbitrary range such as 0.1 to 0.9 is chosen (Etzkorn, 
2015), but in this work, we only consider common unity-based normalisation techniques. 

Jahan and Edwards (2014) published an interesting paper with an exhaustive survey 
on normalisation techniques. These authors identified 31 normalisation methods for 
transforming raw data into dimensionless criteria and classified and discussed some 
specific pros and cons for each technique. Further, Jahan and Edwards (2014) inspected 
shortcomings of normalisation techniques for engineering design, which include 
techniques to handle both cost and benefit criteria. 

Pavlicic (2011) analysed the effects of simple (divided by max), linear and vector 
normalisation techniques on simulations results of TOPSIS, ELECTRE, and simple 
additive weight (SAW) MCDM methods. Specifically, he showed that results depend on 
the initial measurement units (e.g., temperature measured in Celsius or Fahrenheit) when 
using vector or simple normalisation techniques. It should be noted that Pavlicic (2011) 
provided a motivation to explore other suitable normalisation techniques for the TOPSIS 
and also to elaborate a more robust assessment method about shortcomings of 
normalisation techniques for MDCM methods. 

Celen (2014) analysed the impact of vector normalisation and three linear 
normalisations (max-min, max and sum) techniques in TOPSIS method. They used a 
consistency process for assessing banks performance in Turkey, which included using 
Pearson correlation. The conclusion was that vector normalisation is the best technique 
for TOPSIS, in the proposed application. Here, we advance this work by testing other 
normalisation techniques and also discussing a more general assessment approach to 
select the best normalisation technique for TOPSIS. 

Chakraborty and Yeh (2009) analysed four normalisation techniques (vector 
normalisation and three linear ones: max-min, max and summation) in the MCDM SAW 
method. Those authors proposed a RCI to assess which is the best normalisation 
technique for the SAW method. Here, we tested the same four normalisation techniques 
plus other two important ones such as the logarithmic and the fuzzification. In addition 
we performed the assessment for the TOPSIS method. 

Among well-known normalisation techniques (Jahan and Edwards, 2014; Celen, 
2014; Patro and Sahu, 2015), in this work, we focus on the class of linear ones (N1, N2 
and N3 in Table 1) and sum-based ones (N4 and N5 in Table 1) and then included the 
fuzzification technique (Ribeiro, 1996) (N6 in Table 1). Using fuzzification as a 
normalisation technique is a novelty of this work and highlights its versatility as a 
normalisation technique. Most normalisation techniques are divided in two formulas, one 
for benefit and another for cost criteria, to ensure that the final decision objective (rating) 
is correct, i.e., when it is a benefit criterion for high values there will correspond high 
normalised values (maximisation-benefit) and when it is a cost criterion high values will 
correspond to low normalised values (minimisation-cost). The same logic applies to 
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fuzzification techniques, i.e. memberships functions can be monotonically increasing or 
decreasing to represent, respectively, benefit or cost. 
Table 1 Normalisation techniques 

Normalisation technique Condition of use Formula 

Linear: Max (N1) (Celen, 2014) Benefit criteria 
max

ij
ij

rn
r

=  

 
Cost criteria 

max
1 ij

ij
rn

r
= −  

Linear: Max-Min (N2) (Patro and Sahu, 
2015) Benefit criteria min

max min

ij
ij

r rn
r r

−
=

−
 

 
Cost criteria max

max min

ij
ij

r rn
r r

−
=

−
 

Linear: sum (N3) (Jahan and Edwards, 
2014) Benefit criteria 
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ij m
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∑
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Vector normalisation (N4) (Jahan and 
Edwards, 2014) Benefit criteria 2
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Logarithmic normalisation (N5) (Jahan 
and Edwards, 2014) Benefit criteria 
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Fuzzification (N6) (Ribeiro, 1996) Benefit and cost 
criteria 

Using membership function 
(e.g., trapezoid) 

Notes: *rij is the rating of alternative i with respect to criterion j. 
**nij is the normalised value of rij. 

Max-min normalisations (N2 in Table 1) are quite useful for relative comparison between 
alternatives, i.e., a normalised value provides either the distance from the best candidate 
(benefit criteria) or from the worst candidate (cost criteria) (Patro and Sahu, 2015). This 
technique provides normalised values by linear transformation and keeps relationships 
between original data. A good example of the useful usage of max-min normalisation  
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technique is for classification of candidates in a contest, (each candidate normalised 
criterion value provides a relative measure of how distant his/her candidacy is from the 
best candidate and how far away from the worst) (Patro and Sahu, 2015). Vector 
normalisation techniques (N4 in Table 1) are symmetric and computationally efficient. 
Normalisation techniques three (N3) are not symmetric for cost and benefit ones and the 
normalised values of alternatives are lower for the benefit criteria and greater for the cost 
criteria (Jahan and Edwards, 2014). Logarithmic normalisation technique (N5 in Table 1) 
is good for situations where we want more discrimination between alternatives (Jahan 
and Edwards, 2014). Finally, fuzzification (N6 in Table 1) is related to the intrinsic nature 
of criteria and objectives (Ribeiro et al., 2014) and it is well suited to represent composed 
linguistic concepts (criteria) such as ‘low prices’, ‘high temperatures’. The next 
subsection presents more details about this type of normalisation. 

2.1 Fuzzification as a normalisation technique 

Fuzzification is the process of converting crisp values into linguistic terms by using 
membership functions (Schmid, 2005). This process is a mechanism for transforming raw 
data into fuzzy sets (functions), which appropriately represent concepts understandable 
for decision makers. This mechanism enables dealing with alternatives and criteria of 
decision-making problems (Ribeiro et al., 1995, 2014). Lee (1990) introduced the main 
role of fuzzification as a transformation of data to a suitable form of fuzzy set theory and 
Ribeiro et al. (2014) proposed this technique for data fusion to obtain a single composite 
value for alternatives. 

An important issue on the variables ‘fuzzification’ is to select suitable membership 
functions since we need to consider the context and objective (Ribeiro et al., 2014). There 
are various proposals in the literature on how to fuzzify concepts/criteria (data). Here, we 
selected the simplest trapezoidal membership because it is an initial study on the 
normalisation with fuzzifiction. There are many applications using fuzzification 
techniques to normalise and allow comparable data (Ross, 2004; Tzeng and Huang, 
2011), however, they did not formally recognised fuzzification as another normalisation 
technique. For example, Pires et al. (1996) and Ribeiro and Varela (2003) used 
fuzzification for solving fuzzy set optimisation problems. Many other authors also 
applied fuzzification as a normalisation technique in order to deal with dimensionless 
data in fuzzy MCDM problems (see for example, Ribeiro et al., 2014; Tzeng and Huang, 
2011; Zhang et al., 2014). 

3 Background on TOPSIS: a MCDM method 

TOPSIS is a technique for order performance by similarity to ideal solution, developed 
by Hwang and Yoon (1981) and it is one of the well-known MCDM methods. It ranks 
alternatives based on the shortest distance from the positive ideal solution (PIS) and the 
farthest from the negative ideal solution (NIS). PIS is the most beneficial and lowest cost 
of alternatives and NIS is the lowest benefit and highest cost (Cheng et al., 1999). The 
general TOPSIS process has the following steps (Joshi et al., 2011): 
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Step 1 Defining decision matrices that can be expressed as follows: 

11 1

1

n

m mn

r r
D

r r

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

L

M O M

L

 

where i = 1, .., m denotes the alternatives and j = 1, …, n refers to the attributes; 
rij represents the jth attribute related to ith alternative. 

Step 2 Normalising the value of decision matrices as follows: 

2
1

ij
ij

n
ijj

r
n

r
=

=

∑
 

where j =1, …, n; and i = 1,…, m. 

Step 3 Calculating the weighted normalised decision matrix by multiplying the 
normalised decision matrix by its associated weights: 

*ij ij ijW w n=  

where wij represents the weight of the jth attribute related to ith alternative. 

Step 4 Determining the PIS (A+) and NIS (A–). 

{ } ( ) ( ){ }
{ } ( ) ( ){ }

1

1

, ..., | , |

, ..., | , |

n ij ij

n ij ij

A W W Max W j J Min W j J

A W W Min W j J Max W j J

+ + +

− − −

′= = ∈ ∈

′= = ∈ ∈
 

where J represents the positive factors and J ′  is the negative factors. (e.g., in 
car selection example, fuel consumption and price are negative factors or criteria 
and comfort and safety are positive criteria.) 

In this work, we used the maximum and minimum as the positive ideal and 
negative ideal, however, when the data is normalised in scale [0, 1] we also  
have the option of using 1 for the ideal and 0 for the negative ideal. 

Step 5 Calculating the distance of all alternatives to the PIS ( )iD+  and the negative 
ideal ( )iD−  solution. 

( )

( )

2

1

2
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, 1, ...,
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n
iji jj

n
i ij jj

D W W i m

D W W i m
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=
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Step 6 Calculating the relative closeness of each alternative as follow: 

* i
i

ii

DC
D D

−

+ −
=

+
 

where *
iC  relies between 0 and 1 and the higher value corresponds to better 

performance. 
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TOPSIS is one of the classical MCDM methods used in many different areas such as 
supply chain management and logistics; design, engineering and manufacturing systems; 
business and marketing management; health, safety and environment management, and 
so forth (Behzadian et al., 2012; Kwong and Tam, 2002; Khorshidi and Hassani, 2013; 
Kahraman et al., 2009; Alimoradi et al., 2011; Mahdavi et al., 2008; Krohling and 
Campanharo, 2011). 

In this paper, we selected TOPSIS for demonstrating how normalisation techniques 
can affect the results of MCDM methods. Further, we followed the steps described above 
for determining the results of the illustrative example described next. In future work, we 
plan to generalise the importance of normalisation with other MCDM methods to 
demonstrate the generality of our assessment approach to select appropriate normalisation 
techniques for MCDM methods. 

4 Numerical example 

As mentioned before, in this paper we discuss the importance of normalisation with a 
numerical example based on a real project of autonomous landing of drones with hazard 
avoidance, where the criteria are partial hazard maps, used in the project 
(http://www.ca3-uninova.org/project_iluv ), to reduce the illustrative case to three criteria 
(C1, C2, C3), which correspond to illumination, reachability, and land texture, and  
16 alternatives (A1, A2, …, A16), which correspond to candidate location sites for landing. 

Table 2 shows the data used for discussing the normalisation techniques, where C1 
and C2 are criteria benefit, i.e., the higher the raw values the better they should be on the 
normalisation and C3 is a cost criteria where low normalised values are desirable. 

As in any other MCDM method, TOPSIS Step 1 is defining the decision matrix (see 
Table 2). 
Table 2 Decision matrix for landing drones 

 C1 (illumination) C2 (reachability) C3 (land texture) 
A1 138.6090 0.3349 6.4543 
A2 154.7214 0.3395 11.4244 
A3 158.3081 0.3441 11.4244 
A4 157.3082 0.3487 6.8542 
A5 144.5976 0.3301 11.2616 
A6 138.5982 0.3346 11.2616 
A7 131.5989 0.3391 11.1988 
A8 132.5988 0.3437 11.1988 
A9 144.5976 0.3252 11.2616 
A10 138.5982 0.3297 11.2616 
A11 132.5988 0.3342 11.1988 
A12 135.9513 0.3387 6.8974 
A13 119.7141 0.3204 11.2616 
A14 112.7148 0.3248 11.1988 
A15 112.7148 0.3292 11.1988 
A16 128.9520 0.3337 6.8974 
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In Step 2, we calculate the normalised decision matrix. To illustrate this process, we use 
one alternative, A3, with the six tested normalisation techniques from Table 1. We 
illustrate the numerical calculations and after the results are summarised in Table 3. 

, 31
158.3081 1
158.3081Maxn = =  

, 31
158.3081 112.7148 1
158.3081 112.7148Max Minn −

−
= =

−
 

, 31
158.3081 0.0725

138.609 154.7214 128.952Linearn = =
+ + +L

 

, 31
2 2 2

158.3081 0.2887
138.609 154.7214 128.952

Vectorn = =
+ + +L

 

, 31
ln(158.3081) 0.0645

ln(138.609 154.7214 128.952)Logarithmicn = =
∗ ∗ ∗L

 

Figure 1 Fuzzification of criteria for landing drones, (a) C1 domain [130, 180, 201, 201]  
(b) C2 domain [0.1, 0.6, 1, 1] (c) C3 domain [3, 3, 10, 25] (see online version  
for colours) 

  
(a)     (b) 

 
(c) 
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For fuzzification, we used trapezoidal membership functions as illustrated in Figure 1 for 
all criteria. We used trapezoidal membership function because it is the simplest and more 
common membership function, other membership functions could have been used (Ross, 
2004). 

C3 is a cost criteria, so, we should use the trapezoidal membership function that gives 
higher membership values the lower values and lower rating (membership value) for 
higher values (see Figure 1). 

In Step 3, we calculate the weighted normalised decision matrix by multiplying 
weights to the criteria of the normalised decision matrix. For simplicity purposes, in this 
example, we consider all criteria of equal importance, hence, for the three criteria the 
weights are 0.333. 

In Step 4, after choosing the maximum and minimum criteria value from the weighted 
normalised matrix we calculate the positive-ideal and negative-ideal solutions based on 
the nature of the criterion (cost or benefit ones). Illustrating for A3 as follows: 

2 2 2
, 3 (0.333 0.333) (0.3285 0.333) (0 0.334) 0.0043MaxD+ = − + − + − =  

2 2 2
, 3 (0.333 0.2370) (0.3286 0.3059) (0 0.1453) 0.1755MaxD− = − + − + − =  

For performing Step 5 and Step 6 of TOPSIS, we calculate the relative closeness and the 
rank of alternatives using positive and NIS values. Table 3 shows the results for 
alternative A3 and those results are illustrated for linear normalisation, as follows: 

*
, 3

0.1756 0.9756
0.1756 0.0044MaxC = =

−
 

Table 3 Result of TOPSIS steps for A3 

  N1 N2 N3 N4 N5 N6 

Normalised 
decision matrix 

C1 1 1 0.0725 0.2888 0.0645 1 
C2 0.9868 0.8375 0.0643 0.2572 0.0932 0.4882 
C3 0 0 0.0528 0.7234 0.0622 0.9050 

Positive and 
negative ideal 
solutions 

D+ 0.0044 0.0541 0.0003 0.0011 0.0021 0.0031 
D– 0.1756 0.5479 0.0153 0.0492 0.0015 0.3349 

Relative 
closeness values 

*
3C  0.9756 0.9101 0.9817 0.9772 0.4244 0.9908 

Rank of 
normalisation 
techniques 

Rank 1 1 1 1 12 1 

Now, we will discuss which normalisation technique is more suitable to rate and rank the 
16 alternatives. As mentioned before, we compared the following six techniques: max, 
max-min, sum, vector, logarithmic, and fuzzification normalisation techniques (see  
Table 1). We performed the same six steps as done for the illustrative case of alternative 
A3. 

The relative closeness values and comparison of the ranking results for 16 alternatives 
with six normalisation techniques are shown in Table 4. As expected, the ranking of 
alternatives differs when using different normalisation techniques. It is interesting to 
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observe alternatives A3 and A9 because they are the best alternatives for different criteria. 
A3 is considered the best candidate for max (N1), max-min (N2), linear (N3), vector (N4) 
and fuzzification (N6) techniques, while A9 (N5) is the best for the logarithmic 
normalisation. 
Table 4 Relative closeness (RC) values and ranking 

 N1 N2 N3 N4 N5 N6 
A1 0.2704 15 0.3901 15 0.2252 15 0.2772 15 0.5031 8 0.8345 8 
A2 0.9366 2 0.8196 2 0.9501 2 0.9380 2 0.4851 10 0.9820 2 
A3 0.9756 1 0.9101 1 0.9817 1 0.9772 1 0.4244 12 0.9908 1 
A4 0.4239 13 0.6030 8 0.3816 13 0.4325 13 0.3629 15 0.9131 5 
A5 0.8202 3 0.6323 6 0.8553 3 0.8189 3 0.6718 3 0.9626 3 
A6 0.7753 5 0.6508 4 0.8160 5 0.7703 5 0.5245 6 0.8577 6 
A7 0.7173 9 0.6454 5 0.7668 9 0.7096 9 0.3751 14 0.1786 12 
A8 0.7283 7 0.6927 3 0.7756 7 0.7204 7 0.2864 16 0.2715 10 
A9 0.8087 4 0.5775 10 0.8470 4 0.8089 4 0.7999 1 0.9540 4 
A10 0.7684 6 0.5944 9 0.8111 6 0.7645 6 0.6517 4 0.8557 7 
A11 0.7213 8 0.6031 7 0.7710 8 0.7145 8 0.5026 9 0.2695 11 
A12 0.2754 14 0.4305 12 0.2592 14 0.2806 14 0.3967 13 0.5888 9 
A13 0.6225 10 0.4284 13 0.6850 10 0.6147 10 0.6784 2 0.0777 13 
A14 0.5841 12 0.4255 14 0.6502 12 0.5749 12 0.5835 5 0.0745 15 
A15 0.5866 11 0.4531 11 0.6520 11 0.5770 11 0.5098 7 0.0758 14 
A16 0.2086 16 0.3253 16 0.2092 16 0.2120 16 0.4830 11 0.0259 16 

5 Assessment approach of normalisation techniques for TOPSIS 

Since it is difficult to assess which is the best normalisation technique just by looking at 
the results obtained because several seemed appropriate for instance for A3, we looked at 
other metrics in the literature to define a consistent assessment approach for selecting the 
best normalisation technique. 

There are few metrics, proposed in the literature, to perform the assessment of 
normalisation techniques in MCDM methods (Celen, 2014; Chakraborty and Yeh, 2009). 
Celen (2014) used a consistency process for assessing banks performance in Turkey, 
which included using Pearson correlation, as a metric to assess normalisation techniques. 
Chakraborty and Yeh (2009) used a RCI. In our assessment, we used these two plus 
another correlation metric called Spearman’s rank correlation (Wang and Luo, 2010). 

Chakraborty and Yeh (2009) mention that “Ranking consistency is used to indicate 
how well a particular normalization procedure produces rankings similar to other 
procedures”. They calculated the RCI for each normalisation method by using the total 
number of times that these normalisations have similarity or dissimilarity in the problem 
with the total number of times that simulation was run (10,000 times in their example). 
After that, they analysed the RCI for different normalisation techniques by drawing a 
diagram of the results. Their diagram shows that the best normalisation technique is 
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vector normalisation because of highest RCI. The higher value of RCI has better rank in 
the example. 

Therefore, in our study, we propose a new assessment approach by combining 
important aspects of the Celen (2014) and Chakraborty and Yeh (2009) processes, and 
then we compared Pearson correlation (used by Chakraborty and Yeh, 2009) with 
Spearman’s rank correlation (used by Wang and Luo, 2010), to ensure a more robust and 
consistent evaluation and selection of the best normalisation technique for TOPSIS. 
Specifically, our novel assessment approach includes three steps: 

a Determining the RCI from Chakraborty and Yeh (2009). 

b Analysis and evaluation of normalisation techniques consistency with three 
conditions, borrowed from Celen (2014). 

c Comparative study between ranking of alternatives using Pearson (as proposed in 
Celen, 2014) and Spearman correlation (Wang and Luo, 2010) to determine the 
mean value. 

5.1 Step A 

For step A, we do not use simulation, but instead, we calculate the RCI (from 
Chakraborty and Yeh, 2009) with the number of similarity or dissimilarity for the tested 
normalisations. Since we have six normalisation techniques we start by defining the 
consistency weight (CW) as follows: 

1 if a technique is consistent with all other five techniques, then CW = 5/5 = 1 

2 if a technique is consistent with four of the five techniques, then CW = 4/5 

3 if a technique is consistent with three of the five techniques, then CW = 3/5 

4 if a technique is consistent with two of the five techniques, then CW = 2/5 

5 if a technique is consistent with one of the five techniques, then CW = 1/5 

6 if a technique is not consistent with any other five techniques, then CW = 0/5 = 0. 

And then the RCI, for instance for N1, is calculated as (Chakraborty and Yeh, 2009): 

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( )
( ) ( ) ( )

1 123456 12345 13456

12456 12346 12356

1234 1235 1236

1245 1246 1256

1346

*( 1) *( 4 / 5) *( 4 / 5)

*( 4 / 5) *( 4 / 5) *( 4 / 5)

( *( 3 / 5)) *( 3 / 5) *( 3 / 5)

*( 3 / 5) *( 3 / 5) *( 3 / 5)

RCI N T CW T CW T CW

T CW T CW T CW

T CW T CW T CW

T CW T CW T CW

T

⎡= = + = + =⎣
+ = + = + =

+ = + = + =

+ = + = + =

+( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( )

1356 1345

1456 123 124

125 126 134

12 13 14

15 16 123456

*( 3 / 5) *( 3 / 5) *( 3 / 5)

*( 3 / 5) *( 2 / 5) *( 2 / 5)

*( 2 / 5) *( 2 / 5) *( 2 / 5)

*( 1/ 5) *( 1/ 5) *( 1/ 5)

*( 1/ 5 *( 1/ 5) *(

CW T CW T CW

T CW T CW T CW

T CW T CW T CW

T CW T CW T CW

T CW T CW TD C

= + = + =

+ = + = + =

+ = + = + =

+ = + = + =

+ = + = + ( )0)W TS ⎤= ⎦

 

where 



   

 

   

   
 

   

   

 

   

    Data normalisation techniques in decision making 31    
 

 

    
 
 

   

   
 

   

   

 

   

       
 
 

RCI(X) RCI for normalisation procedure (X = N1, N2, …, N6) 

TS total number of times the simulation was run (in this study TS = 1) 

TD123456 total number of times N1, N2, N3, N4, N5 and N6 produced different rankings 

T123456 total number of times N1, N2, N3, N4, N5 and N6 produced the same ranking 

T12345 total number of times N1, N2, N3, N4 and N5 produced the same ranking 

T1234 total number of times N1, N2, N3 and N4 produced the same ranking 

T123 total number of times N1, N2 and N3 produced the same ranking 

T12 total number of times N1 and N2 produced the same ranking. 

The RCI for the other normalisation techniques is calculated similarly to the above 
formula and the results are depicted in Table 5. As shown, RCI points to vector 
normalisation (N4) as the best normalisation technique for TOPSIS method and the worst 
one is logarithmic (N5). 
Table 5 RCI of normalisation techniques 

 RCI Rank 
Linear: Max (N1) 36.8 2 
Linear: max-min (N2) 24.2 5 
Linear: Sum (N3) 34.8 3 
Vector normalisation (N4) 37.4 1 
logarithmic normalisation (N5) 8.6 6 
Fuzzification (N6) 28.6 4 

5.2 Step B 

For step B of our assessment approach, we analyse and evaluate the consistency of all 
normalisation techniques with three conditions borrowed from Celen (2014). The chosen 
conditions are defined as follows (Celen, 2014): 

• Condition 1: The result should consider similarity (closeness) metrics in 
distributional properties such as means, standard deviations, minimum  
and maximum values. 

• Condition 2: Check for normal distributions to ensure consistency using 
Kolmogorov- Smirnov test. 

• Condition 3: Comparison of best and worst ranking three results for robustness 
purposes. When normalisation techniques rank alternatives mostly in the same  
order we can say the results are more robust. 

For the first condition of the assessment approach, we determine the descriptive statistics 
(Celen, 2014) for the six normalisation techniques (see Table 6). By just looking at  
Table 6, we cannot determine similarity in distributional properties, so, we also applied 
the Kolmogorov-Smirnov test (Celen, 2014) to check the consistency of normalisation 
techniques about normal distribution. 
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For condition 2, we used the Kolmogorov-Smirnov test (see Table 6). The amount of 
Skewness and Kurtosis is between (–2, 2) so, we can say there is the possibility for our 
data to have normal distributions. However, to be sure about normal distributions we also 
need to calculate the statistic test and significant level test (Sig) (Field, 2000; Trochim 
and Donnelly, 2006). The amount of statistical test should be less than 1 and the amount 
of significant level test (Sig) should be more than 0.05 (sig > 0.05) (Field, 2000; Trochim 
and Donnelly, 2006). In Table 6, for all normalisation techniques in Kolmogorov-
Smirnov test, the amount of statistic test are less than 1 but the significant level test (Sig) 
for N1, N2, N4 and N5 is not higher than 0.05. Therefore, for those cases their normal 
distribution consistency is not proven. N3 and N6 both fulfil condition 2 and they are 
consistent regarding normal distribution. The Sig test should be further investigated 
because we have some doubts about the requirement for normal distribution in the 
normalisation techniques. 
Table 6 Condition 1 and 2 – descriptive statistics, Kolmogorov-Smirnovtest for normalisation 

techniques 

  N1 N2 N3 N4 N5 N6 
Statistics of 
closeness 
coefficient 
values 

Mean 0.6389 0.5739 0.6648 0.6370 0.5149 0.5571 
Std. 
deviation 

0.2346 0.1588 0.2551 0.2321 0.1355 0.3966 

Minimum 0.2086 0.3253 0.2092 0.2120 0.2864 0.0259 
Maximum 0.9756 0.9101 0.9817 0.9772 0.7999 0.9908 

Kolmogorov-
Smirnov test 
statistics 

Skewness –0.2164 0.4168 –0.5719 –0.8760 0.4381 –0.6273 
Kurtosis –1.9673 –0.1026 –0.5665 –0.5441 –0.0649 –0.5574 
Statistic 0.193 0.152 0.227 0.185 0.159 0.258 
Sig. 0.112 0.200 0.027 0.145 0.200 0.006 

After, we evaluate the consistency for condition 3 (Celen, 2014). For this evaluation, we 
examined the result of TOPSIS by choosing the highest three and the lowest three ranked 
alternatives for each normalisation technique (see Table 7). As it is shown, the 
logarithmic normalisation technique (N5) has very different scoring from other 
techniques. Also, max-min (N2) and fuzzification (N6) have some different scores from 
the others (they are highlighted in Table 7 with the grey colour). The other three 
techniques (N1, N3 and N4) have the same results, i.e., these normalisation techniques 
generate rather the more robust results. 
Table 7 Condition 3 – comparison of best and worst normalisation techniques 

 Rank N1 N2 N3 N4 N5 N6 

Three 
highest 
rank 

1 A3 A3 A3 A3 A9 A3 
2 A2 A2 A2 A2 A13 A2 
3 A5 A8 A5 A5 A5 A5 

Three 
lowest 
rank 

14 A12 A14 A12 A12 A7 A15 
15 A1 A1 A1 A1 A4 A14 
16 A16 A16 A16 A16 A8 A16 
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5.3 Step C 

For completing the evaluation process (Celen, 2014), we calculate the Pearson correlation 
between ranking alternative values from Table 4 and the results are depicted in Table 8. 
As mentioned before, we also tested Spearman correlation (Wang and Luo, 2010) to 
compare the result of Spearman correlation with the results of the Pearson one. With this 
comparison, we further ensure robustness and consistency in the assessment approach for 
evaluating normalisation techniques. 

The reasoning for choosing Spearman’s rank correlation coefficient is that it is a  
non-parametric test to define the degree of association between two variables without any 
assumption about distribution of data. Spearman’s correlation coefficient is usually a 
good method to define the association and strength of a relationship between two sets of 
data and variables with ordinal scale in the problem. Spearman’s correlation coefficient 
(qs) is defined as (Chakraborty and Yeh, 2009): 

( )

2
1
2

1 6
1

m
ii

s

D
q

m m
== −
−

∑  

where Di is the difference between ranks ri and ir′  and m is the number of alternatives; qs 
value lies between –1 and +1. 

In this evaluation, for all pairs of normalisation techniques, we calculated their 
correlation and also the average ks value to determine the mean ranking agreement among 
them (Wang and Luo, 2010), as shown in Table 8. 

Observing the results of Spearman and Pearson correlation and their mean ks value 
(Table 8), we see that max, linear and vector normalisation (N1, N3 and N4) have equal 
importance because they display the same highest average value (P = 0.753 and  
S = 0.720). Fuzzification (N6) gets the second place and logarithmic normalisation 
technique (N5) is the worst technique for TOPSIS. It should be highlighted that 
calculating correlation between rankings of alternatives was not discriminative for both 
the Person and Spearman correlation methods because it displayed a draw for the three 
best techniques. 

Another important conclusion from this assessment analysis is that fuzzification 
normalisation (N6), introduced in this work, and is not really appropriate for usage with 
TOPSIS method. 

For the evaluation of step C, we also use Pearson and Spearman correlation to check 
closeness between alternatives, as shown in Table 9. As it can be seen in Table 9, Pearson 
and Spearman correlation point to N4 (vector normalisation) as the best technique for 
TOPSIS between proposed techniques, because it has the highest mean ks value  
(P = 0.690 and S = 0.998), while N5 (logarithmic normalisation) is the worst 
normalisation technique for TOPSIS (lowest mean ks value (0.136) with Pearson 
correlation and N6 (fuzzification) is the worst one with using Spearman correlation. 
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Table 8 Step C – Pearson (P) and Spearman (S) correlation between rankings of alternatives 
(see online version for colours) 
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Table 9 Step C – Pearson (P) and Spearman (S) correlation between closeness of alternatives 
(see online version for colours) 
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Summarising, with the results of our assessment approach (Tables 6 to 10), we can claim, 
that vector normalisation (N4) is the best normalisation technique for TOPSIS with this 
input data and between proposed techniques, the max (N1) is ranked second, sum (N3) is 
ranked third, and logarithmic normalisation (N5) is the worst one. There is no consensus 
for max-min (N2), and Fuzzification (N6) as the fourth and fifth normalisation techniques. 
Further, with our evaluation approach, we not only validated the Chakraborty and Yeh 
(2009) result but also offered other candidate solutions for normalisation techniques, as 
for example using max (N1) (ranked second) and also identified the worst solution 
(logarithmic), which definitively should not be used as normalisation technique in 
TOPSIS. It should be noted that the ranking of techniques did not completely prove the 
requirement for normal distributions (condition 2 of step B in the Sig metric) and this test 
should be improved in the future. 

6 Conclusions 

Normalisation is an inseparable part of the decision-making process because we need to 
obtain dimensionless units for calculating the final rating per alternative. This preliminary 
study demonstrated the effects of using six common and well-known normalisation 
techniques. 

We compared those six normalisation techniques using a small illustrative example 
and performed a consistent and robust assessment to determine which technique is more 
appropriate for TOPSIS method. The example is used for demonstrative purposes of the 
assessment process proposed in this study. 

Our proposed assessment approach is quite robust and included three steps: 

a determining a RCI 

b performing an analysis and evaluation of normalisation techniques consistency with 
three conditions 

c realising a comparative study between ranking of alternatives using Pearson and 
Spearman correlations to determine the mean value for each normalisation technique. 

We demonstrated that vector normalisation technique (N3) seems to be the most suitable 
for TOPSIS method and logarithmic normalisation technique is the worst one. This result 
is in accordance to other literature results (Celen, 2014; Pavlicic, 2011) but here we 
proposed a more robust and consistent assessment process, which provided a ranking for 
six well-known normalisations techniques to help decision maker to make more informed 
decisions. Researchers and practitioners should take these results in consideration when 
they normalise their data in MCDM application with TOPSIS method. 

As future work we plan to apply the same assessment approach to other well-known 
MCDM methods (besides TOPSIS) – as for example, weighted average, ELECTRE or 
AHP – to determine which is the more adequate normalisation technique for each 
MCDM method. Also, we plan to perform more simulations in order to generalise our 
preliminary conclusion about the most suitable technique for each method. Another issue 
to be improved is the normal distribution requirement, which needs further investigation 
to ensure normal distributions are mandatory. 
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