
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 6, JUNE 2013 809

Data Placement and Duplication for Embedded
Multicore Systems With Scratch Pad Memory

Yibo Guo, Qingfeng Zhuge, Jingtong Hu, Student Member, IEEE, Juan Yi, Meikang Qiu, Senior Member, IEEE,

and Edwin H.-M. Sha, Senior Member, IEEE

Abstract—Scratch pad memories (SPM) are attractive alterna-
tives for caches on multicore systems since caches are relatively
expensive in terms of area and energy consumption. The key to
effectively utilizing SPMs on multicore systems is the data place-
ment algorithm. In this paper, two polynomial time algorithms,
regional data placement for multicore (RDPM) and regional data
placement for multicore with duplication (RDPM-DUP), have
been proposed to generate near-optimal data placement with
minimum total cost. There is only one copy for each data in
RDPM, while RDPM-DUP allows data duplication. Experimental
results show that the proposed RDPM algorithm alone can reduce
the time cost of memory accesses by 32.68% on average compared
with existing algorithms. With data duplication, the RDPM-DUP
algorithm further reduces the time cost by 40.87%. In terms
of energy consumption, the proposed RDPM algorithm with
exclusive copy can reduce the total cost by 33.47% on average.
When RDPM-DUP is applied, the improvement increases up to
38.15% on average.

Index Terms—Data duplication, data placement, embedded
systems, multicore, scratch pad memory.

I. Introduction

A
S DEMANDS for higher performance keep growing,

multicore systems have become one of the most promis-

ing designs in modern embedded systems. A multicore embed-

ded system has potential to provide near-linear performance

improvement. For instance, two smaller processor cores that

occupy the same space and use the same energy as the large

core can potentially provide 70%–80% higher performance,

as compared to only 40% from a large monolithic core [1].

Manuscript received October 26, 2011; revised November 4, 2012; ac-
cepted December 22, 2012. Date of current version May 15, 2013. This
work was supported in part by NSF CNS-1015802, NSF CNS-1249223,
Texas NHARP 009741-0020-2009, NSFC 61173014, National 863 Program
2013AA013202, and the Natural Science Foundation of Chongqing through
CSTC2012ggC40005. The work of Meikang Qiu was supported in part
by NSF CNS-1249223. This paper was recommended by Associate Editor
Y. Xie.

Y. Guo and J. Hu are with the Department of Computer Science,
University of Texas at Dallas, Richardson, TX 75080 USA (e-mail:
yxg091020@utdallas.edu; jthu@utdallas.edu).

M. Qiu is with the Department of Electrical and Computer Engi-
neering, University of Kentucky, Lexington, KY 40506 USA (e-mail:
mqiu@engr.uky.edu).

J. Yi and Q. Zhuge are with the College of Computer Science,
Chongqing University, Chongqing 400044, China (e-mail: jenni@cqu.edu.cn;
qfzhuge@cqu.edu.cn).

E. Sha is with the College of Computer Science, Chongqing Univer-
sity, Chongqing 400044, China, and the Department of Computer Science,
University of Texas at Dallas, Richardson, TX 75080 USA (e-mail:
edwinsha@cqu.edu.cn).

Digital Object Identifier 10.1109/TCAD.2013.2238990

However, with the number of cores increasing, the cost of

adopting hardware-controlled caches in embedded systems

also becomes extremely high. There are two reasons for the

cost increase. First, the power and performance overheads

of automatic memory management in hardware is growing

prohibitively [2], [3], [38]. Caches consume about half of the

processor’s energy for a single-core processor [4]. Second,

cache coherency protocols do not scale well with the num-

ber of cores. Therefore, scratch pad memories (SPMs), also

known as software-controlled on-chip memories, have been

widely adopted in many embedded systems as a substitute for

caches [5]–[10].

There are several reasons for this fact. One is that

SPMs have a 34% smaller area and 40% lower power con-

sumption than caches of the same capacity, as shown by

Banakar et al. [7], [8]. They also revealed that the runtime

measured in cycles was 18% better with an SPM using a

simple knapsack-based allocation algorithm [11]. Besides the

hardware advantages of SPMs, application-specific embedded

system applications normally have compiler analyzable data

access patterns, and therefore an optimizing compiler would

be in a better position than hardware to manage data trans-

fers across memory hierarchies. Given the power, cost, and

performance advantages of SPMs, many existing multicore

embedded processors, including TI’s TNETV3010 CMP [12]

and IBM’s Cell Processor [13], are employing SPMs as their

on-chip memories.

In order to utilize on-chip SPMs effectively, compilers

usually have to carefully determine the data placement for

programs so that the cost of memory accesses can be min-

imized [8]. In most cases, a profiling process will first be

carried out to obtain the memory access information [14].

Since embedded systems normally have limited or fixed input

sets [3], [15], it is feasible to obtain the memory access

information by profiling. Based on profiled information, the

compiler determines the best data placement with the minimal

memory access cost during compile time.

Data placement methods proposed in existing work can be

categorized into two types, global-fixed or regional, depending

on whether data placement changes [16]. The global-fixed

data placement method generates a single data placement

for the whole program, and the data placement remains the

same during the execution of the whole program [8], [17]. In

regional data placements, programs are divided into program

regions, each of which has its own data placement determined

0278-0070/$31.00 c© 2013 IEEE

810 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 6, JUNE 2013

by compilers [18], [19]. During compile time, data movement

instructions are inserted in between regions. Each program re-

gion will have its own data placement as the program executes.

It has been experimentally proven that regional data placement

methods achieve better performance and lower energy costs

than global-fixed data placement methods [6], [20], since they

can take advantage of the data locality of different program

regions. Therefore, the regional data placement approach is

preferred. It is also the method adopted in this paper.

This paper targets the multicore embedded system. Both sin-

gle instruction multiple data (SIMD) and multiple instruction

multiple data (MIMD) are possible. Data sharing activities in

SIMD applications are scarce, but prevalent in MIMD applica-

tions [21]. In traditional data placements for SPMs, each data

only has one copy in one SPM or main memory. Therefore, the

core that does not have the data in the local SPM has to access

the data from a remote core’s SPM or main memory. In this

case, a remote access occurs, which is more expensive than

accessing its own SPM. To reduce remote memory accesses,

in this paper, we introduce a data duplication algorithm

along with a data placement algorithm. In data duplications,

certain data are purposely chosen to be duplicated in multiple

cores’ SPMs in order to reduce the total cost of memory

accesses.

In this paper, two polynomial-time algorithms are proposed

to determine the near-optimal data placement for programs

running on SPM-equipped multicore embedded systems. In

these two algorithms, programs are divided into parallel re-

gions. Each parallel region is a block of code that can be

executed in parallel on multiple cores. The first algorithm,

regional data placement for multicore (RDPM), minimizes the

total memory access cost for each parallel region when there is

only one exclusive copy of data in one of the SPMs or main

memory. The second algorithm, regional data placement for

multicore with duplication (RDPM-DUP), minimizes the total

memory access cost for each parallel region when multiple

copies of data are allowed.

According to the experimental results, the proposed RDPM

algorithm reduces the time cost of memory access for an

eight-core system by 32.68% on average, compared with

a greedy algorithm derived from Udayakumaran’s algorithm

[18]. With data placement and data duplications, the RDPM-

DUP algorithm reduces memory access cost by 40.87% on

average. For energy consumption, the proposed data placement

method alone reduces the energy cost by 33.47%, and together

with data duplications, by 38.15%.

The major contributions of this paper include the following.

1) We propose a polynomial-time data placement algorithm

for multicore systems equipped with SPMs to minimize

the total cost of memory accesses.

2) We present a data duplication technique and integrate it

into the data placement algorithm. This data duplication

technique can further reduce the memory access cost

when multiple data copies are allowed.

The rest of this paper is organized as follows. Background

and related works are discussed in Section II. The hardware

architecture and software execution model are introduced in

Section III. A motivational example is presented in Section IV

to illustrate the basic ideas of the proposed algorithms. The

main algorithms are explained in detail in Section V. The

experiments are presented in Section VI. Finally, this paper

is concluded in Section VII.

II. Background and Related Works

SPMs are widely adopted in single-core embedded pro-

cessors [8], [27], [28]. There are many data placement ap-

proaches proposed for SPM in single-core processors [8],

[11], [18], [29]. Existing SPM data placement algorithms can

be categorized into two types: global-fixed data placement

and regional data placement. In global-fixed approaches, the

compiler profiles the data access information and determines

data placement for the whole program. The data placement

remains the same during the execution of the whole program.

In [17] and [27], Panda et al. proposed techniques to partition

the scalar variables and arrays to the SPMs and main memory

in order to minimize the execution cost. Avissar et al. [8]

proposed an integer linear programming (ILP) formulation

based on the cost and number of memory accesses for the

data placement problem of SPMs. Sjödin et al. [30] also

proposed a global-fixed data placement method. Global-fixed

data placements cannot handle the regional behavior of the

program and achieve satisfactory performance.

In order to achieve better performance, regional data place-

ment techniques are proposed. In these methods, programs are

divided into small regions. The compiler generates different

data placements for different regions. At the beginning of each

program region, data movement instructions are inserted to

construct a data placement for the current region so that the

memory access cost of the current region is reduced. Thus, the

regional data placement is able to take advantage of the data

locality of the program. Udayakumaran et al. [18] proposed

a greedy data placement algorithm with the regional data

placement approach on a single-core system. Their algorithm

divided a program into several regions by program points.

Each region has its own data placement according to the

memory access information. This technique works properly

for single-core systems since the communication cost can be

ignored. However, for the multicore systems, the greedy algo-

rithm cannot achieve optimal results, as shown in Section IV.

There are also several works on the data placement

algorithms for multicore systems equipped with SPMs.

Che et al. [31] proposed an ILP formulation and heuristic

approach in order to maximize the throughput of stream

programs for multicore processors. Two drawbacks exist in

this approach. First, it is a global-fixed placement approach.

Therefore, it could not take advantage of data locality. Second,

ILP takes exponential time. Zhang et al. [24] introduced a data

partitioning and scheduling method for SPMs on multicore

system. In their work, the data placement scheme used could

not generate optimal data placement for one region. Kandemir

et al. [32] proposed a data tiling technique that focused

on loop-intensive applications. Their methods only worked

for arrays and greatly relied on the characteristics of loops.

Suhendra et al. [33] proposed an ILP formulation for task

scheduling and data allocation on MPSoC architectures. Their

GUO et al.: DATA PLACEMENT AND DUPLICATION FOR EMBEDDED MULTICORE SYSTEMS WITH SPM 811

ILP formulation considered task mapping, scheduling, SPM

partitioning, and data allocation. Since ILP is known for

exponential completion time, the completion time of their

technique is too long for large applications. Moreover, their

data placement is global fixed. The techniques proposed in

this paper employ the regional data allocation method, which

can better adapt to the regional behavior of programs and take

advantage of the program data locality.

Data duplication is often used for data assurance.

Li et al. [34] proposed a method to duplicate blocks in order

to protect SPMs from soft errors. Issenin et al. [35] proposed

a data reuse technique for multicore systems with SPMs.

However, if the number of memory accesses to the shared

data is enormous, the shared buffer will be the bottleneck and

many remote accesses will occur. Therefore, it is beneficial

to duplicate data if the data are accessed many times from

different cores. Even though a limited number of initial off-

chip memory accesses occur when duplicating, the savings

gained from the later local SPM accesses can offset the initial

cost. If the gains cannot offset the initial cost, data will not

be duplicated in the proposed algorithm. In our research,

with appropriate data duplication, the time or energy cost

for a program region on multicore systems can be further

minimized.

III. Hardware and Software Model

A. Hardware Architecture

This paper targets embedded multicore systems that employ

virtually shared SPMs (VS-SPM) [25]. Fig. 1 shows the VS-

SPM architecture. Every core has its own private on-chip

SPM, while all cores share the main memory. Each core can

access its own private SPM. It can also access data items on

other cores’ SPMs by the interconnecting bus. Each core can

access all other SPMs. There is no limit for the number of

remote SPMs that a core can access in the architecture. The

Cell processor [13] is one of the examples that adopted this

architecture. Any two cores can communicate with each other

without contention.

In VS-SPM architecture, the private SPM of a core is called

the local SPM, while the SPMs on the other cores are called

remote SPMs. The cost of accessing remote SPMs is higher

than accessing the local SPM since a communication cost

exists when there are remote accesses. In our architecture,

each core can access all remote SPMs. Let d be the distance

between two cores. The cost of remote SPMs accessing is a

nondecreasing function f of d. The function is different for

different bus architectures.

B. Execution Model

The execution model is shown in Fig. 2. Basically, the pro-

gram is divided into many small tasks. In this paper, we treat

each basic block as an independent task. Tasks of the same

depth in the task graph form a parallel region. Between each

parallel region, the compiler adds data placement instructions,

which assign data to each core’s SPM for the incoming parallel

region.

Fig. 1. VS-SPM architecture.

Fig. 2. Demonstration for parallel regions.

After the regions are determined, the number of accesses

on each variable for the region is obtained through profiling.

Based on the profiled information, the proposed algorithms

determine the best data placement for each region.

Please note that if the profiling information is based on a

single input, the proposed algorithms will find the optimal data

placement for this particular input. If the profiling information

is based on a set of inputs, then the data placement generated

is near optimal for a particular input. For some embedded

systems that repeatedly carry out the same tasks, the proposed

algorithms can achieve optimal results. However, if the input

patterns are dynamic and unexpected, the proposed algorithms

can only obtain near-optimal results.

IV. Motivational Example

In the motivational example, the goal of optimization is to

minimize the total memory access cost of a parallel region.

The memory access cost can either be memory accessing time

or energy consumption. If the optimization goal is memory

accessing time, the energy cost is not necessarily the optimal,

and vice versa. However, if we choose either one of the two

costs to be the optimization objective, the most accessed data

will be allocated to the memory area with fewer costs. Since,

for memory accesses, the time cost is directly proportional to

the energy cost, reducing one of the two costs will reduce the

other as well.

For the motivational example, we are assuming that there are

two cores in the system. Each core is equipped with an on-chip

SPM. For the purpose of simplicity and illustration, we are as-

suming that each SPM can only hold two data items in this mo-

tivational example. All cores can access a shared main mem-

ory, which is large enough to hold all data for the program.

Before presenting the example, a list of notations that will

be used for the whole paper is defined in Table I. The column

Notation contains the names of variables and the column

Definition contains the definition of each variable.

812 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 6, JUNE 2013

TABLE I

Notations in This Paper

Notation Definition

SizeSi
The capacity of the SPM on core i

CRSi
The cost of reading a data item from its own SPM

for core i

CWSi
The cost of writing a data item to its own SPM

for core i

CRMi
The cost of reading a data item from main memory

for core i

CWMi
The cost of writing a data item to main memory

for core i

CRi→Sj
The cost of reading a data item from core j’s SPM

for core i

CWi→Sj
The cost of writing a data item to core j’s SPM

for core i

CMSi→Sj
The cost of moving a data item from SPM of core i to SPM

of core j

CMSi→M The cost of moving a data item from SPM of core

i to main memory

CMM→Si
The cost of moving a data item from main memory

to SPM of core i

TABLE II

Number of Memory Accesses for Each Core

A B C D E

Core 1 50 25 20 5 0

Core 2 49 10 19 0 5

Fig. 3. Initial state of SPM and main memory.

In the motivational example, we assume that these two cores

access five data items: A, B, C, D, and E. The number of

memory accesses of each data is shown in Table II. The rows

Core 1 and Core 2 show the number of memory accesses of

each data item for Core 1 and Core 2, respectively. Assume

that initially, data A is in the shared main memory; data B and

data D are in the SPM of Core 1 (SPM1); data C and data E

are in the SPM of Core 2 (SPM2) (Fig. 3). Also, the cost of a

single memory access for the two cores and the shared main

memory are defined in Table III. For illustration purposes, it

is assumed that the cost of reading and writing data from a

private SPM is 1, and the cost of reading and writing data

from the main memory is 50. The nondecreasing remote SPM

accessing cost function is a linear function f (d) = 10 × d for

this example. Since we only have two cores in the example,

the distance d equals 1. Therefore, the remote SPM accessing

costs CRS1→S2
, CRS2→S1

, CWS1→S2
, and CWS2→S1

are 10.

Udayakumaran’s algorithm proposed in [18] is a greedy

algorithm, in which programs are divided into regions, and

the most accessed data items in each region are allocated

TABLE III

Access Cost Table For Motivational Example

Data Cost

CRS1
, CRS2

1

CWS1
, CWS2 1

CRM1
, CRM2

50

CWM1
, CWM2

50

CR1→S2
, CR2→S1

10

CW1→S2
,CW2→S1

10

CMS1→S2
, CMS2→S1

11

CMM→S1
, CMM→S2

51

CMS1→M , CMS2→M 51

into the SPM. However, their approach only targets single-

core processors. We adopted their algorithm and applied it

to multicore systems for comparison purposes. The derived

Udayakumaran algorithm works as follow: first, data items that

need to be accessed are sorted according to the total number

of accesses. The total number of accesses is the sum of the

number of accesses from all cores to this data item. Then, the

data item with the most total number of accesses is chosen by

the compiler. There might be many cores that access this data.

The compiler allocates the data into the available SPM of the

core that accesses the data most times. When all SPMs of the

cores are full, the data are allocated into the main memory. The

data placement generated by the derived Udayakumaran algo-

rithm is not optimal. For the motivational example, the derived

greedy Udayakumaran algorithm will allocate data A and C in

Core 1’s SPM; data B and D in Core 2’s SPM; and data E in

the main memory. The total memory accessing cost is 1445.

Rather than the greedy data placement, if data B and D

are placed in SPM1, data A and C are in SPM2, and data

E are in the main memory, the total memory access cost

is 1250. The cost of memory access is reduced by 13.49%

compared with the greedy data placement. Actually, this is

the data placement with the minimum memory access cost

for the example. Section V-A will show how to achieve this

optimal solution with a dynamic programming approach.

Data duplication is a technique that trades space for time

efficiency. In a multicore environment, data may be accessed

by different cores, and sometimes it is beneficial to duplicate

data and place multiple copies of the same data in different

locations. In the motivational example, it is assumed that

all data are only read and not modified during the current

parallel region. Thus, they may all have duplications. With

data duplication, there is another possible data placement:

Data A, B in SPM1, data A, C in SPM2, and data D, E

in the main memory. The memory access cost can be further

reduced to 1107 using this data placement. Compared with

the derived Udayakumaran algorithm, the cost of memory

access is reduced by 23.39%. In Section V-B, the RDPM-

DUP algorithm, which determines the optimal data placement

and duplication for each program region, will be presented.

V. Data Placement and Duplication

In this section, two novel data placement algorithms are

presented. In Section V-A, the SPM data placement with

GUO et al.: DATA PLACEMENT AND DUPLICATION FOR EMBEDDED MULTICORE SYSTEMS WITH SPM 813

CostMin[j, i1, i2, ..., iC]=

Nd
∑

j=1

CostM(Dj), if ∀k = 1, 2, ..., n, ik = SizeSk
,

Nd
∑

j=2

CostM(Dj) + CostSk
(D1) if j = 1, ∃ik = SizeSk

− 1,

∀k′ ∈ {1, 2, ..., C}−{k}, ik′=SizeSk

min(CostMin[j − 1, i1, i2, ..., iC],

CostMin[j − 1, i1 + 1, i2, ..., iC] − CostM(Dj) + CostS1
(Dj),

CostMin[j − 1, i1, i2 + 1, ..., iC] − CostM(Dj) + CostS2
(Dj),

. . . ,

CostMin[j − 1, i1, i2, ..., iC + 1] − CostM(Dj) + CostSn
(Dj) if

C
∑

k=1

ik ≥

C
∑

k=1

SizeSk
− j,

∞ if

C
∑

k=1

ik <

C
∑

k=1

SizeSk
− j or

∃k ∈ {1, 2, 3, . . . , C} ik > SizeSk
.

(2)

minimum cost problem on multicore is formally defined. After

that, the RDPM algorithm is proposed. Section V-B will

present how to determine the optimal data duplication and

propose the RDPM-DUP.

A. Regional Data Placement for Multicore

Before introducing the proposed RDPM algorithm, the

formal definition of the SPM data placement with minimal

cost problem on multicore is presented.

1) Problem Definition: The inputs are: A collection of

data D = (d1, d2, . . . , dNd
); the initial data placement for each

core’s on-chip SPM; capacity of each core’s SPM Si for core

i; number of data Nd ; number of cores C; read and write cost

to the local on-chip SPM RSi
, WSi

for core i; the read and

write cost from core i to core j’s SPM RCi→Sj
, WCi→Sj

; the

read and write cost to the main memory RMi
, WMi

for core i.

Definition 1: SPM data placement with minimal cost prob-

lem on multicore systems: Given the inputs, what is a data

placement for all cores’ SPMs and the shared main memory

that the total time/energy cost of memory accesses is mini-

mized?

The output is: A data placement for all cores’ SPMs and

main memory, under which the total cost of memory access

is minimized.

2) RDPM Algorithm:

a) Compute cost of accessing remote SPM: Let C be the

number of cores in the system. Let d be the distance between

two cores. Let the nondecreasing remote SPM accessing cost

function be f . In this step, we will compute CRi→Sj
and

CWi→Sj
for every pair of (i, j) using f (d).

b) Build cost table: After we have computed all CRi→Sj

and CWi→Sj
, the cost table T can be built. Let there be C + 1

columns in the table T indicating C + 1 different placements

for a data item. The costs of each data in different locations

are computed as shown in (1), which is the sum of executing

cost and placement cost. To compute the execution cost of each

data, we first count the number of memory accesses to the data

and multiply it by the cost of each access for all the cores.

Then, all cores’ costs are summed up for the data to obtain the

execution cost. The placement cost is the cost of moving the

data from its initial placement to the new placement, which

includes a read operation from the original memory and a write

operation to the target memory. If the data is not moved, the

placement cost is 0.

C
∑

1

executing cost + placement cost (1)

c) Dynamic programming scheme: After the cost table

is built, in the second step, a dynamic program algorithm as

shown in (2) is proposed to find the data placement.

First, a C + 1-dimensional dynamic programming table

CostMin is constructed as follows: the first dimension of the

table represents data items; each of the other dimensions rep-

resent the available space on a certain core’s SPM, assuming

the shared main memory is large enough to hold all the data

items of the program.

Let CostMin[j, i1, i2, ..., iC] be the minimal cost of memory

accesses when the placement of data j (j ≤ Nd , Nd is the

number of data for the current region) has been optimally

determined while the rest of the data k (j < k ≤ Nd) are in

the main memory, and there are i1 empty memory units on

SPM of core 1, i2 empty memory units on SPM of core 2, ...,

and iC empty memory units on SPM of core C.

The complexity of the RDPM algorithm is in polynomial

time. The total number of iterations is Nd ·SizeS1
·SizeS2

· . . . ·

SizeSC
. Since the architecture is determined, C is a constant.

Inside the most inner loop, there are C + 1 if/else branches to

decide the value of the current cell. Thus, the complexity of

RDPM is O(nC+1).

B. Data Duplication on Multicore Systems

In multicore systems, traditionally, a data item only has one

copy in either one of the SPMs or in the main memory. It is

common that multiple cores may access the same data in one

parallel region. In this section, a data duplication strategy for

read-only data on SPMs of multiple cores is proposed. First,

the duplication mechanism in this paper is introduced. Then,

814 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 6, JUNE 2013

CMD[j, i1, i2, ..., iC] =

Nd
∑

j=1

CostM(Dj), if ∀k = 1, 2, ..., n,

ik = SizeSk
,

Nd
∑

j=2

CostM(Dj) + CostSk
(D1) if j = 1, ∃ip = SizeSp

− 1,

∀k ∈ {1, 2, ..., C}−{p}, ik=SizeSk

min(CMD[j − 1, i1, i2, ..., iC],

CMD[j − 1, i1 + 1, i2, ..., iC] − CostM(Dj) + CostS1
(Dj),

CMD[j − 1, i1, i2 + 1, ..., iC] − CostM(Dj) + CostS2
(Dj),

... ,

CMD[j − 1, i1, i2, ..., iC + 1] − CostM(Dj) + CostSC
(Dj)),

CMD[j − 1, i1 + 1, i2 + 1, ..., iC] − CostM(Dj) + CostS1+2
(Dj)),

CMD[j − 1, i1, i2 + 1, i3 + 1, ..., iC] − CostM(Dj) + CostS2+3
(Dj)),

CMD[j − 1, i1, i2, i3, ..., ip + 1, ..., iq + 1, ..., iC]

−CostM(Dj) + CostSp+q
(Dj)),

(Calculate all two combinations′ cost, p, q = 1, 2, ..., n)

...

CMD[j − 1, i1, i2, ..., ip + 1, ..., iq + 1, ..., ir + 1, ..., iC]

−CostC(Dj) + CostSp+q+r
(Dj)),

(Calculate all three combinations′ cost,

p, q, r = 1, 2, ..., n)

...

(Calculate the cost for all combinations of t copies, t is

the maximum number of cores allowed to share SPMs.)

if CostSt combinations
(Dj) 6= ∞ and

C
∑

k=1

ik + t ≥

C
∑

k=1

SizeSk
− j,

∞

C
∑

k=1

ik + t <

C
∑

k=1

SizeSk
− j and

if CostSt combinations
(Dj) = ∞ or

∃ k ∈ {1, 2, 3, . . . , C}, ik > SizeSk
.

(3)

TABLE IV

System Specification for the Eight-Core Architecture

Component Description

CPU Core Number of cores: 8, frequency: 1.0 GHz

SRAM SPM
Size: 8 kB, access latency: 0.305 ns, access energy:

0.014 nJ

Main memory
DDR SDRAM, Size: 512 MB, Access latency:

19.51 ns access energy: 0.607 nJ

how to integrate data duplication into the data placement algo-

rithm presented in the previous section in order to determine

the best data placement and duplication is shown.

When there is no data duplication mechanism, if a data item

is intensively accessed by multiple cores, it will incur a lot

of remote accesses. Wherever the data is placed, there is only

one core being benefited from the local SPM. Data duplication

method will solve this problem by allocating a copy of the data

item to each SPM that may be benefited. As a result, the time

and energy cost incurred by remote data accesses is reduced.

For exclusive copy mode, there is no need to worry about the

data consistency. However, for data duplication mechanisms,

the data consistency problem becomes a key issue. In such

cases, inconsistency will occur when there are multiple cores

that want to write to the same data. It is true that in writing

heavy applications, duplicating to-be-written data may be

beneficial with a well-designed data consistency protocol.

However, the overhead caused by maintaining data consistency

may offset the benefits of duplicating written data. Therefore,

in this paper, only read data is allowed to be duplicated.

The first step in integrating data duplication into RDPM is

modifying the cost tables. In Section V-A, data has the cost for

each memory placement in the cost table. In data duplication,

each data can be duplicated in multiple SPMs. Therefore, there

are many different possible ways of duplication for the same

data. All the possible data duplication configurations need to

be considered. In the cost table, a new column is added for

each possible way of data duplication for duplicated data. For

instance, in the motivational example, there is a possibility

GUO et al.: DATA PLACEMENT AND DUPLICATION FOR EMBEDDED MULTICORE SYSTEMS WITH SPM 815

TABLE V

Comparison of Time Cost Among Various Algorithms on the Eight-Core System

Benchmarks Che (µJ) Uday (µJ) RDPM (µJ) Imprv-Che (%) Imprv-Uday (%) RDPM-DUP (µJ) Imprv-Che (%) Imprv-Uday (%)

basicmath 12696.38 10434.65 6260.70 50.69 40.01 5858.08 53.86 43.85

btcount 751.55 672.14 388.08 48.36 42.26 283.28 62.31 57.85

qsort 19005.03 12889.47 9540.48 49.80 25.98 8558.41 54.97 33.60

susan 3246.32 1806.13 1331.83 58.97 26.26 1131.25 65.15 37.36

dijkstra 914.73 686.12 416.91 54.42 39.24 351.56 61.57 48.76

patricia 10853.42 6618.85 5059.12 53.39 23.57 4408.67 59.38 33.39

stringsearch 1712.88 1098.17 827.56 51.69 24.64 675.50 60.56 38.49

rijndael 13513.36 8354.76 5895.92 56.37 29.43 5534.15 59.05 33.76

SHA 7362.61 4864.20 3347.06 54.54 31.19 3066.68 58.34 36.95

CRC32 6279.95 4172.32 2629.81 58.12 36.97 2475.66 60.58 40.66

FFT 5363.44 4126.83 2481.25 53.73 39.89 2274.12 57.60 44.91

Average – – – 53.64 32.68 – 59.40 40.87

TABLE VI

Comparison of Energy Cost Among Various Algorithms on the Eight-Core System

Benchmarks Che (µJ) Uday (µJ) RDPM (µJ) Imprv-Che (%) Imprv-Uday (%) RDPM-DUP (µJ) Imprv-Che (%) Imprv-Uday (%)

basicmath 295.87 235.48 158.78 46.33 32.57 149.27 49.55 36.61

btcount 43.31 40.07 16.13 62.75 59.74 13.57 68.67 66.13

qsort 515.03 291.58 212.35 58.77 27.30 210.84 59.06 27.70

susan 114.23 62.81 45.65 60.03 27.31 43.62 61.82 30.55

dijkstra 44.88 28.97 20.65 54.01 28.71 18.26 59.33 36.98

patricia 430.52 307.66 205.06 52.37 33.35 186.85 56.59 39.26

stringsearch 88.46 60.57 45.44 48.63 24.99 43.08 51.30 28.87

rijndael 310.65 205.62 134.54 56.69 34.57 125.83 59.50 38.81

SHA 219.45 176.57 119.23 45.67 32.48 110.55 49.62 37.39

CRC32 190.27 142.70 97.55 48.73 31.64 91.26 52.03 36.05

FFT 206.50 165.42 106.49 48.43 35.62 97.03 53.01 41.34

Average – – – 52.95 33.47 - 56.41 38.15

that each data has two copies, and the copies are in SPM1 and

SPM2. If any data item cannot have multiple copies according

to the restriction, their costs in the new column are set to be

infinity.

Second, we define a new C + 1-dimensional dynamic pro-

gramming table CMD for duplication method. Let CMD[j,

i1, i2, ..., iC] be the minimal memory accessing cost when

the placement and duplication of the jth data (j ≤ Nd) are

optimally determined, while the rest of data is in the shared

main memory, and there are ik empty memory units on SPM

of core k (k ≤ C). Here, C is the number of cores.

Third, the recursive function of RDPM should be modified

for the data duplication method. The new recursive function

is shown in (3). The new equation needs to consider the cost

of all possible number of copies, and all possible places that

hold the copies.

VI. Experiments

Experiments are performed on a selected set of benchmarks

from Mibench [36] to compare both time and energy costs of

memory accesses for four data allocation techniques: the Che’s

algorithm [31], the derived Udayakumaran algorithm for mul-

ticore, the RDPM algorithm, and the RDPM-DUP algorithm.

The experimental results show promising improvement for the

algorithms proposed in this paper compared with the existing

greedy algorithm.

A. Experimental Setup

All experiments are conducted on a custom simulator. The

simulator is flexible for different hardware configurations.

In this paper, we conduct the experiments on an eight-core

system. The hardware configuration of the system is shown

in Table IV. The costs of memory accesses are obtained from

HP CACTI 5.3 [37]. All cores share an off-chip DRAM main

memory, and any pair of cores can access each other’s local

SPM.

The nondecreasing cost function f of accessing remote

SPMs that we used in the experiments is a linear function

f = d × β, where d is the distance between the two cores

and β is a constant cost. For the eight-core system, β equals

0.305 ns when we compute remote time cost and β equals

0.014 nJ for the remote energy cost.

The benchmarks used in the experiments are from

Mibench [36]. Eleven applications are selected from the

Mibench benchmark suite: qsort, susan, basicmath, bitcount,

dijkstra, patricia, stringsearch, rijndael, sha, CRC32, and FFT.

The memory traces of these benchmarks are the input for the

simulator.

B. Experimental Results

In this subsection, the comparisons of time and energy cost

for the eight-core system are shown in Tables V and VI.

Tables V and VI reflect the experimental results on an

eight-core environment. The average time cost reductions

816 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 6, JUNE 2013

are 53.64% for Che’s algorithm and 32.68% for the derived

Udayakumaran algorithm. The average energy cost reductions

are 56.41% and 38.15%, respectively.

The reason that RDPM and RDPM-DUP are significantly

better than Che’s algorithm is that the goal of Che’s algorithm

is to achieve the maximum throughput. It does not include

sufficient techniques that reduce the memory access cost.

Also, in Che’s algorithm, all data have to be moved into the

SPM before being accessed. This leads to a large number of

unnecessary data movements, which significantly increases

the total cost.

From the experimental results, it is easy to see that the

RDPM and RDPM-DUP algorithms have a better performance

for time latency, as well as energy consumption, compared

with both of two baseline algorithms. Furthermore, the RDPM-

DUP algorithm determines the optimal number of copies

for a heavily accessed data and places the data copies into

appropriate SPMs. It will always generate a data placement at

least as good as that of the RDPM algorithm. When there is no

suitable duplication for any data, the RDPM-DUP algorithm

will have the same optimal solution as the RDPM algorithm.

VII. Conclusion

In this paper, two polynomial time regional data placement

algorithms were proposed to minimize the cost of memory

accesses for multicore systems. The RDPM algorithm can

achieve near-optimal data placement for each region with

exclusive copy, while the RDPM-DUP algorithm is able to

generate near-optimal data placement and duplication when

the multiple copies for a single data item are allowed. Ex-

perimental results show that the proposed RDPM algorithm

alone can reduce the time cost of memory accesses by 32.68%

on average compared with existing algorithms. With data

duplication, the RDPM-DUP algorithm further reduces the

time cost by 40.87%. For energy consumption, the proposed

RDPM algorithm with exclusive copy can reduce the total

cost by 33.47% on average. The improvement increases up to

38.15% on average when RDPM-DUP is applied.

References

[1] S. Borkar, “Thousand core chips: A technology perspective,” in Proc.

DAC, 2007, pp. 746–749.
[2] M. Qiu, Z. Shao, Q. Zhuge, C. Xue, M. Liu, and E. H.-M. Sha, “Efficient

assignment with guaranteed probability for heterogeneous parallel DSP,”
in Proc. ICPADS, 2006, pp. 623–630.

[3] J. Xue, T. Liu, Z. Shao, J. Hu, Z. Jia, and E. H.-M. Sha, “Address
assignment sensitive variable partitioning and scheduling for DSPS with
multiple memory banks,” in Proc. ICASSP, 2008, pp. 1453–1456.

[4] R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan, and P. Marwedel,
“Scratchpad memory: Design alternative for cache on-chip memory in
embedded systems,” in Proc. CODES, 2002, pp. 73–78.

[5] S. Gilani, N. S. Kim, and M. Schulte, “Scratchpad memory optimizations
for digital signal processing applications,” in Proc. DATE, 2011, pp. 1–6.

[6] S. Udayakumaran and R. Barua, “Compiler-decided dynamic memory
allocation for scratch-pad based embedded systems,” in Proc. CASES,
2003, pp. 276–286.

[7] R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan, and P. Marwedel,
“Scratchpad memory: Design alternative for cache on-chip memory in
embedded systems,” in Proc. CODES, 2002, pp. 73–78.

[8] O. Avissar, R. Barua, and D. Stewart, “An optimal memory allocation
scheme for scratch-pad-based embedded systems,” ACM Trans. Embed.

Comput. Syst., vol. 1, no. 1, pp. 6–26, 2002.

[9] M. Kandemir, M. J. Irwin, G. Chen, and I. Kolcu, “Banked scratch-
pad memory management for reducing leakage energy consumption,” in
Proc. ICCAD, 2004, pp. 120–124.

[10] Y. He, C. Xue, C. Xu, and E. H.-M. Sha, “Co-optimization of memory
access and task scheduling on MPSoC architectures with multilevel
memory,” in Proc. ASP-DAC, 2010, pp. 95–100.

[11] A. Dominguez, S. Udayakumaran, and R. Barua, “Heap data allocation
to scratch-pad memory in embedded systems,” J. Embedded Comput.,
vol. 1, no. 4, pp. 521–540, 2005.

[12] S. Kaneko, H. Kondo, N. Masui, K. Ishimi, T. Itou, M. Satou, N. Oku-
mura, Y. Takata, H. Takata, M. Sakugawa, T. Higuchi, S. Ohtani,
K. Sakamoto, N. Ishikawa, M. Nakajima, S. Iwata, K. Hayase,
S. Nakano, S. Nakazawa, K. Yamada, and T. Shimizu, “A 600-MHz
single-chip multiprocessor with 4.8-Gb/s internal shared pipelined bus
and 512-kb internal memory,” IEEE J. Solid-State Circuits, vol. 39, no. 1,
pp. 184–193, Jan. 2004.

[13] H. P. Hofstee, “Power efficient processor architecture and the Cell
processor,” in Proc. HPCA, 2005, pp. 258–262.

[14] S. Udayakumaran and R. Barua, “An integrated scratch-pad allocator for
affine and non-affine code,” in Proc. DATE, 2006, pp. 925–930.

[15] Y. Guo, Q. Zhuge, J. Hu, and E.-M. Sha, “Optimal data placement
for memory architectures with scratch-pad memories,” in Proc. ICESS,
2011, pp. 1045–1050.

[16] Q. Zhuge, Y. Guo, J. Hu, W.-C. Tseng, S. J. Xue, and E.-M. Sha, “Min-
imizing access cost for multiple types of memory units in embedded
systems through data allocation and scheduling,” IEEE Trans. Signal

Process., vol. 60, no. 6, pp. 3253–3263, Jun. 2012.
[17] P. R. Panda, N. D. Dutt, and A. Nicolau, “On-chip vs. off-chip

memory: The data partitioning problem in embedded processor-based
systems,” ACM Trans. Des. Autom. Electron. Syst., vol. 5, pp. 682–704,
Jul. 2000.

[18] S. Udayakumaran, A. Dominguez, and R. Barua, “Dynamic allocation
for scratch-pad memory using compile-time decisions,” ACM Trans.

Embed. Comput. Syst., vol. 5, no. 2, pp. 472–511, 2006.
[19] M. Kandemir, M. J. Irwin, G. Chen, and I. Kolcu, “Compiler-guided

leakage optimization for banked scratch-pad memories,” IEEE Trans.

Very Large Scale (VLSI) Syst., vol. 13, no. 10, pp. 1136–1146, Oct.
2005.

[20] Y. Guo, Q. Zhuge, J. Hu, M. Qiu, and E.-M. Sha, “Optimal data
allocation for scratch-pad memory on embedded multi-core systems,”
in Proc. ICPP, 2011, pp. 464–471.

[21] R. Buchty, V. Heuveline, W. Karl, and J.-P. Weiss, “A survey on
hardware-aware and heterogeneous computing on multicore processors
and accelerators,” Concurrency Comput.: Practice Experience, vol. 24,
no. 17, pp. 663–675, 2012.

[22] J. Chang and G. S. Sohi, “Cooperative cache partitioning for chip
multiprocessors,” in Proc. ICS, 2007, pp. 242–252.

[23] G. E. Suh, L. Rudolph, and S. Devadas, “Dynamic cache partitioning for
simultaneous multithreading systems,” in Proc. IASTED PDCS, 2001,
pp. 116–127.

[24] L. Zhang, M. Qiu, and W.-C. Tseng, “Variable partitioning and schedul-
ing for MPSoC with virtually shared scratch pad memory,” J. Signal

Process. Syst., vol. 50, no. 2, pp. 247–265, 2010.
[25] M. Kandemir, J. Ramanujam, J. Irwin, N. Vijaykrishnan, I. Kadayif,

and A. Parikh, “Dynamic management of scratch-pad memory space,”
in Proc. DAC, 2001, pp. 690–695.

[26] J. Hu, C. J. Xue, W.-C. Tseng, Y. He, M. Qiu, and E. H.-M. Sha,
“Reducing write activities on non-volatile memories in embedded CMPs
via data migration and recomputation,” in Proc. DAC, 2010, pp. 350–
355.

[27] P. R. Panda, N. D. Dutt, and A. Nicolau, “Efficient utilization of scratch-
pad memory in embedded processor applications,” in Proc. ED&TC,
1997, p. 7.

[28] J. Hu, C. J. Xue, W.-C. Tseng, Q. Zhuge, and E. H.-M. Sha, “Minimizing
write activities to non-volatile memory via scheduling and recomputa-
tion,” in Proc. SASP, 2010, pp. 7–12.

[29] G. Chen, O. Ozturk, M. Kandemir, and M. Karakoy, “Dynamic scratch-
pad memory management for irregular array access patterns,” in Proc.

DATE, 2006, pp. 931–936.
[30] J. Sjödin and C. von Platen, “Storage allocation for embedded proces-

sors,” in Proc. CASES, 2001, pp. 15–23.
[31] W. Che, A. Panda, and K. S. Chatha, “Compilation of stream programs

for multicore processors that incorporate scratchpad memories,” in Proc.

DATE, 2010, pp. 1118–1123.
[32] M. Kandemir, J. Ramanujam, and A. Choudhary, “Exploiting shared

scratch pad memory space in embedded multiprocessor systems,” in
Proc. DAC, 2002, pp. 219–224.

GUO et al.: DATA PLACEMENT AND DUPLICATION FOR EMBEDDED MULTICORE SYSTEMS WITH SPM 817

[33] V. Suhendra, C. Raghavan, and T. Mitra, “Integrated scratchpad memory
optimization and task scheduling for MPSoC architectures,” in Proc.

CASES, 2006, pp. 401–410.
[34] M. K. F. Li and G. Chen, “Improving scratch-pad memory reliability

through compiler-guided data block duplication,” in Proc. ICCAD ,
2005, pp. 1002–1005.

[35] I. Issenin, E. Brockmeyer, B. Durinck, and N. Dutt, “Multiprocessor
system-on-chip data reuse analysis for exploring customized memory
hierarchies,” in Proc. DAC, 2006, pp. 49–52.

[36] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown, “Mibench: A free, commercially representative embedded
benchmark suite,” in Proc. WWC, 2001, pp. 3–14.

[37] S. J. E. Wilton and N. P. Jouppi, “CACTI: An enhanced cache access
and cycle time model,” IEEE J. Solid-State Circuits, vol. 31, no. 5, pp.
677–688, May 1996.

[38] M. Qiu and E. H.-M. Sha, “Cost minimization while satisfying hard/soft
timing constraints for heterogeneous embedded systems,” ACM Trans.

Des. Autom. Electron. Syst., vol. 14, no. 2, pp. 1–30, Apr. 2009.

Yibo Guo received the B.S. degree in information
security from Hunan University, Hunan, China, in
2009, and the M.S. degree in computer science from
the University of Texas at Dallas, Richardson, TX,
in 2011, where he is currently pursuing the Ph.D.
degree in computer science.

His current research interests include memory
scheduling and data allocation on MPSoc.

Qingfeng Zhuge received the B.S. and M.S. degrees
in electronics engineering from Fudan University,
Shanghai, China, and the Ph.D. degree from the
Department of Computer Science at the University
of Texas at Dallas, Richardson, TX, in 2003.

She is currently a Full Professor at Chongqing Uni-
versity, Chongqing, China. She has published more
than 60 research articles in premier journals and
conferences. Her current research interests include
parallel architectures, embedded systems, supply-
chain management, real-time systems, optimization

algorithms, compilers, and scheduling.
Dr. Zhuge received the Best Ph.D. Dissertation Award in 2003.

Jingtong Hu (SM’09) received the B.E. degree from
the School of Computer Science and Technology,
Shandong University, Shandong, China, in 2007 and
the M.S. degree from the Department of Computer
Science from the University of Texas at Dallas,
Richardson, TX, in May 2010, where he is currently
pursuing the Ph.D. degree from the Department of
Computer Science.

His current research interests include low power
and high-performance embedded systems, wireless
sensor networks, memory optimization, nonvolatile

memory, and compiler optimization.

Juan Yi received the B.E. degree from the School
of Software Engineering at Chongqing University,
Chongqing, China, in 2006 and is currently pursuing
the Ph.D degree from the Department of Computer
Science at the same university.

Her current research interests include multicore
architecture optimization and high-performance par-
allel computing.

Meikang Qiu (SM’07) received the B.E. and M.E.
degrees from Shanghai Jiao Tong University, Shang-
hai, China, and the M.S. and Ph.D. degrees in com-
puter science from the University of Texas at Dallas,
Richardson, TX, in 2003 and 2007, respectively.

He was with the Chinese Helicopter Research and
Development Institute and was also with IBM. He
is currently an Assistant Professor of ECE at the
University of Kentucky, Lexington. He also holds
three patents and has published three books. His
current research interests include embedded systems,

computer security, and wireless sensor networks.
Dr. Qiu is an ACM Senior member. He has published 160 peer-reviewed

papers, including 16 IEEE/ACM Transactions on Networking papers and more
than 60 journal papers. He is the recipient of the ACM Transactions on Design

Automation of Electronic Systems 2011 Best Paper Award. He also received
four other Best Paper Awards (IEEE EUC’09, IEEE/ACM GreenCom’10,
IEEE CSE’10, and IEEE ICESS) and one best paper nomination in the last
four years. He was named to the Navy Summer Faculty in 2012 and SFFP
Air Force Summer Faculty in 2009. His research is supported by the National
Science Foundation, Navy, and Air Force. He has held various chair positions
and served as a TPC member for many international conferences. He served
as the Program Chair of IEEE EmbeddCom’09 and EM-Com’09.

Edwin H.-M. Sha (S’88–M’92–SM’04) received
the Ph.D. degree from the Department of Com-
puter Science, Princeton University, Princeton, NJ,
in 1992.

From August 1992 to August 2000, he was with
the Department of Computer Science and Engi-
neering at the University of Notre Dame, Notre
Dame, IN. Since 2000, he has been a Tenured Full
Professor at the Department of Computer Science at
the University of Texas at Dallas, Richardson, TX.
Since 2012, he has been serving as the Dean of the

College of Computer Science at Chongqing University, Chongqing, China.
He has published more than 280 research papers in refereed conferences
and journals. He has served as an editor for many journals, on program
committees, and as a Chair for numerous international conferences.

Dr. Sha received the Teaching Award, Microsoft Trustworthy Computing
Curriculum Award, NSF CAREER Award, NSFC Overseas Distinguished
Young Scholar Award, and Chang Jiang Honorary Chair Professorship. He
is a member of the China Thousand-Talent Program.

