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Abstract. Empowering application programmers to make energy-aware
decisions is a critical dimension of energy optimization for computer
systems. In this paper, we study the energy impact of alternative data
management choices by programmers, such as data access patterns, data
precision choices, and data organization. Second, we attempt to build a
bridge between application-level energy management and hardware-level
energy management, by elucidating how various application-level data
management features respond to Dynamic Voltage and Frequency Scal-
ing (DVFS). Finally, we apply our findings to real-world applications,
demonstrating their potential for guiding application-level energy opti-
mization. The empirical study is particularly relevant in the Big Data
era, where data-intensive applications are large energy consumers, and
their energy efficiency is strongly correlated to how data are maintained
and handled in programs.
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1 Introduction

Modern computing platforms are experiencing an unprecedented diversification.
Beneath the popularity of the Internet of Things, Android phones, Apple iWatch
and Unmanned Aerial Vehicles, a critical looming concern is energy consump-
tion. Traditionally addressed by hardware-level (e.g., [11,5]) and system-level ap-
proaches (e.g., [7,18]), energy optimization is gaining momentum at the level of
application development [1,3,4,13,15,23]. These application-level energy manage-
ment strategies complement lower-level strategies with an expanded optimiza-
tion space, yielding distinctive advantages: first, applications are viewed as a
white box, whose structural features may be considered for energy optimization;
second, the knowledge of programmers and their design choices can influence
energy efficiency. Recent studies [16] show application-level energy management
is in high demand among application developers.

The grand challenge ahead is the lack of systematic guidelines for application-
level energy management. Unlike lower-level energy management strategies that
often happen “under the hood,” application-level energy management requires
the participation of application software developers. For example, programmers
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need to understand the energy behaviors at different levels of software granular-
ities in order to make judicious design decisions, and thus improve the energy ef-
ficiency. As indicated in recent studies, the devil often lies with the details [2,17],
and the guidelines are often anecdotal or incorrect [16]. Should we pessimisti-
cally accept that the optimization space of application-level energy management
as unchartable waters, or is there wisdom we can generalize and share with
application developers in their energy-aware software development?

This paper is aimed at exploring this important yet largely uncharted opti-
mization space. Even though the energy impact of arbitrary developer decisions
— e.g., using encryptions when the battery level is high and no security other-
wise — is impossible to generalize and quantify, we believe a sub-category of such
design decisions — those related to data — have interesting and generalizable
correlations with energy consumption. With Big Data applications on the rise,
we believe the data-oriented perspective on studying application-level energy
management may in addition have the forward-looking appeal on future energy-
aware software development. In particular, we attempt to answer the following
research questions:

RQ1 How does the choice of application-level data management features impact
energy consumption?

RQ2 How does application-level energy management interact with hardware-level
energy management?

For RQ1, we consciously look into features “middle-of-the-road” in gran-
ularity: they are coarser-grained than instructions [22] or bytecode [10,14] to
help retain the high-level intentions of application developers, yet at the same
time finer-grained than software architectures or frameworks to facilitate reliable
quantification. Specifically, we study the impact of energy consumption over dif-
ferent choices of:

– data access pattern: For a large amount of data, does the pattern of access
(sequential vs. random, read vs. write) impact energy consumption?

– data organization and representation: Do different representations of the
same data (unboxed vs. boxed data, a primitive array vs. an ArrayList, an
array of objects vs. multiple arrays of primitive data) have impact on energy
consumption?

– data precision: Do precision levels (e.g., short, int, and long) of data have
impact on energy consumption?

– data I/O strategies : For I/O-intensive applications, do different choices of
data processing — such as buffering — have impact on energy consumption?

To answer RQ2, we are aimed at connecting application-level energy man-
agement and its lower-level counterparts. It is our belief that energy consump-
tion is the combined effect of interactions through application software, system
software, and hardware; the best energy management strategy should be the
harmonious coordination of all layers of the compute stack. Concretely, we rein-
vestigate the aforementioned data-oriented application features in the context of
Dynamic Voltage and Frequency Scaling (DVFS) [11], arguably the most classic



Data-Oriented Characterization of Application-Level Energy Optimization 3

hardware-based energy management strategy. This exploration expands the en-
ergy optimization space where “software meets hardware, ” over a frontier where
software engineering research joins forces with hardware architecture research.

Overall, this paper makes the following contributions:

– It performs the first empirical study that systematically characterizes the
optimization space of application-level energy management, from the fresh
perspective of data. The multi-dimensional study ranges from data access
pattern, data organization and representation, data precision, and data I/O
intensity.

– It conducts experiments to bridge application-level and hardware-level en-
ergy management, and constructs a unified optimization space connecting
hardware and application software.

– It reports the release of jRAPL, an open-source library to precisely and non-
invasively gather energy/performance information of Java programs running
on Intel CPUs.

2 Methodology

In this section, we introduce our research methodology and the details of our
experimental environment.

2.1 The Open-Source jRAPL Library

We have developed a set of APIs for profiling Java programs running on CPUs
with Running Average Power Limit (RAPL) [5] support. Originally designed by
Intel for enabling chip-level power management, RAPL is widely supported in
today’s Intel architectures, including Xeon server-level CPUs and the popular
i5 and i7. RAPL-enabled architectures monitor the energy consumption infor-
mation and store it in Machine-Specific Registers (MSRs). Such MSRs can be
accessed by OS, such as the msr kernel module in Linux. RAPL is an appealing
design, particularly because it allows energy/power consumption to be reported
at a fine-grained manner, e.g., monitoring CPU core, CPU uncore (L3 cache,
on-chip GPUs, and interconnects), and DRAM separately.

Our library can be viewed as a software wrapper to access the MSRs. The
RAPL interface itself has broader support for energy management, whereas our
library only uses its capability for information gathering, a mode in RAPL named
“energy metering.” Since the msr module under Linux runs in privileged kernel
mode, jRAPL works in a similar manner as system calls.

The user interface for jRAPL is simple. For any block of code in the appli-
cation whose energy/performance information is to the interest of the user, she
simply needs to enclose the code block with a pair of statCheck invocations. For
example, the following code snippet attempts to measure the energy consump-
tion of the doWork method, whose value is the difference between beginning

and end:

double beginning = EnergyCheck.statCheck();

doWork();

double end = EnergyCheck.statCheck();
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Additional APIs also allow time and other lower-level hardware performance
counter information (for diagnostics) to be collected. The API can flexibly collect
either CPU time, User Mode time, Kernel Mode time, and Wall Clock time. If
not explicitly specified, all time reported in the paper is Wall Clock time. When
a CPU consists of multiple cores, jRAPL can report data either individually or
combined. Throughout the paper, all energy/power data for multi-core CPUs
are reported as combined.

Compared with traditional approaches based on physical energy meters, the
jRAPL-based approach comes with several unique advantages:

– Refined Energy Analysis: thanks to RAPL, our library can not only report
the overall energy consumption of the program, but also the breakdown (1)
among hardware components and (2) among program components (such as
methods and code blocks). As we shall see, refined hardware-based analysis
allows us to understand the relative activeness of different hardware compo-
nents, ultimately playing an important role in analyzing the energy behaviors
of programs. In meter-based approaches, hardware design constraints often
make it impossible to measure a particular hardware component (such as
CPU cores only, or even DRAMs because they often share the power supply
cable with the motherboard).

– Synchronization-Free Measurement : in meter-based measurements, a some-
what thorny issue is to synchronize the beginning/end of measurement with
the beginning/end of the program execution of interest. This problem is
magnified for fine-grained code-block based measurement, where the prob-
lem de facto becomes the synchronization of measurement and the program
counter. With jRAPL, the demarcation of measurement coincides with that
of execution; no synchronization is needed.

One drawback of the jRAPL-based approach is the energy data collection
itself may incur overhead. Fortunately, the time overhead for MSR access is in
the microseconds, orders of magnitude lower than the execution time of our
experiments.

2.2 Experimental Environment

We run each experiment in the following machine: a 2×8-core (32-cores when
hyper-threading is enabled) Intel(R) Xeon(R) E5-2670, 2.60GHz, with 64GB of
DDR3 1600 memory. It has three cache levels (L1, L2 and L3) with 64KB per
core (128KB total), 256KB per core (512KB total) and 3MB (smart cache),
respectively. It is running Debian 6 (kernel 3.0.0-1-amd64) and Oracle HotSpot
64-Bit Server VM (build 20.1-b02, mixed mode), JDK version 1.6.0 26. The
processor has the capability of running at several frequency levels, varying from
1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4 and 2.6 GHz.

For the JVM, the parallel garbage collector is used, and just-in-time (JIT)
compilation is enabled to be realistic with real-world Java applications. The ini-
tial heap size and maximum heap size are set to be 1GB and 16GB respectively.
We run each benchmark 6 times within the same JVM; this is implemented by a
top-level 6-iteration loop over each benchmark. The reported data is the average
of the last 4 runs. We chose to report the last 4 runs because JIT execution
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tends to stabilize in the later runs [17]. If the standard deviation of such 4 runs
is greater than 5%, we executed the benchmark again until results stabilize. All
experiments were performed with no other load on the OS. Unless explicitly
specified in the paper, the default ondemand governor of Linux is used for OS
power management. Turbo Boost feature is disabled.

3 Application-Level Energy Management

This section explores the optimization space of application-level energy manage-
ment through five data-oriented characterizations.

3.1 Data Access Patterns

We first examine how energy consumption differs under sequential and random
access. By access, we consider both read and write operations. The read micro-
benchmark traverses a large int array (of size N=50,000,000) and retrieves the
value at each position, while the write counterpart micro-benchmark assigns in-
teger 1 to each position. To construct a fair comparison between sequential and
random access, we resort to an “index array” preloaded with index numbers:
numbers from 1 to N in that order for sequential access, and a random permuta-
tion of numbers between 1 and N for random access. Thanks to the index array,
the program logic is identical for sequential and random access. The reported
results do not consider index array preloading.
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The figure on the right shows3 the
benchmarking results, with bars for
energy data and lines for power data.
We do not explicitly show the execu-
tion time, which by physics, can be
derived as the division of energy and
power. There are 10 bars for each fig-
ure, the first five of which (with prefix
W) indicate write access, and the re-
maining five (with prefix R) indicate
read access. In each group, suffix 1 represents 100% randomness in access, 2 for
25% randomness, 3 for 1% randomness, and 4 for 0.1% randomness, and 5 for
0% randomness, i.e., sequential access. The level of randomness is controlled by
index range: e.g., we imitate 1% random access by allowing random permutation
within each N × 1% interval of the array.

The data reveals the significant impact of access randomness on energy con-
sumption. The more random data access is, the more energy is consumed. This
is consistent with hardware behaviors due to cache locality. Further observe that
read vs. write accesses make little difference on energy consumption. The conven-
tional folklore is that writes are often more expensive than reads, but this effect,
if any, appears to be small on energy consumption. In fact, in one combination
R3 vs. W3, the opposite is true.

3Throughout the paper, all bar charts follow the same legends as those in this figure.
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3.2 Data Representation Strategies

Let us now investigate the impact of different data representation strategies on
energy consumption. First, we look into the difference between representing a
sequence of integers as a primitive array and as an ArrayList. We construct a
similar experiment as one described in Section 3.1, by traversing an ArrayList

of Integer’s of a large size (N = 50,000,000). We mimic “read” through the
List.get(int i) method, and “write” through the List.set(int i, Object

o) method.
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The results of the ArrayList im-
plementation are shown the figure
on the right, where SEQ/RAN/R/W la-
bels denote sequential, 100% ran-
dom, read, and write access, respec-
tively. Compared with Section 3.1, en-
ergy consumption is much higher: the
RAN-R configuration with primitive ar-
ray representation consumes around
670J, whereas its counterpart result
here is around 1550J. This does not come as a surprise. ArrayList uses boxed
data (of Integer type) whereas our primitive array implementation uses un-
boxed data (of int type). Furthermore, the getter/setter required by ArrayList

are method invocations, more expensive than primitive array read/write.
This experiment motivated us to answer a more general question related to

object-oriented languages: when we say an object is accessed, which representa-
tion of the object is being accessed: a reference to it, a value it holds, or the type
it has? Do they have the same effect on energy consumption? We construct the
next experiments, in three groups:

– Reference Query (RQ): accesses the reference of an Integer object;
– Type Query (TQ): accesses the type held by an Integer object;
– Value Query (VQ): accesses the value that an Integer object holds;
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The result on the right is divided
into three groups as above. In each
group, postfix 1 denotes 100% ran-
dom access, 2 denotes 25% random ac-
cess, and 3 denotes sequential access.
For the TQ experiment, our bench-
mark applies instanceof operator to
the object. To avoid source-level com-
piler optimization performed by mod-
ern Java compilers such as transform-
ing expression x instanceof Integer to a no-op if x is only assigned to hold
an Integer object, our micro-benchmark assigns objects of different types to
reference x, and the instanceof operator cannot be optimized away through
standard points-to analysis.

RQ and TQ are both more efficient than VQ. According to the runtime
semantics of object-oriented programs, RQ only entails a stack access, whereas
VQ includes access to the heap, a much more expensive operation.
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class Grouped {

int a, b, c, d, e = ...;

}

class Main {

Grouped[] group = ...;

void calc() {

for (int i = 0; i < N; i++) {

group[i].e = group[i].a * group[i].b * group[i].c * group[i].d;

}}}

Fig. 1. Object-Centric Data Grouping

class Main {

int[] a = ..; int[] b = ..; int[] c = ..; int[] d = ..; int[] e = ..;

void calc() {

for (int i = 0; i < N; i++) {

e[i] = a[i] * b[i] * c[i] * d[i];

}}}

Fig. 2. Attribute-Centric Data Grouping

Less obvious is the case of TQ. On one hand, the type of an object is stored
as object metadata, whose access also requires heap access. As a result, TQ is
more expensive than RQ. On the other hand, all objects of the same type share
the same metadata representing the type, and repeated queries of the same type
yield high cache hits. As a result, TQ is cheaper than VQ.

3.3 Data Organization

In the next experiment, we consider two programs in Figure 1 and Figure 2.
Functionally equivalent, the first object-centric program accesses a large array
(of size N=50,000,000) of objects with 5 fields, and the second attribute-centric
program accesses 5 primitive arrays.
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As shown here, the object-centric
data grouping consumes about 2.62x
energy. The results here may re-
veal a trade-off between program-
ming productivity and energy effi-
ciency. Object-oriented encapsulation
is known to have many benefits,
such as modularity, information hid-
ing, and maintainability. That being
said, it does pay a toll on energy con-
sumption, likely due to garbage collection. Another plausible cause is that there
is no guarantee that objects in the array are allocated in contiguous space on
the heap. As a result, even though Fig. 1 may be cache-friendly for retrieving
the 5 fields for the same object, it may incur more cache misses when the entire
array is traversed.
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3.4 Data Precision Choices

We next analyze the impact of data precision choices on energy consumption.
Our micro-benchmark performs the multiplication of two 1000 × 1000 matri-
ces. For our experiments, we vary the matrix element type, declared with the
short, int, float, double, and long types respectively for each variation of the
benchmark. In our environment, short/int/float/double/long data types are
16/32/32/64/64 bits respectively. To set a fair comparison, we pre-fill matrices
with double values through random number generation. All other variations
of the benchmark pre-fill their matrix data through data conversion from the
double matrix. In other words, all experiments operate on matrices of com-
parable values, only with different precisions. Our reported results exclude the
pre-filling/converting stage above.
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Our experiments show that en-
ergy consumption grows with the
number of bits (a) among the non-
floating point data types, as reflected
by the relative standings between
short, int, and long. (b) among
floating point data types, as seen in
the relative standings between float

and double. Both are consistent with
architecture-level comparisons, where
instructions operating on more bytes/words are more expensive.

It is however unreliable to use the number of bits to cross-compare between
non-floating point types and floating point types. Programs with floating point
types involve the use of FPUs. Based on our experience, one must be cautious to
draw generalizations from cross-comparisons between FPU-intensive programs
and those otherwise. For instance, the two 32-bit types used in our benchmarking
— int and float — appear to incur similar amounts of energy consumption.
As we shall see in the Section 5 however, the two may also lead to drastically
different consumptions. It is a reminder for energy-conscious programmers who
wish to save energy by modifying their float-precision program to one with int

precision — the strategy may or may not be effective.

3.5 Data I/O Configurations
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Finally, we analyze the energy be-
haviors of I/O operations. We con-
struct two micro-benchmarks that
read and write 50MB data from/to
a file, using FileInputStream and
FileOutputStream objects respec-
tively. For the read benchmark,
we create two variations, one with
buffering through the use of the
BufferedInputStream object, and
the other without. Similarly, the write benchmark has two variations. The one
with buffering uses the BufferedOutputStream object.
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As the figure reveals, buffering has significant impact on improving energy
efficiency. Indeed, buffer removal in essence disables bulking of I/O operations,
so its effect on energy consumption is dramatic. Furthermore, observe that data
output is significantly more energy-consuming than data input. Third, the power
consumption of unbuffered file access (about 10W) is lower than that of buffered
access. Unbuffered file access leads to a much higher level of I/O intensity. As a
result, CPU is more likely to remain idle, and more likely to be scaled down by
Linux’s default power management strategy, the ondemand governor.

RQ1 Summary: Random access, object-centric data organization, un-
buffered I/O consume significantly more energy. The energy consumption for
memory read and write are on par, but file write is significantly more expen-
sive than file read. Data types with more bits tend to consume more energy,
but there is no simple generalization to cross-compare FPU-intensive types
and those that are not.

4 Unifying Application-Level Optimization with DVFS

This section places application-level energy management in a broader context,
investigating its combined impact with hardware-based energy management.

Background. DVFS [11] is a common CPU feature where the operational fre-
quency and the supply voltage of the CPU can be dynamically adjusted. DVFS
is a classic and effective power management strategy. The dynamic power con-
sumption of a CPU, denoted as P , can be computed as P = C ∗ V 2

∗ F , where
V is the voltage, F is the frequency, and C is a (near constant) factor. The
energy consumption E is an accumulation of power consumption over time t,
i.e., through formula E = P ∗ t.

Result Summary. We have conducted the same experiments reported in the
previous section, except that the executions are conducted at different CPU
frequencies. Due to page limit, we defer the complete data set in the online
repository (see Section 8 for information). Figure 3 and Figure 4 report selected
results. All figures are represented as heat map matrices.

A common trend among these experiments is that downscaling CPU often
leads to less “favorable” results: in the majority of experiments, not only there
will be a performance loss, but also increased energy consumption. The root
cause is that DVFS only directly influences the CPU power consumption. The
power consumptions for the Uncore and the DRAM sub-systems remain roughly
constant. Thus, since time increases as frequency decreases, energy consumption
for these sub-systems increases as well when a lower CPU frequency is selected.
This is a sober reminder of the applicability of DVFS as an energy management
strategy: whereas downscaling can be effective in some scenarios, blind DVFS
is likely to fall short in goals. This somewhat pessimistic conclusion does have
a positive “coda” — thanks to the difference between micro-benchmarks and
real-world applications — a discussion we will continue in Section 5.

Furthermore, observe that we have adopted a very narrow view to equate
“being favorable” as being able to save energy. As an example beyond this view,
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Fig. 3. Selected Energy Results of DVFS Combined with Data Access, Data Represen-
tation, and Data Precision. (Labels on top are CPU frequencies, and labels to the left
are random/sequential access patterns. All data are normalized energy consumption
against the 2.6Ghz data of the same row. Red indicates savings, whereas Blue indicates
loss. The darker the Red shade, the more “favorable” the configuration is, i.e., greater
energy savings. The darker the Blue shade, the more “unfavorable” the configuration
is i.e., greater energy loss.)

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

O/B

O/U

0.3 0.36 0.27 0.16 0.14 0.11 0.08 0.0

-0.62 -0.51 -0.7 -0.31 -0.69 -0.61 -0.57 0.0

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

I/B

I/U

0.41 0.34 0.52 0.32 0.58 0.6 0.16 0.0

-0.64 -0.56 -0.33 -0.27 -0.19 -0.13 -0.05 0.0

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

O/B

O/U

-0.09 -0.05 -0.05 -0.02 -0.02 0.0 0.0 0.0

-1.08 -0.76 -0.56 -0.52 -0.35 -0.15 -0.08 0.0

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

I/B

I/U

-0.25 -0.07 0.06 0.17 0.25 0.32 -0.12 0.0

-1.15 -0.99 -0.63 -0.49 -0.35 -0.22 -0.09 0.0

output energy input energy output time input time

Fig. 4. DVFS and Data I/O (O: Output, I: Input, B: Buffered, U: Unbuffered)

running CPUs at the lowest frequency may reduce heat dissipation, and improve
the reliability of program execution.

Overall, our results can serve as a “lookup” chart to guide energy-aware
programmers to desirable combinations of application-level energy management
and hardware-level energy management. For example, if a programmer wishes to
randomly access an array and query the value held by the array element object
(VQ+Randomness) with a fixed energy budget, she can look up the results from
Figure 3, and run the program either at 2GHz or at 2.6Ghz. The former may
reduce heat dissipation, whereas the latter may produce results faster.

Specific Findings. In Figure 3, observe that for VQ+Randomness, 100% ran-
dom access or 25% random access at frequencies of 2.4GHz, 2.2GHz, 2GHz, and
1.8GHz can all yield energy savings. There is a performance loss in these con-
figurations, but the loss is also smaller than their more sequential counterparts.
These configurations may be useful for energy management since they represent
a possible trade-off between energy saving and performance loss. The more ran-
dom access patterns react to DVFS more gracefully because random access leads
to more cache misses and instruction pipeline stalls. As a result, the CPU more
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frequently “waits for” data fetch. When the CPU frequencies are lowered, the
relative impact on performance is smaller.

The most encouraging results come from Figure 4. Here, especially in the
buffered I/Os, lowering CPU frequency can often yield energy savings. This is
dramatic for cases such as buffered input (I/B), where the energy consumption
for 2.2GHz is less than half of that of 2.6GHz, whereas the execution time at
2.2GHz turns out being shorter than that of 2.6GHz. This is a “sweet spot” in
energy management: the program is not only more energy-efficient, but also runs
faster. The cause behind this behavior is that CPUs running such I/O-intensive
benchmarks are mostly idle, so lowering the CPU frequency has little impact on
performance, but can significantly save energy. The improved performance may
come as a mild surprise to some; we believe this demonstrates the execution time
is not bound by CPU, but the storage system. The operations of the latter are
often less deterministic, causing delays at unpredictable times.

RQ2 Summary: Blindly downscaling CPU frequency often leads to in-
creased energy consumption and performance loss. Downscaling can play a
prominent role in the energy optimization of I/O-intensive benchmarks.

5 Case Study

In this section we apply our findings to two real-world benchmarks, Sunflow
and Xalan, from the well-known DaCapo suite benchmark4.

Sunflow renders a set of images using ray tracing, a CPU-intensive bench-
mark. The original program represents rendering data in type double. We per-
formed our experiments by varying the data types appearing in the rendering
method from double to short, int, float, and long. The rest of the source
code remained unchanged.
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The results here confirm some pat-
terns from micro-benchmarking: for
instance, short still consumes less
energy than int, and float is still
cheaper than double. The figure here
highlights the non-comparability be-
tween floating point types and non-
floating point types. The rendering
process of Sunflow involves com-
plex floating point operations (such as
division), leading to heavy overhead
on FPU operations (such as round-
ing [8]). In other words, these heavy operations significantly outpace their
short/int/long counterparts in execution time, and subsequently energy con-
sumption.

Another observation is that the difference in energy consumption of short,
int and long is not as drastic as the one in micro-benchmarking. The same also
holds for the difference between float and double. Real-world programs such as

4http://www.dacapobench.org

http://www.dacapobench.org
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Fig. 5. Xalan Results

Sunflow are more likely to lead to instruction pipeline stalls (due to branching,
synchronization, etc) than micro-benchmarks, and we speculate these additional
stalls may help mask some of the difference.

Even though Sunflow is a complex application — it has more than 22,000
lines of Java code — we observed that a simple modification on the data types of
a single method can have a considerable influence on the overall energy consump-
tion of the application. In this example, the energy-aware programmer needs to
balance the trade-off between energy efficiency and accuracy.

Xalan transforms XML documents into HTML. This benchmark performs
reads and writes from input/output channels, and it has 170,572 lines of Java
code. In its default version, the benchmark does not use a buffer. We add buffers
to two program points in the XSLTBench class. With this modification, we ob-
served an energy saving of 4.29%. Execution time kept roughly the same. The
first figure in Figure 5 shows the results. On one hand, the savings here are not as
“dramatic” as what micro-benchmarking showed. On the other hand, real-world
applications often consume more energy, so a small percentage of savings can
still make a difference (4.29% for Xalan implies more than 20J). The insights
from micro-benchmarking guide us to identify and perform this optimization.

We also studied the impact of DVFS on Xalan, with results shown in the
same figure. In all configurations, executing Xalan can lead to energy savings
than running it at 2.6Ghz. This is consistent with our findings in the micro-
benchmarking, because Xalan does perform significant I/O operations on files.
DVFS may be useful for Xalan when one is willing to trade performance for
energy savings.

The power consumptions of Sunflow and Xalan also deserve attention.
Different applications operate on very different power levels: the CPU power for
Sunflow nearly doubles that for Xalan. Our power analysis is consistent with
the established fact that Sunflow is a CPU-intensive benchmark.

Finally, the gap between CPU power consumption and Uncore/DRAM power
consumption is much larger than those in micro-benchmarks. This is good news
for CPU-centric energy management strategies such as DVFS: they may some-
times be ineffective for micro-benchmarks because Uncore/DRAM power con-
sumption has a large proportion to offset the savings from CPUs, the propor-
tional offset is smaller when we apply these strategies to real-world benchmarks.
To validate this, we conducted the data precision experiment of Sunflow over
different CPU frequencies and produced a counterpart of the Precision heat map
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of Fig. 3. As it turns out, unlike all cells are blue in the Precision heat map of
Fig. 3, most cells are red for Sunflow. In other words, 2.6GHz is not the most
energy-saving frequency for data precision choices. Readers can find the detailed
data of this result in our online repository.

6 Threats to Validity

Internal factors: First, accessing MSRs also consumes energy (see discussions
in Section 2.1). This overhead cannot be ignored if MSR accesses are too fre-
quent, e.g., at microsecond intervals. We mitigate this problem by using the
RAPL interface only at the beginning and at the end of the benchmark execu-
tion. Second, the readings from the RAPL interface are hardware (CPU core or
socket)-based. It cannot isolate the energy consumption of OS execution, VM
execution, and application execution. As our experiments are mostly set up to
be comparative — such as demonstrating the difference in energy consumption
between sequential vs. random access — and our OS/VM settings remain un-
changed throughout experiments, the root cause of relative difference in energy
consumption for different experiments is likely to be the (direct and indirect)
effect of the application, not OS or VM. Third, analyzing code with a short
execution time may disproportionally amplify the noise from hardware and OS.
We mitigate this problem by increasing the execution length of our benchmarks
(such as via designing the benchmark to operate on a large amount of data) and
averaging the results of multiple executions.

External factors: First, our results are limited by our selection of benchmarks.
Second, there are other possible data manipulations beyond the scope of this
paper. With our tool, we expect similar analysis can be conducted in the future
when other aspects of data-related application features become relevant. Third,
our results are reported with the assumption that JIT is enabled. This stems from
our observation that later runs of JIT-enabled executions do stabilize in terms
of energy consumption and performance. We experienced differences in standard
deviation of over 30% when comparing the warmup run (first 2 executions) and
later runs, but less than 5% when comparing the last 4 runs.

7 Related Work

Application-level energy management. In recent years, a number of studies have
explored energy management strategies at the application level as an attempt to
empower the application programmer to take energy-aware decisions. Some fo-
cus on the design of new programming models, with examples such as Green [1],
Energy Types [4], and Eco [23]. In these systems, recurring patterns of energy
management tasks are incarnated as first-class citizens. Approximated program-
ming [3] trades and reasons about occasional “soft errors”, i.e., errors that may
reduce the accuracy of the results, for a reduction in energy consumption. The
relationship between this line of work and our work is complementary: existing
work provides language support to facilitate energy optimization, whereas our
work experimentally and empirically establishes the room of the energy opti-
mization space.
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Energy measurement. Energy measurement is a broad area of research. Prior
work has attempted to model energy consumption at the individual instruction
level [22], system call level [6], and bytecode level [20]. Recent progress also
includes fine-grained measurement for Android programs [10,14], with detailed
energy measurement of different hardware components such as camera, Wi-Fi
and GPS. RAPL-based energy measurement has appeared in recent literature
(e.g., [12,21]); its precision and reliability has been extensively studied [9].

Empirical studies. Existing research that dealt with the trade-off of comparing
individual components of an application and energy consumption has covered
a wide spectrum of applications. These studies vary from concurrent program-
ming [17], VM services [2,12], cloud offloading [13], and refactoring [19]. To the
best of our knowledge, our study is the first in exploring how different choices
of fine-grained data manipulation impact on the energy consumption of differ-
ent hardware sub-systems, and how application-level energy management and
lower-level energy management interact.

8 Conclusion

In this paper, we take a data-centric view to empirically study the optimization
space of application-level energy management. Our investigation is distinctive
for several reasons: (1) it focuses on application-level features, instead of hard-
ware performance counters, CPU instructions, or VM bytecode; (2) it is carried
out from the data-oriented perspective, charting an optimization space often
known to be too “application-specific” to quantify and generalize; (3) it offers
the first clues on the impact of unifying application-level energy management
and hardware-level energy management; (4) it provides an in-depth analysis from
a whole-system perspective, considering energy consumption not only resulting
from CPU cores, but also from caches and DRAM.

The focus of this paper lies upon “charting” the optimization space. In the fu-
ture, we are interested in applying the findings in this paper — together with the
library we developed — to application-level energy optimization. Two directions
that appear to fit nicely with our study are (1) energy co-optimization through
program refactoring and deployment-site configuration; (2) energy optimization
through search-based software engineering, such as applying the data-oriented
characterizations described in the paper as the dimensions of search space, and
jRAPL as a tool, for software energy optimization.

A full set of the experimental results, the source code of jRAPL, the bench-
marks, and all raw data, can be found online at http://kliu20.github.io/

jRAPL/.
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9. M. Hähnel, B. Döbel, M. Völp, and H. Härtig. Measuring energy consumption

for short code paths using rapl. SIGMETRICS Perform. Eval. Rev., 40(3):13–17,
January 2012.

10. S. Hao, D. Li, W. Halfond, and R. Govindan. Estimating mobile application energy
consumption using program analysis. In ICSE, 2013.

11. M. Horowitz, T. Indermaur, and R. Gonzalez. Low-power digital design. In Low

Power Electronics, 1994. IEEE Symposium, 1994.
12. Melanie Kambadur and Martha A. Kim. An experimental survey of energy man-

agement across the stack. In OOPSLA, pages 329–344, 2014.
13. Y. Kwon and E. Tilevich. Reducing the energy consumption of mobile applications

behind the scenes. In ICSM, 2013.
14. D. Li, S. Hao, W. Halfond, and R. Govindan. Calculating source line level energy

information for android applications. In ISSTA, 2013.
15. Yu David Liu. Energy-efficient synchronization through program patterns. In

Proceedings of GREENS’12, 2012.
16. G. Pinto, F. Castor, and Y. Liu. Mining questions about software energy consump-

tion. In MSR, 2014.
17. G. Pinto, F. Castor, and Y. Liu. Understanding energy behaviors of thread man-

agement constructs. In OOPSLA, 2014.
18. H. Ribic and Y. Liu. Energy-efficient work-stealing language runtimes. In ASPLOS,

2014.
19. C. Sahin, L. Pollock, and J. Clause. How do code refactorings affect energy usage?

In ESEM, 2014.
20. C. Seo, S. Malek, and N. Medvidovic. Estimating the energy consumption in

pervasive java-based systems. In PerCom, 2008.
21. Balaji Subramaniam and Wu-chun Feng. Towards energy-proportional computing

for enterprise-class server workloads. In ICPE, 2013.
22. V. Tiwari, S. Malik, A. Wolfe, and M. Lee. Instruction level power analysis and

optimization of software. Journal of VLSI Signal Processing, 13:1–18, 1996.
23. Haitao Steve Zhu, Chaoren Lin, and Yu David Liu. A programming model for

sustainable software. In ICSE’15, May 2015.


	Data-Oriented Characterization of Application-Level Energy Optimization

