
The VLDB Journal (1997) 6: 53–72 The VLDB Journal
c© Springer-Verlag 1997

Data placement in shared-nothing parallel database systems?

Manish Mehta, David J. DeWitt

12, S. First St., San Jose, CA 95113, USA; e-mail: mmehta@64k.com
1210, W. Dayton St., Madison, WI 53706, USA; e-mail: dewitt@cs.wisc.edu

Edited by M. Adiba. Received May 11, 1993 / Accepted April 24, 1996

Abstract. Data placement in shared-nothing database sys-
tems has been studied extensively in the past and various
placement algorithms have been proposed. However, there is
no consensus on the most efficient data placement algorithm
and placement is still performed manually by a database ad-
ministrator with periodic reorganization to correct mistakes.
This paper presents the first comprehensive simulation study
of data placement issues in a shared-nothing system. The
results show that current hardware technology trends have
significantly changed the performance tradeoffs considered
in past studies. A simplistic data placement strategy based
on the new results is developed and shown to perform well
for a variety of workloads.

Key words: Declustering – Disk allocation – Resource al-
location – Resource scheduling

1 Introduction

The last decade has seen a significant change in the charac-
teristics of database applications. The demands of traditional
applications, like transaction processing, have grown dramat-
ically. In addition, emerging applications like geographical
information systems, multimedia, and database mining, pose
new performance challenges to existing database systems.
Shared-nothing (SN) database systems (Bubba [Bora90],
Gamma [DeWi90], Tandem [Tand88], Teradata [Tera85],
Volcano [Grae89]), with their promise of scalability and
availability, have evolved as an answer to these new chal-
lenges. Existing configurations contain hundreds of proces-
sors, each with multiple disks. Efficient resource manage-
ment is essential for high performance in such large systems.

An important resource management issue in SN parallel
database systems is the layout of the database in the system
or data placement. Several earlier studies have shown that
the performance and scalability of a SN parallel database

? This research was done while the first author was a student at the
University of Wisconsin-Madison. The research was supported by the IBM
Corporation through a Research Initiation Grant.

systems is contingent on the physical layout of data across
the nodes in the system. Moreover, data placement also
serves as an important load-balancing mechanism. In the
absence of remote data-access in a SN system, data place-
ment determines not only the distribution of data but also
the distribution of operators (like select) that directly ac-
cess the data. Therefore, a poor data placement strategy can
result in a non-uniform distribution of the load and the for-
mation of bottlenecks. The relatively static nature of data
placement decisions also increases the need for an efficient
placement algorithm. Other resources, like processors and
memory can be re-allocated at run-time, allowing for the
design of dynamic policies that can adapt to workload tran-
sients [Brow93, Meht93, Rahm93, Brow94]. However, data
placement can be changed only by an expensive reorga-
nization of the relations in the database. All these factors
make data placement an extremely important issue in high-
performance SN systems.

In order to exploit I/O parallelism in a parallel SN
database system, tuples belonging to a single relation are
typically placed on multiple disks. The relation is said to
be horizontally partitioned ordeclustered[Ries78, Livn87]
in such cases1. Therefore, the first issue that needs to be
addressed in selecting a data placement strategy for a SN
database system is the number of nodes on which to parti-
tion or decluster tuples of each relation, called thedegree of
declusteringof the relation. Declustering exploits I/O paral-
lelism but it also leads to higher startup and termination costs
because a process has to be started (and terminated) oneach
of the nodes where a relation is declustered in order to read
all the tuples in the relation. Therefore, the degree of declus-
tering of a relation should be chosen such that the increase
in startup and termination costs is offset by the benefits of
increased parallelism. After choosing the degree of declus-
tering, a data placement algorithm must select the particular
nodes on which to decluster each relation. Load balancing
is an important objective in this phase of the placement al-
gorithm. Finally, for each relation, the placement algorithm
must also determine the mapping of individual data tuples
to the nodes.

1 The OS community generally uses the term striping instead of declus-
tering for horizontal partitioning.

54

This paper addresses only the first two data placement
issues: choosing the degree of declustering and selecting the
set of nodes on which to place each relation. Though we
do not explicitly address the third issue (mapping individ-
ual tuples to nodes) in this paper, we do explore the effect
of processing overhead on system performance. For a more
detailed discussion on the declustering policy, the interested
reader should see [Ghan90, Hua90, Ghan92, Falo93]. While
the data placement strategy presented in [Cope88] also de-
cided the placement of relations in memory, we feel that
caching of relations in memory is better managed by a dy-
namic memory management policy, like the fragment fenc-
ing algorithm presented in [Brow93]. Such policies can adapt
to runtime changes while a static data placement strategy
cannot. Therefore, data placement in this paper refers only
to the placement of relations on disks.

Although data placement has been studied extensively in
the past and various algorithms have been proposed, there is
no consensus as to the “best” placement strategy. Commer-
cial systems such as Tandem and Teradata simply use full
declustering; i.e. relations are declustered across all nodes of
the system. On the other hand, previous placement studies
[Cope88, Padm92, Rahm93a, Rahm93b] have concluded that
partial declustering is better. Unfortunately, the studies that
have advocated partial declustering have either not presented
data placement algorithms based on partial declustering or
developed algorithms that depend on a static analysis of the
workload. In this paper we assume that database workloads
are complex and change dynamically so that static workload
analysis cannot be used. Moreover, developments in pro-
cessor and network technologies have significantly changed
the performance tradeoffs considered in previous data place-
ment studies. The goal of this paper therefore is to develop
a data placement strategy for SN parallel database systems
that does not use static workload analysis and takes recent
hardware trends into consideration.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the architecture of a SN parallel database
system and Sect. 3 presents a detailed discussion of the var-
ious factors that determine the performance of data place-
ment algorithms. The simulation model and the workload
used for the performance analysis are presented in Sect. 4.
Section 5 contains the results of experiments on selecting the
degree of declustering while algorithms to select nodes for
placing relations are studied in Sect. 6. Section 7 explores
the effect of workload changes on the performance of the
declustering algorithms while multi-class workloads are dis-
cussed in Sect. 8. Section 9 presents related work in data
placement and presents a comparison with previous declus-
tering studies. Finally, Sect. 10 contains our conclusions and
suggestions for future work.

2 System architecture

Figure 1 presents a schematic description of a typical SN
parallel database system. The system consists of a set of ex-
ternal terminals from which transactions are submitted. The
transactions are sent to a randomly selected scheduling node.
The execution of each transaction on the processing nodes
is coordinated by a specialized process called the scheduler.

Scheduler Node Processing Nodes

In

te
rc

on
ne

ct
io

n
N

et
w

or
k

...

Memory
CPU

Disks

...

Memory
CPU

Disks

...

Memory
CPU

Disks

Terminals

...

Memory
CPU

Disks

Nodes

Fig. 1. Shared-nothing database system

The scheduler allocates resources (memory and processors)
to the transaction and is responsible for starting and ter-
minating all the operators in a transaction. The processing
nodes are composed of a CPU, memory, and one or more
disk drives2. The nodes use the interconnection network for
all communication.

3 Data placement issues

This section discusses the factors that can affect the choice of
the degree of declustering for relations and their placement
on the system: startup and termination costs, communication
costs, workload isolation, data skew, and result collection.

3.1 Startup and termination costs

As mentioned previously, the degree of declustering of a re-
lation should be chosen such that the benefits of parallelism
can offset the costs of operator startup and termination. The
startup and termination of operators is handled by a special-
ized process called the query scheduler. The time consumed
by startup and termination is dependent on the startup and
termination protocols used by the query scheduler. We con-
sider two alternative startup protocols in this study.

1. Parallel – In this protocol, the scheduler sends startup
messages to all the nodes executing the operator and
then waits for acknowledgments. Each node initiates an
instance of the operator and then sends an acknowledg-
ment back to the scheduler. The startup process is com-
plete once acknowledgments have been received from
all the nodes.

2. Sequential – In the sequential protocol, the scheduler
sends a startup message to one node and then waits for
an acknowledgment before sending the next startup mes-
sage. Since the sequential protocol is obviously much
slower than the parallel protocol, it is included only to
simulate systems with very high startup costs. Only one
termination protocol is modeled in this study. As each

2 For the rest of this paper, the term node is used to collectively refer to
a processor, its local memory and the attached set of disks.

55

instance of an operator completes, it sends a termination
message to the query scheduler. The operator terminates
once the scheduler receives a termination message from
all operator instances.

3.2 Communication costs

[Cope88, Padm92, Rahm93a, Rahm93b] cite communica-
tion costs as an important factor in determining the degree
of declustering. The degree of declustering determines the
degree of parallelism of operators that access disk-resident
data (e.g. select). A higher degree of declustering implies
a higher degree of parallelism for these operators which, in
turn, implies that data is read and possibly re-distributed on
more nodes concurrently. If the bandwidth of the intercon-
nection network is such that the network can become a bot-
tleneck during re-distribution, a lower degree of parallelism
and therefore a lower degree of declustering may be desir-
able. Although network bandwidth may have been a factor
in determining the degree of declustering in the past, we
assert that this is no longer the case. Several scalable inter-
connects have already been designed that provide extremely
high bandwidths (up to 200 MB/s per node [Para93]). In
comparison, data transfer rates from disks are only now
reaching 10 MB/s [IBM93]. Therefore, data can be trans-
mitted simultaneously from a large number of nodes without
the network becoming a bottleneck.

3.3 Workload isolation

Typically, large database configurations are shared by many
users performing a variety of tasks. For instance, a large sys-
tem may execute workloads against multiple, independent
databases. One problem in such an environment is workload
interference. Users often want to prevent fluctuations in one
workload from affecting other concurrent workloads. Data
placement is often used as a mechanism to achieve workload
isolation in these environments. By storing each database
on a disjoint set of nodes, interference can essentially be
eliminated3. Although disjoint placement provides complete
workload isolation in an SN database system, it has a ma-
jor drawback – a partitioned system is always less respon-
sive to workload changes. Consider a workload consisting
of two classes: the first class, called LowPriority, contains
low-priority queries, and the other, HighPriority, consists of
high-priority queries. If partitioning is used to isolate these
two classes, one set of nodes will be dedicated to process-
ing LowPriority queries while a disjoint set of nodes will
be used to process HighPriority queries. If there is a sudden
increase in the arrival rate of the HighPriority class, there
will be increased contention in the corresponding part of the
system and it will not be possible to distribute the additional
load to the nodes processing LowPriority queries. In order
to deal with such cases, a data placement strategy should
allow for the use of flexible workload isolation mechanisms
that can adapt to workload changes.

3 Assuming adequate network bandwidth to eliminate network conten-
tion.

3.4 Skew

The variance in response times across the multiple instances
of a parallel relational operator is called skew ([Wolf90,
Hua91, Kits90, Omie91, Walt91, DeWi92b]). Since the de-
gree of declustering determines the degree of parallelism
of operators like select, skew is an important factor when
selecting the degree of declustering for a relation. A tax-
onomy of data skew in parallel databases was presented in
[Walt91]. Four types of skew were identified: skew in ini-
tial tuple placement (tuple placement skew), skew due to
variations in predicate selectivity across nodes (selectivity
skew), skew in redistribution of tuples in preparation for
a join (redistribution skew), and finally, imbalance in the
number of output tuples (join product skew). As in [Wolf90,
Omie91, Walt91, DeWi92a], we assume that the relations are
distributed such that there is no tuple placement or selectiv-
ity skew. Redistribution skew is also not considered, since
techniques like the ones presented in [DeWi92a] can easily
be used to eliminate it. On the other hand, remote-data ac-
cess capabilities are required for reducing join product skew.
For example, distributed virtual shared-memory was used in
[Shat93] for handling join product skew. Since no remote
data-access is assumed in this paper, join product skew may
be present. Section 5.6 presents an experiment that explores
the effect of join product skew on data placement.

3.5 Result collection

The output of a parallel operation sometimes needs to be
merged into a single stream for transmission to an external
processor. If the size of the output relation is large, the col-
lection of result tuples can become a bottleneck [Padm92,
Youn92]. However, since a single output stream may not
always be required, and result sizes vary dynamically from
query to query, we feel that the result size should not be
a determining factor in selecting the degree of declustering
of a relation. In this paper, we assume that join results are
declustered on multiple disks; therefore, result collection is
not a bottleneck in our experiments.

4 Simulator model

The performance studies presented in this paper are based
on a detailed simulation model of a SN database system.
The simulator is written in the CSIM/C++ process-oriented
simulation language [Schw90] and models the database sys-
tem as a closed queueing system. The following sections
describe the configuration, database and workload models
of the simulator in more detail.

4.1 Configuration model

The terminals model the external workload source for the
system. Each terminal sequentially submits a stream of
transactions. Each terminal has an exponentially distributed
“thinktime” to create variations in arrival rates. All exper-
iments in this paper use a configuration consisting of 128

56

nodes. The nodes are modeled as a CPU, a buffer pool of
16 MB4 with 8 KB data pages, and one or more disk drives.
The CPU uses a round-robin scheduling policy with a 5 ms
timeslice. The buffer pool models a set of main memory
page frames whose replacement is controlled via the LRU
policy extended with “love/hate” hints [Haas90]. These hints
are provided by the various relational operators when fixed
pages are unpinned. For example, “love” hints are given by
the index scan operator to keep index pages in memory;
“hate” hints are used by the sequential scan operator to pre-
vent buffer pool flooding. In addition, a memory reservation
system under the control of the scheduler task allows buffer
pool memory to be reserved for a particular operator. This
memory reservation mechanism is used by hash join oper-
ators to ensure that enough memory is available to prevent
their hash table frames from being stolen by other operators.

The simulated disks model a Fujitsu Model M2266
(1 GB, 5.25′′) disk drive. This disk provides a cache that
is divided into 32 KB cache contexts for use in prefetching
pages for sequential scans. In the disk model, which slightly
simplifies the actual operation of the disk, the cache is man-
aged as follows: each I/O request, along with the required
page number, specifies whether or not prefetching is desired.
If prefetching is requested, four pages are read from the disk
into a cache context as part of transferring the page originally
requested from the disk into memory. Subsequent requests to
one of the prefetched blocks can then be satisfied without in-
curring an I/O operation. A simple round-robin replacement
policy is used to allocate cache contexts if the number of
concurrent prefetch requests exceeds the number of avail-
able cache contexts. The disk queue is managed using an
elevator algorithm.

The interconnection is modeled as an infinite bandwidth
network so there is no network contention for messages.
This is based on previous experience with the GAMMA
prototype [DeWi90] which showed that network contention
is minimal in typical SN PDBs. Messages do, however, incur
an end-to-end transmission delay of 500µs. All messages
are “point-to-point” and no broadcast mechanism is used for
communication.

Table 1 contains the configuration parameters while the
CPU processing costs for various database operations are
presented in Table 2.

Two kinds of configurations are considered in this paper:

– Disk-intensive: Each node in this configuration has a 40
MIPS CPU and one disk. This configuration represents
systems whose workloads are typically I/O-bound.

– CPU-intensive: Nodes in the CPU-intensive configura-
tion have a 10 MIPS CPU and four disks. This config-
uration models systems whose performance is typically
CPU-bound.

4 The simulated buffer pool size is smaller than buffer pools in typical
configurations. Unfortunately, simulating a larger buffer pool size would
require enormous amounts of resources. Some of our simulations took up
to 90 and ran for 2.5 days on an IBM RS/6000 even with 16 MB of memory
per node. On the other hand, our configuration is much more realistic than
previous simulation studies ([Rahm93a] studied a configuration with 80
nodes and only 2 MB/node memory).

Table 1. Simulator parameters and values

Configuration/Node parameter Value
Number of nodes 128
Memory per node 16 MB
CPU speed 10/40 MIPS
Number of disks per node 1/4
Page size 8 KB
Disk seek factor [Bitt88] 0.617
Disk rotation time 16.667 ms
Disk settle time 2.0 ms
Disk transfer rate 3.09 MB/s
Disk cache context size 4 pages
Disk cache size 8 contexts
Disk cylinder size 83 pages
Wire delay for an 8K message 500µs

Table 2. CPU cost parameters

Operation Instructions
Initiate select operator 70000
Terminate select operator 5000
Initiate join operator 40000
Terminate join operator 10000
Apply a predicate 100
Read tuple from buffer 300
Probe hash table 200
Insert tuple in hash table 100
Start an I/O 10000
Copy a byte in memory 1
Send (receive) an 8K message 10000

4.2 Database model

The sizes of the input relations are chosen to explore a large
range of query execution times. The database consists of sets
of 100 relations for each of the following sizes (in number
of tuples per relation): 5K, 10K, 15K, 20K, 25K, 50K, 75K,
100K, 200K, 300K, 400K, 500K, 1 Million. In addition,
extra relations with 5 million tuples are used to achieve a
disk occupancy of 60–70% for each configuration. The tuple
size is 200 bytes for all relations, so there are 40 tuples per
8 KB page. We model both clustered and non-clustered B+
tree indices on the relations. The index key sizes are 12 bytes
and the key/pointer pairs are 16 bytes long. The relations
and indices are declustered across the nodes based on the
particular declustering algorithm used in the performance
study. Table 3 summarizes the database parameters used in
this paper.

4.3 Workload model

The key workload characteristic for our study is the I/O
access pattern. Although real workloads contain numerous
transaction types with varied I/O behaviors, we use a sim-
plified two-class workload that has been designed to capture

Table 3. Database parameters

Parameter Value
Number of tuples 10 000–5 000 000
Tuple size 200 B
Tuples per page 40
Index key size 12 B
Index key/pointer pair size 16 B

57

the essence of real workloads. The first class is designed
to model short interactive transactions. Transactions of this
class perform four single-tuple, non-clustered index selec-
tions on randomly selected relations. Each selection exe-
cutes on one of the nodes on which the relation has been
declustered. To process each selection, the transaction reads
3 pages (2 index pages and 1 data page). While each trans-
action reads a total of 12 pages, the total number of I/Os
performed may differ due to variations in the buffer hit rate.
Each of the four selections executes on a randomly chosen
single node. Therefore the response time of the transactions
is not affected by a relation’s degree of declustering. This
class is referred to as the Transaction class for the rest of
the paper.

The second class, called the Join class, captures the I/O
behavior of long-running batch queries and consists of bi-
nary hybrid hash-joins5 [DeWi84, Gerb85] for most of the
experiments. Binary join queries were chosen so that is-
sues, like pipelining and intra-query parallelism, that arise
when processing complex queries could be ignored. This
is a reasonable simplification as most commercial database
systems execute queries comprised of multiple joins as a se-
ries of binary joins and do not pipeline tuples between adja-
cent joins in the query tree. Moreover, such simplified query
workloads have also been used previously in [Ng91,Yu93].
Consequently, complex multiple-join queries are included in
only one of our experiments (Sect. 5.7). In order to maximize
join processing costs, the declustering attribute is assumed
to be different from the join attribute so complete redistribu-
tion of each relation is needed for join processing. Another
simplification is that, unless stated otherwise, the selection
predicates used in the joins have a 100% selectivity and no
indices are used when processing the input relations. The
effect of indices is examined separately in Sect. 5.5. Also
except for Sect. 5.4, queries are always allocated their maxi-
mum memory requirement. Finally, in order to simplify pro-
cessor allocation for the joins, the join is always executed on
the same nodes on which the inner relation is declustered.
Therefore, the degree of declustering of the inner relation
also determines the degree of join parallelism and the re-
sponse time is proportional to the degree of declustering of
the inner (outer) relation. A higher degree of declustering
decreases the amount of data to be read per node, improves
the response time but also increases the overhead associated
with parallel execution of the operator.

The number of transaction class terminals is fixed at 1000
in the simulation experiments and the number of query ter-
minals varies from 1 to 40. The terminal think time are
exponentially distributed and different mean values are used
to change the load offered by each class.

5 Selecting the degree of declustering

The first series of experiments determines the degree of
declustering for relations. Results are presented for the disk-
intensive and CPU-intensive configurations in combination

5 Since the primary factor of importance is the large number of I/Os
performed by the queries, the use of other join methods (like nested-loop
and sort-merge) will not change the results qualitatively.

0 32 64 96 128
Degree of Declustering

0.0

0.5

1.0

1.5

2.0

A
ve

ra
ge

 J
oi

n
R

es
po

ns
e

T
im

e
(s

ec
s)

40 terminals
30 terminals
20 terminals
10 terminals

Fig. 2. Query response times for joins of 10K relations (disk-intensive
configuration, parallel startup)

with both the sequential and parallel startup protocols. Ex-
cept for Sect. 5.4, queries are always allocated their maxi-
mum memory requirement.

5.1 Disk-intensive configuration

5.1.1 Parallel Startup

The first experiment examines the effect of increasing the
degree of declustering on queries of various sizes. The in-
ner and outer relations have the same number of tuples, and
the size of the input relations is used to label each query.
For example, a 10K query refers to a join of two different
randomly chosen 10 000 tuple relations. Figure 2 shows re-
sponse times for 10K queries under various system loads
as the degree of declustering is increased from 8 to 128.
The declustering nodes for each relation are randomly cho-
sen. Note that a degree of declustering of 128 represents full
declustering.

As expected, the average query response time increases
as the number of terminals (i.e. the system load) is increased
from 10 to 40. With 10 terminals, response times initially
decrease as the degree of declustering is increased from 8
to 50 and then start increasing slowly. The same behav-
ior can also be observed for higher query loads with 20–40
terminals, but with sharper increases for higher degrees of
declustering. Although startup and termination costs increase
with a higher degree of declustering, the response time in-
creases beyond a degree of declustering of 50 are not due to
startup, termination, or communication costs. Beyond a de-
gree of declustering of 50, there is less than one disk cache
context worth of data per disk (recall that there is one disk
per node in this configuration and each disk has a 256 KB
cache divided into 32 KB cache-contexts). Therefore, the
disk caches are not fully utilized beyond 50 nodes – one
disk I/O fetches less than four 8 KB pages into the disk
cache. This reduces the cache hit rate and increases disk
arm contention. The resulting loss of I/O bandwidth causes
the average query response time to increase. This increase
in disk contention exacerbates the effect of lower I/O band-
width, which is why the increase in response time is higher
with more query terminals. A similar behavior can be ex-

58

0 20 40 60 80 100
Input Relation Size (#tuples in thousands)

0

20

40

60

80

100

120

140

O
pt

im
al

 D
eg

re
e

of
 D

ec
lu

st
er

in
g

Fig. 3. Optimal degree of declustering (disk-intensive configuration, parallel
startup)

pected if multiple-page I/Os are used instead of the cache to
reduce disk-arm contention.

In order to verify the relationship between cache con-
text size and the optimal degree of declustering, the same
experiment was performed for relations of different sizes.
Figure 3 shows the degree of declustering that achieves the
lowest average response times, called the optimal degree of
declustering, for relations with 5K to 100K tuples. The re-
sults show that the optimal degree of declustering increases
linearly as the relation size is increased from 5K to 25K tu-
ples. Moreover, for each relation size, the optimal degree of
declustering occurs when there is just one disk cache context
worth of data per node. The optimal degree of declustering
cannot be greater than the system size (128 nodes) and there-
fore the optimal degree of declustering is constant beyond a
relation size of 25K tuples. The results of these experiments
demonstrate that a simple cache-context-per-disk rule can be
used in this disk-intensive configuration with parallel opera-
tor startup to determine the maximum degree of declustering
of relations.

5.1.2 Sequential startup

Figure 4 shows the optimal degree of declustering when
operator instances are started sequentially by the scheduler
(solid line). Compared to the results with parallel startup
(dotted line), the optimal degree of declustering for the re-
lations is lower and no longer has a linear relationship with
relation size. For instance, if the relation size is increased
by 250% from 10 000 tuples to 25 000 tuples, the optimal
degree of declustering increases by 225% (from 32 to 72).
Increasing the relation size further by 100% to 50 000 tuples
increases the optimal degree of declustering by only 44%
(to 104). The non-linear relationship of the optimal degree
of declustering,dopt, with the relation size can be explained
as follows. If startup and termination costs are significant,
the response time of a query can be modeled as [Wils92]

ResponseTime =a ∗ d +
b ∗ S
d

(1)

wherea = startup and termination cost per node,d = degree
of declustering of the input relation,b = processing cost
per tuple, andS = number of tuples in the relation. The

0 20 40 60 80 100
Input Relation Size (#tuples in thousands)

0

20

40

60

80

100

120

140

O
pt

im
al

 D
eg

re
e

of
 D

ec
lu

st
er

in
g

sequential
parallel

Fig. 4. Optimal degree of declustering (disk-intensive configuration)

0 100 200 300 400 500
Input Relation Size (#tuples in thousands)

0

20

40

60

80

100

120

140

O
pt

im
al

 D
eg

re
e

of
 D

ec
lu

st
er

in
g

cpu-intensive
disk-intensive

Fig. 5. Optimal degree of declustering parallel startup

optimal degree of declustering for a relation withS tuples,
dopt(S), can be found by differentiating the above equation
with respect tod and equating it to 0. This leads to the
following formula

dopt(S) =

√
b ∗ S
a

(2)

This shows thatdopt is a non-linear function ofS. How-
ever, even with sequential startup,dopt rises rapidly as the
size of the input relations increases. As a result, all relations
with more than 75K tuples (15 MB) should still be fully
declustered for this disk-intensive configuration.

5.2 CPU-intensive configuration

5.2.1 Parallel startup

Figure 5 shows the optimal degree of declustering for re-
lations using the parallel startup algorithm in the CPU-
intensive configuration (one 10 MIPS CPU and 4 disks
per node). The optimal degree of declustering for the disk-
intensive configuration is also shown for comparison. In
the CPU-intensive configuration, only relations with more
than 200K tuples should be fully declustered (solid line)
compared to 25K tuples for the disk-intensive configuration
(dashed line). Since startup and termination take longer with
a slower CPU, they constitute a larger fraction of the total
execution time of a query. As a result, the number of tuples
processed per node must be increased in order to compensate
for the increase in startup and termination costs.

59

0 100 200 300 400 500
Input Relation Size (#tuples in thousands)

0

20

40

60

80

100

120

140

O
pt

im
al

 D
eg

re
e

of
 D

ec
lu

st
er

in
g

cpu-intensive
disk-intensive

Fig. 6. Optimal degree of declustering sequential startup

0 32 64 96 128
Degree of Declustering

0

10

20

30

40

A
ve

ra
ge

 J
oi

n
R

es
po

ns
e

T
im

e
(s

ec
s)

10 terminals
20 terminals
30 terminals
40 terminals

Fig. 7. Joins of 100K relations: minimum memory allocation

5.2.2 Sequential startup

The next experiment explores the effects of sequential startup
in a CPU-intensive configuration. Figure 6 shows that only
relations with more than 400K tuples should be fully declus-
tered. The reason is that sequential startup increases the
query startup time considerably and the slower CPU in this
configuration exaggerates the effect. Therefore, the number
of tuples at which full declustering becomes optimal in-
creases from 200K to 400K tuples. Figure 6 also shows a
non-linear relationship between the relation size and the op-
timal degree of declustering, as we saw before for sequential
startup in the disk-intensive configuration.

5.3 Discussion

The previous experiments have explored the optimal degree
of declustering for disk-intensive and CPU-intensive situa-
tions using both sequential and parallel startup algorithms.
The optimal degree of declustering was highest for the disk-
intensive configuration with parallel startup. It is lower for a
CPU-intensive system or if a sequential startup algorithm is
used. However, even for the slowest system (CPU-intensive,
sequential startup), any relation with more than 400K tu-
ples (80 MB), should be fully declustered. Therefore, only
625 KB of data is needed per node to overcome startup and
termination costs for this configuration. These results indi-
cate that most relations in a typical parallel database system
should be fully declustered for the best performance.

The previous experiments also demonstrate that the op-
timal degree of declustering is a complex function of hard-
ware and software parameters. The optimal degree of declus-
tering had a linear relationship with relation size in the
disk-intensive system with parallel startup, but a non-linear
relationship for all other configurations. This means that
if startup and termination costs are low and the system
is disk-intensive, a simple rule like cache-context-per-disk
(Sect. 5.1) can be used to determine the optimal degree of
declustering. Fortunately, current hardware trends indicate
that database systems are likely to be disk-intensive in the
future. CPU speeds are increasing at an average of 50% each
year [Sigm94]. In contrast, disk bandwidths are growing at
only 20% a year [Sigm94]. Thus, future systems will most
likely be disk-intensive, and fast CPUs and networks will
further reduce startup and termination costs. Consequently,
determining the optimal degree of declustering should be-
come easier in future systems. For the remainder of this
paper, a cache-context-per-disk rule is used to calculate the
degree of declustering for each relation. Furthermore, results
are presented only for the disk-intensive configuration with
parallel startup.

5.4 Minimum memory allocation

Since startup and termination costs are the same when join
queries are given their maximum or minimum memory allo-
cation, the declustering results of the previous section (where
maximum allocation was used) should be applicable even if
minimum memory allocation is used. Figure 7 shows the
effect of the degree of declustering on the response time for
joins of two 100 000 tuple relations with minimum memory
allocation for various system loads. The results confirm that
full declustering (degree of declustering = 128) provides the
best response time for all system loads. Experiments with
larger relations produced the same result – full declustering
had the best performance6.

5.5 Effect of indices

The previous experiments used full relation scans of both
input relations. The next experiment examines the effect of
index scans on the degree of declustering. Figures 8 and 9
show the performance of joins of two one million tuple re-
lations when a clustered index is used to read each relation.
Index selectivities of 1% and 10% were considered. The re-
sults of this experiment are quite different from the previous
ones. Figure 8 shows that, with a 1% selectivity factor, the
optimal degree of declustering for a relation with 1 million
tuples is 50 (compared to 128 in the previous section). This
implies that the degree of declustering should be reduced if
index scans are used to read relations. However, Figure 9
shows that if the selectivity is increased to 10%, the optimal
degree of declustering increases to 128. The results of these
two experiments can be explained as follows. The optimal

6 Experiments were not done using smaller relation sizes because pre-
vious studies [Meht93, Meht94, Yu93] have shown that minimum memory
allocation is justified only for large relations where it leads to substantial
reduction in memory consumption.

60

0 32 64 96 128
Degree of Declustering

0.00

0.25

0.50

0.75

1.00

1.25

A
ve

ra
ge

 J
oi

n
R

es
po

ns
e

T
im

e
(s

ec
s)

10 terminals
20 terminals
30 terminals
40 terminals

Fig. 8. Index selectivity = 0.01. Effect of clustered index scans on the
degree of declustering

0 32 64 96 128
Degree of Declustering

0

2

4

6

8

10

A
ve

ra
ge

 J
oi

n
R

es
po

ns
e

T
im

e
(s

ec
s)

10 terminals
20 terminals
30 terminals
40 terminals

Fig. 9. Index selectivity = 0.1. Effect of clustered index scans on the degree
of declustering

degree of declustering depends on the number of tuples pro-
cessed by each operator. Since a query using a clustered
index scan with a 1% selectivity on a 1M relation processes
the same number of tuples (10 000) as a file scan of a 10 000
tuple relation with 100% selectivity, the optimal degree of
declustering in both cases is also the same. Similarly, the
optimal degree of declustering of a query using a clustered
index scan with a selectivity of 10% is similar to the opti-
mal degree of declustering of a file scan of a 100 000 tuple
relation. In general, if a clustered index scan withx% se-
lectivity is used to read a relation of withR tuples, then the
optimal degree of declustering is the same as the optimal de-
gree of declustering for a file scan of a relation with (R ∗x)
tuples. Therefore, the optimal degree of declustering of a
relation changes depending on the selectivity of the index
scans used to read the relation. However, the optimal degree
of declustering increases rapidly with an increase in relation
size (Fig. 3), and therefore full declustering will provide
the best performance unless the index selectivity is small.
Experiments with unclustered index scans also showed that
full declustering provides the best performance unless the
selectivity is very small and have therefore been omitted.

5.6 Effect of skew

This experiment explores the effect of data skew on the
cache-context-per-disk rule. As mentioned in Sect. 3.4, only

0 32 64 96 128
Degree of Declustering

0.0

0.5

1.0

1.5

2.0

A
ve

ra
ge

 J
oi

n
R

es
po

ns
e

T
im

e
(s

ec
s)

10 terminals
20 terminals
30 terminals
40 terminals

Fig. 10. Skew Factor – 400%. Effect of skew on the degree of declustering

0 32 64 96 128
Degree of Declustering

0

1

2

3

A
ve

ra
ge

 J
oi

n
R

es
po

ns
e

T
im

e
(s

ec
s)

10 terminals
 20terminals
30 terminals
40 terminals

Fig. 11. Skew Factor – 800%. Effect of skew on the degree of declustering

the effect of join product skew is considered. Join product
skew is modeled in the following manner. It is assumed that
the skew is present on only one of the processing nodes,
which is chosen randomly; this is similar to the “scalar”
skew model used in [Walt91], [Omie91] and [DeWi92]. The
number of tuples produced at the selected node is calculated
as the skew factor times the average number of tuples pro-
duced at other nodes. For example, if each node produces
10 000 result tuples on the average, a skew factor of 400%
means that the node that experiences join product skew will
produce 40 000 (4∗ 10 000) tuples. In order to ensure that
the same number of tuples are produced irrespective of the
degree of declustering, the skew factor is increased linearly
with the degree of declustering. For instance, a skew fac-
tor of 400% with a degree of declustering of 16 changes to
800% and 1600% when the degree of declustering increases
to 32 and 64 respectively.7 Linearly increasing the skew
factor with the degree of declustering ensures that the same
number of tuples are produced on the skew node for each
degree of declustering. Figures 10 and 11 show the effect of
two different degrees of skew on the average response time
of 25K join queries (without indices).

In all the cases, the response time decreases with an in-
crease in the degree of declustering. However, the reduction
in response time is small for low loads (less than 20 ter-

7 This represents an extremely high degree of skew. If a more realistic
distribution was used instead of the scalar skew model, the increase in skew
with the degree of declustering would be more gradual.

61

Join

Join

Join

Join

Store

R1 R2

R3

R4

R5

LEFT−DEEP

R1 R2

R3

R4

R5

Join

Join

Join

Join

Store

RIGHT−DEEP

Fig. 12. Complex query schedules

minals). The reason is that the response time of the queries
is dominated by the response time of the node that expe-
riences the join product skew. Since the number of tuples
produced at the skewed node does not change as the degree
of declustering increases, the response time also does not
change significantly. This is more evident in Fig. 11, where
queries have a higher skew of 800% and hence the response
time reduction is lower. At higher loads, the performance
improves slightly with a higher degree of declustering since
the query load gets spread over more nodes. This experi-
ment shows that full declustering improves performance in
the presence of low degrees of skew.

While there is less improvement with higher degrees of
skew, full declustering still has the best performance. In the
presence of skew, full declustering often helps in reducing
the average response time and never leads to higher response
times.

5.7 Complex queries

So far we have considered only binary join queries. This sec-
tion examines the effect of declustering strategies on more
complex queries. The workload used here consists of a sin-
gle five-way join query where each input relation consists
of one million tuples. The selection selectivity is 100%, join
selectivity is 50% and the joins are allocated their maximum
memory allocation. There are multiple ways of schedul-
ing such a complex query, each differing in the amount
of parallelism and pipelining exploited [Schn90, Chen92a,
Chen92b]. In this experiment, both left-deep and right-deep
scheduling [Schn90] are considered. These represent the two
extremes in query scheduling strategies; left-deep schedules
have the least parallelism and limited pipelining, while right-
deep schedules have the highest parallelism and maximum
pipelining. The two query schedules are shown in Fig. 12.
The dark edges in the two schedules represent the build op-
eration in the hash join, while the lighter edges represent the
probe operation.

Figure 13 shows the response time for the complex
queries as the degree of declustering of the input relations
is increased from 16 to 128. The results show that increas-
ing the degree of declustering improves performance irre-
spective of the query scheduling strategy; full declustering
provides the best performance for both left-deep and right-
deep trees. The reason is the same as before – the increase
in parallelism with higher degrees of declustering more than
compensates for the small increase in startup and termina-
tion costs. This experiment illustrates that full declustering

0 100 200 300 400 500
Input Relation Size (#tuples in thousands)

0

20

40

60

80

100

120

140

O
pt

im
al

 D
eg

re
e

of
 D

ec
lu

st
er

in
g

cpu-intensive
disk-intensive

Fig. 13. Complex-query response times 5-way join queries (1M tuples per
input relation)

not only improves the performance of simple binary join
queries, but also complex join queries. Similar experiments
with complex queries containing different numbers of mul-
tiple joins also produced the same results.

6 Selecting nodes for placement of relations

This section presents and evaluates alternative strategies for
deciding the placement of the fragments of a declustered
relation. The previous sections showed that a simple cache-
context-per-disk rule can be used to determine the degree
of declustering of relations. Therefore, placement needs to
be determined only for relations that should not be fully
declustered under this rule (since if a relation can be fully
declustered, it is simply placed on all nodes and no place-
ment decision is needed).

The first part of this section (6.1) presents three alterna-
tive algorithms for placing relations that should not be fully
declustered. This is followed by a detailed performance eval-
uation of the resulting (complete) data placement algorithm
on a variety of workloads. The workloads have been divided
into partitioned and non-partitioned workloads. A partitioned
workload consists of disjoint sets of queries which access
mutually exclusive sets of relations. A workload consisting
of queries submitted from two separate organizations ac-
cessing their own private databases is an example of a parti-
tioned workload. The queries from each organization can be
isolated from one another by placing their relations on dis-
joint sets of nodes. However, disjoint placement of relations
cannot be used to partition all workloads; such workloads
are called non-partitioned. An example of a workload that
cannot be partitioned is the TPC-C benchmark workload.
This workload consists of five transaction types that access
data in a database composed of ten relations. Each relation
is shared across multiple transactions, making it impossible
to partition the workload by placing the relations on disjoint
nodes. Section 6.2 examines the effect of declustering on
non-partitioned workloads, while partitioned workloads are
considered in Sect. 6.3.

62

Table 4. Workload and database parameters

Workload Database
Class Terminals Think time Relation Size Number
Join 10 0 s Partially declustered 1000–25 000 tuples 10–100

Fully declustered 100 000 tuples 100

6.1 Handling small relations

Small relations, which cannot be declustered on all nodes,
are a potential source of load imbalance because their place-
ment leads to increased load on only a subset of nodes.
The experiments in this section compare three algorithms
for placing small relations. For each algorithm, the degree of
declustering is determined using the cache-context-per-disk
rule. However, the algorithms differ in the order in which
relations are chosen for placement and in the method used
to select the nodes for placing each relation. The following
placement algorithms are considered:

– Random: The first algorithm is the simplest and is com-
pletely workload independent. It randomly chooses both
the next relation to be placed and the set of nodes on
which to place it.

– Round-robin: In the round-robin algorithm, the order in
which relations are placed is random, but the placement
of relations on the nodes is performed in a round-robin
fashion: if a relation is placed on processors 1 through
10, the placement of the next relation starts at processor
11, and so on. This algorithm is also workload indepen-
dent, but tends to spread the data more uniformly than
Random.

– Bubba: The final placement algorithm is the Bubba data
placement heuristic [Cope88]. In this scheme, relations
are placed in decreasing order of their access frequency
(heat). For each node, the algorithm maintains the sum of
the heats of all of the relations placed so far on the node.
For each relation, the nodes with the least accumulated
heat are chosen for declustering. This algorithm is the
most efficient for load balancing but it requires detailed
knowledge of the workload for an accurate prediction of
each relation’s heat. The placement algorithms are first
compared for a non-partitioned workload, and the results
are then used to determine data placement for partitioned
workloads.

6.2 Non-partitioned workloads

The relations in a non-partitioned workload can be divided
into two categories: fully declustered relations, which are
partitioned across all nodes, and partially declustered rela-
tions, which are declustered across only a subset of nodes.
The first experiment compares the performance of the algo-
rithms for placing small relations on a disk-intensive con-
figuration. The workload and the database used for this ex-
periment are described in Table 4.

The database consists of one hundred 100 000 tuple re-
lations that are fully declustered and a variable number of
small relations that are partially declustered. The number of
tuples in the small relations vary uniformly between 1000
and 25 000 tuples. The degree of declustering for partially

0 20 40 60 80 100
Number of Partially Declustered Relations

0

1

2

3

4

A
ve

ra
ge

 J
oi

n
R

es
po

ns
e

T
im

e
(s

ec
s)

Random
Round-Robin
Bubba

Fig. 14. Effect of number of partially declustered relations

declustered relations is determined by the cache-context-per-
disk rule. For example, the 1K tuple relation (25 pages) is
declustered on 5 disks8 and the 10 000 tuple relation (250
pages) is declustered on 50 disks. The workload consists of
a number of concurrently executing hash join queries; the
number of queries was chosen such that the average disk
utilization was 60%. The selection of the inner and outer
relation for each query is performed as follows. The relation
can be a partially or fully declustered relation with equal
probability. If the relation is selected to be a partially declus-
tered relation, a skewed Zipf distribution9 with z = 1.0 is
used to choose the particular partially declustered relation.
This distribution was selected to vary the heat among the
partially declustered relations. On the other hand, the place-
ment of fully declustered relations is fixed and independent
of the heat of the relation. Therefore, if an input relation
is chosen to be a fully declustered one, it is chosen ran-
domly with a uniform distribution from among the set of
100K tuple relations. The skewed probabilities (defined by
the Zipfian distribution) are randomly assigned to the various
partially declustered relations. Therefore, in order to remove
the effect of this random assignment of access probabilities
to relations, every result point represents the average of 30
simulation runs, each with a different assignment of access
probabilities to the partially declustered relations.

Figure 14 shows the performance of the three algorithms
as the number of partially declustered relations is varied from
10 to 100. In order to stress the performance of the algo-
rithms, all of the data was read from the disk and memory
buffering was switched off. The effect of memory buffering
is examined separately in the next experiment.

8 There are 40 tuples per page and one disk cache context (5 pages)per
disk.

9 P (i) = 1/iz∑N

i=1
1/iz

for all 1 ≤ i ≤ N , whereN is the number of

relations [Zipf49].

63

Figure 14 shows that, with 10 partially declustered rela-
tions, the Random algorithm results in the highest average
query response time. The Random algorithm places relations
on a random set of nodes and the order of placement is also
randomized. When the number of partially declustered re-
lations is small, the Random algorithm can thus place frag-
ments of multiple “high-heat” relations on the same node.
This leads to a load imbalance, so the performance of the
Random algorithm is the worst. The Round-Robin algorithm
distributes the small relations more evenly across the nodes
and thus has better performance. However, since the order
in which relations are placed is random, fragments of two
relations with high heat can still be placed on the same node.
Therefore, the heat of the relations is still not spread uni-
formly. On the other hand, the Bubba algorithm places re-
lations in decreasing order of heat and attempts to place
fragments of “high-heat” relations on disjoint nodes. This
technique achieves better load balancing and performs the
best among the three algorithms.

As the number of partially declustered relations is in-
creased in Figure 14, the performance of both the Random
and Round-Robin algorithms improves because the effect of
randomness decreases. With just 25 small relations, the per-
formance of the Round-Robin algorithm is quite similar to
the Bubba algorithm, and the performance of all three algo-
rithms is nearly identical with more than 80 relations. The
experiment therefore shows that Bubba is the best placement
algorithm, but simpler algorithms like Random and Round-
Robin also perform well as the number of small relations
increases.

The previous experiment assumed that all the data was
disk-resident. In practice, data is often kept memory resident
to improve performance (LRU, Gray’s 5 min rule [Gray87],
Bubba memory management [Cope88], Fragment Fencing
[Brow93]). Figure 15 shows the performance of the algo-
rithms as the percentage of partially declustered relations
that are kept in memory is varied. The relations were kept
memory resident by pre-reading and pinning the appropriate
percentage of the data pages of the small relations in mem-
ory at system startup. The number of partially declustered
relations was fixed at 10 since this is the value that showed
the largest difference between the algorithms in the previous
experiment. The first point in all the curves, with residency
equal to 0, is the same as the value shown in the last ex-
periment and shows the maximum difference between the
three algorithms. However, as the residency increases the
performance of the three algorithms becomes very similar.
Beyond 50% residency, the algorithms have almost identical
performance.

These two experiments have examined the performance
of three different placement algorithms for handling relations
that are too small to be fully declustered under the cache-
context-per-disk rule. The results show that the Bubba algo-
rithm has the best performance, followed by Round-Robin
and then Random. However, the detailed workload knowl-
edge required by the Bubba algorithm may not always be
available, and thus the Bubba algorithm cannot be used in all
cases. In such cases, the simplistic Round-Robin algorithm
can be used. Even though the algorithm has no knowledge of
the workload, it was seen to perform quite well. In addition,
the last two experiments showed that if the small relations

0 20 40 60 80 100
Percentage of Relations in Memory

0

1

2

3

4

A
ve

ra
ge

 J
oi

n
R

es
po

ns
e

T
im

e
(s

ec
s)

Random
Round-Robin
Bubba

Fig. 15. Effect of memory residency

are partially memory resident (which will quite often be the
case), or if there are a large number of small relations, the
performance of the Round-Robin algorithm is nearly identi-
cal to the Bubba algorithm.

6.3 Partitioned workloads

All the experiments shown so far have included only non-
partitioned workloads. This section examines partitioned
workloads to evaluate the effect of declustering on work-
load isolation. Initially, a simple two-class workload is stud-
ied to give some insight into the problem. The results are
then used in the following sections to study workloads with
shift changes and a more general three-class workload.

Partitioned workloads consist of disjoint components
which access mutually exclusive sets of relations. Therefore,
the workload can be partitioned by placing the relations on
disjoint sets of nodes. However, determining the size of the
partitions to be created for each workload component is a
difficult problem. The first experiment in this section stud-
ies different partitioning strategies for a two-class workload
and compares their performance to a non-partitioned system
with full declustering. The results are then used to study a
workload with shift changes.

The workload consists of two classes, Transactions and
Queries, which have been described in detail in Sect. 4. All
the experiments are conducted on a 128 node system with
16 MB of memory and 1 disk per node. We study the per-
formance as the number of nodes dedicated to transaction
processing is increased from 16 to 96 nodes. and the num-
ber of nodes dedicated to query processing is decreased from
112 to 32. For each partitioning method, the performance is
compared to a non-partitioned system where both queries
and transactions execute on all the nodes. The experiment
thus explores systems where the percentage of the system
devoted to transactions (queries) varies from 12.5% (87.5%)
to 75% (25%).

Table 5 describes the various parameters for each of the
classes in the workload. The think times of the transaction
terminals are set such that the disk utilization is around 60%.
For example, when the number of nodes executing transac-
tions is 16, the think time is 8.8 s. The think time is reduced
to 0.95 s when 96 nodes are used to execute transactions and

64

Table 5. Partitioned workload

Workload Database
Class Terminals Think time Number of nodes Relations Size
Transaction 1000 0.95–8.8 s 16–96 Transaction 5 000 000 tuples (1 Gb)
Join 1 0 s 112–32 Join 5 000 000 tuples (1 Gb)

0 32 64 96 128
Number of Transaction Nodes in Partitioned System

0.0

0.1

0.2

0.3

0.4

0.5

A
ve

ra
ge

 T
ra

ns
ac

ti
on

 R
es

po
ns

e
T

im
e

(m
se

cs
)

partitioned
non-partitioned

Fig. 16. Transactions

0 32 64 96 128
Number of Transaction Nodes in Partitioned System

0

10

20

30

40

50

A
ve

ra
ge

 J
oi

n
R

es
po

ns
e

T
im

e
(s

ec
s)

partitioned
non-partitioned

Number of Query Nodes in Partitioned System

112 96 80 64 48 32 16 0

Fig. 17. Joins

a higher transaction load is needed to achieve 60% disk uti-
lization. The MPL (Multi-Programming Level) for the query
class has been fixed at 1 with a 0 think time (the effect of
varying query MPL is explored in a later experiment). A
simplified database is used to ease the exposition of the re-
sults; all relations are the same size and contain five million
tuples. Each class accesses a mutually exclusive set of re-
lations and the number of relations in each set is chosen to
occupy about 60% of the disks. The rest of the experiments
in the paper also use this simplified database. The selec-
tivity of the join queries is also reduced to 10% to enable
the inner relations of multiple join queries to fit in memory.
The performance of the two classes for both partitioned and
non-partitioned systems is shown in Figs. 16 and 17.

In the partitioned system, since the transaction load is
configured such that the overall disk utilization is always
around 60%, the response time of the transactions is rel-

atively flat as the number of nodes executing transactions
increases; however, transaction throughput increases signif-
icantly. The performance in the non-partitioned case is dif-
ferent. When the number of nodes processing transactions
is small (e.g. 16), the average transaction response time is
17% lower in the non-partitioned system than in the parti-
tioned system. As the number of transaction nodes increases,
the transaction load also increases and the interference from
the join query causes the average transaction response time
to increase. The average transaction response time of the
non-partitioned system is the same as the partitioned system
when 96 nodes are dedicated to transaction processing in the
partitioned system.

Now consider the performance of the join query (Fig. 17).
The response time of the join increases significantly as
the number of nodes processing transactions increases (and
consequently, the number of nodes processing queries de-
creases). In the non-partitioned system, the join response
time increases as the transaction load increases due to in-
terference from the transactions. However, the increase in
response time is much smaller than in the partitioned sys-
tem since the join always executes on 128 nodes and there
is no reduction in join parallelism. This experiment demon-
strates that executing the workload of a partitioned system
on a non-partitioned system can improve the performance
of both transactions and queries. However, transaction re-
sponse times may degrade in a non-partitioned system due to
interference from concurrently executing queries. The next
experiment explores whether this increase can cause a non-
partitioned system to perform worse than a partitioned sys-
tem. We fixed the number of dedicated transaction nodes at
96 since this configuration had the worst transaction perfor-
mance for the non-partitioned case in the previous experi-
ment. Figures 18 and 19 show the performance of the two
declustering schemes as the number of queries is increased
from 1 to 4.

In the partitioned case, the transactions execute on a sep-
arate set of nodes from the joins and therefore their per-
formance remains unaffected as query MPL increases. The
query response time, however, increases steeply as the MPL
increases. The queries in the non-partitioned system per-
form much better than the partitioned case as a result of in-
creased parallelism. However, interference from the queries
causes the transactions to suffer and the average transaction
response time increases with an increase in query MPL. The
experiment shows that although query interference is not an
issue at a low query MPL, some additional mechanism is
needed to control the interference at higher loads. We evalu-
ated three mechanisms that can be used to limit interference:

1. Disk priority scheduling: This mechanism gives higher
priority to short interactive transactions at the disk while
queries that perform long sequential scans have lower
priority. High-priority requests are serviced first at the
disk and low-priority requests are serviced only in the

65

0 1 2 3 4 5
Join Query MPL

0.0

0.2

0.4

0.6
A

ve
ra

ge
 T

ra
ns

ac
ti

on
 R

es
po

ns
e

T
im

e
(m

se
cs

)

partitioned
non-partitioned

Fig. 18. Transactions

0 1 2 3 4 5
Join Query MPL

0

100

200

300

A
ve

ra
ge

 J
oi

n
R

es
po

ns
e

T
im

e
(s

ec
s)

partitioned
non-partitioned

Fig. 19. Joins

absence of high-priority requests. This significantly re-
duces query interference perceived by transactions at the
disk. This mechanism is used in the Tandem Non-Stop
SQL product [Engl91].

2. Dynamic delay: The second mechanism limits interfer-
ence by dynamically delaying queries before execution.
This reduces the average execution MPL of queries
in the system leaving more disk bandwidth for the
transactions10. In a real system, the delay period would
be dynamically set to match an expected response time
(that could be user-specified or determined automati-
cally by the system, e.g. optimizer estimates). For the
purposes of this experiment, queries are delayed in the
non-partitioned system until the average response time
is equal to the corresponding query response time in the
partitioned system. Therefore, a query is delayed by the
amount of time by which previous query exceeded the
expected average response time. A more detailed dis-
cussion about the use and setting of delay times can be
found in [Brow94].

3. Combined: The last mechanism combines the two previ-
ous schemes. Priority scheduling is used at the disk and
queries are also delayed dynamically to reduce interfer-
ence.

10 Note that the reduction in average execution MPL is not just due to the
use of a closed system. A delay mechanism along with a maximum MPL
limit will result in a reduced execution MPL even in open systems.

0 1 2 3 4 5
Join Query MPL

0.0

0.2

0.4

0.6

A
ve

ra
ge

 T
ra

ns
ac

ti
on

 R
es

po
ns

e
T

im
e

(m
se

cs
)

partitioned
non-partitioned
non-part.priority
non-part.delay
non-part.combined

Fig. 20. Transactions

0 1 2 3 4 5
Join Query MPL

0

50

100

150

200

250

300

A
ve

ra
ge

 J
oi

n
R

es
po

ns
e

T
im

e
(s

ec
s)

partitioned
non-partitioned
non-part.priority
non-part.delay
non-part.combined

Fig. 21. Joins

The performance of these mechanisms is shown in Figs. 20
and 21, which show average transaction and join query re-
sponse times as a function of the query MPL. The perfor-
mance of the partitioned and non-partitioned schemes is also
shown for reference.

The disk priority scheme (dashed line with diamonds)
slows down the queries and reduces query interference at the
disk by giving higher priority to the transactions. However,
the reduction in interference is not enough and the trans-
actions have a higher response time than in the partitioned
system when the query MPL is greater than 1. The delay
scheme (dashed line with triangles) delays the queries such
that their response times are close to the query response time
in the partitioned case. This reduces interference and lowers
the average transaction response time. At low query MPLs
(below 3), this scheme achieves lower transaction response
times than the partitioned case. However, the reduction in
interference is not enough and at higher query MPLs the
transactions still have a higher response time. The combined
scheme (dashed line with crosses), which delays queries and
uses priority disk scheduling, performs the best and is able
to limit interference even for high query MPLs11.

The previous two experiments demonstrated that non-
partitioned placement with full declustering out-performs

11 Although only average response time figures have been reported here,
we also compared the 90th percentile values and the results were similar
qualitatively.

66

Table 6. Partitioned workload with shift changes

Workload Transaction terminals Transaction think time Query terminals Query think time
Shift 1 1000 0.95 s 2 0 s
Shift 2 500 0.95 s 4 0 s

partitioned data placement except under high-load condi-
tions when the transactions perform poorly due to query
interference. In such cases, simple mechanisms like priority
disk scheduling and dynamic delay of queries can be used
to limit interference and outperform partitioned placement.

7 Handling workload shifts

As mentioned in Sect. 3, an important factor in the perfor-
mance of a declustering scheme is its ability to provide good
performance in the presence of workload shifts. The next ex-
periment compares the performance of partitioned and non-
partitioned placement for a two-class workload with shift
changes. As in the previous partitioning experiment, the two
classes in the workload are Transactions and Joins. Table 6
shows the structure of the classes for each workload shift.
The workload models typical shifts in mixed workloads:
higher transaction processing in the first shift and higher
query processing in the second. In the first shift, the trans-
action workload is the same as the one used in the previ-
ous experiment (1000 terminals with 0.95 s think time) and
there are two queries in the system. The transaction work-
load halves in the second shift while the query workload
doubles.

This experiment compares the performance of a parti-
tioning scheme (that allocates 96 nodes for transaction pro-
cessing and 32 nodes for query processing) to two non-
partitioning strategies. The first non-partitioning strategy, la-
beled Non-Partitioned Match, is similar to the method used
in the previous experiment – the combined scheme (disk
priority scheduling and query admission delay) is used to
match query response times of the partitioned scheme. The
second method, called Non-Partitioned Constant Trans, uses
the combined mechanism to maintain the a constant trans-
action response time in both shifts. The performance of all
the schemes is shown in Figs. 22 and 23.

For the partitioned system, transaction response times de-
crease in the second shift as the transaction load decreases
while the query response times increase because the query
workload increases. The partitioned system statically parti-
tions the system between workloads and therefore prevents
the system from adapting to dynamic workload changes. For
example, the decrease in the transaction workload in the
second shift cannot be used to improve the performance of
the query class. On the other hand, the delay mechanism
in the non-partitioned system can be used in multiple ways
to modify the performance of the two classes in each shift.
The Non-Partitioned Join Match scheme achieves query re-
sponse times that are identical to query response times in
the partitioned system and transaction response times that
are better. The Non-Partitioned Constant Trans scheme, on
the other hand, delays the queries such that the same transac-
tion response time is maintained in both shifts. The resulting
reduction in transaction workload in the second shift allows

Declustering Strategy
0.0

0.2

0.4

0.6

A
ve

ra
ge

 T
ra

ns
ac

ti
on

 R
es

po
ns

e
T

im
e

(s
ec

s)

Shift 1
Shift 2

Partitioned Non-Partitioned
Join Match Constant Trans

Fig. 22. Effect of shift changes – transactions

Declustering Strategy
0

100

200

300

400

A
ve

ra
ge

 J
oi

n
R

es
po

ns
e

T
im

e
(s

ec
s)

Shift 1
Shift 2

Partitioned Non-Partitioned
Join Match Constant Trans

Fig. 23. Effect of shift changes – joins

lower join query response times in the second shift (com-
pared to the response times achieved in the second shift by
the Partitioned and Non-Partitioned Join Match schemes).

This experiment has shown that not only can non-
partitioned data placement with full declustering perform
better than a partitioned system for static workloads, it is
also a better strategy for dynamically varying workloads
since schemes like query delaying and priority scheduling
can be used to adapt the performance of the system as the
workload changes. Partitioned placement obtains workload
isolation by placing data on disjoint nodes but this prevents
the use of dynamic mechanisms that can adapt to changes
in the workload.

8 Handling multiple classes

Our final experiment compares the performance of the parti-
tioned and non-partitioned systems for a more general three-
class workload. The database used for this experiment is the
same as that used in the previous experiment – all relations

67

0.0

0.2

0.4

0.6

A
ve

ra
ge

 T
ra

ns
ac

ti
on

 R
es

po
ns

e
T

im
e

(s
ec

s) Partitioned
Non-Partitioned

0

200

400

600

A
ve

ra
ge

 F
as

tJ
oi

n
R

es
po

ns
e

T
im

e
(s

ec
s)

Partitioned
Non-Partitioned

0

200

400

600

A
ve

ra
ge

 S
lo

w
Jo

in
 R

es
po

ns
e

T
im

e
(s

ec
s)

Partitioned
Non-Partitioned

Fig. 24. Multiclass workload

have five million tuples. However, in addition to transac-
tions, the workload has two query classes with very different
query response times and resource requirements. The first
query class, SlowJoins, represents a class with low mem-
ory allocation and high response times. Queries from this
class are allocated only their minimum memory require-
ment [

√
sizeofinner (34 MB)] and need two passes of the

hybrid-hash join algorithm to execute. Queries from the sec-
ond class, FastJoins, have higher memory allocations and
lower response times. FastJoin queries use selection predi-
cates with a selectivity of 25%; i.e. only a quarter of the input
tuples are selected for the join12. Queries from the FastJoin
class are allocated their maximum memory requirement [size
of inner relation (286 MB)] and require only a single pass
of the join algorithm to execute. Similar to the previous
experiment, we compare the performance of a partitioned
system, with 96 nodes dedicated to transaction processing
and 32 nodes dedicated to query processing, with that of
a non-partitioned system. The non-partitioned system uses
the combined delay mechanism to control query interfer-
ence and delays the queries to match the response times of
each query class in the partitioned system. Figure 24 shows
the performance of the two schemes.

As can be seen from the graphs, non-partitioning achieves
the same query response time as the partitioning scheme and
a significantly better transaction response time. The results
also demonstrate the flexibility of the query delay mecha-
nism. In the non-partitioned system, the average execution
time of the joins in the FastJoin class is 60 s while the ex-
ecution time of the joins from the SlowJoin class is 147 s.
In order to match the corresponding response times in the
partitioning system, the delay periods of the two classes are
also changed accordingly: the FastJoin queries are delayed
by 133 seconds while SlowJoin queries are delayed by 345 s.
As a result of slowing down the queries, the transaction re-
sponse times improve significantly (24%) compared to the
partitioned system.

This experiment demonstrates that the delay mechanism
can be used with even greater flexibility in a multi-class
workload; a different delay period can be used to tune the
performance of multiple classes in the workload. Therefore,
for a multi-class workload, a system in which processors

12 Note that, as mentioned in Sect. 4, a 100% selectivity was used for all
other joins in the paper. The 25% selectivity was chosen for joins in the
FastJoins class to ensure that their hash table can fit in memory.

are not partitioned between different workload classes will
perform significantly better than a partitioned system.

9 Related work

There has been a wealth of research in the area of data place-
ment. Several SN database systems (Teradata DBC/1012
[Tera85], Tandem Non-Stop SQL [Tand88] and Gamma
[DeWi90]) use full declustering as their data placement strat-
egy. However, there have been several studies that have ar-
gued for partial declustering in data placement ([Cope88],
[Padm92], [Rahm93a], [Rahm94]). As a result of these stud-
ies, partial declustering has also been considered in several
other performance studies ([Ohmo90], [Ohmo91], [Pena92],
[Baru93], [Frie94]). In this section, we examine each of the
earlier declustering studies and compare their conclusions to
our own. This is followed by a discussion of related work on
data placement in the context of system architectures other
than SN parallel database systems.

9.1 The case for partial declustering

9.1.1 Copeland et al.

Copeland et al. [Cope88] presented the data placement al-
gorithm used in the Bubba parallel database system. In their
scheme, two copies were maintained for each relation in
the database. The base relation is called the direct copy. In
addition, the system also maintained a replica, called the
IF copy, for recovery purposes. Data placement in Bubba
was simplified by choosing the same degree of declustering,
called CDegDecl, for every relation. The CDegDecl nodes
were split between the Direct and IF copy of the relation
using the relative “heat”, or access frequency, of the two
copies. Note that splitting the nodes between the direct and
IF copies implies partial declustering for each relation (since
no relation can be declustered on all the nodes).The actual
placement of relations was performed in two steps. In the
first step, relations with the highest temperatures (heat per
unit size) were cached in memory. In the second step, the re-
maining relations were placed in decreasing order of heat on
the nodes with the least accumulated heat. The performance
of the Bubba declustering algorithm was investigated using
an analytical queueing model. It was shown that increasing
the degree of declustering improves performance and load

68

balancing until the system is CPU-bottlenecked. In that case,
increase in the degree of declustering degrades performance
due to high startup, termination, and communication costs.

The results presented in [Cope88] have long been inter-
preted as showing that partial declustering is the preferred
declustering technique. However, a closer look at the re-
sults can lead to very different conclusions. For instance,
even though the analytical study in [Cope88] used only 5
MIPS processors, the processors become the bottleneck and
performance degrades only when the degree of decluster-
ing is increased beyond 736. With faster processors, the de-
gree of declustering could be increased further before per-
formance degrades. In fact, the authors note in the paper
that “as processor speeds continue to increase with respect
to disk speeds in the coming decade. . . , the overheads asso-
ciated with declustering will diminish.” Since most parallel
database machines are installed with fewer than 736 nodes
and much faster processors, the results presented in [Cope88]
can be interpreted as advocating full declustering for most
database relations.

However, there are several drawbacks in the data place-
ment algorithm presented in [Cope88]. The Bubba algorithm
requires the presence of two copies (Direct and IF) for each
relation. Also, it does not provide a mechanism for selecting
the degree of declustering of relations – the degree of declus-
tering is an input parameter for the placement algorithm.
Moreover, the degree of declustering is identical for each
relation (while the results presented in this paper show that
the optimal degree of declustering varies with relation size).
Also, the performance of the Bubba placement algorithm
depends on the accuracy with which the access frequencies
of relations can be predicted. Since database workloads are
often so complex and dynamic that static workload analysis
is not and the Bubba data placement algorithm cannot be
used for such cases.

9.1.2 Padmanabhan

Padmanabhan [Padm92] studied data placement in a SN
database system. He showed that the optimal degree of
declustering should be different for each relation and that
the degree of declustering and the placement of each rela-
tion should be performed by a single integrated algorithm in
order to obtain the best possible performance. Data place-
ment was shown to be NP complete and randomization tech-
niques were used to develop data placement heuristics. An
analytical model was used to show that partial declustering
is superior to full declustering and that the randomized al-
gorithms perform well for a variety of workloads. However,
the conclusions of this study are based on examining the per-
formance of very small database relations. In order to show
that the results do not hold for larger relation sizes, we du-
plicated some of the results presented in [Padm92] for small
relation sizes and then repeated the experiments with larger
relation sizes.13 Figure 25 shows the response time of an
indexed scan of a 10 million tuple relation with a selectivity
of 0.001% (only 100 tuples are selected).

13 The experimental parameters for this experiment were established in
consultation with the author of [Padm92], Sriram Padmanabhan.

0 100 200 300
Number of Nodes

0

1

2

R
es

po
ns

e
T

im
e

(s
ec

s)

Fig. 25. Index selectivity = 0.001%. Comparison with [Padm92]: clustered
index scan on a 10 million tuple relation

0 100 200 300
Number of Nodes

0

10

20

30

R
es

po
ns

e
T

im
e

(s
ec

s)

Fig. 26. Index Selectivity = 10%. Comparison with [Padm92]: clustered
index scan on a 10 million tuple relation

The results, similar to the results in [Fig. 3.1, Padm92],
show that the response time increases for all degrees of
declustering. Note that these results agree with the results
presented in Sect. 5.5 which show that the optimal degree
of declustering when using a clustered index scan withx%
selectivity is the same as the optimal degree of declustering
for a file scan of a relation with (R ∗ x) tuples. Therefore,
for a clustered index scan of a 10 million tuple relation with
a selectivity of 0.001 %, the optimal degree of declustering
is 1. These results were used in [Padm92] to show that par-
tial declustering is desirable for declustering. However, as
shown in Fig. 26, if the scan selectivity increases to 10%,
full declustering is the best option for all system sizes. These
experiments show that the results of [Padm92] hold only for
very small query sizes and that full declustering is the best
option for most non-trivial relation sizes.

9.1.3 Rahm and Marek

Rahm and Marek studied processor allocation in a SN
database system [Rahm93a, Rahm94]. However, some of
their experiments compared full and partial declustering.
These results showed that partial declustering outperforms
full declustering for both query-only workloads and mixed
workloads containing update transactions and read-only que-

69

Table 7. Simulation parameter

Configuration Database/workload
Parameter Value Parameter Value
Number of PEs 10–80 Relation A size 1M tuples
CPU speed 20 MIPSRelation B size 250 000 tuples
Page size 8 KB Tuple size 200 bytes
Avg. disk access time 15 ms Selectivity 0.25/50%
Send message instructions 5000 Result size 625 tuples
Receive message instructions10 000 Size of result tuples400 bytes
Copy 8 KB message 5000 Access method Clustered

B + tree

0 20 40 60 80
Number of Nodes

0.0

0.2

0.4

0.6

R
es

po
ns

e
T

im
e

(s
ec

s)

Full Declustering
Partial Declustering

Fig. 27. Index selectivity = 0.25%. Comparison with [Rahm93a]

0 20 40 60 80
Number of Nodes

0.0

0.5

1.0

1.5

2.0

R
es

po
ns

e
T

im
e

(s
ec

s)

Full Declustering
Partial Declustering

Fig. 28. Index selectivity = 1%. Comparison with [Rahm93a]

ries. However, these results (like those of [Padm92]) are
based on workloads consisting of very small queries: binary
joins where the input relations had 1 million and 250 000
tuples and the selectivity was only 0.25% – less than 2500
tuples per relation are selected for the join. In order to show
that their results are not valid for larger relation sizes, we
used our simulation environment to first duplicate the re-
sults of [Rahm93a] and then re-ran similar experiments with
larger query sizes. The experimental parameters used for
these experiments are taken from [Rahm93a] and are shown
in Table 7.

The workload consists of multiple binary join queries
which join relations A and B. The performance of full
declustering is compared to a partial declustering strategy
in which the relations are declustered across a disjoint set
of disks in proportion to their size (i.e. A is declustered on
80% of the nodes and B is declustered on the other 20%).

0 20 40 60 80
Number of Nodes

0.0

0.2

0.4

0.6

R
es

po
ns

e
T

im
e

(s
ec

s)

Full Declustering
Partial Declustering

Fig. 29. Index selectivity = 10%. Comparison with [Rahm93a]

0 20 40 60 80
Number of Nodes

0

2

4

6

R
es

po
ns

e
T

im
e

(s
ec

s)

Full Declustering
Partial Declustering

Fig. 30. Index selectivity = 50%. Comparison with [Rahm93a]

We examine a multi-user workload where the selectivity is
varied from 0.025% to 50%. Figures 27–30 show the per-
formance of the average query response time obtained with
the full and partial declustering schemes for the various se-
lectivities as the number of nodes in the system is increased
from 10 to 80. In order to simulate a constant throughput
per system node for a given selectivity (as in [Rahm93a]),
the query arrival rates are adjusted for each system size.
Figure 27 shows that at a selectivity of 0.025% (the corre-
sponding figure in [Rahm93a] is Fig. 7), full declustering
performs much worse than partial and the system saturates
with full declustering once the number of nodes is increased
beyond 20. A similar phenomenon is observed even for a
selectivity of 1% (Fig. 28).

Rahm and Marek [Rahm93a] conclude from results sim-
ilar to the ones shown in Figs. 27 and 28 that partial declus-
tering is better than full declustering. However, the relative
performance of partial and full declustering is very different
if the number of tuples processed by the queries is increased.
Figure 29 compares the performance of the two decluster-
ing schemes when the selectivity has been increased to 10%
(25 000 and 100 000 tuples are selected from relation A and
B, respectively). Now, partial declustering is better than full
declustering only when the degree of declustering increases
to 80, and there is less than 64 KB of data per node. If
the selectivity is increased to 50%, Fig. 30 shows that full
declustering out-performs partial declustering for all config-

70

urations. These experiments have shown that partial declus-
tering is a good option only if the queries are extremely
small (very low selectivities), and that the conclusions of
[Rahm93a, Rahm93b] are not valid for larger-sized queries.

9.2 Other related work

In addition to SN systems, data placement has also been
studied for other computing environments. The performance
of full declustering was compared to a scheme that places
entire relations on a single disk in [Livn87] for a centralized
multi-disk file system. The results showed that full declus-
tering improves performance except under high utilization.
Data placement for file systems has also been studied in
([Wolf89],[Dowd92]). Their results are, however, not appli-
cable for SN parallel database systems as they place whole
copies of the files on single disks and do not use decluster-
ing.

Data placement in disk arrays was studied in [Weik91,
Weik92]. The authors developed analytical formulas to de-
cide the striping unit of files. Although the striping unit of a
file is analogous to the degree of declustering of a relation in
SN systems, the formulas are not directly applicable. While
the degree of declustering in SN systems also determines
the degree of intra-operator parallelism, such a correlation
is absent in disk arrays. Consequently, only the average size
of I/O requests to a file can be used determine the striping
unit [Weik92] and intra-operator parallelism can be ignored.

Data placement in distributed database systems (DDBs)
also deals with issues of partitioning and assignment ([Ceri84],
[Oszu90]). However, due to the high cost of accessing re-
mote data, the main emphasis of placement in DDBs is to
enhance locality and not to increase parallelism. Finally, our
study considered horizontal partitioning of database rela-
tions, which divides the tuples in a relation into disjoint
sets. Several authors have also proposed vertical partition-
ing, which divides the attributes of a relation, for parallel
database systems ([Ceri84],[Cope85],[Nava89]). However,
the performance impact of vertical partitioning has not been
carefully evaluated and no current parallel database system
uses it. Therefore, our study also ignored vertical partition-
ing issues.

10 Conclusions

Data placement is an important issue in achieving high per-
formance with SN parallel database systems. Intelligent data
placement not only enhances performance by exploiting par-
allelism but also serves as a powerful tool for load balancing.
This paper has explored two data placement issues in detail:
determining the degree of declustering and the placement of
declustered data on system nodes. The results demonstrate
that, given the current state and future trends of hardware
technology, the degree of declustering for relations can be
increased without penalizing performance until there is only
one disk cache-context worth of data per disk. This rule im-
plies that except for very small relations, most relations in a
database should be fully declustered. A performance analysis
of three algorithms for placing relations that are too small to

be fully declustered was also presented. A simple, workload-
independent, round-robin algorithm was shown to perform
well under a variety of conditions. These results, albeit sim-
ple, are contrary to the prevailing view of the research com-
munity. Numerous studies have shown that full declustering
leads to reduced performance and this has lead many to be-
lieve that partial declustering is the correct solution. How-
ever, as shown in this study, recent changes in technology
have significantly changed the performance tradeoffs. As a
result, full declustering should now be used as the data place-
ment strategy for parallel SN database systems. In addition
to non-partitioned workloads, we also examined the effect of
data placement schemes on partitioned configurations. The
results indicate that full declustering can be used in con-
junction with a dynamic delay scheme to achieve a variety
of response times for workload classes. Further experiments
showed that using such schemes leads to a very flexible sys-
tem that can adapt successfully to workload changes.

In summary, the results in this paper conclusively demon-
strate that full declustering is a viable strategy for placing
relations in a SN parallel database system. Full decluster-
ing provides high parallelism and efficient load balancing.
Also, mechanisms like query delay can be used in conjunc-
tion with full declustering to adapt the performance of the
system to workload changes instead of resorting to the very
expensive strategy of data reorganization.

The results of this paper have a significant impact on
other query processing issues as well. Since startup, termi-
nation and communication costs are not a dominant factor in
query processing, processor allocation issues can be simpli-
fied with most queries executing on all the nodes in the sys-
tem. Similarly, low processing costs will affect the selection
of the declustering strategy to map tuples to relation parti-
tions. The various declustering strategies differ in the degree
of parallelism used for each database operation. If processing
costs are low, the effect of using different degrees of paral-
lelism will be small. Therefore, the relative performance of
different declustering algorithms may also be very similar.
We also want to explore the effect of data placement on com-
plex query processing. Complex-query scheduling strategies,
like right-deep joins, which read multiple base relations si-
multaneously, may cause too much disk interference with
full declustering. In such cases, left-deep scheduling, which
reads only one relation at a time, will lead to less interfer-
ence and may be a better strategy for scheduling complex
queries. And finally, we want to validate the results of this
simulation study on real parallel database systems.

Acknowledgements.The authors would like to thank Kurt Brown for help-
ful comments on an earlier draft of this paper.

References

[Bitt88] Bitton, D. and Gray, J., “Disk Shadowing”,Proc. VLDB Conf.,
Los Angeles, Calif, 1988.

[Bora90] Boral, H. et al., “Prototyping Bubba, A Highly Parallel Database
System”,IEEE Transactions on Knowledge and Data Engineer-
ing, 2(1), March 1990.

[Brow92] Brown, K., Carey, M., Dewitt, D., Mehta, M. and Naughton,
J., “Resource Allocation and Scheduling for Mixed Database
Workloads,” Computer Sciences Technical Report #1095, De-

71

partment of Computer Sciences, University of Wisconsin, Madi-
son, July 1992.

[Brow93] Brown, K., Carey, M., and Livny, M., “Managing Memory to
Meet Multiclass Workload Response Time Goals”,Proc. VLDB
Conf, Dublin, Ireland, August 1993.

[Brow94] Brown, K., Mehta, M., Carey, M. and Livny, M., “Towards Au-
tomated Performance Tuning for Complex Workloads”,Proc.
VLDB Conf., Santiago, Chile, September 1994.

[Ceri84] Ceri, S. and Pelagatti, G.,Distributed Databases: Principles
and Systems, McGraw-Hill, New York, NY, 1984.

[Chen92a] Chen, Ming-Syan et al., “Using Segmented Right-Deep Trees
for the Execution of Pipelined Hash Joins”,Proc. VLDB Conf.,
Vancouver, Canada, August 1992.

[Chen92b] Chen, Ming-Syan et al., “Scheduling and Processor Allocation
for Parallel Execution of multi-join Queries”,Proc. 8th IEEE
Data Engineering Conf., Phoenix, Ariz, Feb. 1992.

[Cope85] Copeland, G. and Khoshafian, S., “A Decomposition Storage
Model”, Proc. ACM SIGMOD Conf., 1985.

[Cope88] Copeland, G. et al., “Data Placement in Bubba”,Proc. ACM
SIGMOD Conf., Chicago, Ill, June 1988.

[DeWi84] DeWitt, D. et al., “Implementation Techniques for Main Mem-
ory Database Systems”,Proc. ACM SIGMOD Conf., Boston,
Mass, June 1984.

[DeWi90] DeWitt, D. et al., “The Gamma Database Machine Project”,
IEEE Transactions on Knowledge and Data Engineering, 2(1),
March 1990.

[DeWi92a] DeWitt, D. and Gray, J., “Parallel Database Systems: The Fu-
ture of High Performance Database Systems”,CACM, 35(6),
June 1992.

[DeWi92b] DeWitt, D. et al., “Practical Skew Handling in Parallel Joins”,
Proc. PDIS Conf., San Diego, Calif, January 1992.

[Dowd92] Dowdy, L.W. and Foster, D.V., “File Assignment in a Computer
Network”, ACM Computer Surveys, 14(2), 1982.

[Engl91] Englert, S., “Load Balancing Batch and Interactive Queries in a
Highly Parallel Environment”,Proc. IEEE COMPCON Conf.,
San Francisco, Calif, February 1991.

[Falo93] Faloutsos, C. and Bhagwat, P., “Declustering Using Fractals”,
Proc. PDIS Conf., San Diego, Calif, January 1993.

[Gerb85] Gerber, R. and DeWitt, D., “Multiprocessor Hash-Based Join
Algorithms”, Proc. VLDB Conf., Stockholm, Sweden, August
1985.

[Ghan90] Ghandeharizadeh, S., “Physical Database Design in Multi-
processor Systems”,PhD Thesis, University of Wisconsin-
Madison, 1990.

[Ghan92] Ghandeharizadeh, S., DeWitt D. and Qureshi, W., “A Per-
formance Analysis of Alternative Multi-Attribute Declustering
Strategies”,Proc. ACM SIGMOD Conf., San Diego, Calif, June
1992.

[Grae89] Graefe, G., “Volcano: An extensible and parallel dataflow query
processing system.”,Computer Science Technical Report, Ore-
gon Graduate Center, Beaverton, Ore, June 1989.

[Gray87] Gray, J. and Putzolu, F., “The 5 Minute Rule for Trading Mem-
ory for Disk Accesses and 10 Byte Rule for Trading Memory
for CPU Time”, Proc. ACM SIGMOD Conf., San Francisco,
Calif, May 1987.

[Haas90] Haas, L. et al., “Starburst Mid-Flight: As the Dust Clears”,
IEEE Trans. on Knowledge and Data Eng., 2(1), March 1990.

[Hua90] Hua, K. A. and Lee, C., “An Adaptive Data Placement Scheme
for Parallel Database Computer Systems”,Proc. VLDB Conf.,
Brisbane, Australia, 1990.

[Hua91] Hua, K. A. and Lee, C., “Handling Data Skew in Multiproces-
sor Database Computers using Partition Tuning”,Proc. VLDB
Conf., Barcelona, Spain, September 1991.

[IBM93] IBM Corporation, Product Announcement for Disk Drives
DFHS-31080, -32160, -34320, IBM Corporation, November
1993.

[Kits91] Kitsuregawa, M. and Ogawa, , “Bucket Spreading Parallel
Hash: A new, robust, parallel hash-join method for data skew
in the Super Database Computer (SCD)”,Proc. VLDB Conf.,
Brisbane, Australia, August 1991.

[Livn87] Livny, M., Khoshafian, S. and Boral, H., “Multi-Disk Manage-

ment Algorithms”, Proc. ACM SIGMETRICS Conf., Alberta,
Canada, May 1987.

[Meht93] Mehta, M. and DeWitt D., “Dynamic Memory Allocation for
Multiple-Query Workloads”,Proc. VLDB Conf., Dublin, Ire-
land, August 1993.

[Meht94] Mehta, M., “Resource Allocation in Parallel Shared-Nothing
Database Systems”,PhD. Thesis, University of Wisconsin,
1994.

[Nava89] Navathe, S. and Ra, M., “Vertical Partitioning in Database
Design: A Graphical Algorithm”,Proc. ACM SIGMOD Conf.,
Portland, Ore, June 1989.

[Ng91] Ng, R., Faloutsos, C. and Sellis, T., “Flexible Buffer Allocation
based On Marginal Gains”,Proc. ACM SIGMOD Conf., Denver,
Colo, May 1991.

[Omie91] Omiecinski, E., “Performance Analysis of a Load Balancing
Hash-Join Algorithm for a Shared Memory Multiprocessor”
Proc. VLDB Conf., Barcelona, Spain, September 1991.

[Oszu90] Oszu, M. T. and Valduriez, P.,Principles of Distributed
Database Management Systems, Prentice Hall, 1990.

[Padm92] Padmanabhan, S., “Data Placement in Shared-Nothing Parallel
Database Systems”,PhD. Thesis, CSE-TR-135-92, University
of Michigan.

[Para93] Release 1.1 Release Notes for the Paragon XP/S System, Intel
Corporation, Beaverton, Ore, October 1993.

[Rahm93a] Rahm, E. and Marek, R., “Analysis of Dynamic Load Balanc-
ing Strategies for Parallel Shared Nothing Database Systems”,
Proc. VLDB Conf., Dublin, Ireland, August 1993.

[Rahm93b] Rahm, E., “Parallel Query Processing in Shared-Disk Database
Systems”,Proc. 5th International HPTS Workshop, Asilomar,
Calif, September 1993.

[Ries78] Ries, D. and Epstein, R., “Evaluation of Distribution Criteria
for Distributed Database Systems”,UCB/ERL Technical Report
M78/22, UC Berkeley, May 1978.

[Schn90] Schneider, D. and DeWitt, D., “Tradeoffs in Processing Com-
plex Join Queries via Hashing in Multiprocessor Database Ma-
chines”,Proc. VLDB Conf., Melbourne, Australia, August 1990.

[Schw90] Schwetman, H., CSIM Users’ Guide,MCC Technical Report
No. ACT-126-90, Microelectronics and Computer Technology
Corp., Austin, Tex, March 1990.

[Seli93] Selinger, P., “Predictions and Challenges for Database Systems
in the Year 2000”,Proc. VLDB Conf, Dublin, Ireland, August
1993.

[Sell88] Sellis, T., “Multiple Query Optimization”,ACM TODS 13(1),
March 1988.

[Shat93] Shatdal, A. and Naughton, J., “Using Shared Virtual Mem-
ory for Parallel Join Processing,”,Proc. ACM SIGMOD Conf.,
Washington, DC, May 1993.

[Stel93] Stellwagen, R. (NCR Corporation), Personal Communication,
1993.

[Tand88] Tandem Performance Group, “A benchmark of non-stop SQL
on the debit credit transaction”,Proc. ACM SIGMOD Conf.,
Chicago, Ill, June 1988.

[Tera85] Teradata Corp., “DBC/1012 Data Base Computer System Man-
ual”, Teradata Corp. Document No. C10-0001-02, Release 2.0,
November 1985.

[Walt91] Walton, C., et al., “A Taxonomy and Performance Model of
Data Skew in Parallel Joins”,Proc. VLDB Conf., Barcelona,
Spain, September 1991.

[Weik91] Weikum, G., Zabback, P., Scheurmann, P., “Dynamic File Al-
location in disk Arrays”,Proc. ACM SIGMOD Conf., Denver,
CO, May 1991.

[Weik92] Weikum, G. and Zabback,, “Tuning of Striping Units in
Disk-Array-Based File Systems”,Proc. RIDE-TQP Workshop,
Phoenix, Ariz, February 1992.

[Wils92] Wilschut, A., Flokstra, J., Apers, P., “Parallelism in a main-
memory DBMS: The performance of PRISMA/DB”Proc.
VLDB Conf., Vancouver, Canada, August 1992.

[Wolf89] Wolf, J., “The Placement Allocation Program: A Practical So-
lution to the Disk File Assignment Problem”,Proc. ACM SIG-
METRICS Conf., 1989.

[Wolf90] Wolf, J. et al., “An effective algorithm for parallelizing hash

72

joins in the presence of data skew”,Proc. 7th IEEE Data En-
gineering Conf., Kobe, Japan, April 1991.

[Youn92] Young, H. and Swami, A., “A Family of Round-Robin Parti-
tioned Parallel External Sort Algorithms”,Research Report RJ
9104, IBM Research Division, November 1992.

[Yu93] Yu, P. and Cornell., D., “Buffer Management Based on Re-
turn on Consumption in a Multi-Query Environment”,VLDB
Journal, 2(1), January 1993.

[Zipf49] Zipf., G. K., Human Behavior and the Principle of Least Effort,
Addison Wesley, Reading, Mass, 1949.

