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Abstract—The performance of HPC applications is often
bounded by the underlying memory system’s performance. The
trend of increasing the number of cores on a chip imposes
even higher memory bandwidth and capacity requirements.
The limitations of traditional memory technologies are pushing
research in the direction of hybrid memory systems that, besides
DRAM, include one or more modules based on some of the higher-
density non-volatile memory technologies, where one of them will
provide the required bandwidth, while the other will provide
the required capacity for the application. This creates many
challenges with data placement and migration policies between
the modules of such hybrid memory system. In this paper, we
propose an architecture with a hybrid memory design that places
two technologically different memory modules in a flat address
space. On such system, we evaluate several HPC workloads
against different data placement and migration policies, compare
their performance by means of execution time and the number of
non-volatile memory writes, and consider how it can be applied
to the future HPC architectures. Our results show that the
hybrid memory system with dynamic page migration and limited
DRAM capacity, can achieve performance that is comparable to
a hypothetical, hard to implement, DRAM-only system.

Keywords—Memory architecture, Memory management, High
performance computing

I. INTRODUCTION

A growing disparity in the rates of performance improve-
ment between CPU and memory technologies has created a
memory wall. So far, its negative impact has been relieved
mostly by creating multi-level cache systems. At the same
time, the increase of a single thread performance has reached a
performance wall due to the inability to increase the operating
frequency and to extract the instruction level parallelism. As a
solution, the research community and the manufacturers have
resorted to the use of multi-core systems in order to increase
the performance of the chip.

A recent study has shown that the increase of the number of
cores on a single chip puts great stress on the off-chip memory
memory system: when executed on a 128-core system, HPC
applications require 64 GB of capacity and may require up
to 64 GB/s of off-chip memory bandwidth [10]. It is clear
that current memory systems will not be able to sustain these
requirements when the number of cores begins to increase.

SRAM and DRAM memories could provide the required
bandwidth and capacity but at a great price. A large SRAM
or DRAM memory would require a high amount of power:
technology scaling brings significant increase in leakage power
for both SRAM and DRAM and increases the power that is
needed to refresh the cells in DRAM. Increasing the bandwidth

of the the off-chip DRAM memory would require increasing
the signalling frequency of the wires that connect the DRAM
to the processor, limiting the length of this connection in order
to preserve signal integrity. This would effectively restrict the
area on the Printed Circuit Board (PCB) where DRAM chips
could be placed, limiting the number of DIMMs that can be
connected to a chip. Another alternative to increase bandwidth
is to increase the number of channels (or channel width). This
leads to the need for more pins on the processor, increasing
the size and the cost of the processor itself, and would lead to
the increase of the power consumption of the entire memory
system. These problems (wire length and pin count) can be
resolved by using 3D-stacked DRAM in the same package
with the processor. 3D stacking can bring improvements in
bandwidth but will offer only a limited amount of DRAM due
to thermal dissipation and constrained area [7].

A. Overview of emerging memory technologies

To overcome these limitations, architects are looking into
a number of emerging memory technologies that could replace
DRAM as the off-chip memory.

Memristor-based memory technologies, like Spin-Transfer
Torque Magnetoresistive RAM (STT-MRAM) [2] and Resis-
tive RAM (RRAM) [18] store data as a resistance. They are
non-volatile, power efficient and dense compared to standard
SRAM and DRAM technologies. Read and write latencies of
these memories are still larger than those of SRAM or DRAM,
and RRAM cells can sustain a limited number of writes which
limits their lifetime.

Another interesting memory technology is Phase Change
Memory (PCM) that uses chalcogenide glass and exploits
differences between its amorphous (high resistance) and crys-
talline (low resistance) states to store data. Existing products
support only two states, but PCM allows memory cells to have
multiple levels of resistance, enabling the storage of more than
one bit per cell. The change between the states is achieved by
applying high current to the memory cell, and requires more
time than with STT-MRAM or DRAM (optimistic estimate
claims ≈ 100 ns for writing a PCM cell [6]). Compared to
other memory technologies, PCM offers excellent density but
at a price of limited endurance (small number of writes into a
single cell) and high energy that is needed to write the data.

Table I gives a comparison between SRAM and DRAM
and the emerging memory technologies. Looking at the char-
acteristics of the emerging technologies, we can see that there
is no silver bullet: none of the technologies can provide fast
access times combined with high density, high endurance and
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TABLE I. CHARACTERISTICS OF CURRENT AND EMERGING MEMORY

TECHNOLOGIES.

Technology Density
Speed

Endurance

Read Write

SRAM 60− 175F 2
≈ 0.3ns ≈ 0.3ns Very High

DRAM 4− 15F 2
≈ 1ns ≈ 0.5ns Very High

PCM 6− 20F 2
≈ 60ns ≈ 100ns Low

STT-MRAM 8− 16F 2
≈ 10ns ≈ 10ns Very High

RRAM 1− 4F 2
≈ 50ns ≈ 250ns High

low power consumption. For example, when a PCM is used
as a standalone main memory, the system is 1.6x slower and
uses 2.2x more energy than a system with DRAM only [6].
To complicate things even more, non-volatile memories either
have limited write endurance, or require high current for
writing data and system architects should seek to minimize
the number of writes to them. An overview of current research
trends in hybrid memory systems is given in Section IV.

Out of all emerging memory technologies PCM is the one
that is closest to production in large volumes [19], and in the
rest of this paper we focus on it. We analyze an architecture
with hybrid off-chip memory system that combines small
DRAM memory with large PCM memory module. We focus
on HPC workloads that have high requirements from the
memory system. This paper makes the following contributions:

• Detailed modeling and simulation of a 128-core system
with heterogeneous off-chip memory (DRAM and PCM).

• Evaluation of new page migration policies (LRU spill with
empty page threshold, lifetime-aware back-migration)

• Analysis of hardware and software static and dynamic
strategies for page placement in such a system from the
aspect of both performance and the number of writes to
the non-volatile memory.

• Analysis of trade-offs between performance and lifetime
of non-volatile memories.

II. PROPOSAL

A. System architecture

To stress the memory system as much as possible we focus
on a large multi-core chip with 128 processors with L1 and
L2 caches and two types of off-chip memory (Figure 1).

Each processor has a private L1 cache while L2 cache is
shared and is distributed among cores. The system contains a
fast and small DRAM memory, and a large PCM memory.
Operating System is responsible for choosing the memory
where a new page will be placed, and for making decisions
about page migration from one memory to the other. The
decisions about page placement and migration may be static or
dynamic. In the latter case, OS may require information about
pages that is stored in the Memory Management Unit (MMU),
such as the number of the accesses to the page or the time the
page was last accesses. The details about the page allocation
and migration policies are given in the rest of this section.

MMU is responsible for translating virtual to physical
addresses, and each processor contains a Translation Lookaside
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Fig. 1. Target architecture

Buffer (TLB) to speed up the translation process. When a
decision is reached to migrate the page between memories,
MMU will use its DMA engine to perform the data movement.
In order to prevent page allocation policies to negatively in-
fluence cache effectiveness by altering physical address access
patterns, and that way significantly change the total number
of requests that reach the main memory, we implemented a
simple page coloring mechanism [5].

A migration starts by identifying which TLB holds the
translation for a given page. The TLB and caches are then
instructed to flush the cache lines that are part of that page.
After possible writebacks are completed, DMA starts copying
page contents from source to destination address. Finally, TLB
is provided with the new translation of the logical page.

B. Static page placement

To better understand the effectiveness of the data placement
policies that include migrations, we need to set our baseline
using policies that allocate pages without altering their physical
location during the application run.

First touch policy allocates pages in order in which they
are requested by the cores, first in DRAM, and after exhausting
DRAM’s capacity, in PCM. The effectiveness of this policy is
hugely influenced by the application’s access patterns and by
the size of DRAM. Performance gains are expected only if
the initial access to a hot page happens while there is avail-
able space in DRAM. Conversely, if DRAM space becomes
polluted with less reused pages, allocated because of their early
first access, a performance degradation is imminent [4].

In order to evaluate the full potential of any static allocation
policy, and to create the most favorable static distribution
of pages between DRAM and PCM, we create a profile of
memory accesses for each application under study. A profile
is a list of all the logical pages accessed by each core during the
execution, with the number of accesses to each page. A page
placement policy can then use the profile to ”predict” the traffic
intensity on a particular page, and decide about its placement.
Of course, all the policies that rely on the profile have to
pre-run the application, or at least one of its iterations, to
generate the profile itself. In many situations, this is impossible
or impractical, but the results can still serve as an idealistic
baseline in comparison against some other non-profile policy.

Static profile-based policy ensures that the most accessed
pages are allocated in DRAM, and least accessed in PCM.
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The allocation is done at the beginning of the execution by
reading the profile, sorting the pages by their access count
in descending order, and allocating them in first in DRAM,
and then in PCM. This policy should eliminate some of the
downsides of first touch policy. It should bring performance
gains by correctly dividing hot and cold pages over fast and
slow memory ranges. For the same reason, it should also
contribute in decreasing number of writes to PCM, that way
extending its lifetime.

To avoid writes to PCM even more, we can modify this
policy to take into account only write access count from the
profile, instead of the sum of reads and writes. That way, PCM
will host pages that are least frequently written regardless of
their read traffic. This reduction in number of writes to PCM
comes at the expense of performance, as hot read-only pages
placed in PCM might bottleneck the system. Nevertheless,
depending on the priority between performance and lifetime,
this may prove as a justifiable tradeoff.

C. Spill migration

Static allocation policies can not exploit any of the tempo-
ral characteristics of the memory access pattern, because the
page’s initial physical location remains unchanged throughout
the execution. The principle of data caching, prefetching and
many other migration mechanisms are targeted to alter the
distance of a given piece of data from the processor, depending
on its potential for temporal reuse.

For this, we propose a spill migration — a policy that
performs data movement in one direction only, from DRAM
to PCM. Unlike traditional memory hierarchy with cache
memories, where data is initially located further from the
processor, and then gradually migrated closer as it experiences
more reuse, spill migration policy first allocates a page in fast
memory (in our case DRAM), and later evicts it to PCM. These
evictions are performed due to the limited DRAM capacity, in
order to make room for the newly allocated pages. This policy
does not account for migrating back those evicted pages that
turn to be heavily used after the initial migration has happened
— whatever is copied to PCM stays there.

LRU spill policy keeps track of last access time for each
page in DRAM, and in case of eviction selects one that is
least recently used. The rationale behind this policy lies in the
assumption that all the data used by the application throughout
its execution time can roughly be divided in two categories:
first, data that is reused most of the time, and second, data that
is reused in a limited period only, or very rarely reused. If we
then assume that DRAM capacity is large enough to fit all the
pages that host data from the first category, we can expect that,
because of their reuse, they will never be selected for eviction
from DRAM. Then, the evicted pages should theoretically be
those that are rarely used, and those that completed their high
reuse period. The policy expects that the newly allocated pages
will experience a significant traffic, at least in the short period
after their allocation. Therefore, the gain obtained by initially
allocating them in DRAM will justify the cost of migrating
them to PCM, if they become less frequently used later.

Eviction from DRAM can take significant time, especially
in a system where interconnect and memory can become
congested by many simultaneous migrations, each triggered by

Fig. 2. Empty page buffer size analysis

a memory access from a different core. A naive eviction mech-
anism would start evicting when one of the TLBs makes a page
table miss, and there are no more empty pages in DRAM’s
address space. It means that the translation of such memory
access would have to stall until the eviction is finished, which
leads to overall execution performance degradation.

To reduce the number of translation stalls, and to eliminate
page eviction time from the translation critical path, we
propose triggering the eviction once the number of empty
pages in DRAM falls below a selected value — an empty
page threshold. That way, corresponding TLB can immediately
be provided with the translation, and continue processing the
request, while the eviction is performed in the background.
This can also enable more complex eviction mechanisms, and
more detailed last access time analysis, once their operation
time is taken off the translation critical path.

Selecting the value of empty page threshold is not trivial.
Setting it too low would give TLBs a chance to quickly
exhaust a small set of empty pages before any of the scheduled
migrations finishes. Setting it too high would effectively reduce
DRAM capacity, cause premature evictions, and significant
interconnect traffic due to many ”on-the-fly” migrations.

To confirm these claims, on Figure 2 we present overall
translation stall time penalty for different empty page buffer
size, in a system with 1GB of DRAM, running two different
workloads. For low values we notice relatively stable level
of total translation stall time. This indicates that the average
eviction time is higher than the time in which TLBs exhaust
a small supply of empty pages in DRAM. A scenario where
one completed eviction unblocks one stalled translation, but
shortly after that is followed by another similar translation-
eviction pair makes the empty page buffer ineffective, and the
changes in its size irrelevant.

On the other side, large empty page buffer allows the TLBs
to invoke many more evictions before any of the translations
stalls. However, once that happens penalty will be very high,
due to a huge number of in-flight migrations and congested
interconnect and memory. Measured total translation stall time
for large empty page buffers shows that this tradeoff is not
beneficial. Moreover, it is unaffordable sacrificing significant
DRAM capacity to the empty page buffer, as it can cause other
inneficiencies not related to the translation stall time.

Figure 2 shows that the two opposing causes for high
overall translation time diminish their influence at around 8MB
of empty page buffer size. The sweetspot effect is not overly

195



(a) NEMO 128p

(b) QuantumESPRESSO 128p

Fig. 3. Back migration threshold analysis

dramatic, but enough to give us a reason to choose this value
as fixed for the rest of our experiments.

Similarly to prioritizing writes in static profile-based policy,
we also evaluate a modified LRU spill policy, where we select
least recently written page for eviction, instead of least recently
used. Again, we do that to explore if a decrease in PCM writes
can outweigh potential performance degradation.

LRU spill policy suffers from similar drawbacks as the
first touch policy — a decision to evict a page from DRAM,
and make PCM its final and definitive host, is irreversible,
and can be proven costly if suddenly its traffic increases at
some later point. To better measure the amount of these wrong
evictions and their negative effects, we made use of the profile
information to more accurately ”predict” expected traffic on a
given page. Therefore, spill profile-based policy can either
spare a page from eviction if its future traffic is high, or
victimize it if it is low, regardless of its previous access count.
That way, at any moment during the execution, this policy
keeps in DRAM those pages that will have most accesses in
the future, and use the profile to make ideal eviction decisions
and achieve superior performance than LRU spill policy. Aside
from being unpractical for use because of the need of a pre-
run for generating a profile, this policy is technically hard to
implement, because every eviction demands a comparison of
each DRAM page statistics against the corresponding entry in
the profile. However, as a ”perfect spill policy” we can use it
to estimate how well LRU spill policy performs.

Once again, for favoring PCM’s lifetime instead of overall
performance, we evaluate modified spill profile-based policy,
where we select a page for eviction based on its future write
access count, instead of the total access count.

D. Dynamic page migration

Finally, a Dynamic policy introduces page migration in
the other direction (from PCM to DRAM), denoted as back-
migration. It is an extension of spill policy, so the same rules
for eviction from DRAM still stand — whenever a page fault

occurs, the system tries to allocate the page in the DRAM. In
case an eviction is needed from DRAM, a page is selected in
the same way as with LRU spill or spill profile-based policy.

The decision to back-migrate the page is made when the
page is accessed in the PCM. When a page is first brought to
the PCM we reset its access counter, regardless of how many
times it was accessed in the DRAM. At the same time we keep
track of the number of accesses for every page in the DRAM,
as well as the average for all the pages (nDRAMavg). When
a page in PCM is accessed, we compare its access counter
(naccesses) with the average number of accesses to pages in
DRAM. If (1) is satisfied, we migrate the page back to DRAM:

naccesses > back migration threshold× nDRAMavg (1)

Back migration threshold (BMT) is a value that controls
the aggressiveness of migration triggering. If it is set to zero,
a page is migrated as soon as it is touched in PCM, so the
DRAM acts as a typical cache. In this case we expect good
performance as the system tends to always move active pages
to DRAM, but due to a large number of migrations, number
of writes to PCM may go high. On the other hand, if BMT is
set to infinity the page never gets migrated back, and then the
policy is equivalent to LRU spill. In between those extremes
we would like to search for values that give good performace
and low number of PCM writes.

Figure 3 shows impact of changing BMT from 0 to infinity,
on the performance and on the number of PCM writes, when
executing two of our applications. Top part of the graph
shows execution time normalized to an aggresive migration
setup, when BMT is set to zero. Bottom part presents the
number of writes to PCM normalized to the same setup. Since
the aggresiveness of migrations directly influences number of
writes to both memory modules, we separated PCM writes that
are part of a migration, from those that are requested from the
cores.

We can observe that in both cases the execution time is
lowest when BMT is set to zero. This is expected, since in
this case DRAM behaves like a cache, and the number of
application accesses to PCM is close to zero. Same conclusions
have been shown in similar architectures, when migrating
pages to on-chip memories [17]. However, due to migrations
from DRAM to PCM, the number of writes to PCM is high. As
we increase BMT, two applications show different behaviour.
However, we can spot a value for BMT of 1 as a rough
minimum for the number of PCM writes, which also has a
decent performance. In case of NEMO, performance degrades
∼30%, but PCM writes decrease for the same value. In case of
QuantumESPRESSO, performance stays on roughly the same
level, while PCM writes decrease for almost 50%.

This gives us enough reason to further investigate two
dynamic migration policies: first, performance-oriented with
BMT set to 0, and second, lifetime-oriented, with BMT set to
1. Similarly as with previous policies, we will also investigate
the modification that takes into account only write accesses.
That is, back-migration is considered only on a PCM write,
and performed if the write count is greater than the average
number of writes to the pages in DRAM, multiplied by BMT.
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TABLE II. OVERVIEW OF DATA PLACEMENT POLICIES

Data placement

policy

Profile

based

Prioritize

writes

Migrations

DRAM→PCM PCM→DRAM BMT

First touch No No No No -

Static profile Yes No No No -

Static profile(w) Yes Yes No No -

Spill LRU No No Yes No -

Spill LRU(w) No Yes Yes No -

Spill profile Yes No Yes No -

Spill profile(w) Yes Yes Yes No -

Dyn perform No No Yes Yes 0.0

Dyn perform(w) No Yes Yes Yes 0.0

Dyn lifetime No No Yes Yes 1.0

Dyn lifetime(w) No Yes Yes Yes 1.0

TABLE III. OVERVIEW OF SIMULATED APPLICATIONS, THEIR TOTAL

MEMORY FOOTPRINT AND TIME OF THE SIMULATED PART.

Application Domain Footprint (GB) Time

NEMO Ocean modeling 6.54 ≈ 2s

CPMD Computational chemistry 7.48 ≈ 20s

PEPC Plasma physics 8.79 ≈ 30s

QuantumESPRESSO Particle physics 19.75 ≈ 40s

GADGET Astronomy and cosmology 57.43 ≈ 1m

Table II summarizes all previously described data place-
ment policies, and presents an overview of their respective
key features — usage of the profile information, prioritization
of writes, allowed migration directions between DRAM and
PCM, and value of BMT (in case back migration is allowed).

III. EVALUATION

Our investigation focuses on the changes in the execution
time and in the number of writes to PCM as we gradually
increase the size of DRAM, from 512MB up to the size that
is larger than the total footprint of the application. We also
try to investigate and explain performance differences as we
configure memory management unit to allocate pages based
on first-touch policy, profile-based policy and on dynamic
policies. To evaluate the system, we use TaskSim, a trace-driven
cycle-accurate CMP simulator validated against Cell BE [13].

The applications that we use for evaluation are listed in
Table III. They are production-level HPC codes that use MPI
programming model, and we executed them with realistic input
sets. These are representatives of scientific applications that are
used in today’s supercomputers [15].

To obtain the traces we implemented MemTraceMPI, a
Valgrind [9] tool for tracing load and store instructions of an
MPI application. It instruments all the executed instructions,
outputting only information about the memory accesses: access
type (load or store) and access size in bytes. This information
allows for a detailed simulation of memory accesses. In order
to simulate non-memory instructions, the tool records the num-
ber of instructions that are executed between two consecutive
memory accesses. To preserve the dynamic nature of parallel
application, MemTraceMPI detects calls to MPI functions and
records their parameters. This allows us to simulate the com-
munication and synchronization among MPI processes. Since

TABLE IV. OVERVIEW OF SIMULATED ARCHITECTURE PARAMETERS

L1

Capacity: 8KB

L2

Capacity: 1MB per core

Word size: 8B Word size: 32B

Associativity: 4-way Associativity: 32-way

Latency: 2 cycles Latency: 20 cycles

DRAM CL-tRCD-tRP: 8-8-8 PCM 4x slower than DRAM

TLB Entries: 128 MMU Page size: 8K

the simulated system is a chip-multiprocessor, communication
is performed using memory copies, and synchronization is
achieved using standard SMP synchronization primitives.

The platform used for application tracing was MareNos-
trum, a supercomputer in Barcelona Supercomputing Center. It
is a cluster of JS21 blades, each with 4 IBM Power PC 970MP
2.3 GHz processors. The 4 processors on a node shared 8 GB
of RAM, and were connected to a high-speed Myrinet type
M3S-PCIXD-2-I port, and two GigaBit Ethernet ports [16].

Large execution times of our applications led to hundreds
of gigabytes of traces per application. To keep the trace files at
a manageable size, and to maintain acceptable simulation time,
we applied trace filtering against a simple configurable cache
(512KB direct cache), included in MemTraceMPI tool. Only
cache misses are written to the trace. Given that our simulated
caches are going to have a larger size than the trace filter
caches, we are certain that at least the same number of memory
accesses will reach the main memory, as with unfiltered traces.
This method has been previously applied in the work of Rico
et al. [14] resulting with trace size reductions of up to 98%.

Even after filtering, simulation times were unacceptable (in
the order of days). To further reduce the size of the traces, we
exploited the fact that all applications iterate multiple times
over the input set and included only a few iterations [1], [3].

A. Architecture parameters

Simulated architecture closely modeled architecture pre-
sented in Section II-A, and Figure 1, with the most important
parameters presented in the Table IV.

B. Results

Figure 4 compares execution times on a system with PCM
memory only (tPCM ) and on a system with DRAM memory
only (tDRAM ), both of which are of sufficient capacity to fit
the entire application’s working set. Vertical axis represents
execution time normalized to tPCM , and applications under
study are aligned along the horizontal axis. We notice that only
NEMO and CPMD experience changes in execution time that
is equivalent to the performance difference between PCM and
DRAM (4x). The rest of the applications put more stress on
the interconnect than on the memory system. In those cases,
the positive influence of the fast memory is diminished, as
particularly is the case with PEPC, and, naturally, we cannot
expect that a system with hybrid memory, regardless of the
data placement policy, will give a performance improvement.

Figure 5 shows the main results of our simulations. Each
subfigure presents one application, testing the effectiveness of
our page placement policies, aligned on the horizontal axis.
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Fig. 4. Performance comparison between PCM-only and DRAM-only system

Top part of each subfigure shows relative slowdown, execution
time normalized on a range from tDRAM to tPCM using (2).

relative slowdown =
texec − tDRAM

tPCM − tDRAM

(2)

Therefore, a relative slowdown with a value of 0 would
represent a ”perfect” data placement policy, that yields per-
formance equal to the system with DRAM memory only.
Conversely, a system with PCM memory only would give a
relative slowdown of 1. On a hybrid memory system that we
evaluate, using one of the proposed data placement policies
we expect relative slowdown to be between 0 and 1.

Bottom part of each subfigure represents the number of
writes to PCM, with a special segment showing writes caused
by migrations, normalized to the total writes. Different bars en-
closed by each data placement policy segment, depict changes
in the aforementioned metrics as the size of DRAM in a system
varies from minimal 512 MB, incrementing by a factor of
2 up to a size of the entire application footprint, where any
placement policy would be obsolete, because all the data could
fit in DRAM. On both vertical axes we imposed a cut-off at
a value of 1, so that the low values remain clear. On any bar
that is shortened because of this, we write its real value.

As expected, First touch policy, with its naive approach,
experiences bad performance for all applications unless the
size of the DRAM gets very large. Similar results stand for
the number of PCM writes, with the only exception occurring
when compared to the aggressive migration policies, that can
direct huge write traffic to PCM. The other two static policies
perform better than the first touch, as they can exploit profile
information for improving both of our relevant metrics. It is
worth noticing that profile-based policy can reduce slowdown
up to 40% using only the smallest DRAM size. Static profile
policy that prioritizes writes (Static profile(w)) makes a very
small, on chart almost invisible, tradeoff against regular static
profile policy (Static profile), and a slight decrease in number
of PCM writes pays with a small performance degradation.

LRU spill policy uses its migration capabilities to outper-
form first touch policy, but in most cases it is not better than
static profile-based. Migrations that it executes do not provoke
a significant number of extra writes to PCM, which is good,
but also indicates that PCM write traffic is dominated by those
pages that are previously evicted from DRAM, which is bad.
Confirmation that selecting least recently used page is often
a wrong decision comes when comparing it to spill profile
policy, which performs in average 20% better, with less PCM
writes. Similar to the static policies, spill profile-based policies
show little difference if they prioritize writes.

Aggressive migration policy (Dyn perform) seems to dom-
inate performance aspect of most applications, even for small
DRAM sizes. However, its performance boosting capabilities
can severely damage the lifetime of PCM, as the number of
PCM writes can grow more than 5 times the baseline, in case
of PEPC, QuantumESPRESSO and GADGET. We notice that
almost 100% of the PCM writes, regardless of DRAM size,
are a product of migrations. This time, modified aggressive
dynamic policy (Dyn perform(w)) shows more obvious dif-
ference, mostly by significantly relieving PCM write traffic,
without dramatically reducing performance.

Lifetime-oriented dynamic policy (Dyn lifetime) shows a
nice balance between performance and number of writes,
especially for the DRAM size of 1 GB. It is never too dominant
in any aspect, but always among the best policies from what we
evaluated. Performance-wise it shows an improvement of 20–
60% over PCM-only system, and regarding PCM writes 40–
60% (except QuantumESPRESSO and GADGET). It should be
noted that lifetime-oriented policy has much more stable and
predictable number of PCM writes than aggressive dynamic
policy. When directly compared it can reduce PCM writes 20%
to 10x, and only marginally degrade performance. Therefore,
it might serve well in the wider spectrum of environments.

Dynamic policies, however, are not able to easily extract
performance benefits with GADGET, the application with the
largest footprint, unless DRAM is larger than 4 GB. When
compared to any of the spill policies, it becomes clear that the
dynamic policies cannot significantly reduce the amount of
non-migration PCM writes. A closer insight in access profile
information reveals that many pages in GADGET’s working
set experience similar traffic, and, therefore, cannot be easily
divided into ”hot” and ”cold” segments, suitable for placing
in DRAM or PCM, respectively. If DRAM is too small, this
creates a ping-pong effect, where many pages are repeatedly
migrated back and forth between DRAM and PCM.

IV. RELATED WORK

Ramos et al. [12] proposed placing DRAM and PCM in a
flat address space, with MC deciding about migrations between
them. For facilitating this, they introduced a novel page ranking
and migration policy. However, their target architecture did
not include more than 8 cores, and they did not evaluate HPC
applications for stressing memory bandwidth and capacity.

Qureshi et al. [11] placed DRAM in front of PCM as
a cache with the intent to bridge the latency gap. Their
work tackled PCM endurance issues by managing lazy-write
organization, line-level writes, and wear-leveling. They show
that a performance improvement of 3X is achievable with
a DRAM buffer of only 3% size of PCM. By placing our
memory modules in a flat address space instead, we try to
increase the overall memory capacity, avoid negative impact
of the DRAM cache on the workloads with low locality, and
give the option of further upgrading the memory system with
a module of different characteristics than DRAM or PCM.

Lee et al. [6] explored another hybrid memory organization
with PCM and DRAM as a buffer, and concluded that PCM’s
long latencies, high energy, and finite endurance can be ef-
fectively mitigated. These effective buffer organizations and
partial writes make PCM competitive with DRAM at current
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(a) NEMO (128 cores, footprint: 6.54 GB)

(b) CPMD (128 cores, footprint: 7.48 GB)

(c) PEPC (64 cores, footprint: 8.79 GB)

(d) QuantumESPRESSO (128 cores, footprint: 19.75 GB)

(e) GADGET (128 cores, footprint: 57.43 GB)

Fig. 5. Overall performance and amount of PCM writes comparison of different data placement policies

199



technology nodes. Moreover, proposed solutions are area neu-
tral, which is a critical constraint in memory manufacturing.

A position paper from Hewlett-Packard [8] argues for the
OS support in hybrid memory systems with the combination
of DRAM and flash (or PCM) memory. The paper focuses on
server workloads, but does not provide a detailed evaluation.

V. CONCLUSIONS

There is no silver bullet memory technology that allows
high bandwidth, high density and low latency at the same time.
Hence, many research efforts have focused on designing hybrid
memory systems with different types of memory modules that
in combination offer the characteristics that are needed. In this
work, we looked at one such system that consists of a small and
fast DRAM memory, and a large and slower PCM memory.
We have focused on the problem of page placement and page
migration in such system, and, to the best of our knowledge,
we have performed first detailed analysis of several algorithms
for performing this task. Using a set of High Performance
Computing applications we have analyzed how the design
parameters affect both performance of the system and the
lifetime of the PCM memory.

Besides analyzing existing page placement algorithms,
such as first touch or profile-based policies, we have also devel-
oped dynamic algorithms for placement and migration based
on LRU spilling and back-migration using either aggressive
(for performance) or more conservative (for PCM lifetime)
policy.

Our analysis has started off with an expected result: if
the only aim is to optimize for performance than the page
placement and migration policy needs to be as aggressive as
possible and needs to utilize DRAM memory as much as the
capacity allows. Our results show that a system with only 1GB
of DRAM and an aggressive dynamic policy is only 20–60%
slower than the system that has maximum DRAM capacity.

However, the performance of the aggressive dynamic policy
comes at a price in the number of writes to PCM. These
writes are costly, and they reduce the lifetime of the memory,
so we have looked at other policies that aim to reduce their
number, while keeping performance at an acceptable level. We
have shown that these policies (called Dynamic lifetime in our
analysis) when compared to the aggressive dynamic policy can
reduce the number of PCM writes from 20% to 10x, while
reducing performance up to 10%.

In conclusion, we have shown that page placement is a
very important aspect of a system with hybrid memory, and
the choice of the policy should be taken seriously and should
depend on the objectives that the system architect has set.
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