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Abstract—One of the main obstacles hindering wider adoption
of storage cloud services is vendor lock-in, a situation in which
large amounts of data that are placed in one storage system can
not be migrated to another vendor, e.g., due to time and cost
considerations. To prevent this situation we present an advanced
on-boarding federation mechanism, enabling a cloud to add a
special federation layer to efficiently import data from other
storage clouds. This is achieved without being dependent on any
special function from the other clouds.

We design a generic, modular on-boarding architecture and
demonstrate its implementation as part of a VISION Cloud,
which is a large scale storage cloud designed for content-centric
data. Our system is capable of integrating storage data from
various clouds, providing a common global view of storage data.
The users can access the data through the new cloud provider
immediately after the setup, maintaining the normal operation of
applications, so that they do not need to wait for the completion
of the data migration process. Finally, we analyze the payment
models of existing storage clouds, showing that transferring the
data via on-boarding federation with a direct link between clouds
can lead to significant time and cost savings.

1 INTRODUCTION

Cloud platforms should fulfill the requirements for scalabil-

ity and flexibility, allowing rapidly redeploying and moving

resources. This is achievable for compute resources, but it

is not common practice for storage. Existing storage clouds

still do not allow true data mobility and cannot easily migrate

their data across providers. The work “Above the Clouds” of

Armbrust et al. [1], named the problem of “vendor lock-in”

of the stored data to be the second among top ten obstacles

for growth in Cloud Computing. The authors named the lack

of standardized storage access APIs as one reason. Today, the

Cloud Data Management Interface standard from the SNIA

(CDMI [2]) exists. However, it lacks adoption by the larger

cloud storage providers. In addition, applications generate so

much data today that the resulting transfer time could require

longer interruptions to services.

There are companies and products that have specialized in

moving data (e.g., Nasuni, Racemi, Gladinet) or providing
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a common view of data (e.g., IBM CastIron). The main

business case for such products is either the migration from a

classic IT infrastructure to a cloud offering, or the prevention

of vendor lock-in. However, third party tools cannot fully

leverage the underlying storage cloud platforms for faster and

more transparent migration.

Our goal is to prevent vendor lock-in by introducing a

special federation layer as part of the storage cloud infrastruc-

ture. Our approach covers three areas: (1) standard API and

interoperability; (2) efficient and transparent data migration;

and (3) system security and access control. To cover the

first issue, we adhere to the CDMI standard, allowing for

interoperability between CDMI-compliant storage providers.

Second, we introduce the concept of on-boarding federation,

allowing an enterprise to move its data from one storage

cloud provider to another (e.g., due to economical, legal or

functional considerations) while providing continuous access

and a unified view over the data in the old cloud and the

new cloud, and over data in transit. Our approach forms a

federation between the clouds. The data is migrated by a

background process without interrupting services. The third

area is the access control architecture, which targets the fed-

eration of two autonomous access control systems protecting

the data in the two clouds. It is important to note that we

ensure data consistency and completeness without introducing

any centralized components or requiring any modifications to

the old cloud. This preserves the benefits of distribution and

scalability, and also makes our architecture suitable for future

deployments with other storage cloud systems.

Here, we present an implementation over a VISION

Cloud [3] system, which is an EU-funded project for a scal-

able and federated storage system providing content-centric

access to its storage. In contrast to public cloud offerings

such as Amazon S3 and Windows Azure Blob Storage, or

specific hardware appliances, VISION Cloud stresses support

for rich metadata as an integral part of the storage. As part

of this project, partners also develop use case applications

for telecommunications services, media production systems,

healthcare services and enterprise applications.

The work is organized as follows. In Section 2, we de-

scribe our federation architecture and its implementation over

the VISION Cloud. Section 3 discusses the security issues,

comparing several access control models; Section 4 describes

their implementation. Section 5 presents the overhead of fed-
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eration as well as the access control models. Section 6 covers

economic issues, payment models and their benefits, while in

Sections 7 and 8 we present related work and conclude.

2 FEDERATION ARCHITECTURE AND IMPLEMENTATION

We start by presenting the general architecture of the

VISION Cloud project [3] which builds a storage cloud com-

prised of tens of geographically dispersed data centers (DCs),

where each DC may contain thousands of compute and storage

nodes across multiple clusters. The cloud can serve millions of

clients with billions of objects. These data objects contain data

of arbitrary type and size, as well as rich metadata describing

their content and handling. They are grouped in containers,

which provide context and are used for the purposes of data

management, isolation, and placement (i.e., a container is the

minimal unit of placement and a container replica cannot be

split across clusters). Containers may also have rich metadata

associated with them, which effects how they and their objects

are managed. The VISION Cloud account model consists of

tenants and users, where a tenant may represent an enterprise

or an organization that subscribes to cloud storage services.

Tenant administrators are able to create unique user accounts,

allowing their users to authenticate with the VISION Cloud

system.

Here, we present the on-boarding federation system, which

is implemented as part of VISION Cloud but can be easily

added to other cloud systems wishing to make available to their

customers a service for migration (on-boarding) from other

providers. The new provider (New Cloud) is responsible for

moving the customer data to itself from the old cloud provider

(Old Cloud). Furthermore, following the federation set up,

applications and users begin accessing their data through the

New Cloud, which provides access to customer data remaining

in the Old Cloud. Thus, the applications that access the

migrated data should not be influenced by on-boarding and

should work transparently. The Old Cloud is assumed to be

unaware of the on-boarding and is not required to introduce

any modifications.

Federation of storage clouds requires selecting the appro-

priate level of data granularity and abstraction. Our approach

adopts the concept of a cloud storage container as the basic

unit of federation. Establishing containers as the units of man-

agement for federation has many advantages. Containers are a

well established concept in cloud storage environments, even

across providers. In VISION Cloud each container belongs

to a well defined tenant, hence the existing authentication

and authorization infrastructure can be reused. In addition,

using the container as a federation unit, allows applications

to manipulate objects in federated storage containers as they

would in containers in the normal unfederated case.

To activate an on-boarding federation, there is a need to

“link” containers in the New Cloud to containers in the Old

Cloud. To persist the linkage information, it is stored as part of

the system metadata of the container in the New Cloud. This

allows the New Cloud to always know which local containers

are “linked” to other containers in the Old Cloud and which

Fig. 1. High Level Federation Components

data objects should be on-boarded. We call such a pair of

“linked” containers (one in the New Cloud to one in the

Old Cloud) a federated container. Upon completion of the

container “linkage” process, clients may start working with

the container from the New Cloud immediately and there is

no need to wait until all objects are on-boarded to the New

Cloud. The New Cloud is responsible to provide users access

to storage that has not yet been on-boarded from the Old

Cloud, thereby providing the customer a unified view of the

storage/data that resides in the New and in the Old Cloud. Our

federation model also assumes that after the on-boarding setup

the users work with the New Cloud only. All on-boarding

software components run in the New Cloud; the Old Cloud

does not need to provide any special functionality.

To foster scalability, all of the federation components are

implemented in a stateless way and all the information is per-

sistently stored as part of container metadata in the underlying

distributed object store. Having no central instance controlling

the federation allows preserving the cloud’s robustness and

durability. For example, the cloud can continue operating as

usual, moving and relocating the containers for its internal

purposes. Since all containers, including their metadata are

replicated across the clouds’s clusters, a federation will neither

be corrupted by these management operations nor by disk

or communication failures. Furthermore, an application using

federation management is not dependent on a specific instance

of the management service, and the configuration can be

continued from a different instance of it.

2.1 On-boarding federation components

Below we describe the functions that are required for on-

boarding and present the modular components implementing

them (see Figure 1). They expose clear interfaces that allow

their implementation and integration above additional, non

VISION Cloud systems in the future.
Federation Administration: The Federation Manage-

ment and Monitoring Administrator (FMM) module, provides

federation services to other VISION Cloud components (e.g.,

for internal backup) as well as to external clients. FMM

implements a RESTful API to manage federation with CRUD

(create/read/update/delete) operations over standard HTTP
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commands. As detailed in Table I, each federation is assigned

a unique id that is used for its management.

Service HTTP Method URL
Create PUT /{tenant}/federations/federation
Read GET /{tenant}/federations/{id}/

Update POST /{tenant}/federations/{id}/federation
Delete DELETE /{tenant}/federations/{id}/federation

List GET /{tenant}/federations/

TABLE I
RESTFUL API FOR FEDERATION MANAGEMENT

In addition, FMM offers a monitoring and statistics service

providing an overview of the on-boarding federation process.

FMM calculates several performance and time indicators for

an ongoing federation including: estimated on-boarding com-

plete time, average transfer speeds, transfer progress and on-

boarding history.
Federation triggering, direct execution and unified

view: The FederatorDirect component is responsible for pro-

viding a unified view of a container distributed over the New

and the Old clouds. It is interposed before the underlying

object store, acting as an in/out filter for client requests, exam-

ining all external requests before passing them on to the object

store for execution. When a request arrives, FederatorDirect

inspects the container’s system metadata to determine if the

container participates in an active on-boarding federation;

this is indicated by special reserved metadata keys. If so,

FederatorDirect takes action based on the request type and

the object’s status. For example, if the request is to read an

object that is not yet on-boarded (i.e., still located in the Old

Cloud), FederatorDirect will immediately on-board it into the

New Cloud and will return its data to the client. If the request

is to list a container’s objects, FederatorDirect will return the

details of all the objects regardless of their physical location,

i.e., by merging the lists from the Old and New Clouds.
Federation background execution: The Federator-

JobExecuter generates FederatorJobs, which move data from

the Old Cloud to the New Cloud in the background in a

fast, efficient and decoupled way requiring no direct user or

application interaction. The FederatorJobExecutor generates

multiple jobs for each on-boarding relationship, assigning each

job a list of objects that it needs to on-board from the Old

Cloud. When a job becomes active, it processes this list and

on-boards the objects. Each successfully on-boarded object is

removed from the list. In case of a failure, a job resubmits

itself back to the FederatorJobExecuter, which is responsible

to generate, manage, execute, schedule and equally distribute

FederatorJobs across the cluster. An important consideration

is how to execute on-boarding without interfering with the

normal operation of the clouds. For example, the Federator-

JobExecuter can be configured to execute FederatorJobs only

when the network load is low.
Interoperability with other Clouds: Various cloud

providers expose differing APIs, so that the Old Cloud may

have a different API than the New Cloud. To achieve inter-

operability with various Old Clouds, the Multi-Cloud Adapter

contains implementations of multiple existing cloud APIs, e.g.,

S3, Swift, etc. In addition to the simple implementation of

APIs this module also allows converting metadata (including

system metadata) from the format supported by the Old

Cloud to that of the New Cloud. Furthermore, we provide

a framework allowing to easily implement and plug-in a new

access driver for a new storage cloud API. The adapter is used

by both the FederatorDirect and the FederatorJob components

to access the New and the Old Clouds, thereby providing

flexibility in the federation configuration.

2.2 On-boarding federation flow

On-boarding federation consists of two stages: the setup

and the execution. To initiate a new federation, a container

owner uses the API of the FMM to provide the details of the

containers in the two clouds that should be federated. FMM

uses the object storage infrastructure of the New Cloud to per-

sist the federation configuration as part of container metadata,

which is carefully protected with dedicated ACLs. Following

the initiation of the federation by the FMM, execution passes

to FederatorDirect, which inspects the container metadata to

identify whether it contains special reserved keys that indicate

an activation of on-boarding federation. When FederatorDirect

identifies that a new federation setup request has arrived, it

performs the following tasks: (1) verifies that it can access the

relevant containers in both clouds; (2) sends a GET request to

the container in the Old Cloud and obtains a list of objects to

be on-boarded; and (3) requests the FederatorJobExecuter to

generate FederatorJobs and distribute them across the cluster,

assigning each job a subset of objects to transfer.

As soon as the federation is correctly set up and active,

the FederatorJobs start copying the contents of the remote

container into the local container and write status information

to the metadata of the local container, so that the on-boarding

process can be tracked by the Federation Management com-

ponent. FederatorDirect “listens” to all requests coming to the

New Cloud, trying to resolve them. If the data object is already

on-boarded, it just forwards the request back to the normal

get-object-flow and the object is returned to the requesting

instance. If not, FederatorDirect initiates an immediate copy

of the requested object from the remote container to the local

container and then transfers the object to the client. In case

of a list request for the objects of a container, FederatorDirect

also provides a unified list of the local and remote containers.

To illustrate the flows, we detail examples of user operations

on a federated container: container new in the New Cloud and

conatiner old in the Old Cloud. Assume that container old
contains three objects: {obj1, obj2, obj3}, where only obj1
was on-boarded to container new so far.

Container list operation: A client sends a list operation

for container new. FederatorDirect intercepts this request, and

sends it to the object storage layer on the New Cloud as well

as the Old Cloud to obtain a list of objects in container old.

Having both results, FederatorDirect merges them into a single

response comprised of the objects {obj1, obj2, obj3}, even

though obj2 and obj3 are not yet on-boarded.
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Object read operation: A client sends a GET request

for container new/obj2. Since obj2 is not yet on-boarded, the

object storage layer of the New Cloud responds with a object-

not-found message. Based on this response, FederatorDirect

reads the container new metadata. Since the metadata shows

an active on-boarding federation, FederatorDirect sends a

GET container new/obj2 operation to the Old Cloud. Upon

receiving obj2, FederatorDirect stores it in the New Cloud

then returns it to the client.

Object metadata update: A client sends a request to

update the metadata of container new/obj3. Since obj3 is not

yet on-boarded, FederatorDirect will try to on-board it, as in

the object read example above. After the object is on-boarded,

its metadata will be updated in the New Cloud, which will

always contain the most updated object version.

3 ACCESS CONTROL ARCHITECTURES

To enable on-boarding the federation components of the

New Cloud need the permissions necessary to read the data

from the Old Cloud and write the data to the New Cloud.

Below we discuss the relevant access control architectures.

• Shared IAMs: In this set up the two clouds use the same

internal Identity and Access Management systems (IAM),

e.g., two object storage clouds deployed on the same

public infrastructure, such as OpenStack.

• External IAM: In this case each cloud customer (tenant)

has its own IAM, defining its identity and access domain,

that establishes a trust relationship with both clouds.

This allows a user to authenticate with a single set

of credentials for applications running in various cloud

and non-cloud systems. Commonly this is supported via

Single Sign-On (SSO) mechanisms, such as SAML or

OpenID, depicted in Figure 2.

• Two IAMs: Each cloud may have its own, internal or ex-

ternal IAM. Existing SSO mechanisms are insufficient to

support this architecture and there is a need to introduce

additional components as discussed below.

When implementing an on-boarding scheme there is a need

to specify the identities used to retrieve the data. Here, we

describe the identities that can be used to gain access to the Old

Cloud, but the same approaches are applicable to authenticate

with the New Cloud as well.

Setting up a special on-boarding user: While setting

up the on-boarding process, a special, artificial on-boarding

account (user onboard) is created on the Old Cloud. The

credentials of this account are passed to the New Cloud and are

used in the authentication process. Furthermore, user onboard
is granted temporary read access to the container in the

Old Cloud. This is achieved by updating the ACLs or the

relevant access control policies of the Old Cloud, which may

be time consuming and also requires revocation when on-

boarding is complete. Since reusing the same user onboard
for multiple on-boarding requests may violate the principle of

least privilege, it is recommended to generate a special on-

boarding account for each federation setup, deleting it right

after the corresponding on-boarding completes.

On-boarding on the behalf of the end user: This

approach uses the identity of the end user (e.g., resource

owner) and delegates his access rights to the New Cloud. If

properly implemented, this may allow confining the access

rights of the New Cloud, thereby preserving the security of

the system. However, it burdens the end user by requiring his

involvement in the delegation process.

Access Con-
trol Flow

On-boarding
identity Advantages Disadvantages

Credential
passing

On-boarding
user

Protocol sim-
plicity

Credential exposure

Bearer tokens
On-boarding
or end user

Token
simplicity

Tokens may be
stolen; requires end
user involvement

Full delegation End user
Confinement
of access
rights

Protocol complexity;
requires end user in-
volvement

TABLE II
COMPARISON OF ACCESS CONTROL APPROACHES

Regardless of the identity scheme chosen, there is a need to

specify the authentication protocol and its flow. For example,

user onboard may authenticate via protocols like HTTP Ba-

sic/Digest or a token based scheme. Below we present three

relevant flows that are compared in Table II.

Credential passing: To allow authentication of on-

boarding requests, the credentials of an account in the Old

Cloud are passed to the New Cloud. Since passing the end

user credentials is highly insecure, it is recommended to

use the credentials of the temporary user onboard created

for this purpose. The main advantage of this scheme is its

simplicity both from the user and cloud provider perspective.

Its drawbacks are the security of the credentials which may

be stolen and misused.

Bearer Tokens: In this setup the user approaches the

IAM of the Old Cloud, authenticates, and asks for a long

term token, which he passes to the New Cloud to perform

the on-boarding. Since anyone possessing a bearer token can

use it to gain access, it should be carefully protected (e.g., via

encryption). It is recommended to scope the token reducing its

access rights as much as possible. If the underlying protocol

does not support this, it may be better to authenticate as

user onboard obtaining a token with limited access rights.

Full Delegation Technique: In this scenario, the end
user is in charge of activating the on-boarding procedure. The

user authorizes the system to act on his behalf, potentially

with reduced access rights. Figure 3 illustrates that unlike

regular SSO protocols, this solution does not require having

a shared IAM and established trust relationships with both

clouds. Each cloud may work with a different IAM, either

external or internal. The end user delegates his access rights

to the New Cloud, specifically to the processes doing the

on-boarding. This can be achieved by enhancing standard

WEB SSO solutions with delegation protocols like OAuth

or SAML V2.0 Condition for Delegation (which we refer to

as SAML2Delegate). Among these we adopted the latter, due
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Fig. 2. Web Single Sign On (SSO) for accessing different Web Services
with a unified User Identity. Fig. 3. Web User Delegation for accessing user’s resources with a Consumer

(Cloud Storage B) application.

the flexibly and security of the OASIS suit of Web Services

Security (WSS) protocols to which SAML belongs.

Table II compares the approaches described above. As seen

in the table, increasing the security by employing delegation

techniques comes at the price of simplicity and usability.

4 ACCESS CONTROL IMPLEMENTATION IN VISION

VISION Cloud implements a modular access control infras-

tructure supporting multiple authentication methods, including

the three on-boarding access control flows described above.

Below we describe the VISION Cloud access control imple-

mentation and its support for a SAML-based flow. Section 5

further compares this solution with additional authentication

protocols used by VISION Cloud.

The access control architecture of the VISION Cloud is

based on the cooperation of two models: Attribute Based

Access Control (ABAC), used to check users privileges based

on a set of attribute-based policies, and Access Control Lists

(ACLs) that are attached to stored resources and protect them.

VISION Identity and Policies Services (IPS) provide services

for authentication, user management and ABAC-based policy

management. VISION Cloud supports Identity Federation by

integrating IPS with SAML SSO based on Shibboleth. This

allows federating VISION identities with an IAM suppporting

SAML, thereby allowing the federation of a VISION Cloud

with another VISION Cloud or any external domain that

supports SAML. For example, in the scenario described in

this paper, the Old and the New Clouds have their own IAM

servers, each of which defines an identity domain.

To support the architectures described above, termed Ex-
ternal IAM and Two IAMs, we employ identity federation

together with a forwarding model. In this model the New

Cloud takes the identity of the user (through impersonation)

and forwards the SAML assertion provided by the user. This

assertion is used as a bearer token to acquire the privileges of

the user in the Old Cloud. The flow of this model includes the

following stages, depicted in Figure 4. (1) The user invokes

the GetAssertion service to obtain a SAML authentication

assertion. The Service Provider (SP) intercepts this call and

discovers the External Domain of the request. (2) The user

is redirected to the External Domain IAM to provide it valid

credentials and then back to the GetAssertion service. (3) The

user invokes the GetAssertion service to obtain an assertion

identifier. (4) This identifier is passed to the VISION Federator

(FederatorDirect or FederatorJobExecuter). (5) The VISION

Federator inserts the assertion identifier in the HTTP headers

of the requests to retrieve data. Based on the identifier, the

VISION IPS of the Old Cloud gets the actual assertion stored

by the SP and validates it by checking its signature, lifetime

and attributes.

Fig. 4. Forwarding model applied in VISION

This model is based on bearer tokens, and a more secure

solution is a full delegation in which the end user delegates

only a subset of his rights. SAML2Delegate extends the SAML

language to support this flow. To obtain a delegation from

the user, the New Cloud, obtains a new assertion from the

IAM, which contains an identity of the New Cloud listed as

a delegate of the end user. As before, this assertion is sent to

the Old Cloud with the actual request. This model ensures that

there is no privilege elevation and the delegated access rights

are less than or equal to the access rights of the end user.

5 PERFORMANCE ANALYSIS

In this section we present some performance results. First,

we estimate the slowdown during normal operation for ac-

cesses to a federated container during on-boarding. The slow-

down occurs for object misses, i.e., on an access to an object

that was not yet on-boarded to the New Cloud. In this case,

there is a delay until FederatorDirect brings this object from

the Old Cloud. To measure this overhead we disabled the

federation background processes in a New Cloud and created
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two containers as follows: a container (with 100 objects) in the

Old Cloud and a new empty container in the New Cloud. We

then linked the container in the New Cloud to the container

in the Old Cloud. To measure the costs of an object miss,

we sent 100 consecutive requests to the New Cloud, such that

each request to the New Cloud causes an object miss. Each

such GET request triggered FederatorDirect to on-board the

corresponding object from the Old Cloud. These 100 requests

to the New Cloud led to the on-boarding of the entire container.

After the on-boarding completed, we sent the same 100 GET

requests to the New Cloud requesting the same objects, which

were now present in the New Cloud. Notably, the average

overhead for 100 GET operations with object misses was

24%, while the average overhead for listing the objects of the

federated container (when all of the objects were still in the

the remote container) was 22%. The overhead for GET was

measured for objects of size 1K and 1M, for which the network

transfer time is not the bottleneck. Obviously, when the object

size increases, the network becomes the dominating factor,

but the overhead is always lower than the 200% overhead of

the naive currently available solution where a client manually

downloads the objects from the Old Cloud and then uploads

them to the New Cloud. One of the central advantages of the

proposed on-boarding federation solution is that much of the

overhead for normal operation (e.g., for object misses) can

be made invisible to the user by on-boarding the objects in a

background job, executed during hours of low load.

Next, we analyze the performance of access control method-

ologies and their influence on federation. While protocols like

SAML enhance system security, they may add performance

overhead. Here, we measured this overhead and compared it

to less secure protocols, trying to find out whether the price

paid for the added security is acceptable in the context of on-

boarding federation. In addition to the SAML-based solution

described in Section 4, we evaluated HTTP Basic and the

UUID bearer token model of OpenStack Keystone. Table III

summarizes the authentication overhead, which is the extra

time consumed by 100 GET operations with authentication

compared to those without authentication, as measured by

the ApacheBench (ab) tool. Obviously, this overhead becomes

less noticeable when the object size is increased from 1K to

100M byte. Furthermore, due to differences in the potential

deployments it is difficult to make a fair comparison between

the protocols and our goal is only to estimate their general

applicability for on-boarding. As can be seen the overhead of

all the schemes is reasonable, where in our setup HTTP basic

was the fastest and the Keystone UUID was the slowest (due

to the fact that when caching is disabled the UUID scheme

contacts Keystone for the validation of each token). Notably,

the SAML protocol gave a reasonable overhead, showing that

it is applicable to the on-boarding federation scenario and can

be safely used to increase its security.

6 PAYMENT MODELS

To estimate the benefits of our proposed solution for on-

boarding, we evaluate the overall cost to transfer storage data

Object size (B) HTTP Basic (%) SAML (%) KeyStone UUID (%)
1K 8.65 14.84 17.96
1M 7.41 13.24 16.40
10M 4.55 7.39 12.55
100M 2.88 3.34 6.62

TABLE III
OVERHEAD OF AUTHENTICATION PROTOCOLS

out of an Old Cloud. Notice that storage costs can be an

important factor, since a customer continues to pay the Old

Cloud for the storage until on-boarding completes and the

data is removed from the Old Cloud. We consider the two

common approaches for exporting data from a cloud: via

network transfer and via media shipment services offered by

cloud providers.

On-boarding costs via network When on-boarding over

the network, the total cost of on-boarding will be sum of

the bandwidth cost, the request cost and the storage cost.

Bandwidth cost is the cost to transfer a given volume of storage

out of the cloud over the network. Request cost is the cost paid

for the requests to GET (read) the storage. Storage cost is the

cost for storing a given capacity of storage. Notice that all of

these costs may be tiered, so that a higher cost is paid for the

first bytes (or requests) and a lower cost for the last bytes (or

requests).

On-boarding costs via export on media Storage cloud

providers typically also provide the capability to receive data

stored on the cloud on physical media mailed to the customer.

Here the costs comprise the storage media cost, the export

time cost, the media delivery costs, and as before the storage

cost, since the customer will continue to pay for the data in

the Old Cloud until it is on-boarded to the New Cloud and

deleted from the Old Cloud.

On-boarding overhead We define the on-boarding over-
head to be the total cost for on-boarding including the storage

price for the on-boarding period, divided by the storage cost

for one month for the amount of storage on-boarded. A

higher on-boarding overhead points to a lower incentive for

transferring the storage to another cloud.

To illustrate the costs, we calculate the costs for onboarding

data out of Amazon S3. We base our calculations on S3’s

April 2013 pricing for the US Standard Region and where

possible use the Amazon S3 Cost Calculator. We assume that

the average object size is 1MB, and we calculate the number of

operations for on-boarding accordingly. We consider storage

costs of a single day as a minimal charge unit.

Figure 5 shows the on-boarding overhead for various data

transfer options as a function of the amount of storage to

be on-boarded. We show costs for transfer over an Internet

connection at average rates of 512Mbps and 1Gbps, export

on disks and export using Amazon Direct Connect, which

is a direct high bandwidth connection. For Amazon Direct

This section relies on pricing information for Amazon S3 that is publicly
available as of April 2013. Actual costs may be affected by several factors,
including rounding errors and assumptions on the AWS cost model made in
this paper.
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Fig. 5. Costs of data transfer out of S3

Connect, there is a charge for provisioning the port and a

charge for the amount of data transferred. In our calculation

we assume that the 10Gbps port can be provisioned just for

the time of the transfer and that the port’s transfer rate can

be fully utilized, which may not be realistic. For export on

disks we assume a disk size of 2TB, the eSATA interface type

and expedited shipping. Using these parameters the Amazon

Cost Calculator projects an average transfer speed to disk of

85MB/sec.

An obvious conclusion from calculations shown in Figure 5

is that the total time consumed by on-boarding is a major factor

in the overall cost. In particular, a longer on-boarding time

leads to higher storage costs that the customer must continue

to pay to the Old Cloud. Thus, data should be on-boarded at

the highest possible bandwidth. Furthermore, the on-boarding

overhead for 100TB for all of the options is low enough such

that if the New Cloud provides a clear advantage over the

Old Cloud the cost to switch clouds is not too high (and the

New Cloud could even provide an incentive). However, the on-

boarding overhead for 500TB is significantly higher, so that

only the high bandwidth network options are feasible.

The on-boarding approach presented in this paper, allows

transferring the data directly between the clouds, thus signifi-

cantly reducing the transfer time, and thus reducing the overall

cost. If the New Cloud can maintain a direct high bandwidth

connection to the Old Cloud, this will additionally reduce the

cost.

7 RELATED WORK

As Sheth and Larson explain in their work about federated

databases [4] the term federation was introduced already in

1979 and in 1985 Heimbigner and McLeod summarized this

concept as follows [5]: “A federated architecture represents a

balance between two conflicting requirements: the autonomy

of the entities versus a reasonable degree of coordination.”

There are four basic capabilities that characterize each entity

of the federation, which “keeps authority about the informa-

tion passed to the other entities of the federation” and “has

authority to create a global view of the data that is available

among all the entities of the federation”. An entity of the

federation “is not forced to perform tasks of another entity

of the federation” and “can autonomously decide to enter or

leave the federation”. This basic characterization holds also

for the approach presented in this paper.

Here, we distinguish between two types of federation:

multi-layered and on-boarding. In contrast to on-boarding,

which does not assume any special cloud topology, layered

federation, is usually managed from an additional component

that is not part of the federated clouds. Examples of such

systems were presented by Tordsson et al. [6], Kurze et al. [7]

as well as the recent Colony system, that federated several

Openstack Swift deployments in a Colony by introducing a

Swift Dispatcher component, prefixing the container names.

Unlike this work, we do not assume any naming conventions

or architectural components common to the two clouds.

Up to now, little work addresses on-boarding federation,

which in addition to data management and migration, also

require solving the problems of access control and common

APIs, which we review below.

Multi-cloud APIs: Federation at the API level is a

prerequisite for on-boarding, in particular, a common interface

to transparently use services regardless of their underlying

interface and implementation, decoupling implementations and

services. The Cloud Data Management Interface (CDMI) lead

by SNIA is a recent standardization effort for Web-based APIs

for storage clouds [2]. The VISION Cloud project adopts and

promotes this effort.

However, even in the absence of common APIs, it is

still possible to federate between several different clouds, by

implementing adapters supporting their corresponding APIs.

Examples of such adapters are provided by companies like

Deltacloud and RightScale, as well as by open source projects

like jclouds and libcloud, among which we adopted the latter

in our implementation.

Cloud access control: Cloud has not kept pace with the

enormous volumes of user identities that network adminis-

trators must manage and secure. An identity fabric, linking

multiple applications to a single identity was proposed to

address this problem [8]. Recently, Chadwick and Casenove

[9] described the security APIs allowing to grant federated

access, fine grained access control and delegation, integrating

their approach with the Eucalyptus S3 Service.

Interoperability in federated heterogeneous cloud environ-

ments is addressed in [10], proposing a model to delegate

trust between trustworthy parties satisfying certain constrains.

Pearson at al. [11] also introduce a privacy manager in order

to care for data compliance according to the laws of different

jurisdictions. Huang et al. [12] introduced a SAML-based

Identity Federation Broker for service clouds. A recent work,

FACIUS [13], describes the use of SAML for non Web-based

services, presenting an implementation of SAML with SSH.

They report important evaluations with respect to require-

ments, performance, security, and legal aspects. Interestingly,

their measurements show an almost 300% overhead of adding

SAML (SAML-enabled SSH login takes 1.01 seconds, while

regular SSH only 0.24).

A recent trend for managing credentials and delegations is
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based on leveraging the PKI technology with X.509 certifi-

cates. For example, combining X.509-based libabac package

with attribute-based access control and an authorization policy

language called “role-based trust” Schwab and Faber [14]

provided a trust framework suitable for federated community

clouds. Another example, is the recent adoption of PKI by

the OpenStack Keystone component [15]. These projects use

technologies that are comparable with those used in our paper,

however, they do not address the specific identity management

problems that occur in on-boarding federation.

Addressing the issue of delegation, an AAuth system

[16] enhanced the OAuth capabilities using the encryption

in attribute-based access control system exploiting metadata.

Alternatively, we address the issue of delegation by leveraging

the well established SAML protocol and its SAML2Delegate
extension, which increases system security with a reasonable

performance overhead (see Section 5).

Payment models: According to the view of the VISION

Cloud project, Cloud federation may represent a compelling

business model for SMEs, where many stockholders (i.e.,

Cloud providers, tenants and customers) interact with each

other for creating new opportunities and satisfying even more

needs. Relevant work is presented in [17], where the authors

are able to estimate what the revenues are when services

are outsourced in federated clouds. The authors introduced

a formula able to capture Costs and Profits. The federation

described in [17] is aimed at computation management (con-

solidation of VMs among Clouds). It shows similarities to the

work done by Celesti et al. [18] and Rochwerger et al. [19],

where the federation problems for data management between

several IaaSs are addressed. In the latter case the authors

described how to elastically enlarge the physical resource of

an IaaS in a transparent way. Unlike this work, we address a

different pricing model, which takes into account the amount

of data and the speed of its transfer.

8 CONCLUSIONS AND FUTURE WORK

In this paper we presented the concept of on-boarding

federation for storage clouds. We described and implemented

an on-boarding federation architecture over the VISION Cloud

infrastructure, showing that small objects can be on-boarded

with only a 24% overhead. Addressing security issues, we

discussed several access control architectures, evaluating their

suitability for on-boarding. We implemented and compared

several access control protocols, analyzing their influence on

performance. We observed that even well established protocols

like SAML can be safely used to increase system security,

while adding a reasonable overhead. When analyzing the

existing solutions to transfer data between clouds, we came

to a conclusion that the cost for the client to do on-boarding

on its own is high, and that there is a need for direct cloud

to cloud on-boarding. Since the proposed architecture, does

not require any changes in the infrastructure of the Old

Cloud, it can be used to on-board data from existing clouds

like Amazon S3. We introduced the notion of on-boarding

overhead and used it to show that large amounts of data with

low network bandwidth leads to stickiness of the data at the

storage provider.
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