
Technical Report CSTN-073

Data Parallel Three-Dimensional Cahn-Hilliard Field Equation
Simulation on GPUs with CUDA

D.P. Playne and K.A. Hawick
Computer Science, Institute for Information and Mathematical Sciences,

Massey University, North Shore 102-904, Auckland, New Zealand
d.p.playne@massey.ac.nz; k.a.hawick@massey.ac.nz

Tel: +64 9 414 0800 Fax: +64 9 441 8181

Abstract

Computational scientific simulations have long used par-
allel computers to increase their performance. Recently
graphics cards have been utilised to provide this function-
ality. GPGPU APIs such as NVidia’s CUDA can be used to
harness the power of GPUs for purposes other than com-
puter graphics. GPUs are designed for processing two-
dimensional data. In previous work we have presented sev-
eral two-dimensional Cahn-Hilliard simulations that each
utilise different CUDA memory types and compared their
results. In this paper we extend these ideas to three di-
mensions. As GPUs are not intended for processing three-
dimensional data arrays, the performance of the memory
optimisations is expected to change. Here we present
several three-dimensional Cahn-Hilliard simulations to ex-
plore the challenges and the performance of the different
memory types in three-dimensions. The results show that
the simulation design with the best performance in three-
dimensions uses a different memory type to the optimal
two-dimensional simulation.

Keywords: GPGPU; CUDA; Cahn-Hilliard; Data-
Parallel.

1 Introduction

With the release of several GPGPU APIs in recent years,
utilising Graphical Processing Units or GPUs for scientific
simulations has become increasingly popular [1–9]. GPUs
provide a great deal of computational power compared to a
traditional CPU. Programs that execute on a GPU can oper-
ate many times faster than their CPU counter-parts. How-
ever, this performance gain depends heavily on the ability

to decompose the program into many threads that can exe-
cute independently of one another. High speed-up factors
are also strongly affected by the memory type and access
patterns used [10]. This article extends our previous re-
search on GPU methods for simulating the Cahn-Hilliard
(CH) equation [11] by extending the simulation to three-
dimensions.

In Sections: 2 and 3 we discuss the capabilities and archi-
tecture of GPUs and the role of NVidia’s CUDA [5] with
specific focus on the GPU memory types it exposes. Sec-
tions: 4 and 5 provide a brief introduction to the Cahn-
Hilliard field equation and the basic method of decompos-
ing a CH simulation onto a GPU. Section: 6 describes 5
kernel designs (A-E) for simulating the Cahn-Hilliard equa-
tion in three-dimensions. And finally a discussion of the
simulations, their results and a summary are presented in
Sections: 7 and 8.

2 Graphical Processing Units

Graphical Processing Units or GPUs are specialised proces-
sors designed for calculating the complex graphics pipeline
required for three-dimensional computer graphics in real-
time. GPUs contain several multiprocessors, each of which
contain many stream processors (at the time of writing a
typical high-end graphics card contains 240 stream proces-
sors). These stream processors can execute instructions in
parallel and provide GPUs with many times the computa-
tional power of a traditional CPU.

GPUs also contain several different types of memory that
are optimised for specific tasks within the graphics pipeline.
GPGPU libraries can utilise these types of memory for
purposes other than those they were initially intended for.
Choosing the memory type with optimisations best suited

to the requirements of a task can greatly increase the per-
formance of a GPU program [10].

The low-cost and high-computational power that GPUs
provide has lead to a rise in GPGPU in recent years.
GPGPU or General-Purpose computation on GPUs aims to
harness the power of GPUs for purposes other than com-
puter graphics. One obvious application of GPGPU is in
the area of scientific simulation. If a simulation can be de-
composed into a GPU program, it can execute many times
faster, allowing for larger simulations producing more ac-
curate results. Writing a program on GPU is not as sim-
ple as for a CPU. Writing programs that execute on GPUs
requires a GPGPU API [1–5]. There are several GPGPU
APIs currently available, the API used in this research is
NVIDIA’s CUDA.

3 NVIDIA’s CUDA

CUDA is a software environment that allows developers to
write programs in a C style language that will execute on
an NVIDIA GPU using the SIMT (single instruction multi-
ple thread) paradigm [5]. This paradigm is similar to SIMD
as each thread in a CUDA program will execute the same
piece of code or kernel. CUDA can provide the best per-
formance when the task is split into many threads organ-
ised into blocks, each containing a maximum of 512 threads
each. The exact computation each thread performs will de-
pend on its thread and block number. CUDA handles the
organisation and scheduling of these threads which is de-
scribed in detail in the CUDA Programming Guide [5].

CUDA Memory Types This article is concerned with the
types of memory that CUDA allows developers to access
and how they affect performance for three-dimensional data
sets. There are four types of memory in CUDA that can be
used for these data sets, each of which have different op-
timal access patterns. Using the correct memory or com-
bination of memory types is vital to achieving the optimal
kernel performance. The memory types are:

Global Memory is the largest type of device memory but
also has the slowest access times (approx 200-400 ms). Al-
though this is the slowest access time of any type of mem-
ory, there is a way to reduce the time required for several
memory transactions. If 16 sequential threads in a thread
block access 16 sequential addresses in memory, the 16
memory transactions can be combined into a single mem-
ory transaction with a process known as coalescing. Any
memory transactions that fill these constraints will automat-
ically be coalesced by CUDA.

Shared Memory can only be accessed by threads within
the same block. The host program cannot access shared
memory and thus it cannot be used to read the values from
the field. However, it can reduce the total number of global
memory transactions required. As neighbouring cells in the
field must access values from the same cells, there are many
duplicated global memory reads. Each thread can read the
value of its allocated cell from global memory and write
it into shared memory. All neighbouring threads can then
read this value from the fast shared memory as opposed to
the slow global memory.

Texture Memory is not exactly a separate type of mem-
ory but rather a cached method of accessing global memory.
When a value is first read from texture memory, it will read
the value and the surrounding values out of global mem-
ory into the texture cache. From this point on any value
within this area can be read directly out of the fast texture
cache. If there is a cache miss (ie the required value is not
in the cache) the texture memory cache will be reloaded
according to the new value. If all the threads in a block ac-
cess value from within a close spatial locality, this texture
memory can greatly decrease the time required for memory
access.

Constant Memory is similar to texture memory in that it
caches values from global memory. However, the constant
cache is optimised for multiple threads reading the same
value at the same time. If all the threads within a half-warp
(a set of 16 sequential threads [5]) access the same value
from constant memory, the transaction will be as fast as
accessing a value from registers. As this situation does not
occur often within our simulation, the constant cache is not
useful and no implementation makes use of it.

4 Cahn-Hilliard Equation

The Cahn-Hilliard equation models the phase separation
and domain growth of a binary alloy by approximating
the ration of A- and B-atoms within a discrete macro-
scopic cell. This equation is used by metallurgists to ex-
plore quenching methods and temperatures to produce the
strongest alloys possible. The Cahn-Hilliard equation can
be simulated in any number of dimensions in real-space us-
ing finite differences [12] or in Fourier space [13]. This
model is governed by the dimensionless equation:

∂φ

∂t
= m∇2

(
−bφ + uφ3 −K∇2φ

)
(1)

A CH simulation (like most field-equations) is well suited

to execution on a GPU. Both the CH simulation and image
processing involve computations on regular arrays with reg-
ular access patterns. Like the operations involved in com-
puting the graphics pipeline, updating the cells of the CH
equation can be performed independently and is thus well
suited to parallel execution. Optimising a GPU implemen-
tation of a CH simulation depends highly on the memory
type and access patterns used. To understand how useful
each type of memory will be to the simulation, the memory
access requirements of the CH model must be understood.

Memory Access

The CH equation (equation: 1) calculates the change in a
CH cell’s concentration value depending to the values of the
cells surrounding it. The memory access requirements are
determined by the Laplace and Laplace2 operators ∇2 and
∇4. These stencil operators can be applied to any number
of dimensions and the access requirements for one- two-
and three-dimensions can be seen in Figure: 1.

Figure 1: ∇4 in one- two- and three-dimensions.

5 Two-Dimensional Cahn-Hilliard
Simulations

In our previous work, it was found that the the most effi-
cient memory type for a two-dimensional CUDA CH sim-
ulation is texture memory [10]. Texture memory caches all
the values required by each block of threads which severely
increased performance. However, as only global memory
can be used to output data, each block of threads required a
width of 16 so that all writes to output memory where co-
alesced. Using this method, a speed-up factor of 50x was
achieved as compared to a traditional CPU simulation.

As previously mentioned, these two-dimensional systems
are very similar to the image processing tasks that graphics
cards are optimised for. The texture memory was very well
suited to the task and offered the best performance although
shared memory did offer a speed-up factor of 30x as com-
pared to the global memory speed-up of 13x. This research
aims to examine how GPU memory optimisations scale to
three (or potential higher) dimensions.

Figure 2: A visualisation of a 512x512 two-dimensional
Cahn-Hilliard field at t = 131072.

6 Three-Dimensional Cahn-Hilliard
Simulations

While two-dimensional CH simulations are useful, three-
dimensional simulations are more representative of a real-
world metal alloy (see Figure: 3). However, these three-
dimensional simulation are computationally more com-
plex. Three-dimensional simulations are also harder to
migrate onto GPU architectures. The GPU architectures
are designed mainly for two-dimensional processing and
are thus less well-suited to processing three-dimensional
fields. However, CUDA-enabled graphics cards do sup-
port some optimisations for three-dimensions such as three-
dimensional texture memory [5].

There are several options available for computing a three-
dimensional CH simulation with CUDA. Presented here are
five different designs (Kernels A-E) for this CUDA simula-
tion. Their results and performance gains are presented in
Section: 7.

6.1 Global Memory Approach

This approach uses global memory for all storage require-
ments. It is important that the every set of 16 sequential
threads access 16 sequential cell values to ensure that all
memory transactions are coalesced. As global memory is
the only memory that can be written to, this is an important
requirement for any kernel. It is expected that this approach
should be faster than the CPU version but slower than the
other kernels as it requires the most global memory trans-

Figure 3: A visualisation of a three-dimensional Cahn-
Hilliard field.

actions. However, it still represents a valuable baseline to
demonstrate the importance of correct memory use.

Kernel A is a multi-pass kernel using global memory,
each thread is responsible for calculating the change in con-
centration of one cell. Each thread will read one value at a
time from global memory. Provided that the width of the
thread block is a multiple of 16, all of these global memory
accesses will be coalesced. A code sample of this kernel is
shown in Listing: 1.

Listing 1: Code showing the input and output of Kernel A
(the reading of only five values are shown here, the others
are accessed in the same manner). (z,y,x) is the position of
the thread’s cell and (NZ, NY, NZ) is the size of the field.

/ / Read I n p u t
f l o a t czyxm1 = g l o b a l [z∗NY∗NX + y ∗NX + x−1];
f l o a t czym1x = g l o b a l [z∗NY∗NX + (y−1)∗NX + x] ;
f l o a t czyx = g l o b a l [z∗NY∗NX + y ∗NX + x] ;
f l o a t czyp1x = g l o b a l [z∗NY∗NX + (y +1)∗NX + x] ;
f l o a t czyxp1 = g l o b a l [z∗NY∗NX + y ∗NX + x + 1] ;
. . .
/ / Per form C a l c u l a t i o n
. . .
/ / W r i t e o u t p u t
g l o b a l o u t p u t [z∗NY∗NX + y∗NX + x] = r e s u l t ;

6.2 Shared Memory Approach

Shared memory can be used to minimise the number of
global memory transactions required. In this approach,
each thread reads one value from global memory and then
the rest from shared memory. There is a problem with this

method, the threads on the edge of the block cannot read
all surrounding values from shared memory. This problem
was overcome in two-dimensions by having a border of two
threads around the edge of the block that simply read val-
ues into the shared memory but perform no computation
themselves.

In a two-dimensional simulation, the thread block size cho-
sen was 16x16 which still fits within the 512 limit. Of these
256 threads (16x16) and 144 are computational threads
(12x12) after removing a 2 thread border required by the
memory access of the model (see Figure: 1). This was
found to work well in two-dimensions as all global memory
writes would still be coalesced (block width of 16), how-
ever this approach does not scale well to three-dimensions.

For our three-dimensional thread block, we wish to have
width of 16 threads is applied to ensure coalesced mem-
ory access. However, the best arrangment that is 16 threads
wide and fits within the 512 maximum is 16x5x5, which
leaves 12 out of 400 as computational threads. This is in-
efficient and so methods to improve the ratio of computa-
tional to total threads were explored. Kernel B is the simple
shared memory approach with 12 per 400 computational
threads and Kernel B and C are two kernels that implement
methods of improving this ratio.

Kernel B uses the simple method of having one thread
per cell and maintaining a block size of 16x5x5. This is the
only thread arrangement that allocates one cell per thread
and has coalesced global memory access. A section of code
showing the the use of shared memory in Kernel B can be
seen in Listing: 2.

Listing 2: Code showing the input and output of Kernel B.
(tz,ty,tx) is the thread’s id and (BZ, BY, BX) is the size of
each thread block.

/ / Read I n p u t
f l o a t c r c = g l o b a l [z ∗ NY ∗ NY + y ∗ NX + x] ;

s h a r e d [t z ∗BY∗BY + t y ∗BX + t x] = c r c ;
s y n c t h r e a d s () ;

f l o a t czyxm1= s h a r e d [t z ∗BY∗BX + t y ∗BX + x−1];
f l o a t czym1x= s h a r e d [t z ∗BY∗BX + (ty −1)∗BX + x] ;
f l o a t czyp1x= s h a r e d [t z ∗BY∗BX + (t y +1)∗BX + x] ;
f l o a t czyxp1= s h a r e d [t z ∗BY∗BX + t y ∗BX + x + 1] ;
. . .
/ / Per form C a l c u l a t i o n
. . .
/ / W r i t e o u t p u t
g l o b a l o u t p u t [z∗NY∗NX + y∗NX + x] = r e s u l t ;

Kernel C makes more efficient use of shared memory
by breaking the coalesced memory access constraint. All

global memory reads/writes will not be coalesced. With-
out this constraint, the best way to arrange the threads for
maximum computation threads is into a cube of size 8x8x8
which still fits within the 512 maximum. Out of these 512
thread, 64 (4x4x4) will be computational threads. The code
for Kernel C will be identical to that of Kernel B (See List-
ing: 2) but the block size will simply be 8x8x8 rather than
16x5x5.

Kernel D increases the computational to total thread ra-
tio by assigning multiple cells to each thread. Because each
thread is responsible for multiple cells, the thread block
does not need to be a three-dimensional structure. Like the
two-dimensional simulation, each thread block is arranged
in a 16x16 square structures. Each of these threads is re-
sponsible for 10 cells each. The 10 cells each thread is
responsible for adds the three-dimensional element to the
block and still allows good use of shared memory.

10 cells per thread may seem to be a strange size given
that most sizes are a power of two; however, there is a
sound logic reason for this choice. Of the 16x16 block of
threads, only the internal 12x12 threads will be computa-
tional threads (like the two-dimensional version), thus the
field size must be a multiple of 12. It would be desirable
for the height of the computational thread block to also be
12; however, this would result in a 16x16x16 block of float
values for the cells or 16KB. Although the shared memory
of the GPU is 16KB [5], some of this memory is used by
CUDA and not all 16KB can be accessed. The height of
10 threads yields 6 computational threads, which will fit
perfectly into any multiple of 12 field size.

In this kernel, each thread will load 10 cell values into
shared memory and then synchronise with the other threads
to ensure all values have been correctly loaded. The threads
will then go through and compute the change in concentra-
tion of the 6 intenal cells and write the results to global
memory. A code sample of this kernel can be seen in List-
ing: 3.

Listing 3: Code showing the input and output of Kernel D.
(tz,ty,tx) is the thread’s id and (BZ, BY, BX) is the size of
each thread block. (TBZ,TBY,TBX) is the size of the inner
block of computational threads.

/ / Read I n p u t
f o r (i n t i = 0 ; i < BZ ; i ++) {

i n t z = (bz ∗ (TBZ) + i − 2) ;
. . .
s h a r e d [i ∗BY∗BX + t y ∗BX + t x] =

g l o b a l [z∗NY∗NX + y∗NX + x] ;
}

s y n c t h r e a d s () ;

f o r (i n t i = 2 ; i < BZ−2; i ++) {

f l o a t czyxm1 = s h a r e d [i ∗BY∗BX + t y ∗BX + x−1];
f l o a t czym1x = s h a r e d [i ∗BY∗BX + (ty −1)∗BX + x] ;
f l o a t czyp1x = s h a r e d [i ∗BY∗BX + (t y +1)∗BX + x] ;
f l o a t czyxp1 = s h a r e d [i ∗BY∗BX + t y ∗BX + x + 1] ;
. . .
/ / Per form C a l c u l a t i o n
. . .
/ / W r i t e o u t p u t
g l o b a l o u t p u t [z∗NY∗NX + y∗NX + x] = r e s u l t ;

}

6.3 Texture Memory Approach

Texture memory is designed for image processing when
rendering a textured object. Multiple accesses to a tex-
ture within the same spatial locality are common. For
this reason, the texture cache will store values of the tex-
ture within a spatial locale. This cache is mainly used in
two-dimensions but is also supported for three-dimensional
data.

The interface CUDA provides for interacting with three-
dimensional textures is not as easy-to-use as in two-
dimensions. Textures are bound to cuda arrays exam-
ple, the code to copy from global device memory to the
cuda-array bound to a texture requires more explicit in-
structions. The global device memory used must also be
a cudaPitchPtr which defines a pitch (in bytes) and a
width and height in cells.

Although correctly initialing and interacting with three-
dimensional texture memory is a complicated process, there
are great advantages in utilising the texture memory cache.
It was found in our previous work [10] that the texture
memory was the most efficient type of memory for a two-
dimensional Cahn-Hilliard simulation but this was in an ap-
plication very close to the intended use of texture memory.
It is unknown how well the performance of texture memory
will scale to three-dimensions.

Kernel E uses three-dimensional texture memory to
speed up the CH simulation. As the caching is performed
entirely by CUDA, every thread within the thread block can
be used to compute change in concentration values. This
overcomes some of the issued that the shared memory ap-
proach faced with border threads. Listing: 4 shows a part
of the code in kernel E that reads in values from memory.

Listing 4: Code showing the input and output of Kernel E
(the reading of only five values are shown here, the others
are accessed in the same manner). (z,y,x) is the position of
the thread’s cell and (NZ, NY, NZ) is the size of the field.

/ / Read I n p u t
f l o a t czyxm1 = tex3D (texDa ta , x−1, y , z) ;

f l o a t czym1x = tex3D (texDa ta , x , y−1, z) ;
f l o a t czyx = tex3D (texDa ta , x , y , z) ;
f l o a t czyp1x = tex3D (texDa ta , x , y +1 , z) ;
f l o a t czyxp1 = tex3D (texDa ta , x +1 , y , z) ;
. . .
/ / Per form C a l c u l a t i o n
. . .
/ / W r i t e o u t p u t
g l o b a l o u t p u t [z∗NY∗NX + y∗NX + x] = r e s u l t ;

It is desirable that all the values accessed by the threads
can fit within the texture cache so only one initial access to
global memory is neccessary. As texture memory is rela-
tively small (6-8KB) and there is no control (or even doc-
umentation) on the structure of the values loaded into the
cache it is unknown on what the optimal arrangement will
be for this thread block. There is still the constraint that
the thread block be 16 threads wide to ensure the writes to
global memory will be coalesced. To ensure the optimal
results for this method, several block sizes where examined
and the best results was with a thread block size of 16x4x4.

7 Results and Discussion

The results from testing these CUDA kernels are extremely
favourable with the slowest GPU kernel providing a speed-
up factor of 4x (See Figure: 4 and Table: 1). Unexpect-
edly, the slowest GPU kernel is Kernel B which uses shared
memory. It was expected that Kernel A would be the slow-
est as all of its memory accesses are global transactions,
however this kernel provides a speed-up of 18x. The ad-
vantage of utilising the shared memory in Kernel B was
outweighed by the fact that most of its threads could not
perform any real calculation and slowed the simulation sig-
nificantly, once again showing the importance of proper use
of memory. Interestingly the texture memory method (Ker-
nel E) which was the fastest two-dimensional method does
not scale well to three-dimensions. Even so, it was faster
than Kernel A with a speed-up factor of 30x.

Table 1: The speed-up factors of the five GPU Kernels vs
the CPU simulation.

Kernel Speed-Up
A - Global 18x
B - Shared 4x
C - Shared 17x
D - Shared 50x
E - Texture 30x

The fastest GPU Kernel was the Shared Memory method
Kernel D where each thread updated several cells. It is

believed that the direct control over the values cached and
the high computational to total threads ratio is responsible
for this kernel’s higher performance. Kernel D provides
a speed-up factor of 50x vs the CPU implementation, the
same speed-up factor achieved by the texture method in
two-dimensions [10].

Figure 4: The performance results of the different kernels
vs the CPU implementation.

In ln-ln scale, it is expected that all the performance of all
the kernels will take a simple linear form (ignoring very
small fields which are not large enough to utilise all the
GPU cores). The time taken for this simulation is expected
to be in the form t = ANd where d is the number of di-
mensions (in this case d = 3). It is thus expected that in
ln-ln space this will form a straight line with slope m = d.
This holds true for all the simulations which have a slope
of m = 3 ± 0.02 with the exception of Kernel E (See Fig-
ure: 5).

The performance of Kernel D is strangely non-linear and
unfortunately our results only extend to a maximum field
size of 256x256x256. Issues with display driver time-outs
where encountered when larger systems were executed be-
cause each kernel call would take an increasingly long time
to execute. Larger fields can be simulated by making multi-
ple kernel calls on separate sections of the field, this extends
the maximum field size but does not provide any more use-
ful information with respect to the performance of the ker-
nels.

These results show a marked difference between the per-
formance of CUDA’s memory types in two- and three-
dimensions. Texture memory provided the highest per-
formance for the two-dimensional CH simulation but
was strangely non-linear in three. The API for three-
dimensional texture memory was also markedly more com-
plicated to use.

Figure 5: The performance results of the different kernels
vs the CPU implementation in ln-ln scale.

CUDA’s limitation of 512 threads per block [5] did not
cause a problem in two-dimension but severely disables
several kernels in three-dimensions. It limits the effective-
ness of caching methods as non-cube structures must be
used if the block width is 16 to ensure coalesced mem-
ory accesses. The maximum size of the shared and texture
cache also place restrictions on the kernels as they limit the
number of values that can be cached. In two-dimensions
all the values of a thread block could easily fit within the
texture cache or shared memory, however the same is not
true in three-dimensions. This shows once again the focus
of GPU architectures towards processing two-dimensional
data.

8 Summary & Conclusions

The results presented here and our previous results in [10]
have shown a difference between the performance of the
CUDA memory types in two-vs three-dimensions. Ker-
nel designs where restricted by thread limits, cache sizes
and coalesced memory access requirements. These ker-
nels where more limited and more complex to design and
implement than their two-dimensional counter-parts which
was reflected in their performance. These limitations will
hopefully relax as the capabilities of GPUs increase but
until such a time, programmers using CUDA for three-
dimensional simulations must rely on more complex ker-
nels to provide the high speed-up factors so easily enjoyed
in two-dimensions.

References

[1] Buck, I., Foley, T., Horn, D., Sugerman, J., Fatahalian,
K., Houston, M., Hanrahan, P.: Brook for GPUs:
stream computing on graphics hardware. ACM Trans.
Graph. 23 (2004) 777–786

[2] AMD: ATI CTM Guide. (2006)

[3] McCool, M., Toit, S.D.: Metaprogramming GPUs
with Sh. A K Peters, Ltd. (2004)

[4] Khronos Group: OpenCL (2008)

[5] NVIDIA R© Corporation: CUDATM 2.0 Programming
Guide. (2008) Last accessed November 2008.

[6] Fatahalian, K., Houston, M.: A Closer Look at GPUs.
Communications of the ACM 51 (2008) 50–57

[7] Langdon, W., Banzhaf, W.: A SIMD Interpreter for
Genetic Programming on GPU Graphics Cards. In
O’Neill, M., Vanneschi, L., Gustafson, S., Alcazar,
A.E., Falco, I.D., Cioppa, A.D., Tarantino, E., eds.:
Proc. EuroGP. Volume LNCS 4971. (2008) 73–85

[8] Messmer, P., Mullowney, P.J., Granger, B.E.:
GPULib: GPU computing in high-level languages.
Computing in Science & Engineering 10 (2008) 70–
73

[9] Nickolls, J., Buck, I., Garland, M., Skadron, K.: Scal-
able parallel programming with CUDA. ACM Queue
6 (2008) 40–53

[10] Leist, A., Playne, D., Hawick, K.: Exploiting graph-
ical processing units for data parallel scientific appli-
cations. Technical Report CSTN-065, Massey Uni-
versity (2008)

[11] Cahn, J.W., Hilliard, J.E.: Free Energy of a Nonuni-
form System. I. Interfacial Free Energy. The Journal
of Chemical Physics 28 (1958) 258–267

[12] Hawick, K.A., Playne, D.P.: Modelling and visualiz-
ing the Cahn-Hilliard-Cook equation. In: Proceedings
of 2008 International Conference on Modeling, Simu-
lation and Visualization Methods (MSV’08), Las Ve-
gas, Nevada (2008)

[13] Chen, L.Q., Shen, J.: Applications of semi-implicit
Fourier-spectral method to phase field equations.
Computer Physics Communications 108 (1998) 147–
158

