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Abstract—Transition to hybrid CPU/GPU platforms in high
performance computing is challenging in the aspect of effi-
cient utilisation of the heterogeneous hardware and existing
optimised software. During recent years, scientific software
has been ported to multicore and GPU architectures and now
should be reused on hybrid platforms. In this paper, we model
the performance of such scientific applications in order to
execute them efficiently on hybrid platforms. We consider a
hybrid platform as a heterogeneous distributed-memory system
and apply the approach of functional performance models,
which was originally designed for uniprocessor machines. The
functional performance model (FPM) represents the processor
speed by a function of problem size and integrates many impor-
tant features characterising the performance of the architecture
and the application. We demonstrate that FPMs facilitate
performance evaluation of scientific applications on hybrid
platforms. FPM-based data partitioning algorithms have been
proved to be accurate for load balancing on heterogeneous net-
works of uniprocessor computers. We apply FPM-based data
partitioning to balance the load between cores and GPUs in the
hybrid architecture. In our experiments with parallel matrix
multiplication, we couple the existing software optimised for
multicores and GPUs and achieve high performance of the
whole hybrid system.
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multicore; GPU; data partitioning.

I. INTRODUCTION

Heterogeneous multiprocessor systems, where multicore
CPUs are coupled with GPU accelerators, have been widely
used in high performance computing due to better power
efficiency and performance/price ratio. Transition to hybrid
CPU/GPU architectures is challenging in the aspects of the
efficient utilisation of the hardware and the reuse of the
software stack. Our target architecture is a dedicated hybrid
HPC platform, characterised by a stable performance in time
and a significant overhead associated with data migration
between computing devices.

During recent years, scientific software has been ported
to multicore and GPU architectures. To develop applica-
tions for multicores, some legacy programming techniques
were adopted, such as OpenMP and MPI. Nevertheless,
introduction of multicores in HPC resulted in significant

refactoring of existing parallel applications. To facilitate
development of general-purpose applications on GPUs, new
programming models, such as Brook+, CUDA, and OpenCL,
were created. A large number of algorithms and specific
applications have been successfully ported to GPUs claiming
substantial speedup over their optimised CPU counterparts.
Since multicore and GPU applications are highly optimised
for their platforms, they should be reused on hybrid systems.
In order to achieve the maximum performance of hybrid
multicore and multi-GPU systems, it is essential to balance
workloads between CPU cores and GPUs, taking into ac-
count heterogeneity of processors. However, load balancing
on this platform is complicated by several factors, such
as resource contention, limited local memory on GPUs,
and ever-increasing gap between GPU performance and
communication speed of PCI Express.

In this paper, we target data-parallel scientific applica-
tions, such as linear algebra routines, digital signal process-
ing, computational fluid dynamics They are characterised
by divisible computational workload, which is directly pro-
portional to the size of data and dependent on data locality.
Computational kernels optimised for multicore and GPU are
available for these applications. To execute such applications
efficiently on hybrid multicore and multi-GPU platforms,
workload has to be distributed unevenly between highly
heterogeneous computing devices. We consider a hybrid
platform as a heterogeneous distributed-memory system, and
therefore apply data partitioning, a static load balancing
method widely used on distributed-memory supercomputers.

Data partitioning algorithms, including those already pro-
posed for hybrid platforms, rely on performance models
of processors. In [1], constants representing the sustained
performance of the application on CPU/GPU were used to
partition data. The constants were found a priori. In [2], a
similar constant performance model (CPM) was proposed,
but it was built adaptively, using the history of performance
measurements. The fundamental assumption of the data par-
titioning algorithms based on constant performance models
is that the absolute speed of processors/devices does not
depend on the size of a computational task. However, it



becomes less accurate when the partitioning of the problem
results in some tasks fitting into different levels of memory
hierarchy (i) or processors/devices switch between different
codes to solve the same computational problem (ii).

In [3], the execution time of CPU/GPU was approxi-
mated by linear functions of problem size, and an empir-
ical approach to estimate linear performance models was
proposed. This model was successfully used to balance the
load in the neighbourhood of some problem size. A more
elaborate analytical predictive model was proposed in [4].
In contrast to others, this model is application-specific: the
number of parameters and the predictive formulas for the
execution time of processors/devices are defined for each
application. This approach requires a detailed knowledge of
the computational algorithm, in order to provide an accurate
prediction. In [4], it was admitted that the linear models
might not fit the actual performance in the case of resource
contention (iii), and therefore, data partitioning algorithms
might fail to balance the load.

In this paper, we apply data partitioning based on func-
tional performance models, which was originally designed
and proved to be accurate for uniprocessor machines [S].
The functional performance model (FPM) represents the
processor speed by a function of problem size. It is built
empirically and integrates many important features charac-
terising the performance of both the architecture and the
application. This model can be used with any data-parallel
application and applicable in the situations (i)-(ii). Since a
multicore and a GPU have separate memory and different
programming models, we can build their FPMs indepen-
dently. We show that this approach is accurate despite that
resources are shared in hybrid architectures (iii).

Applying the functional performance model to hybrid
platforms is complicated by resource contention. In our
previous work [6], we proposed a method for accurate mea-
surement of the speed of multicore nodes, which takes into
account resource contention. This method was used to build
the functional performance models of individual multicore
nodes of a heterogeneous multicore cluster. The FPMs built
this way were used for inter-node data partitioning. In this
paper, we apply this approach to a hybrid platform that
consists of several multicore sockets with their own separate
local memory. First, we build the functional performance
models of the multicore sockets, which are considered as
heterogeneous nodes because some of them are coupled with
GPUs. Then, we execute the FPM-based data partitioning
algorithm to balance the load between sockets.

In hybrid CPU/GPU systems, GPUs are usually used as
accelerators for executing tasks. A GPU is controlled by
a host process that handles data transfer between the host
and device, and instructs the GPU to execute kernels. In
this work, we measure the speed of the host process and
build the performance model for the GPU coupled with its
dedicated core, which includes the contributions from the

kernel running on GPU and from the memory transfers. In
general, this model can be defined only for the range of
problem sizes that fit the local memory of GPU. It can be
extended to infinity for the out-of-core applications, which
can handle the large amount of data stored in the low-speed
memory.

In this paper, we demonstrate how to utilise efficiently
a typical hybrid platform that consists of several multicore
sockets and multiple GPUs. Without loss of generality we
experiment with a heterogeneous parallel matrix multipli-
cation application. We build the functional performance
models of multicore sockets and GPUs, executing the op-
timised BLAS kernels, ACML and CUBLAS respectively.
Using these models in the FPM-based data partitioning
algorithm, we obtain the optimal distribution of matrices
between multicore sockets and GPUs, and balance the load
in the hybrid system. We use this application for demon-
stration purposes. Design of optimal matrix multiplication
algorithms for hybrid platforms is out of scope of this paper.

The rest of this paper is organised as follows. In Section
11, related work is discussed. In Section III, we describe the
techniques for performance measurement on hybrid multi-
core and multi-GPU systems. In Section IV, we describe a
heterogeneous parallel application to be executed on a hybrid
platform. In Section V, we present the speed functions of
multiple cores and GPUs built for this application on the
hybrid platform and analyse how different factors affect their
shape. In Section VI, we demonstrate that data partitioning
based on functional performance models allows for optimal
execution of heterogeneous applications on hybrid platforms.

II. RELATED WORK

In this section, we review performance models used in
heterogeneous programming systems and applications for
hybrid platforms. Then, we briefly describe the functional
performance model and the FPM-based data partitioning,
which will be applied to a hybrid platform in this work.

Performance modelling is a very common technique used
for optimisation of parallel applications on HPC platforms.
Building such models usually requires certain knowledge
of both the application algorithm and the underlying ar-
chitecture. It may involve significant programming efforts
and incur an extra performance overhead. A number of
studies defined the ratio of the number of memory operations
to the number of floating-point operations to describe the
performance of the program by showing how fast the data
is supplied and processed in the application. The Roofline
model [7] ties floating-point and memory performance to-
gether in a two dimensional graph with the bounds rep-
resenting a set of recommendations how to reengineer the
application. However, rewriting the code may result to minor
performance improvements but major development costs,
especially on hierarchical heterogeneous platforms.



For hybrid platforms, a number of heterogeneous pro-
gramming systems have been developed [3], [8], [9], [10].
They require reimplementing the application in a high-
level language, which is translated into the instruction set
architecture (ISA) or the application programming interface
(API) of the target platform. These systems use performance
models in order to execute the translated code efficiently. In
the performance models, the speed of a device is given by
a constant positive number and calculated from the history
of measurements of representative kernels.

The load balancing algorithms used in heterogeneous
programming systems can be classified as static or dynamic.
Static algorithms (for example, those based on data parti-
tioning), which are used in [1], [2], [3], [4] require a priori
information about the parallel application and platform. This
information can be gathered either at compile-time or run-
time. Static algorithms are also known as predicting-the-
future because they rely on accurate performance models
as input to predict the future execution of the application.
Static algorithms are particularly useful for applications
where data locality is important because they do not require
data redistribution. However, these algorithms are unable
to balance on non-dedicated platforms, where load changes
with time. Dynamic algorithms (such as task scheduling and
work stealing), which are used in [8], [11], [12] balance
the load by moving fine-grained tasks between processors
during the calculation. Dynamic algorithms do not require a
priori information about execution but may incur significant
communication overhead due to data migration. Dynamic al-
gorithms often use static partitioning for their initial step due
to its provably near-optimal communication cost, bounded
tiny load imbalance, and lesser scheduling overhead [13].

In this paper, we focus on data-parallel scientific applica-
tions, where computational workload is directly proportional
to the size of data and dependent on data locality. Our target
architecture is a dedicated hybrid HPC platform. Instead of
reimplementing our target applications for this platform, we
propose using data partitioning algorithms in order to opti-
mally distribute computations between computing devices.
Data partitioning algorithms map all data to processors and
do not redistribute it during the calculation. However, they
rely on the accuracy of performance models, and therefore,
depend on how the models are defined and built. With
simplistic constant performance models, data partitioning
algorithms may return solutions that are far away from
optimal or may even fail [14].

The functional performance model (FPM) [5] more ac-
curately approximates the processor speed because it rep-
resents the speed by a function of problem size. The
processor speed is defined as the number of computation
units performed by the processor per second, including all
contributions from clock cycles, memory operations and
hierarchy, and operating system overhead. The processor
speed is application specific since computation units can be

defined differently for different applications. The problem
size is understood as a set of parameters characterizing
the amount and layout of data stored and processed during
the execution of the computational task. The number and
semantics of the problem size parameters are application
specific. It is assumed that the amount of stored data and
the amount of computation will increase with the increase
of any of the problem size parameters. High performance
of parallel scientific applications on hybrid platforms can be
achieved when all processors complete their work within the
same time. This requirement is satisfied by partitioning the
computational workload and, hence, data unevenly across all
processors. FPM-based data partitioning algorithms has been
proved to be accurate for load balancing on heterogeneous
uniprocessor [5] and multicore [6] clusters.

The processor speed is found experimentally by mea-
suring the execution time. This time can be found by
benchmarking the full application. This benchmarking can
be done more efficiently by using a serial code, the speed
of execution of which is the same as that of the application
but the execution time of which is significantly less. We
call such a code, performing much less computations but
still representative for the application, a kernel. For ex-
ample, computationally intensive applications often perform
the same core computation multiple times in a loop. A
benchmark made of one such core computation can be
representative of the performance of the whole application
and can be used as a kernel. The speed function of the
application can be built more efficiently by timing this
kernel.

On multicore platforms, parallel processes interfere with
each other through shared memory so that the speed of
individual cores cannot be measured independently, and in-
dependent performance models cannot be defined for cores.
In our previous work [6], we proposed to evaluate the perfor-
mance of cores in a group, when all cores are executing the
benchmarks in parallel. We proposed to measure a combined
workload including both arithmetic and memory operations.
Process binding and synchronization were employed to en-
sure consistent performance. This approach can be applied to
the intra-node interactions between threads, involving shared
memory programming and multithreaded runtime systems.

Interactions between CPUs and GPUs include data trans-
fers between the host and GPU memory over PCI Express,
launching of GPU kernels, and some other operations.
Existing approaches and tools for performance measurement
on heterogeneous GPU-accelerated systems are analysed in
[15]. In the synchronous approach, a host CPU core observes
the beginning and the end of an operation. This approach
does not require any special measurement mechanisms and
accurately reflects the performance of kernels implemented
in synchronous libraries, such as CUBLAS. In the event
queue and callback approaches, a GPU initiates the time
measurement. In the first case, the code recording the state



of the GPU is injected before and after the operation to
measure. In the second case, the callback functions are
registered at the GPU to be triggered before and after
the operation. These approaches address multiple operations
launched in a GPU stream, but entirely rely on the device
manufacture to provide support for the event queue and
callback concepts.

In this work, we apply the measurement technique for
multicores [6] and the synchronous measurement approach
for GPU [15] to a hybrid platform. Obtaining the timings for
different parts of the hybrid platform, we build the functional
performance models of the optimised kernels executed on
CPUs and GPUs. Then, we apply the FPM-based data parti-
tioning algorithm to balance the load between the processors.

III. PERFORMANCE MEASUREMENT ON HYBRID
PLATFORMS

In this section, we describe how we measure the speed
of cores and GPUs on hybrid platforms, present our exper-
imental platform and analyse the results of measurements.

In a typical hybrid multicore and multi-GPU node, the
host has multiple identical cores and a hierarchical memory
and is connected with heterogeneous GPUs via the PCI
Express connections. The host and devices have disjoint
memory locations and explicit memory transfers are required
for communication between them. The node executes a
heterogeneous parallel application that invokes the libraries
optimised for multicore and GPU respectively. We need to
measure the speed of the processing elements in the system.

Our approach to performance measurement can be sum-
marised as follows. (i) Since automatic rearranging of the
processes provided by operating system may result in per-
formance degradation, processes are bound to cores. (ii)
Processes are synchronised to minimise the idle computa-
tional cycles, aiming at the highest floating point rate for the
application. Synchronisation also ensures that the resources
will be shared between the maximum number of processes,
generating the highest memory traffic. (iii) To ensure the
reliability of the measurement, experiments are repeated
multiple times until the results are statistically reliable.

GPU depends on a host process, which handles data
transfer between the host and device and launches kernels
on the device. A CPU core is usually dedicated to deal with
the GPU, and can undertake partial computations simultane-
ously with the GPU. Therefore, we measure the combined
performance of the dedicated core and GPU, including the
overhead incurred by data transfer between them. Due to
limited GPU memory, the execution time of GPU kernels can
be measured only within some range of problem sizes, unless
out-of-core implementations, which address this limitation,
are available.

Our experimental platform is a hybrid multicore and
multi-GPU node of NUMA architecture specified in Table I,
which consists of 4 sockets with a six-core AMD processor

and 16 GB memory each. It is accelerated by 2 NVIDIA
GPUs. For speed measurements, we used the GEMM kernel
from the ACML 4.4 (AMD Core Math Library) for CPU and
from CUBLAS 4.1 (NVIDIA CUDA BLAS) for GPUs.

First, we measured the execution time of the ACML
kernel on a single and multiple CPU cores. We observed
that the speed of a core depended on the number of cores
executing the kernel on the same socket, because they
compete for shared resources. However, the performance of
the core was not affected by the execution of the kernel on
other sockets, due to the NUMA architecture and a large
capacity of memory. Therefore, we can accurately measure
the time and, hence, the speed of a socket executing the
same kernel simultaneously on its cores. This approach
realistically reflects the performance of parallel applications
designed for multicores.

Next, we experimented with the CUBLAS kernel on a
GPU, with one core being dedicated to the GPU, and other
cores on the same socket being idle. Since the kernel does
not provide data transfer between the host and device, we
implemented sending/receiving of matrices and measured
the combined execution time on the dedicated core. Com-
munication operations with GPU take a large proportion
of the whole execution time for most applications [16],
therefore, the time measured this way realistically reflects
the performance of the kernel. This approach allows us to
measure the speed of a single GPU.

Finally, we simultaneously executed the GEMM kernels
on a GPU and the cores located on the same socket. The
cores, except for one dedicated to the GPU, executed the
ACML kernel. The dedicated core and the GPU executed the
CUBLAS kernel. The amounts of work given to the CPUs
and the GPU were proportional to their speeds obtained from
the previous experiments for a single core and for a single
GPU. This may be not very accurate but realistic distribution
of workload, which reflects the hybrid parallel applications.
We measured the execution time on all cores and observed
that the performance of the GPU dropped by 7-15% because
of resource contention, while the CPU cores were not so
much affected by the GPU process. In this experiment,
we exploited the distributed-memory feature of the hybrid
architecture. Namely, having received the data from the host
memory, the GPU performed the computations in its local
memory, and the dedicated core did not compete with other

Table I
SPECIFICATIONS OF THE HYBRID PLATFORM ig.icl.utk.edu

CPU (AMD) GPUs (NVIDIA)
Architecture Opteron 8439SE ~ GF GTX680  Tesla C870
Core Clock 2.8 GHz 1006 MHz 600 MHz
Number of Cores 4 X 6 cores 1536 cores 128 cores
Memory Size 4 x 16 GB 2048 MB 1536 MB
Mem. Bandwidth 192.3 GB/s 76.8 GB/s




cores for resources. This observation allows us to measure
the speed of multiple cores and GPUs independently with
some accuracy.

IV. HETEROGENEOUS PARALLEL APPLICATION:
COLUMN-BASED MATRIX MULTIPLICATION

We demonstrate how FPMs can be used to evaluate the
performance of parallel scientific applications on hybrid
platforms by the example of the heterogeneous parallel
column-based matrix multiplication with optimized com-
munication volume proposed in [17]. This application was
originally designed for heterogeneous network of processors.
It takes the FPMs of heterogeneous processors as input,
partitions the matrices using the FPM-based data partitioning
algorithm, and performs the blocked matrix multiplication,
using the GEMM kernel. We will execute this application on
the hybrid platform presented in Section 3, using the kernels
optimised for multicores and GPUs.

In this application, matrices A, B and C are partitioned
over a 2D arrangement of heterogeneous processors so that
the area of each rectangle is proportional to the speed of the
processor that handles the rectangle. This speed is given by
the speed function of the processor for the assigned problem
size. For simplicity, we work with square matrices. Figure
1(a) shows one iteration of the blocked matrix multiplication,
with the blocking factor b. At each iteration of the main
loop, pivot column of matrix A and pivot row of matrix
B are broadcast horizontally and vertically, and then matrix
C is updated in parallel. The partitioning algorithm used in
this application arranges the submatrices to be as square
as possible, minimising the total volume of communica-
tions and balancing the computations on the heterogeneous
processors. The blocking factor b is a parameter of the
application adjusting the granularity of communications and
computations [18]. The optimal values of this parameter
are found experimentally for each platform and GEMM
implementation.

C nxb A b B
nxb _ — R~ X b
(2)
Ci Ap) Bb)
ni xb b
ni x b
m; x b += X b
(b)
Figure 1. Heterogeneous parallel column-based matrix multiplication (a)

and its computational kernel (b)

The absolute speed of the processor is defined as the
total number of computations executed by this processor
during the application divided by the total execution time.
In order to measure the speed more efficiently, we make an
assumption that the total execution time of the application
can be approximated by multiplying the number of iterations
of the application with the execution time of a single run
of the computational kernel. As shown in Figure 1(b), the
computational kernel for the processor ¢ performs one update
of the submatrix C; with the parts of pivot column A and
pivot row By): Cij+ = Ay x B(y). Therefore, this speed is
estimated more efficiently by measuring just one run of the
kernel. This kernel is implemented by the GEMM routine
of the Basic Linear Algebra Subprograms (BLAS). Having
the same memory access pattern as the whole application,
it reflects the whole computational workload. In this paper,
we focus on data partitioning with respect to computational
performance of processing elements, and to this end, we do
not model the communication between processing elements;
instead we arrange elements so that the communication
volume is minimised [17].

V. FUNCTIONAL PERFORMANCE MODELS OF MULTIPLE
CORES AND GPUSs

In this section, we build the functional performance mod-
els of the matrix multiplication application for multiple cores
and GPUs, using the representative computational kernel of
the application. We analyse different factors that affect the
shape of the speed functions, which include configuration of
the application, resource contention, and optimisation of the
kernel.

We divide the FPMs for the computing devices of the
hybrid platform specified in Table I into two groups:

1) Speed functions of multiple cores: s.(z). These
functions approximate the speed of a socket executing
the ACML kernels simultaneously on c cores, with the
problem size (matrix area) z/c on each core.

2) Speed functions of GPUs: g;(x), g2(x). Each func-
tion approximates the combined performance of a
GPU and its dedicated core, while the GPU executing
the CUBLAS kernel, with the problem size (matrix
area) .

Since the speed of the kernel for a given matrix area x does
not vary with the nearly square shapes of submatrices [17],
we build the speed functions by timing the kernel with the
submatrices of size \/z X /.

Figure 2 shows the FPMs of a socket, s5(z) and sg(x),
executing the ACML kernel on 5 and 6 cores simultaneously.
The maximum performance of the socket is observed when
all cores are involved in computations. It does not increase
linearly with the number of active cores, because of resource
contention. In addition, the performance depends on the
blocking factor b, a parameter of the application. To exploit
optimisations implemented in the ACML kernel, which take
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Figure 2. Speed functions of a socket, s5(x) and sg (), in single precision
with blocking factor b = 640

into account memory hierarchy of a multicore architecture,
we experimented with the blocking factor b = 640.

In Figure 3, the speed functions built for different modifi-
cations of the kernel on GeForce GTX680 are presented. The
speed was measured on a dedicated core, while other cores
stayed idle. In version 1, the pivot column A ;) and row By,
and the submatrix C; are stored in the host memory. Before
the execution of GEMM on the device, the pivot column
and row are transferred to the device. After the execution,
the updated submatrix is transferred back from the device.
Therefore, the speed of the first version includes all transfers
between the host and device memory.

The kernel shown in Figure 1(b) is executed multiple
times with different pivot columns and rows, updating the
same submatrix C;. Therefore, the submatrix can be stored
in the device memory, accumulating the intermediate results.
The transfer of C; can be excluded from the kernel and from
the speed measurements. Using the CUBLAS GEMM, the
functional performance model of a GPU can be built only
for the range of problem sizes that fit the device memory. In
order to extend the model, we implemented the out-of-core
version of the kernel.

In version 2, submatrix C; is stored and intermediate
results are accumulated in the device until the device mem-
ory is exceeded. As shown in Figure 3, the performance
doubles when when problem sizes fit in the GPU memory.
After that, it splits the pivot column Ay and row B
and the submatrix C; into rectangles that fit the device
memory, and performs the CUBLAS GEMM multiple times
to update these rectangles serially (see Figure 4(a)). This
implementation requires multiple transfers of the rectangles
of the submatrix C; to and from the device memory, which
explains the performance drop in the range of large problem
sizes. In order to make the kernel more realistic, we keep
the last two rectangles accumulating intermediate results
in the device in each iteration and reverse the updating
order every other iteration, which can save two transfers
in each direction between the host and device memory
every iteration. Also both two dimensions of these rectangles
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Figure 3. Speed functions of GeForce GTX680 (single precision, b = 640)
built for kernels accumulating the intermediate results in the host memory
(version 1); in device memory with out-of-core extension (versions 2); with
overlapping of communications and computations (version 3)

are ensured to be multiples of 32, taking into account the
impact of memory alignment issues of CUDA on the Level 3
BLAS implementation of CUBLAS (especially the GEMM
kernel)[19].

In version 3, another out-of-core implementation of the
kernel, we use the concurrency feature of NVIDIA GPUs on
top of version 2. This feature enables to perform multiple
CUDA operations simultaneously and, hence, to overlap
communications with computations on host and device. In
addition, modern generations of NVIDIA GPUs, such as
GeForce GTX680, support concurrent data transfers to and
from the device memory. As shown in Figure 4(a), five
buffers are allocated in the device memory, using its maxi-
mum capacity: A0 and Al for rectangles of the pivot column
A(b), BO for the pivot row B(b), CO0 and C1 for the submatrix
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Figure 4. Out-of-core implementation of the kernel on GPU (a). Concur-
rent data transfers and kernel executions on GPUs (b)



C;. Overlapping communications and computations in the
out-of-core version of the kernel is illustrated in Figure 4(b).
In the beginning of each column, the first rectangles of the
pivot column and row and the submatrix are sent to the
buffers A0, BO and CO. While GEMM is executed with
these buffers, the next rectangles of the pivot column and
the submatrix are sent to Al and C1. Next, three operations
are overlapped. (i) The rectangle of the submatrix updated
during the previous execution of GEMM is transferred from
CO0 to the host memory. (ii)) GEMM is executed with the new
rectangles of the pivot column and the submatrix, using the
buffers Al, BO, C1. (iii) The next rectangles of the pivot
column and the submatrix are sent to AO and C0. On the
Tesla C870, which supports only one DMA engine, the latter
operation is performed after (i) is complete (see Figure 4(b)).

We can see from Figure 3 that the performance of Geforce
GTX680 improves by around 30% when using overlapping.
Based on our experiments, the speed function shapes of
Tesla C870 are similar to Geforce GTX680’s. However, there
is less performance improvement from overlapping because
Tesla C870 does not support concurrent data transfers.

In the application with the out-of-core kernel, the total
volume of communications between the host and device
memory is determined by the blocking factor b. In each
iteration of parallel matrix multiplication, the submatrix C;
to be updated by GPU will be transferred between the
host and device once in each direction, by transferring its
sub-rectangles serially. The total number of transfers of C;
doubles the number of iterations of the application. The total
volume of communications can be decreased by increasing
the blocking factor so as to decrease the number of iterations,
which can improve the performance since data transfer time
occupies a large part of the whole GPU execution time.
Meanwhile, with a larger b, all processing elements perform
better, benefiting from the optimised GEMM kernels, and
the communication operations (such as broadcast) between
processing elements decrease. However, too large blocking
factor result in coarse-grained partitioning of matrices, and
therefore, may reduce the level of parallelism and leave
less opportunity to balance the load. The blocking factor b
should be tuned to achieve a better performance depending
on different platforms and parallel routines, which is out of
the scope of this paper.

In conclusion, we analyse the impact of resource con-
tention between CPUs and GPUs on the shape of their
speed functions. It can be captured when the CPU and GPU
kernels are executed simultaneously within a socket, with
more workload being allocated to GPU. Figure 5(a) shows
the speed of 5 cores that execute the ACML kernel with
1/11 and 1/6 of the total workload, shared with GeForce
GTX680. Figure 5(b) shows the combined performance of
GeForce GTX680 and its dedicated core, when they execute
the CUBLAS kernel and receive 10/11 and 5/6 of the total
workload. The amounts of work are proportional to the
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Figure 5. Impact of resource contention on the speed functions (single
precision, b = 640) of multiple cores (a) and GPU (b) on the same socket

speeds measured exclusively for the cores and the GPU.
The first distribution (1:10) corresponds to the problem sizes
that fit in the GPU memory, while the second distribution
(1:5) corresponds to the large problem sizes. The CPU cores
demonstrate almost the same performance as when the GPU
is idle. Therefore, the speed function built exclusively for 5
cores provides a good approximation of their performance
even in the case of resource contention with GPU. At the
same time, the GPU is affected by resource contention.
Therefore, the function built exclusively for the GPU, when
CPU cores are idle, can approximate the speed of the GPU
in the case of resource contention with 85% accuracy.

VI. FPM-BASED DATA PARTITIONING ON HYBRID
PLATFORMS

In this section, we present the experimental results demon-
strating that the heterogeneous parallel matrix multiplication
application can be balanced on hybrid platforms by data
partitioning algorithm [5] based on functional performance
models of multiple cores and GPUs.

Table II shows the execution time of the heterogeneous
matrix multiplication application described in Section IV
measured on different configurations of the hybrid platform
described in Section III. The experiments were performed
for square matrices with blocking factor b = 640. The



Table II
EXECUTION TIME OF PARALLEL MATRIX MULTIPLICATION

Table IIT
HETEROGENEOUS DATA PARTITIONING ON THE HYBRID NODE

Matrix (blks)  CPUs (sec) GTX680 (sec)  Hybrid-FPM (sec) Matrix CPM-based (blocks) FPM-based (blocks)
40 x 40 99.5 74.2 26.6 nxmn Gl G2 S5 S6 Gl G2 S5 S6
50 x 50 195.4 162.7 77.8
60 % 60 300.1 316.8 114.4 40 x 40 928 226 105 120 1000 210 95 102
70 X 70 491.6 554.8 226.1 50 x 50 1460 352 160 186 1250 429 190 222

first column shows the matrix size n X n in square blocks
of 640 x 640. Column 2 shows the application execution
time for the homogeneous matrix distribution between 24
CPU cores. Column 3 shows the execution time on GeForce
GTX680 and a dedicated core. The last column shows the
execution time for the heterogeneous matrix distribution be-
tween 22 CPU cores and 2 GPUs, with the rest 2 CPU cores
being dedicated to GPUs. The distribution was obtained
from the FPM-based data partitioning algorithm with the
speed functions of 2 GPUs, ¢1(z), g2(z), 2 sockets with 5
active cores, 2 X s5(x), and 2 sockets with 6 active cores,
2 x sg(x). GeForce GTX680 outperforms 24 CPU cores
when the problem fits in the device memory. When the
problem exceeds the device memory, CPUs perform better.
Functional performance models capture these variations,
and therefore, the FPM-based data partitioning algorithm
successfully distributes computations for all problem sizes,
and the application delivers high performance.

To demonstrate the accuracy of the FPM-based data
partitioning on hybrid platforms, we compare it with the
traditional data partitioning. Traditional data partitioning
algorithms distribute a workload between processors in pro-
portion to the constants that define the performance of these
processors. The constants (constant performance models) are
obtained in advance, from the speed measurements when
some workload is distributed evenly between the processors.
In Table III, we present the results of the CPM- and
FPM-based partitioning algorithms on the hybrid node for
different problem sizes. Column 1 shows the matrix size in
square blocks; columns G'1 and G2 present the numbers of
matrix blocks assigned to GeForce GTX680 and Tesla C870
respectively; columns S5 present the numbers of blocks
assigned to the sockets with one core dedicated to a GPU;
and columns S6 present the numbers of blocks distributed
between the rest of sockets.

According to the speed functions (see Figure 2 and 3),
GeForce GTX680 (G1) is around 9 times faster than a socket
(56) when the problem fits in its local memory (40 x 40),
and around 6 ~ 4 times faster when the problem exceeds its
memory (from 50 x 50 to 70 x 70). Table III shows that the
CPM-based fata partitioning results in overloading GeForce
GTX680, starting from matrix size 50 x 50. Namely, the ratio
of the number of blocks partitioned to G1 and S6 is nearly
8 when problem size is 70 x 70. This is because the CPM-
based algorithm is based on inaccurate performance models,

60 x 60 2085 501 235 270 1627 657 295 342
70 x 70 2848 677 320 366 2250 806 425 504

using the speed of the GPU kernel when it fitted in the GPU
memory. Since the functional performance model accurately
captures the performance change under a wide range of
problem sizes, the FPM-based partitioning algorithm always
balances the load.

Figure 6 illustrates the computation time (communication
time between processes excluded) of each process when
matrix size is 60 x 60 and the workload is distributed by
using CPM- and FPM-based partitioning algorithms. In both
experiments, process 0 and 6 were bound to cores dedicated
to Tesla C870 and GeForce GTX680 respectively. As shown
in Figure 6(a), GeForce GTX680 took a longer time than
other processes to finish its job because it was overloaded.
The CPM-based data partitioning failed to balance the load.
The FPM-based data partitioning achieved load balancing
and reduced the total computation time by 40%.

Figure 7 shows the execution time (including commu-
nication time between processes) of the parallel matrix
multiplication application when the workload is distributed
by using different data partitioning algorithms. The execu-
tion of the application based on homogeneous partitioning

CPM-based partitioning
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Figure 6. The computation time of each process when matrix size is
60 x 60 and the workload is distributed by (a) CPM-based data partitioning
algorithm (b) FPM-based data partitioning algorithm.
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Figure 7. Execution time of the parallel matrix multiplication application
with different data partitioning algorithms

(data distributed evenly) was unbalanced, being dominated
by the slowest processing elements (CPU cores). Both the
CPM-based and FPM-based data partitioning balanced the
load when problem sizes were relatively small. However,
starting from matrix size 50 x 50, the CPM-based algorithm
failed to balance the load and the application took longer
time to finish than the application based on the FPM-
based algorithm. The FPM-based data partitioning algorithm
reduced the execution time of the application over the CPM-
based and homogeneous partitioning algorithms by 30% and
45% respectively, in the range of large problem sizes.

VII. CONCLUSION

In this paper, we presented the performance measurement
techniques on hybrid platforms. We defined and built func-
tional performance models of heterogeneous processing el-
ements for a fundamental data-parallel scientific application
on a typical multicore and multi-GPU node, considering a
hybrid node as a distributed-memory system. We demon-
strated that FPMs can facilitate performance evaluation of
scientific applications on hybrid platforms, and data parti-
tioning algorithms based on accurate FPMs can deliver better
performance than traditional partitioning approaches.
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