
0018-9340 (c) 2013 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE

permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TC.2014.2375202, IEEE Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. XXX, NO. XXX, XXX 20XX 1

Data Partitioning on Multicore and Multi-GPU
Platforms Using Functional Performance Models

Ziming Zhong, Vladimir Rychkov, and Alexey Lastovetsky, Member, IEEE

Abstract—Heterogeneous multiprocessor systems, which are composed of a mix of processing elements, such as commodity

multicore processors, graphics processing units (GPUs), and others, have been widely used in scientific computing community.

Software applications incorporate the code designed and optimized for different types of processing elements in order to exploit the

computing power of such heterogeneous computing systems. In this paper, we consider the problem of optimal distribution of the

workload of data-parallel scientific applications between processing elements of such heterogeneous computing systems. We present

a solution that uses functional performance models (FPMs) of processing elements and FPM-based data partitioning algorithms.

Efficiency of this approach is demonstrated by experiments with parallel matrix multiplication and numerical simulation of lid-driven

cavity flow on hybrid servers and clusters.

Index Terms—HPC, heterogeneous computing, GPU-accelerated multicore system, performance modeling, data partitioning

✦

1 INTRODUCTION

H ETEROGENEOUS multiprocessor systems, where
multicore processors are coupled with graphics

processing units (GPUs), have been widely used in high
performance computing as one approach to continu-
ing performance improvement while managing the new
challenge of energy efficiency. Considerable efforts have
been made over recent years to port critical scientific
software to both multicore and GPU architectures. This
often requires re-engineering of the existing parallel ap-
plications and development of new programming mod-
els, tools and algorithms. Therefore, the existing highly
optimized code should be reused for development of sci-
entific software for hybrid platforms. In order to achieve
the maximum performance of scientific applications on
heterogeneous multicore and multi-GPU platforms, it
is essential to balance the workload between heteroge-
neous processing elements. However, load balancing on
such platforms is complicated by several factors, includ-
ing resource contention, non-uniform memory access
(NUMA), limited GPU memory, and low bandwidth of
PCIe that connects the host and the GPU, etc.

In this paper, we target data-parallel scientific applica-
tions which are characterized by divisible computational
workload, such as linear algebra, digital image process-
ing, computational fluid dynamics. The computational
workload in these applications is proportional to the
size of data. In order to distribute workload between
heterogeneous processing elements optimally, we use
the data partitioning method, which is a static load

• Z. Zhong, V. Rychkov and A. Lastovetsky are with the School of Computer
Science and Informatics, University College Dublin, Belfield, Dublin 4,
Ireland.
E-mail: ziming.zhong@ucdconnect.ie,
vladimir.rychkov@ucd.ie, alexey.lastovetsky@ucd.ie

balancing method widely used on distributed-memory
platforms.

Data partitioning algorithms, including those already
proposed for heterogeneous systems, rely on accurate
performance models of processors. In [1], constants
found a priori and representing the sustained perfor-
mance of the application on CPUs and GPUs were used
to partition data. In [2], a similar constant performance
model (CPM) was proposed, but it was built adap-
tively, using the history of performance measurements.
The fundamental assumptions of the data partitioning
algorithms based on constant performance models are
that (i) the absolute speed of processing elements does
not depend on the size of a computational task, and
therefore, can be represented by a constant; (ii) the
processing elements are independent of each other, and
thus, their speed can be measured separately. However,
they become invalid in the following situations:

1) the partitioning of the problem results in tasks
fitting into different levels of memory hierarchy;

2) processing elements switch between different codes
to solve the same computational problem;

3) processing elements contend for shared system
resources with each other.

Data partitioning algorithms based on functional per-
formance models (FPMs) were originally designed and
proved to be accurate for heterogeneous network of
uniprocessors [3]. The functional performance model
represents the processor speed by a function of problem
size. It is built empirically and integrates many im-
portant features characterizing the performance of both
the architecture and the application. This performance
model is only applicable in situations (1) and (2).

In this work, we extend FPM-based data partitioning
to heterogeneous multicore and multi-GPU platforms,
where processing elements are coupled and share system



0018-9340 (c) 2013 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE

permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TC.2014.2375202, IEEE Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. XXX, NO. XXX, XXX 20XX 2

resources. In such platforms, the speed of one processing
element may depend on the load of others due to
resource contention, therefore, they cannot be considered
as independent processors and their speed cannot be
measured separately. In addition, a parallel application
on such a platform allows for many different configu-
rations, depending on the computational kernels used
in the application and their mapping to the processing
elements of the platform. In this work, we focus on
the problem of optimal data distribution between ker-
nels of the data-parallel application assuming that the
configuration of the application is fixed. Comparison of
different configurations and the problem of finding the
optimal configuration of the application are out of the
scope of this paper. In our experiments, however, we
only use configurations that we believe are optimal. For
example, we would never run a NUMA-unaware multi-
threaded computational kernel across multiple NUMA
nodes. Instead, we will use multiple instances of this
kernel, one per NUMA node.

We propose to model a multicore and multi-GPU
system by a set of heterogeneous abstract processors
determined by the configuration of the parallel applica-
tion. Namely, a group of processing elements executing
one computational kernel of the application makes a
combined processing unit and will be represented in
the model by one abstract processor. For example, if a
single-threaded computational kernel is used, then each
CPU core executing this kernel will be represented in
the model by an abstract processor. If a multi-threaded
computational kernel is used, then each group of CPU
cores executing the kernel will make a combined pro-
cessing unit represented in the model by one abstract
processor. A GPU is usually controlled by a host process
running on a dedicated CPU core. This process instructs
the GPU to perform computations and handles data
transfers between the host and device memory. In the
case of a single-GPU computational kernel, the GPU and
its dedicated CPU core will make a combined processing
unit represented by an abstract processor. If a multi-
GPU computational kernel is used in the application,
the GPUs and their dedicated CPU core will make a
combined processing unit represented by an abstract
processor. We build functional performance models of
the abstract processors and perform model-based data
partitioning in order to balance the workload between
the combined processing units represented by these ab-
stract processors.

To build the performance models of the abstract pro-
cessors, we have to measure the performance of the pro-
cessing units representing these processors. To measure
the performance of the processing units accurately, we
propose to group them by shared system resources, so
that the resources be shared within each group but not
shared between groups. The performance of processing
units in a group is measured when all processing units in
the group are executing some workload simultaneously,
thereby taking into account the influence of resource

contention. For example, processing units that share
memory or PCIe link are grouped together during per-
formance measurement.

To illustrate the importance of accurate performance
measurement, let us consider a parallel application con-
figured to be executed with one multi-threaded CPU
kernel and one multi-GPU computational kernel on a
multicore and multi-GPU computer. In this configura-
tion, all GPUs and their dedicated CPU core will make
one processing unit and be modeled by one abstract
processor, and all other CPU cores will make another
processing unit and be modeled by another abstract pro-
cessor. As these two processing units include CPU cores
and all the cores share memory, the processing units also
share memory and cannot be considered independent.
Therefore, the performance of these processing units
should be measured simultaneously. If the measure-
ments are not synchronized and conducted separately,
the measured performance of these processing units will
not reflect their actual performance during the execution
of the application, and therefore load balancing decisions
based on the corresponding performance models will be
inaccurate.

Using the proposed method for measuring perfor-
mance, the speed of processing units is measured for a
wide range of problem sizes. The functional performance
models built from this empirical data will be applica-
ble in situation (3). The performance models built in
this way can be used in FPM-based data partitioning
algorithms to balance the workload in heterogeneous
multicore and multi-GPU platforms.

The contributions of this work are as follows:

1) We propose a method for performance modeling
on dedicated heterogeneous multicore and multi-
GPU systems. A multicore and multi-GPU system
is modeled by a number of abstract processors.
Functional performance models of these abstract
processors are built and used as the input of data
partitioning algorithm.

2) We propose a method for accurate performance
measurement on dedicated heterogeneous multi-
core and multi-GPU systems. Performance of pro-
cessing units are measured simultaneously rather
than separately, thereby taking into account re-
source contention. To ensure the reliability of mea-
surements, we bind processes to CPU cores and
repeat measurements multiple times.

3) From analysis of functional performance models
built in different configurations, we reveal the im-
pact of resource contention on the performance of
CPU and GPU processing units, and the impact
of process mapping on GPU-accelerated multicore
systems of NUMA architecture on the performance
of the GPU processing unit.

4) We demonstrate that data partitioning algorithms
based on functional performance models of ab-
stract processors, each representing a group of
processing elements, are able to balance the work-



0018-9340 (c) 2013 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE

permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TC.2014.2375202, IEEE Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. XXX, NO. XXX, XXX 20XX 3

load on heterogeneous multicore and multi-GPU
platforms with two typical data parallel applica-
tions, namely, parallel matrix multiplication and
numerical simulation of lid-driven cavity flow.

The rest of this paper is organized as follows. Section 2
introduces the basic concepts of functional performance
model (FPM) and FPM-based data partitioning algo-
rithms. Section 3 describes the proposed method for
performance modeling on multicore and multi-GPU sys-
tems, and analyzes the impact of resource contention and
NUMA mapping. Section 4 presents experimental results
of FPM-based data partitioning. Section 5 presents the
related work. Section 6 concludes the paper.

2 BACKGROUND

In this section, we briefly introduce the concepts of func-
tional performance model and data partitioning based
on such models. These concepts, proposed in [3] and [4]
for dedicated heterogeneous network of uniprocessors,
form the basis of the research presented in this paper.
Comparison with the state-of-the-art will be given in Sec-
tion 5, and the system architecture used in this research
will be defined in detail in Sections 3 and 4.

2.1 Functional Performance Model

Under the functional performance model (FPM), the
speed of each process is represented by a continuous
function of the problem size. The speed is defined as the
number of computation units performed by the process
per one time unit. The computation unit can be defined
differently for different applications. An arithmetical
operation and the matrix update C = C +A×B, where
A, B, and C are r × r matrices of the fixed size r, give
us examples of computation units.

The problem size is understood as a set of one, two, or
more parameters characterizing the amount and layout
of data stored and processed during the execution of
the computational task. The number and the semantics
of the problem size parameters are problem- or even
application-specific. It is assumed that the amount of
stored data will increase with the increase of any of the
problem size parameters.

Performance models consist of a series of speed mea-
surements taken over a range of problem sizes. The
speed is found experimentally by measuring the execu-
tion time. This can be done by benchmarking the full
application for each problem size. The benchmarking can
be done more efficiently by using a serial code, which
performs much less computations but still representative
for the application. We call such a code a kernel. For
example, computationally intensive applications often
perform the same performance-critical computation mul-
tiple times in a loop. A benchmark made of one such core
computation can be representative of the performance
of the whole application and can be used as a kernel.
The speed function of the application can be built more
efficiently by timing this kernel.

2.2 FPM-based Data Partitioning Algorithm

The problem of data partitioning using functional per-
formance models was formulated in [3] as follows. A
total problem size n is given as the number of com-
putation units to be distributed between p (p ≪ n)
processes P1, . . . , Pp. The speeds of processors are rep-
resented by positive continuous functions of problem
size s1(x), . . . , sp(x) : si(x) = x/ti(x), where ti(x) is the
execution time of processing x units on the processor
i. Speed functions are defined at [0, n]. The output of
the algorithm is a distribution of computation units,
d1, . . . , dp, so that d1 + d2 + . . .+ dp = n. Load balancing
is achieved when all processors complete their work at
the same time: t1(d1) ≈ t2(d2) ≈ . . . ≈ tp(dp). This can
be expressed as:















d1
s1(d1)

≈
d2

s2(d2)
≈ . . . ≈

dp
sp(dp)

d1 + d2 + . . .+ dp = n

The solution of these equations can be represented geo-
metrically by intersection of the speed functions with a
line passing through the origin of the coordinate system.

The geometrical algorithm solving this data partition-
ing problem was proposed in [3] and can be summarized
as follows. Any line passing through the origin and
intersecting the speed functions represents an optimum
distribution for a particular problem size. Therefore,
the space of solutions of the data partitioning problem
consists of all such lines. The two outer bounds of
the solution space are selected as the starting point of
algorithm. The upper line, U , represents the optimal data
distribution du

1
, . . . , dup for some problem size nu < n,

nu = du
1
+ . . . + dup , while the lower line, L, gives the

solution dl
1
, . . . , dlp for nl > n, nl = dl

1
+. . .+dlp. The region

between two lines is iteratively bisected by new lines Bk.
At the iteration k, the problem size corresponding to the
new line intersecting the speed functions at the points
dk
1
, . . . , dkp is calculated as nk = dk

1
+ . . .+ dkp . Depending

on whether nk is less than or greater than n, this line
becomes a new upper or lower bound. Making nk close
to n, this algorithm finds the optimal partition of the
given problem d

1
, . . . , dp: d

1
+ . . . + dp = n. Correctness

proof and complexity analysis of this algorithm are
presented in [3].

2.3 Partial FPM and Dynamic Data Partitioning

Functional performance models are built empirically by
benchmarking the kernel for a range of problem sizes.
The accuracy of the model depends on the number of
experimental points used to build it. Despite the kernel
being lightweight, building the full model can be very
expensive. The applicability of FPMs built for the full
range of problem sizes is limited to parallel applica-
tions executed many times on stable in time heteroge-
neous platforms. In this case, the time of construction
of the full FPMs can become very small compared to



0018-9340 (c) 2013 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE

permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TC.2014.2375202, IEEE Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. XXX, NO. XXX, XXX 20XX 4

the accumulated performance gains during the multiple
executions of the optimised application. However, this
approach is not suitable for applications that will be
run a small number of times on a given platform, for
example, in grid environments, where different proces-
sors are assigned for different runs of the application.
Such applications should be able to optimally distribute
computations between the processors of the executing
platform assuming that this platform is different and a
priori unknown for each run of the application.

Partial estimates of the full speed functions can be
built dynamically at application run-time to a sufficient
level of accuracy to achieve load balancing [4], [5].
We refer to these approximations as partial functional
performance models. The partial FPMs are based on a
few points connected by linear segments and estimate
the real functions in detail only in the relevant regions:
s̄i(x) ≈ si(x), 1 ≤ i ≤ p, ∀x ∈ [a, b]. Both the partial
models and the regions are determined at runtime.

The algorithm to build the partial FPMs is iterative
and alternates between (i) benchmarking the kernel on
each process for a given distribution of workload and
(ii) repartitioning the data. At each iteration, the current
distribution d1, . . . , dp is updated, converging to the
optimum, while the partial models s̄1(x), . . . , s̄p(x) be-
come more detailed. Initially the workload is distributed
evenly between all processes. Then the algorithm iterates
as follows:

1) The time to execute the kernel for the current
distribution is measured on each process. If the
difference between timings is less than some ǫ,
the current distribution solves the load balancing
problem and the algorithm stops.

2) The speeds are calculated from the execution times
and the points (di, si) are added to the correspond-
ing partial models s̄i(x).

3) Using the current partial estimates of the speed
functions, the FPM-based partitioning algorithm
calculates a new distribution.

This algorithm allows for efficient load balancing and is
suitable for use in self-adaptable applications, which run
without a priori information of the platforms.

3 PERFORMANCE MODELING OF MULTICORE

AND MULTI-GPU PLATFORMS

In this section, we present a new method of performance
modeling on multicore and multi-GPU platforms, and
investigate the impact of memory contention, PCIe con-
tention and process placement on the performance of
CPU and GPU processing units.

For illustration, a GPU-accelerated multicore server
of NUMA architecture, Pluto, is used. As specified in
Table 1, it consists of eight NUMA nodes connected by
AMD HyperTransport(HT) links, with 6 cores and 16
GB local memory each. It is equipped with a NVIDIA
Tesla S2050 server, which consists of two pairs of GPUs.

TABLE 1

Specifications of the Pluto server pluto.icl.utk.edu

Hybird Server Pluto (AMD CPU + NVIDIA GPU)

Architecture Opteron 6172 Tesla S2050

Core Clock 2.1 GHz 575 MHz

Number of Cores 8× 6 cores 4× 448 cores

Memory Size 8× 16 GB 2667 MB

Mem. Bandwidth 4× 148.4 GB/s

PCIe 2 × I/O hubs 2 × switches

Each pair is connected by a PCIe switch and linked to a
separate NUMA node by a PCIe bus.

3.1 Performance Modeling of CPU Cores

In scientific applications, both single- and multi-threaded
computational kernels are commonly used. A single-
threaded computational kernel is executed by one pro-
cess on a CPU core. A multi-threaded kernel is also
executed by one process but on several cores using
multiple threads. Therefore, all CPU cores are naturally
partitioned into a number of CPU processing units, each
made of one or several CPU cores and executing one
computational kernel of the application.

The performance of the CPU processing units is mea-
sured for a wide range of problem sizes to build their
functional performance models, which are then used as
the input of a FPM-based data partitioning algorithm.
Thus, at the stage of data partitioning the CPU cores
of a multicore platform are modeled by a set of het-
erogeneous abstract processors, each characterized by its
speed function and representing a processing unit made
of one or several CPU cores.

Performance modeling on multicore systems is com-
plicated by resource contention, because the perfor-
mance of a CPU core may depend on the load of other
CPU cores. Therefore, we propose to group processing
units by shared resources. The performance of process-
ing units in a group are measured when all processing
units in the group are executing some workload simulta-
neously, thereby taking resource contention into account.

In this work, when looking for the optimal distribu-
tion of the workload, we only consider solutions that
evenly distribute the workload between identical CPU
processing units. This simplification significantly reduces
the complexity of the data partitioning problem. It is
based on our extensive experiments that have shown
no evidence that uneven distribution between identical
processing units could speed up applications. We also
found no such evidence in literature. Therefore, identical
processing units that share system resources are always
given the same amount of workload during performance
measurements.

Performance measurements on processing units that
share system resources are synchronized. With the same
amount of workload, measurements will be completed



0018-9340 (c) 2013 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE

permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TC.2014.2375202, IEEE Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. XXX, NO. XXX, XXX 20XX 5

with roughly the same amount of elapsed time, which
realistically simulates resource contention.

Figure 1 shows a GPU-accelerated multicore server of
NUMA architecture executing a parallel application in
two different configurations. The configuration shown in
Figure 1(a) is based on the single-threaded and single-
GPU computational kernels. It consists of ten processes
running the CPU kernels on ten cores of both NUMA
nodes, and two processes running the GPU kernels on
accelerators and their dedicated cores on the second
NUMA node. The configuration in Figure 1(b) is based
on the multi-threaded and multi-GPU computational
kernels. It consists of one process running the 6-thread
CPU kernel on one NUMA node, one process running
the 5-thread CPU kernel on another NUMA node, and
one process running the GPU kernel on the GPUs and
their single dedicated core. All processing elements in
these diagrams are enumerated. Each number indicates
the combined processing unit to which the processing
element belongs. For example, in the first configuration,
the cores in NUMA node 0 make six processing units,
and each GPU with its dedicated CPU core in NUMA
node 1 make a combined processing unit.

In the first configuration, the cores in NUMA node
0 execute six identical processes and are modeled by
six abstract processors. These cores are tightly coupled
and share memory, therefore, they cannot be consid-

(a)

(b)

Fig. 1. Performance modeling on a GPU-accelerated mul-

ticore server of NUMA architecture: (a) single-threaded

and single-GPU computational kernels executed; each

GPU handled by a dedicated CPU core (b) multi-

threaded and multi-GPU computational kernels executed;

two GPUs handled by a single dedicated CPU core

ered independent. On the other hand, this group of
processing elements is relatively independent of other
processing elements of the server. Therefore, their per-
formance should be measured simultaneously in a group
but can be measured separately from the others. In
the second configuration, these six cores execute one
process and modeled as one combined processing unit.
Its performance can be measured separately from other
processing elements of the server.

In order to build the functional performance model of
an abstract processor, we perform measurements for a
wide range of problem sizes. To prevent the operating
system from migrating processes excessively, processes
are bound to CPU cores. Processes are synchronized to
minimize the idle computational cycles, aiming at the
highest floating point rate for the application. Synchro-
nization also ensures that the resources will be shared
between the maximum number of processes. To ensure
the reliability of the results, measurements are repeated
multiple times, and average execution times are used.
We find the confidence interval and stop the measure-
ments if the sample mean lies in the interval with the
confidence level 95%. In this work, for simplicity, we
use Student’s t-test, assuming that the individual obser-
vations are independent and their population follows the
normal distribution.

Three types of functional performance models for CPU
cores are defined as follows:

1) s(x) approximates the speed of a uniprocessor
executing a single-threaded computational kernel.
The speed s(x) = x/t, where x is the number of
computation units, and t is the execution time.

2) sc(x) approximates the speed of one of c CPU cores
all executing the same single-threaded computa-
tional kernel simultaneously. The speed sc(x) =
x/t, where x is the number of computation units
executed by each CPU core, and t is the execution
time.

3) Sc(x) approximates the collective speed of c CPU
cores executing a multi-threaded computational
kernel. The speed Sc(x) = x/t, where x is the total
number of computation units executed by all c CPU
cores, and t is the execution time. Sc(cx)/c is used
to approxcimate the average speed of a CPU core.

Figure 2 shows speed functions of a CPU core built in
different configurations on Pluto. Speed functions s1(x),
s6(x), and s12(x) are built by executing a single-threaded
gemm kernel per CPU core on only one CPU core, on
six CPU cores of a NUMA node, and on twelve CPU
cores of two NUMA nodes respectively. Speed func-
tions S6(6x)/6 and S12(12x)/12 approximate the average
speed of a CPU core, when one multi-threaded gemm
kernel is executed on one and two NUMA nodes re-
spectively. The single- and multi-threaded gemm kernels
used are from the ACML 4.4 library.

We can see that s6(x) is clearly lower than s1(x),
which indicates extensive memory contention between
CPU cores of the same NUMA node. By contrast, there is



0018-9340 (c) 2013 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE

permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TC.2014.2375202, IEEE Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. XXX, NO. XXX, XXX 20XX 6

10

11

12

13

14

15

16

0 400 800 1200 1600 2000

S
p

ee
d

(G
F

lo
p

s)

Problem size

s1(x)
s6(x)
s12(x)

S6(6x)/6
S12(12x)/12

Fig. 2. Speed functions of a CPU core built in different

configurations

no difference between s6(x) and s12(x), which indicates
no contention between CPU cores of different NUMA
nodes. Therefore, the performance model of the CPU
cores of a NUMA node can be built separately from other
CPUs. S12(12x)/12 is lower than S6(6x)/6 because the
multi-threaded gemm kernel is NUMA-unaware.

Thus we can conclude that depending on the con-
figuration of the application the speed of individual
cores can vary significantly. Therefore, to achieve optimal
distribution of computations it is very important to build
and use speed functions which accurately reflect the
performance of the CPU cores.

3.2 Performance Modeling of GPUs

In GPU-accelerated multicore systems, a GPU is usually
controlled by a host process that is executed on a dedi-
cated CPU core. Since GPU has a separate memory, input
data is transfered to the device for computation, and
the result is copied back to the host memory afterwards.
The transfers are performed over a PCIe link and may
dominate the execution time. In this work, we model
a GPU and its dedicated CPU core by an abstract pro-
cessor, consequently the data transfer time is included
in the execution time during performance measurement.
We measure the speed of the combined GPU processing
unit (i.e. a GPU and its dedicated core) for a number of
problem sizes to build its functional performance model.
In general, the model can be defined only for the range of
problem sizes that fit in the device memory. However, it
can be extended for out-of-core applications, which can
handle a larger amount of data stored in host memory
through multiple host-device data transfers.

As more and more GPUs added to GPU-accelerated
multicore systems, additional PCIe lanes are required to
maintain the available bandwidth to each GPU. There
are two common strategies for increasing the number
of PCIe connections [6]. One approach is to introduce
additional I/O hubs so that each GPU is connected to
the host processor via a separate PCIe link. In this case,

GPU processing units do not share PCIe and can be con-
sidered independent; the performance models of GPU
abstract processors can be built separately. Another ap-
proach is to utilize PCIe switch. All data traffic traverses
a single PCIe connection to the PCIe switch, and then
is routed to GPUs connected to the PCIe switch. In this
case, GPU processing units cannot be considered inde-
pendent due to PCIe contention; the performance models
of GPU abstract processors cannot be built separately.
Therefore, we propose to group GPU processing units by
shared PCIe link for performance measurements. GPU
processing units that share a PCIe link are grouped
together and their performance is measured when all
GPU processing units in the group are executing the
same amount of workload simultaneously. For example,
as shown in Figure 1(a), GPU processing units 11 and
12 on NUMA node 1 share a single PCIe link, therefore,
they are grouped together and their performance should
be measured simultaneously.

Wide use of multi-GPU systems encourages develop-
ment of optimized computational kernels that could effi-
ciently distribute workload between multiple GPUs that
share a PCIe link, minimize PCIe contention and overlap
the host-device data transfers and device computations.
If such a kernel is used, the GPUs and their dedicated
CPU core will make a combined processing unit and will
be modeled by an abstract processor. For example, as
shown in Figure 1(b), GPU processing unit 3 is composed
of two GPUs and a CPU core of NUMA node 1.

Three types of functional performance models for
GPUs are defined as follows:

1) g(x) approximates the speed of a combined pro-
cessing unit made of a GPU and its dedicated
CPU core that execute a single-GPU computational
kernel, exclusively using a PCIe link. The speed
g(x) = x/t, where x is the number of computation
units, and t is the execution time.

2) gd(x) approximates the speed of one of d combined
processing units, each made of a GPU and its
dedicated CPU core. All processing units execute
identical single-GPU computational kernels simul-
taneously. The speed gd(x) = x/t, where x is the
number of computation units executed by each
GPU processing unit, and t is the execution time.

3) Gd(x) approximates the speed of a combined pro-
cessing unit made of d GPUs and their dedicated
CPU core that collectively execute a multi-GPU
computational kernel. The speed Gd(x) = x/t,
where x is the total number of computation units
processed by all d GPUs, and t is the execution
time. Gd(dx)/d is used to approximate the average
speed of a GPU.

Figure 3 shows the speed functions of a combined
GPU processing unit built in different configurations on
Pluto. Speed functions g1(x), g2(x), and g4(x) are built
by executing a single-GPU gemm computational kernel
per GPU processing unit on only one GPU processing



0018-9340 (c) 2013 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE

permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TC.2014.2375202, IEEE Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. XXX, NO. XXX, XXX 20XX 7

0

100

200

300

400

500

0 5000 10000 15000 20000

S
p

ee
d

(G
F

lo
p

s)

Problem size

g1(x)
g2(x)
g4(x)

G2(2x)/2
G4(4x)/4

Fig. 3. Speed functions of a GPU processing unit built in

different configurations

unit, on two GPU processing units that share a PCIe link,
and on two pairs of GPU processing units, each sharing
a PCIe link. The dedicated CPU cores are located on
NUMA nodes directly connected to the GPUs, therefore,
the GPU processing units in a pair share not only PCIe
but also memory. G2(2x)/2 and G4(4x)/4 approximate
the average speed of a GPU, when one multi-GPU gemm
kernel is executed on two GPUs that share a PCIe link,
and on two pairs of GPUs, each sharing a PCIe link.

The single- and multi-GPU gemm computational ker-
nels used are implemented in CUDA 4.1. The gemm
operation in the kernels is implemented by invoking the
gemm routine from the CUBLAS 4.1 library. The multi-
GPU gemm kernel is designed for multiple GPUs that
share a single data link and are handled by a single
dedicated CPU core. The kernel schedules data transfers
to eliminate PCIe contention between GPUs.

We can see that g2(x) is lower than g1(x), especially
for large problem sizes. This indicates significant re-
source contention between two GPU processing units,
dominated by PCIe but also including memory. There
is no difference between g2(x) and g4(x), indicating
no resource contention between the two pairs of GPU
processing units. In the 4-unit configuration, each pair of
GPUs is connected to its own NUMA node, therefore, the
performance of the two pairs of GPU processing units
can be measured independently.

G4(4x)/4 is lower than G2(2x)/2 because of inap-
propriate use of the multi-GPU computational kernel.
In the 4-GPU configuration, due to the contention-free
scheduling of data transfers, the two data links are used
alternately, remaining under-utilized during the execu-
tion of the kernel. In addition, the 4-GPU configuration
uses the PCIe slots of two NUMA nodes but the memory
of only one of them. One of the data links includes an
extra HT link between the two NUMA nodes, which
incurs extra communication overhead.

In the next section, we investigate the impact of
resource contention between heterogeneous processing

units, which is the case of NUMA node 1 in Figure 1,
where the CPU and GPU processing units compete for
the main memory.

3.3 Impact of Resource Contention between CPU

and GPU Processing Units

To achieve the maximum performance on a multicore
and multi-GPU system, it is necessary to employ both
CPUs and GPUs for computation. During the execution,
while a CPU computational kernel performs compu-
tations using all levels of memory hierarchy, a GPU
computational kernel mainly offloads work to GPUs.
Therefore, CPU and GPU processing units are hetero-
geneous in terms of computing power and memory
access pattern. As the CPU cores included in these two
types of processing units share memory, they cannot be
considered independent.

Figure 4(a) shows the speed functions of a 5-core CPU
processing unit executing the multi-threaded CPU gemm
kernel, S5(x), which are built while the GPU and another
core of the same NUMA node are idle or executing the
GPU gemm kernel. The corresponding speed functions of
the GPU processing unit, g(x), are shown in Figure 4(b),
complemented by the function built when the CPU cores
are idle. The workload assigned to the CPU cores and the
GPU is proportional to their speed measured exclusively.
The first distribution (1:6) corresponds to the the speeds

55

60

65

70

75

80

85

90

0 1000 2000 3000 4000 5000 6000

S
p

ee
d

(G
F

lo
p

s)

Problem size

S5(x), CPU:GPU 1:6
S5(x), CPU:GPU 1:4

S5(x), CPU only

(a)

200

250

300

350

400

450

500

550

0 5000 10000 15000 20000 25000

S
p

ee
d

(G
F

lo
p

s)

Problem size

g(x), CPU:GPU 1:6
g(x), CPU:GPU 1:4

g(x), GPU only

(b)

Fig. 4. Impact of resource contention on the performance

of the CPU (a) and GPU (b) processing units



0018-9340 (c) 2013 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE

permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TC.2014.2375202, IEEE Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. XXX, NO. XXX, XXX 20XX 8

observed for the problems that fit in the device memory;
the second distribution (1:4) – for the large problem sizes,
which exceed the device memory. For both distributions,
we measured the speed of the CPU and GPU processing
units simultaneously.

As Figure 4 suggests, the resource contention affects
the performance of both processing units, however, per-
formance degradation depends on the types of the pro-
cessing elements and the computational kernels. Namely,
the performance of the CPU processing unit is nearly
the same in all cases. Therefore, the speed function built
exclusively for 5 cores provides a good approximation of
their performance even in the case of resource contention
with the GPU unit. In contrast, to build the accurate per-
formance model of a GPU unit, it is necessary to measure
its performance simultaneously with CPU cores.

3.4 Impact of NUMA Mapping

On multicore systems of NUMA architecture, data is
transferred between NUMA nodes over fast links, such
as AMD HyperTransport(HT), whose bandwidth is usu-
ally lower than memory bandwidth. Integration of mul-
tiple GPUs into multicore systems of NUMA architecture
introduces complex performance phenomena. If the host
process that handles the GPU is bound to a CPU core
that resides in the NUMA node connected to the GPU
directly through an I/O hub, the data processed by
the GPU will only traverse links between the NUMA
node, the I/O hub, and the GPU. Otherwise, it will
traverse extra links between NUMA nodes, incurring
extra communication overhead. We will refer to these
two types of configurations as local and remote.

Figure 5 demonstrates the impact of NUMA mapping
on the performance of a GPU processing unit, comprised
of a CPU core and a GPU of Tesla S2050 deployed in
Pluto. g1(x) is built by executing one single-GPU gemm
kernel, which uses exclusively the data link and the
memory of a local or remote NUMA node. g2(x) is built

0

100

200

300

400

500

0 5000 10000 15000 20000

S
p

ee
d

(G
F

L
O

P
s)

Problem size

g1(x) local
g2(x) local

g2(x) local+remote

g1(x) remote
g2(x) remote

Fig. 5. Speed functions of a GPU processing unit built in

different configurations

by executing two single-GPU kernels simultaneously on
two GPU units that share the PCIe link and the memory
of the same NUMA node, local or remote. In the remote
configuration, the GPU units also share an extra HT link
to the remote NUMA node. Speed function g2(x) is also
built in the configuration when two dedicated CPU cores
are located on different NUMA nodes, which is denoted
as local + remote. In this case, the processing units share
PCIe but do not share memory.

The difference between speed functions g1(x) and
g2(x) reflects the performance degradation due to the
contention for PCIe, HT and memory. Significant differ-
ence is observed for large problem sizes when many
data transfers are required. Communication overhead
between NUMA nodes can be estimated by the differ-
ence between g1(x) in local and remote configurations.
The combined effect of both phenomena is reflected by
the g2(x) functions in different configurations.

4 EXPERIMENTAL RESULTS

In this section, the proposed methods are evaluated
with two typical data parallel applications, namely par-
allel matrix multiplication and numerical simulation of
lid-driven cavity flow. The building of functional per-
formance models of the computational kernels of the
applications, and the FPM-based data partitioning on
experimental platforms are realized with the help of
the FuPerMod software [7]. In this work, the dynamic
voltage and frequency scaling (DVFS) is not considered.

4.1 Parallel Matrix Multiplication

Heterogeneous parallel matrix multiplication [8] takes
the functional performance models of heterogeneous
processors as input, partitions the matrices using the
FPM-based data partitioning algorithm, and then per-
forms the blocked matrix multiplication.

In this application, matrices A, B and C are partitioned
over a 2D arrangement of heterogeneous processors so
that the area of each rectangle is proportional to the
speed of the processor that handles the rectangle. This
speed is given by the speed function of the processor
for the assigned problem size, i.e. the number of matrix
blocks of size b × b. Figure 6(a) shows one iteration of
the application. At each iteration of the main loop, pivot
block column of matrix A and pivot block row of matrix
B are broadcast horizontally and vertically, then all
processors update their own parts of matrix C in parallel.
The blocking factor b is a parameter used to adjust the
granularity of communications and computations [9],
whose optimal value can be found experimentally.

As shown in Figure 6(b), the computational kernel
performs one update of the submatrix Ci with the por-
tions of pivot block column Ai and pivot block row Bi:
Ci+ =Ai×Bi. In this work, the vendor-optimized single-
and multi-threaded gemm kernels from the ACML 4.4 li-
brary are used straightforwardly for the implementation
of CPU computational kernels. The GPU computational



0018-9340 (c) 2013 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE

permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TC.2014.2375202, IEEE Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. XXX, NO. XXX, XXX 20XX 9

(a)

(b)

Fig. 6. (a) Heterogeneous parallel matrix multiplication

(b) The computational kernel

kernels are implemented in CUDA 4.1. The memory
capacity of the GPU is usually small compared to that
of the host. To overcome this limit, we developed out-
of-core computational kernels that are able to handle
large problems. In this work, we only optimize the GPU
computational kernels at a high level. We do not develop
low-level GPU BLAS kernels but rely on the vendor-
optimized CUBLAS library. The gemm operation in the
GPU computational kernels is implemented by invoking
the gemm kernel from CUBLAS 4.1. To maximize parallel
execution between the host, the device and the PCIe
bus, asynchronous function calls are used and executed
concurrently through CUDA streams. Apart from these,
other optimization techniques have not been considered.

In the out-of-core computational kernel, when the
problem size fits in the device memory, the gemm execu-
tion is preceded by transferring submatrices Ai, Bi, and
Ci from the host to the device memory and followed by
transferring the updated Ci back. When the problem size
exceeds the device memory, Ci is split in two dimensions
into a number of small rectangular matrix blocks, Ai

and Bi are split in one dimension into horizontal and
vertical slices respectively. Then, Ci is updated block by
block in the device, leading to a large number of data
transfers between the host and device memory. In order
to reduce the communication cost, we transfer the blocks
over the PCIe link asynchronously in both directions,
using multiple CUDA streams, and overlap data transfers
with the gemm executions. More detail can be found
in [10]. We also developed an out-of-core computational
kernel for multiple GPUs that share a PCIe link. The
submatrices are also split into a number of rectangular
blocks. Then, Ci is updated block by block using all
GPUs. We schedule data transfers and gemm executions
so that the PCIe link is used exclusively by one device
at a time, thereby avoiding PCIe contention.

Figure 3 shows the speed functions of a GPU process-
ing unit executing the out-of-core computational kernels.
As we can see, when the problem size fits in device

memory, the performance is relatively high. However,
when the problem size exceeds the device memory, the
performance decreases dramatically due to the extra
communication overhead incurred by transferring the
rectangular blocks between the host and device memory.

4.1.1 FPM-based Data Partitioning on a Hybrid Server

In this section, we present experimental results of FPM-
based data partitioning on Ig, a multicore and multi-
GPU server specified in Table 2. Ig consists of four
NUMA nodes with 6 cores and 16 GB memory each, and
is equipped with two heterogeneous GPUs. The func-
tional performance models were built using proposed
performance modeling methods.

In this experiment, the single-threaded CPU and
single-GPU computational kernels were used. Therefore,
each GPU and its dedicated CPU core made a combined
processing unit, which was modeled by an abstract pro-
cessor. Each of other 22 CPU cores was modeled by an
abstract processor. The matrices were partitioned based
on the performance models of these abstract processors
in order to balance the workload. The two CPU cores
dedicated to GPUs were from two different NUMA
nodes. For each of the two NUMA nodes, a speed
function, g(x), was built for the GPU processing unit
by executing the GPU computational kernel separately.
Moreover, a speed function, s5(x), was built for other 5
CPU cores by executing 5 CPU computational kernels
simultaneously. For each of other two NUMA nodes, a
speed function, s6(x), was built for all CPU cores by
executing 6 CPU computational kernels simultaneously.
Note that g(x) and s5(x) were built separately because
the impact of resource contention between CPU and
GPU processing units is insignificant in this case.

To demonstrate the efficiency of the FPM-based data
partitioning, we compared the execution time of this
application when the matrices were partitioned using
different partitioning algorithms. The results are pre-
sented in Figure 7. The execution of the application
based on homogeneous partitioning was unbalanced, be-
ing dominated by the slowest processing units (i.e. CPU
cores). Both the CPM-based and FPM-based data parti-
tioning balanced the workload when problem sizes were
relatively small. However, starting from problem size
50 × 50, the CPM-based algorithm failed to balance the
workload. The FPM-based data partitioning algorithm

TABLE 2

Specifications of the hybrid server Ig

Hybird Server Ig (AMD CPU + NVIDIA GPU)

Architecture Opteron 8439SE GF GTX680 Tesla C870

Core Clock 2.8 GHz 1006 MHz 600 MHz

Number of Cores 4× 6 cores 1536 cores 128 cores

Memory Size 4× 16 GB 2048 MB 1536 MB

Mem. Bandwidth 192.3 GB/s 76.8 GB/s

Number of PCIe 1 1



0018-9340 (c) 2013 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE

permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TC.2014.2375202, IEEE Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. XXX, NO. XXX, XXX 20XX 10

0
100
200
300
400
500
600
700
800

10 20 30 40 50 60 70 80

E
x

ec
u

ti
o

n
ti

m
e

(s
ec

)

Square root of the number of matrix blocks (b=640)

CPM-based
FPM-based

Homogeneous

Fig. 7. Execution time of the parallel matrix multiplication

with different data partitioning algorithms

reduced the execution time of the application over the
CPM-based and homogeneous partitioning algorithms
by up to 21% and 50% respectively.

4.1.2 Partial FPM-based Data Partitioning on Heteroge-

neous GPU-accelerated Multicore Clusters

In this section, we present experimental results of partial
FPM-based data partitioning on heterogeneous GPU-
accelerated multicore clusters. A total number of 40 ded-
icated nodes from two clusters Adonis and Genepi were
used, specified in Table 3. Each Adonis node is equipped
with a GPU. All nodes are connected with Infiniband
40G/20G network. The platform is heterogeneous in
terms of computing devices and memory capacity. The
partial functional performance models were built dy-
namically at application run-time to a sufficient accuracy
level using proposed performance modeling methods.

The parallel matrix multiplication application was exe-
cuted with one multi-threaded CPU and one single-GPU
computational kernels on each Adonis node, and one
multi-threaded computational kernel on each Genepi
node. Therefore, on each Adonis node, the GPU and its
dedicated CPU core made a combined processing unit
and were modeled by an abstract processor. The other
CPU cores made another combined processing unit and
were modeled by another abstract processor. On each
Genepi node, all CPU cores made a combined processing
unit and were modeled by an abstract processor. The
matrices were partitioned based on the performance

TABLE 3

Specifications of the GPU-accelerated multicore cluster

Cluster Adonis (CPU + GPU) Genepi (CPU)

Intel Nvidia Intel

Processor Xeon E5520 Tesla C1060 XeonE5420 QC

Cores 2 × 4 cores 240 cores 2 × 4 cores

Clock Rate 2.27 GHz 602MHz 2.5 GHz

Memory Size 24 GB 4 GB 8 GB

Nodes 9 1 GPU/node 31

Network Infiniband 40G Infiniband 20G

0

100

200

300

400

0 30000 60000 90000 120000

S
p

ee
d

(G
F

lo
p

s)

Number of matrix blocks (b=128)

g(x) adonis
S7(x) adonis
S8(x) genepi

Fig. 8. Pre-built functional performance models of CPU

and GPU processing units of Grenoble nodes

models of these abstract processors in order to balance
the workload. For each Adonis node, a speed function,
g(x), was built for the GPU processing unit by executing
the single-GPU computational kernel. Moreover, a speed
function, S7(x), was built for the CPU processing unit by
executing the multi-threaded computational kernel. For
each Genepi node, a speed function, S8(x), was built by
executing the multi-threaded CPU computational kernel.
The pre-built speed functions are presented in Figure 8
for reference. Note that g(x) and S7(x) were built sepa-
rately because the impact of resource contention between
CPU and GPU processing units was insignificant in this
case.

To demonstrate the efficiency of the partial FPM-
based data partitioning, we compared the execution time
of this application when the matrices were partitioned
using different partitioning algorithms. The results are
presented in Figure 9. The execution of the application
based on homogeneous partitioning was unbalanced,
being dominated by the slowest processing units, i.e. the
CPU processing unit of each Adonis node. Both CPM-
based and partial FPM-based data partitioning balanced
the workload when problem sizes were relatively small,
i.e. problem sizes up to 1100 × 1100. However, starting
from problem size 1200×1200, the CPM-based algorithm
failed to balance the workload. The partial FPM-based

0

400

800

1200

1600

2000

2400

1000 1100 1200 1300 1400

E
x

ec
u

ti
o

n
ti

m
e

(s
ec

)

Square root of the number of matrix blocks (b=128)

Homo
CPM-based
FPM-based

Partial FPM-based

Fig. 9. Execution time of the parallel matrix multiplication

application with different data partitioning algorithms



0018-9340 (c) 2013 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE

permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TC.2014.2375202, IEEE Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. XXX, NO. XXX, XXX 20XX 11

TABLE 4

Estimated overhead for building then partial FPMs

Problem size 1000
2

1100
2

1200
2

1300
2

1400
2

Iterations 2 2 11 11 9

Overhead 0.2% 0.18% 0.92% 0.85% 0.64%

data partitioning reduced the execution time over ho-
mogeneous and CPM-based partitioning by up to 13%
and 22% respectively. Data partitioning based on partial
and pre-built functional performance models resulted in
similar execution time.

Table 4 shows the estimated overhead for building
the partial functional performance models. The first row
shows the problem size, whose square root is the number
of iterations of the application for the given problem
size. The second row shows the number of iterations
that were actually run for building the partial FPMs. The
third row shows the ratio of the number of iterations for
building the partial FPMs to the number of iterations
of the application. This ratio could be roughly seen
as the ratio of the time for building partial FPMs to
the computation time of the application, because the
same computational kernel was executed when building
partial FPMs and running the application. We can see
that the time for building partial FPMs is neglectable
compared to the computation time of the application.

4.2 Numerical Simulation of Lid-driven Cavity Flow

Computational Fluid Dynamics (CFD) is the analysis of
systems involving fluid flow, heat transfer, and associ-
ated phenomena by means of computer-based numerical
simulation. Over the past few decades, computational
fluid dynamics has become a practical cornerstone of
most fluid and mechanical engineering applications.

The lid-driven cavity flow is a classical test problem
for incompressible, lamina flow of Newtonian fluids,
which has been investigated by many researchers and
accurate solutions are available in the literature (see [11]).
The standard case is fluid contained in a square domain
with Dirichlet boundary conditions on all sides, with
three stationary sides and a lid moving with a tangential
unit velocity. The fluid motion in the driven cavity is
governed by the Navier-Stokes equations:

{

∂tU + (U · ∇)U −
1

Re
∆U +∇p = 0

∇ ·U = 0

to be solved in Ω = [0, 1]× [0, 1]. In these equations, U is
the velocity vector, t is time, Re is the Reynolds number,
and p is the pressure.

The Navier-Stokes equations are difficult to solve
analytically, so numerical methods are often used. In
numerical methods, the geometric domain and the con-
servation equations are discretized, producing a system
of algebraic equations whose solution is used to ap-
proximate the solution of the conservation equations.

For this test case, a system of pressure-velocity cou-
pled equations is produced from discretization. In this
work, we use PISO [12] to solve this linear equations
system. In PISO, the velocity and pressure are calculated
by solving linear systems of velocity equations and
pressure-correction equations. We choose conjugate gra-
dient algorithm (CG) [13] to solve the symmetric linear
pressure-correction equations, and bi-conjugate gradient
stabilized algorithm (BiCGSTAB) [14] to solve the non-
symmetric linear velocity equations in this work.

Parallel computing in CFD is usually based on domain
decomposition, which is essentially data parallelism. The
geometry domain is divided into a number of sub-
domains, each assigned to a process. The problem is
solved on the entire domain from problem solutions on
subdomains. Since processes needs data that resides in
other subdomains, exchange of data between processes
is required. Solving the sparse linear equation systems is
the compute-intensive and time-consuming part in CFD
applications. Therefore, we build functional performance
models of processing units executing the linear equation
solvers of this application, i.e. CG and BICGSTAB. Then,
we perform heterogeneous domain decomposition based
on functional performance models in order to balance
the workload on heterogeneous platforms. The speed of
processing units is calculated by dividing the number
of floating-point operations by the computation time of
one iteration of the linear equation solver (communi-
cation time eliminated). In this work, one-dimensional
heterogeneous domain decomposition is used, which
is able to handle rectangle geometry domains, but the
communication overhead is not optimized.

In PISO, both CG and BiCGSTAB solvers will be
invoked at each time step. Because the BiCGSTAB solver
requires almost exactly twice as many linear algebra
operations of each type per iteration as the CG solver,
both the complexity and computation time per iteration
of the BiCGSTAB solver will twice as much as the CG
solver. As a result, their performance are similar, which is
proved by our experimental results. Since the two linear
equation solvers have almost the same performance, it
is reasonable to partition the workload based on perfor-
mance models of either solver. In this work, we choose
to use the FPMs of the CG solver.

The experimental platform is the Adonis cluster, spec-
ified in Table 3. Most linear algebra operations involved
in the linear equation solvers are implemented using
CUSP 0.3, a C++ template library for sparse matrix com-
putations for both CPU and GPU computing systems.
Experiments were conducted on both a single Adonis
node and a cluster of Adonis nodes.

In the experiment on a single Adonis node, the CFD
test case was executed with one GPU CG solver on
the GPU with its dedicated CPU core, and one CPU
CG solver on each of other seven CPU cores. Therefore,
the GPU and its dedicated CPU core made a combined
processing and were modeled by an abstract processor.
Each of other seven cores was modeled by an abstract



0018-9340 (c) 2013 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE

permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TC.2014.2375202, IEEE Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. XXX, NO. XXX, XXX 20XX 12

processor. The domain was decomposed based on the
performance models of these abstract processors in order
to balance the workload. An Anodis node consists of
two NUMA nodes. For the NUMA node to which the
GPU was connected, a speed function, g(x), for the GPU
processing unit, and a speed function, s3(x), for the other
3 CPU cores were built by executing the GPU CG solver
on the GPU processing unit and three CPU CG solvers
on other 3 CPU cores simultaneously. For CPU cores of
the other NUMA node, a speed function, s4(x), was built
by executing 4 CPU CG solvers simultaneously. These
speed functions are presented in Figure 10.

Figure 11 shows the actual speedup and the estimated
upper bound on the speedup in execution time of the
CFD test case when using FPM-based heterogeneous
decomposition over homogeneous decomposition. It is
worth noting that the speedup that could be achieved
depends on the level of the processor heterogeneity of
the experiment platform.

In the experiment on a single Adonis node, the
speedup is up to 1.23. For a certain problem size, if the
domain is decomposed by FPM-based decomposition
method, let g and s3 denote the speed of the GPU pro-
cessing unit and the CPU cores of the same NUMA node,
s4 denote the speed of the CPU cores of the other NUMA
node, with a heterogeneous workload distribution. For
the same problem size, if the domain is decomposed by
homogeneous decomposition method, let ḡ, s̄3 and s̄4
denote the speed of the corresponding processing units.
We can calculate that the speedup in computation time
S1 = (g+3∗s3+4∗s4)/(8∗s̄4) is up to 1.4. We can estimate
that the speedup in executing time S2 = (S1+rf )/(1+rf ),
where rf is the ratio of the communication time to
the computation time measured in experiments when
the solution domain is decomposed using FPM-based
decomposition method. Based on experimental results,
rf is around 0.6, therefore, S2 is up to 1.25. As we can
see, the actual speedup and the estimated upper bound

0

0.5

1

1.5

2

2.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4

S
p

ee
d

(G
F

lo
p

s)

Number of control volumes (×106)

g(x), GPU+CPU
s3(x), GPU+CPU

s4(x)

s1(x)
g(x)

Fig. 10. Speed functions of the CG solver built in different

configurations on an Adonis node

are quite close, which demonstrates that the FPM-based
heterogeneous domain decomposition is able to balance
the load on a GPU-accelerated multicore node.

The tool for mesh generation we rely on in the exper-
iments can only run on a single node, so the range of
problem size with which we can experiment is limited
by the capacity of the main memory of a single node.
If the largest number of control volumes that can be
generated on a single node are distributed evenly to all
processing elements of the Adonis cluster, each receives a
relatively small number of control volumes. In this case,
the computing capacity of GPU is barely fulfilled and
the level of performance heterogeneity of CPU and GPU
is low, which is of no interest in this study.

In order to study the FPM-based domain decomposi-
tion on a hybrid cluster with a relatively wide range of
problem size, one GPU (with a dedicated CPU core) and
seven CPU cores were used, each from a Adonis node.
For heterogeneous domain decomposition, a speed func-
tion, s1(x), was built by executing the CPU CG solver on
a single CPU core, and a speed function, g(x), was built
by executing the GPU CG solver independently. These
speed functions are presented in Figure 10. Compared
to the performance measured independently, the perfor-
mance of the GPU CG solver measured under contention
from neighboring CPU cores reduces by around 30%
because of resource contention from other CPU cores.

On the Adonis cluster, the speedup in execution time
is around 1.1. Using the same method as above, we
can calculate that the speedup in computation time is
up to 1.25. Based on experimental results, the ratio of
the communication time to the computation time rf is
around 0.67. Therefore, we can estimate that the speedup
in execution time S2 is up to 1.15. As we can see,
the actual speedup and the estimated upper bound are
reasonably close, which demonstrates the effectiveness
of FPM-based heterogeneous domain decomposition.

1

1.05

1.1

1.15

1.2

1.25

1.3

2 3 4 5 6 7 8 9 10 11S
p

ee
d

u
p

in
ex

ec
u

ti
o

n
ti

m
e

Number of control volumes (×106)

node
bound,node

cluster
bound,cluster

Fig. 11. The actual speedup and the estimated upper

bound on the speedup in execution time on a single

Adonis node and on the Adonis cluster



0018-9340 (c) 2013 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE

permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TC.2014.2375202, IEEE Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. XXX, NO. XXX, XXX 20XX 13

5 RELATED WORK

Performance modeling is a very common technique
used for optimization of parallel applications on HPC
platforms. A large number of performance models have
been proposed for multicore and GPU architectures. For
example, for multicore systems, the Roofline model [15]
ties floating-point and memory performance together
in a two dimensional graph with the bounds repre-
senting a set of recommendations how to reengineer
the application; [16] proposed an integrated power and
performance prediction model for GPU architecture.

The load balancing algorithms can be classified into
two categories, namely static and dynamic algorithms.
Static algorithms, such as data partitioning [1], [2], [17],
require a priori information about the parallel appli-
cation and platform. Static algorithms rely on accurate
performance models as input to predict the future execu-
tion of the application. Static algorithms are particularly
useful for applications for which data locality is critical
because data redistribution incurs significant overhead.
However, these algorithms are unable to balance on
non-dedicated platforms, where load changes with time.
Dynamic algorithms, such as task scheduling and work
stealing [18], [19], [20], balance the load by moving fine-
grained tasks between processors during the execution.
Dynamic algorithms do not require a priori information
about execution but may incur large communication
overhead due to data migration. Dynamic algorithms
can use static partitioning for the initial step due to its
provably near-optimal communication cost and bounded
tiny load imbalance.

Most of the state-of-the-art data partitioning algo-
rithms for GPU-accelerated HPC platforms, such as [1],
[2], [21], [22], make the assumption that the speed of a
process does not change with problem size, therefore, the
relative speed of processing elements is constant. They
are referred to as data partitioning based on constant per-
formance models (CPM). Graph partitioning software,
e.g. Metis [23], can be used to partition graphs and
meshes for heterogeneous platforms. Similarly, the speed
of heterogeneous processors is represented by different
weights (constants), based on which graph partitioning
algorithms balance workload and optimize total commu-
nication volume. However, as demonstrated in [5], CPM-
based data partitioning algorithms may return solutions
that are far away from optimal or may fail to converge.

Several high-level programming systems for hetero-
geneous hardware-accelerated multicore platforms have
been developed. Qilin [24] automatically generates code
and uses adaptive mapping for performance tuning.
During the training run, Qilin executes the program at
different input sizes on CPUs and GPUs separately, and
build performance models to determine workload parti-
tioning between CPUs and GPUs. Peppher [25] employs
component implementation variants of performance-
critical parts of applications tailored to different architec-
tures, and relies on the compiler and runtime system to

select and schedule component tasks on available com-
puting resources. PetaBricks [26], an implicitly parallel
language and compiler, uses an empirical autotuning ap-
proach to search the space of possible implementations
at installation time to construct poly-algorithms that
combine many different algorithmic techniques to obtain
better performance. Other heterogeneous programming
systems with similar functionality include Merge [18],
StarPU [27], and Elastic Computing [28].

The integration of multiple GPUs into multicore sys-
tems introduces complex performance phenomena, in-
cluding non-uniform memory (NUMA) access and con-
tention for shared system resources. In [29], the differ-
ences in GPU bandwidth due to NUMA effect are briefly
documented. In [6], the effects of NUMA mapping on
data transfers for a multi-GPU system of dual-IOH ar-
chitecture are quantified.

In [10], we presented the preliminary work on per-
formance modeling and FPM-based data partitioning on
GPU-accelerated multicore systems. In that work, the
data parallel applications were configured with single-
threaded CPU and single-GPU computational kernels.
The proposed methods were evaluated only with parallel
matrix multiplication on a single multicore and multi-
GPU server.

6 CONCLUSION

We aim at the maximum performance of data parallel
scientific applications on heterogeneous multicore and
multi-GPU platforms. Previously, we proposed FPM-
based data partitioning to balance the workload of
data parallel applications on uniprocessor heterogeneous
platforms. In this work, we propose methods of per-
formance modeling and performance measurement on
multicore and multi-GPU systems, and extend the FPM-
based data partitioning to heterogeneous multicore and
multi-GPU platforms. We evaluate the proposed meth-
ods with two data parallel applications, namely, parallel
matrix multiplication and numerical simulation of lid-
driven cavity flow, on a multicore/multi-GPU server and
on a heterogeneous GPU-accelerated multicore cluster.
Experimental results demonstrate that FPM-based data
partitioning is able to balance the workload on target
platforms and deliver good performance. Energy con-
siderations are out of the scope of the presented work.

The FPM-based data partitioning has been found use-
ful and efficient for balancing the workload of many
data parallel applications on modern heterogeneous plat-
forms. However, there still needs more effort to be
invested in improving this approach in several aspects.
For example, so far only the computing performance of
processing units is used for data partitioning. As the
communication overhead between processes is not taken
into account, we rely on other algorithms to optimize
the total communication overhead. In our applications,
the performance model of a processing unit is a one-
dimensional function of the problem size, i.e. the total



0018-9340 (c) 2013 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE

permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TC.2014.2375202, IEEE Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. XXX, NO. XXX, XXX 20XX 14

number of the computation units. However, in some
dense matrix applications on highly heterogeneous plat-
forms, the performance of a processing unit may depend
on the shape of the matrix block assigned to it. In that
case, the multi-dimensional performance model with
more than one parameter may be required to accurately
describe the performance. For large complex applications
where the computational kernel cannot be easily sepa-
rated from the application or there exists more than one
computational kernel, it may take more effort to balance
the workload with this approach. All these problems will
be studied in the future work.

Acknowledgments. This research was conducted with
the financial support of SFI 08/IN.1/I2054, NSFC
No.61403402, and UCD-CSC scholarship. Experiments
were carried out on platforms provided by the Innova-
tive Computing Lab (Univ. of Tennessee) and Grid5000.

REFERENCES

[1] M. Fatica, “Accelerating Linpack with CUDA on heterogenous
clusters,” in GPGPU-2. ACM, 2009, pp. 46–51.

[2] C. Yang et al., “Adaptive optimization for petascale heterogeneous
CPU/GPU computing,” in Cluster’10, 2010, pp. 19–28.

[3] A. Lastovetsky and R. Reddy, “Data partitioning with a functional
performance model of heterogeneous processors,” Int. J. High
Perform. Comput., vol. 21, pp. 76–90, 2007.

[4] A. Lastovetsky and R. Reddy, “Distributed data partitioning for
heterogeneous processors based on partial estimation of their
functional performance models,” in Euro-Par’09, 2009, pp. 91–101.

[5] D. Clarke et al., “Dynamic load balancing of parallel computa-
tional iterative routines on highly heterogeneous HPC platforms,”
Parallel Processing Letters, vol. 21, pp. 195–217, 2011.

[6] K. Spafford et al., “Quantifying NUMA and contention effects in
multi-GPU systems,” ser. GPGPU-4, 2011, pp. 11:1–11:7.

[7] D. Clarke, Z. Zhong, V. Rychkov, and A. Lastovetsky, “Fupermod:
A framework for optimal data partitioning for parallel scientific
applications on dedicated heterogeneous hpc platforms,” in PaCT-
2013, ser. LNCS. Springer, 2013, vol. 7979, pp. 182–196.

[8] D. Clarke et al., “Column-based matrix partitioning for parallel
matrix multiplication on heterogeneous processors based on func-
tional performance models,” in HeteroPar’11, 2011, pp. 450–459.

[9] J. Choi, “A new parallel matrix multiplication algorithm on
distributed-memory concurrent computers,” in HPC Asia, 1997,
pp. 224 –229.

[10] Z. Zhong et al., “Data partitioning on heterogeneous multicore
and multi-gpu systems using functional performance models of
data-parallel applications,” in Cluster, 2012, pp. 191–199.

[11] U. Ghia, K. N. Ghia, and C. T. Shin, “High-Re solutions for
incompressible flow using the Navier-Stokes equations and a
multigrid method,” J. Comput. Phys., vol. 48, pp. 387–411, 1982.

[12] R. I. Issa, “Solution of the implicitly discretised fluid flow equa-
tions by operator-splitting,” J. Comput. Phys., vol. 62, no. 1, pp.
40–65, Jan. 1986.

[13] G. H. Golub and C. F. Van Loan, Matrix Computations (3rd Ed.).
Baltimore, MD, USA: Johns Hopkins University Press, 1996.

[14] H. A. van der Vorst, “Bi-cgstab: A fast and smoothly converging
variant of bi-cg for the solution of nonsymmetric linear systems,”
SIAM J. Sci. Stat. Comput., vol. 13, no. 2, pp. 631–644, Mar. 1992.

[15] S. Williams, A. Waterman, and D. Patterson, “Roofline: an in-
sightful visual performance model for multicore architectures,”
Commun. ACM, vol. 52, pp. 65–76, Apr. 2009.

[16] S. Hong and H. Kim, “An integrated gpu power and performance
model,” in Proceedings of the 37th Annual International Symposium
on Computer Architecture, ser. ISCA ’10. New York, NY, USA:
ACM, 2010, pp. 280–289.

[17] Y. Ogata et al., “An efficient, model-based CPU-GPU heteroge-
neous FFT library,” in IPDPS 2008, 2008, pp. 1 –10.

[18] M. D. Linderman, J. D. Collins, H. Wang et al., “Merge: a program-
ming model for heterogeneous multi-core systems,” SIGPLAN
Not., vol. 43, pp. 287–296, 2008.

[19] C. Augonnet et al., “Automatic calibration of performance models
on heterogeneous multicore architectures,” in EuroPar, 2009.

[20] G. Quintana-Ortı́ et al., “Solving dense linear systems on plat-
forms with multiple hardware accelerators,” SIGPLAN Not.,
vol. 44, pp. 121–130, 2009.

[21] I. Galindo et al., “Dynamic Load Balancing on Dedicated Hetero-
geneous Systems,” in EuroPVM/MPI. Springer, 2008, pp. 64–74.

[22] J. Martı́nez, E. Garzón, A. Plaza, and I. Garcı́a, “Automatic tuning
of iterative computation on heterogeneous multiprocessors with
ADITHE,” J. Supercomput., vol. 58, no. 2, pp. 151–159, 2011.

[23] G. Karypis and V. Kumar, “A fast and high quality multilevel
scheme for partitioning irregular graphs,” SIAM J. Sci. Comput.,
vol. 20, no. 1, pp. 359–392, Dec. 1998.

[24] C.-K. Luk, S. Hong, and H. Kim, “Qilin: Exploiting parallelism
on heterogeneous multiprocessors with adaptive mapping,” in
MICRO-42, 2009, pp. 45–55.

[25] S. Benkner et al., “High-level support for pipeline parallelism on
many-core architectures,” ser. Euro-Par’12. Berlin, Heidelberg:
Springer-Verlag, 2012, pp. 614–625.

[26] P. M. Phothilimthana et al., “Portable performance on heteroge-
neous architectures,” ser. ASPLOS ’13. New York, NY, USA:
ACM, 2013, pp. 431–444.

[27] C. Augonnet et al., “StarPU: A unified platform for task schedul-
ing on heterogeneous multicore architectures,” in EuroPar, 2009,
pp. 863–874.

[28] J. R. Wernsing and G. Stitt, “Elastic computing: A framework
for transparent, portable, and adaptive multi-core heterogeneous
computing,” in LCTES 2010. ACM, 2010, pp. 115–124.

[29] V. Kindratenko et al., “GPU clusters for high-performance com-
puting,” in CLUSTER ’09, 2009, pp. 1–8.

Ziming Zhong received his bachelor degree in
simulation engineering, and his master degree
in control science and engineering from Na-
tional University of Defense Technology, China,
in 2007 and 2009 respectively. He is currently a
PhD candidate in the School of Computer Sci-
ence and Informatics, University College Dublin,
Ireland. His research interests include perfor-
mance modelling of processors in heteroge-
neous multicore and multi-GPU platforms.

Vladimir Rychkov received a PhD degree
from the Russian Academy of Sciences in
2005. His main research interests include high
performance computing (performance modeling
and optimization of parallel applications), soft-
ware engineering (advanced programming tech-
niques and runtime environments), computer-
aided engineering (finite element method, do-
main decomposition, unstructured mesh algo-
rithms).

Alexey Lastovetsky received a PhD degree
from the Moscow Aviation Institute in 1986, and
a Doctor of Science degree from the Russian
Academy of Sciences in 1997. His main re-
search interests include algorithms, models, and
programming tools for high performance hetero-
geneous computing. He has published over a
hundred technical papers in refereed journals,
edited books, and international conferences. He
authored the monographs Parallel computing on
heterogeneous networks (Wiley, 2003) and High

performance heterogeneous computing (Wiley, 2009).


