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Managing large-scale systems often involves simultaneously solving thousands of unrelated stochastic opti-

mization problems, each with limited data. Intuition suggests one can decouple these unrelated problems

and solve them separately without loss of generality. We propose a novel data-pooling algorithm called

Shrunken-SAA that disproves this intuition. In particular, we prove that combining data across problems

can outperform decoupling, even when there is no a priori structure linking the problems and data are drawn

independently. Our approach does not require strong distributional assumptions and applies to constrained,

possibly non-convex, non-smooth optimization problems such as vehicle-routing, economic lot-sizing or facil-

ity location. We compare and contrast our results to a similar phenomenon in statistics (Stein’s Phenomenon),

highlighting unique features that arise in the optimization setting that are not present in estimation. We

further prove that as the number of problems grows large, Shrunken-SAA learns if pooling can improve

upon decoupling and the optimal amount to pool, even if the average amount of data per problem is fixed

and bounded. Importantly, we highlight a simple intuition based on stability that highlights when and why

data-pooling offers a benefit, elucidating this perhaps surprising phenomenon. This intuition further suggests

that data-pooling offers the most benefits when there are many problems, each of which has a small amount

of relevant data. Finally, we demonstrate the practical benefits of data-pooling using real data from a chain

of retail drug stores in the context of inventory management.

Key words : Data-driven optimization. Small-data, large-scale regime. Shrinkage. James-Stein Estimation.

1. Introduction

The stochastic optimization problem

min
x∈X

EP[c(x,ξ)] (1.1)

is a fundamental model with applications ranging from inventory management to personalized

medicine. In typical data-driven settings, the measure P governing the random variable ξ is

unknown. Instead, we have access to a dataset S = {ξ̂1, . . . , ξ̂N} drawn i.i.d. from P and seek a deci-

sion x∈X depending on these data. This model and its data-driven variant have been extensively

studied in the literature (see Shapiro et al. 2009 for an overview).

Managing real-world, large-scale systems, however, frequently involves solving thousands of

potentially unrelated stochastic optimization problems like Problem (1.1) simultaneously. For
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example, inventory management often requires optimizing stocking levels for many distinct prod-

ucts across categories, not just a single product. Firms typically determine staffing and capacity

for many warehouses and fulfillment centers across the supply-chain, not just at a single location.

Logistics companies often divide large territories into many small regions and solve separate vehicle

routing problems, one for each region, rather than solving a single monolithic problem. In such

applications, a more natural model than Problem (1.1) might be

1

K

K∑
k=1

λk
λavg

min
xk∈Xk

EPk [ck(xk,ξk)], (1.2)

where we solve a separate subproblem of the form (1.1) for each k, e.g., setting a stocking level

for each product. Here, λk > 0 represents the frequency with which the decision-maker incurs costs

from problems of type k, and λavg = 1
K

∑K

k=1 λk. Thus, this formulation captures the fact that our

total costs in such systems are driven by the frequency-weighted average of the costs of many

distinct optimization problems.

Of course, intuition strongly suggests that since there are no coupling constraints across the feasi-

ble regions Xk in Problem (1.2), one can and should decouple the problem intoK unrelated subprob-

lems and solve them separately. Indeed, when the measures Pk are known, this procedure is optimal.

When the Pk are unknown and unrelated, but one has access to a dataset Sk = {ξ̂k,1, . . . , ξ̂k,N̂k}

drawn i.i.d. from Pk independently across k, intuition still suggests decoupling is without loss of

generality and that data-driven procedures can be applied separately by subproblem.

A key message of this paper is that this intuition is false.

In the data-driven setting, when solving many stochastic optimization problems, we show there

exist algorithms which pool data across sub-problems that outperform decoupling even when the

underlying problems are unrelated, and data are independent. This phenomenon holds despite the

fact that the kth dataset Sk tells us nothing about Pl for l 6= k, and there is no a priori relationship

between the Pk. We term this phenomenon the data-pooling phenomenon in stochastic optimization.

Figure 1 illustrates the data-pooling phenomenon with a simulated example for emphasis. Here

K = 10,000, and the kth subproblem is a newsvendor problem with critical quantile 90%, i.e.,

ck(x; ξ) = max{9(ξ−x), (x− ξ)}. The measures Pk are fixed and in each run we simulate N̂k = 20

data points per subproblem. For the decoupled benchmark, we use a standard method, Sample

Average Approximation (SAA; Definition 2.1) which is particularly well-suited to the data-driven

newsvendor problem (Levi et al. 2015). For comparison, we use our novel Shrunken-SAA algorithm

which exploits the data-pooling phenomenon. We motivate and formally define Shrunken-SAA in

Section 3, but, loosely speaking Shrunken-SAA proceeds by replacing the kth dataset Sk with a

“pooled” dataset which is a weighted average of the original kth dataset and all of the remaining l 6=
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Figure 1 The Data-Pooling Phenomenon Con-

sider K = 10,000 data-driven newsvendor

problems each with critical fractile 90% and

20 data points drawn independently across

problems. SAA decouples the problems and

orders the 90th-sample quantile in each.

Shrunken-SAA (cf. Algorithm 1 in Section 3),

leverages data-pooling. Indicated percent-

ages are losses to the full-information opti-

mum. Additional details in Appendix E.1.

k datasets. It then applies SAA to these each of these new pooled datasets. Perhaps surprisingly, by

pooling data across the unrelated subproblems, Shrunken-SAA reduces the loss to full-information

optimum by over 80% compared to SAA in this example.

Our Contributions: We describe and study the data-pooling phenomenon in stochastic opti-

mization in context of Problem (1.2). Our analysis applies to constrained, potentially non-convex,

non-smooth optimization problems under fairly mild assumptions on the data-generating process.

In particular, we assume only that each Pk has finite support (potentially differing across k); in

some cases, we can even relax this assumption. We contrast the data-pooling phenomenon to a

similar phenomenon in statistics (Stein’s phenomenon), highlighting unique features that arise in

the optimization setting (cf. Theorem 2.2 and Example 2.3). In particular, and in contrast to tra-

ditional statistical settings, we show that the potential benefits of data-pooling depend strongly on

the structure of the underlying optimization problems, and, in some cases, data-pooling may offer

no benefit over decoupling.

This observation raises important questions: Given a particular data-driven instance of Prob-

lem (1.2), should we data-pool, and, if so, how? More generally, does data-pooling typically offer a

significant benefit over decoupling, or are instances like Fig. 1 somehow the exception to the rule?

To help resolve these questions, we propose a simple, novel algorithm we call Shrunken Sam-

ple Average Approximation (Shrunken-SAA). Shrunken-SAA generalizes the classical SAA algo-

rithm and, consequently, inherits many of its excellent large-sample asymptotic properties (cf.

Remark 4.1). Moreover, Shrunken-SAA is incredibly versatile and can be tractably applied to a

wide variety of optimization problems with computational requirements similar to traditional SAA

(cf. Remark 3.1). Unlike traditional SAA, however, Shrunken-SAA exploits the data-pooling phe-

nomenon to improve performance over SAA, as seen in Fig. 1. Moreover, Shrunken-SAA exploits

the structure of the optimization problems and strictly improves upon an estimate-then-optimize

approach using traditional statistical shrinkage estimators (cf. Example 2.3 and Section 6).
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Shrunken-SAA data-pools by combining data across subproblems in a particular fashion moti-

vated by an empirical Bayesian argument. We prove that (under frequentist assumptions) for many

classes of optimization problems, as the number of subproblems K grows large, Shrunken-SAA

determines if pooling in this way can improve upon decoupling and, if so, also determines the

optimal amount to pool (cf. Theorems 4.2, 4.3, 4.5 and 4.6). These theoretical results study Prob-

lem Eq. (1.2) when the random variables ξk have finite, discrete support and the amount of data

available for the kth subproblem is, itself, random (see Assumption 3.1). Some of our results do

extend to the case of continuous ξk (cf. Section 4.6 and Theorems F.1 to F.3 in Appendix F),

and numerical experiments suggest our results are generally robust to the assumption of a random

amount of data.

More interestingly, our theoretical performance guarantees for Shrunken-SAA hold even when

the expected amount of data per subproblem is small and fixed, and the number of problems K

is large, as in Fig. 1, i.e., they hold in the so-called small-data, large-scale regime (Gupta and

Rusmevichientong 2017). Indeed, since many traditional data-driven methods (including SAA)

converge to the full-information optimum in the large-sample regime, the small-data, large-scale

regime is arguably the more interesting regime in which to study the benefits of data-pooling.

In light of the above results, Shrunken-SAA provides an algorithmic approach to deciding if, and,

by how much to pool. To develop an intuitive understanding of when and why data-pooling might

improve upon decoupling, we also introduce the Sub-Optimality-Instability Tradeoff, a decompo-

sition of the benefits of data-pooling. We show that the performance of a data-driven solution to

Problem (1.2) (usually called its out-of-sample performance in machine learning settings) can be

decomposed into a sum of two terms: a term that roughly depends on its in-sample sub-optimality,

and a term that depends on its instability, i.e., how much does in-sample performance change when

training with one fewer data points? As we increase the amount of data-pooling, we increase the

in-sample sub-optimality because we “pollute” the kth subproblem with data from other, unrelated

subproblems. At the same time, however, we decrease the instability of the kth subproblem, because

the solution no longer relies on its own data so strongly. Shrunken-SAA works by navigating this

tradeoff, seeking a “sweet spot” to improve performance. (See Section 5 for discussion.)

In many ways, the Sub-Optimality-Instability Tradeoff resembles the classical bias-variance

tradeoff from statistics. However, they differ in that the Sub-Optimality-Instability tradeoff applies

to general optimization problems, while the bias-variance tradeoff applies specifically to the case of

mean-squared error. Moreover, even in the special case when Problem (1.2) models mean-squared

error, we prove that these two tradeoffs are distinct (cf. Appendix D). In this sense, the Sub-

Optimality-Instability Tradeoff may be of independent interest outside data-pooling.
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Stepping back, this simple intuition suggests that Shrunken-SAA, and data-pooling more gener-

ally, offer significant benefits whenever the decoupled solutions to the subproblems are sufficiently

unstable, which typically happens when there is only a small amount of relevant data per sub-

problem. It is in this sense that the behavior in Fig. 1 is typical and not pathological. Moreover,

this intuition also naturally extends beyond Shrunken-SAA, paving the way to developing and

analyzing new algorithms which also exploit the, hitherto underutilized, data-pooling phenomenon.

Finally, we present numerical evidence in an inventory management context using real-data from

a chain of European Drug Stores showing that Shrunken-SAA can offer significant benefits over

decoupling when the amount of data per subproblem is small to moderate. These experiments also

suggest that Shrunken-SAA’s ability to identify an optimal amount of pooling and improve upon

decoupling are relatively robust to violations of our assumptions on the data-generating process.

Connections to Prior Work: As shown in Section 3, our proposed algorithm Shrunken-SAA

generalizes SAA. In many ways, SAA is the most fundamental approach to solving Problem (1.1)

in a data-driven setting. SAA proxies P in (1.1) by the empirical distribution P̂ on the data and

optimizes against P̂. It enjoys strong theoretical and practical performance in the large-sample

limit, i.e., when N is large (Kleywegt et al. 2002, Shapiro et al. 2009). For data-driven newsvendor

problems, specifically – an example we use throughout our work – SAA is the maximum likelihood

estimate of the optimal solution and also is the distributionally robust optimal solution when

using a Wasserstein ambiguity set (Esfahani and Kuhn 2018, pg. 151). SAA is incredibly versatile

and applicable to a wide-variety of classes of optimization problems. This combination of strong

performance and versatility has fueled SAA’s use in practice.

When applied to Problem (1.2), SAA by construction decouples the problem into its K sub-

problems. Because of this strong theoretical and practical performance, we use SAA throughout

as the natural, “apples-to-apples” decoupled benchmark to which we compare our data-pooling

procedure Shrunken-SAA.

More generally, the data-pooling phenomenon for stochastic optimization is closely related to

Stein’s phenomenon in statistics (Stein 1956; see also Efron and Hastie 2016 for a modern overview).

Stein (1956) considered estimating the mean of K normal distributions, each with known variance

σ2, from K datasets. The kth dataset is drawn i.i.d. from the kth normal distribution and draws

are independent across k. The natural decoupled solution to the problem (and the maximum like-

lihood estimate) is to use the kth sample mean as an estimate for the kth distribution. Surprisingly,

while this estimate is optimal for each problem separately in a very strong sense (uniformly min-

imum variance unbiased and admissible), Stein (1956) describes a pooled procedure that always

outperforms this decoupled procedure with respect to total mean-squared error whenever K ≥ 3.
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The proof of Stein’s landmark result is remarkably short, but arguably opaque. Indeed, many

textbooks refer to it as “Stein’s Paradox,” perhaps because it is not immediately clear what drives

the result. Why does it always improve upon decoupling, and what is special about K = 3? Is this a

feature of normal distributions? The known variance assumption? The structure of mean-squared

error loss? All of the above?

Many authors have tried to develop simple intuition for Stein’s result (e.g., Efron and Morris

1977, Stigler 1990, Brown et al. 2012, Brown 1971, Beran 1996) with mixed success. As a conse-

quence, although Stein’s phenomenon has had tremendous impact in statistics, it has, in our humble

opinion, had fairly limited impact on data-driven optimization. It is simply not clear how to gener-

alize Stein’s original algorithm to optimization problems different from minimizing mean-squared

error. Indeed, the few data-driven optimization methods that attempt to leverage shrinkage apply

either to quadratic optimization (e.g., Davarnia and Cornuéjols 2017, Jorion 1986, DeMiguel et al.

2013) or else under Gaussian or near-Gaussian assumptions (Gupta and Rusmevichientong 2017,

Mukherjee et al. 2015), both of which are very close to Stein’s original setting.

By contrast, our analysis of the data-pooling phenomenon requires very mild distributional

assumptions and applies to constrained, potentially non-convex, non-smooth optimization prob-

lems. Numerical experiments in Section 6 further suggest that even our few assumptions are not

crucial to the data-pooling phenomenon. Moreover, our proposed algorithm, Shrunken-SAA, is

extremely versatile, and can be applied in any setting in which SAA can be applied.

Finally, we note that (in)stability has been well-studied in the machine-learning community (see,

e.g., Bousquet and Elisseeff 2002, Shalev-Shwartz et al. 2010, Yu 2013 and references therein).

Shalev-Shwartz et al. (2010), in particular, argues that stability is the fundamental feature of

data-driven algorithms that enables learning. Our Sub-Optimality-Instability Tradeoff connects

the data-pooling phenomenon in stochastic optimization to this larger statistical concept. To the

best of our knowledge, however, existing theoretical analyses of stability focus on the large-sample

regime. Ours is the first work to leverage stability concepts in the small-data, large-scale regime.

From a technical perspective, this analysis requires somewhat different tools.

Notation: Throughout the document, we use boldfaced letters (p,m, . . .) to denote vectors and

matrices, and ordinary type to denote scalars. We use “hat” notation (p̂,m̂, . . .) to denote observed

data, i.e., an observed realization of a random variable. We reserve the index k to denote parameters

for the kth subproblem. For any random variable X and p≥ 1, let ‖X‖p ≡ p
√

E[|X|p] denote the pth

norm of X. Finally, ei refers to the ith unit vector and →p denotes convergence in probability.
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2. Model Setup and the Data-Pooling Phenomenon

As discussed in the introduction, we assume throughout that Pk has finite, discrete support, i.e.,

ξk ∈ {ak1, . . . ,akd} with d ≥ 2. Notice that while the support may in general be distinct across

subproblems, without loss of generality d is common.1 To streamline the notation, we write

pki ≡ Pk(ξk = aki) and cki(x)≡ ck(x,aki), i= 1 . . . , d.

For each k, we let Sk = {ξ̂kj : j = 1, . . . , N̂k} be the kth dataset with ξ̂kj ∼ Pk drawn i.i.d. Since Pk is

discrete, we can equivalently represent the kth dataset Sk via counts, m̂k = (m̂k1, . . . , m̂kd), where

m̂ki denotes the number of times that aki occurs in Sk, and e>m̂k = N̂k. In what follows, we will

use m̂k and Sk interchangeably to refer to the kth dataset.

Note that because ξ̂kj are i.i.d.,

m̂k | N̂k ∼Multinomial(N̂k,pk), k= 1, . . .K. (2.1)

Let S = (S1, . . . ,SK), or equivalently, m̂ = (m̂1, . . . ,m̂K), denote all the data across all K sub-

problems, and let N̂ = (N̂1, . . . , N̂K) denote the total observation counts. For convenience, we let

N̂max = maxk N̂k and N̂avg ≡ 1
K

∑K

k=1 N̂k. Finally, let p̂k ≡ m̂k/N̂k denote the empirical distribution

for the kth subproblem.

Notice we have used ·̂ notation when denoting N̂k and conditioned on its value in specifying the

distribution of m̂k. This is because in our subsequent analysis, we will sometimes view the amount

of data available for each problem as random (see Sec. 3.2 below). When the amount of data is

fixed and non-random, we condition on N̂k explicitly to emphasize this fact.

With this notation, we can rewrite our target optimization problem:

Z∗ ≡ min
x1∈X1, ...,xK∈XK

1

K

K∑
k=1

λk
λavg

pk
>ck(xk) (2.2)

Our goal is to identify a data-driven policy, i.e., a function x(m̂) = (x1(m̂), . . . ,xK(m̂)) mapping

m̂ to X1× · · ·×XK for which 1
K

∑K

k=1
λk
λavg

pk
>ck(xk(m̂)) is small. We stress that the performance

of a data-driven policy is random because it depends on the data.

As mentioned with full information of pk, Problem (2.2) decouples across k, and, after decoupling,

no longer depends on the frequency weights λk
Kλavg

. Our proposed algorithms will also not require

knowledge of the weights λk. For convenience we let λmin = mink λk, and λmax = maxk λk.

A canonical policy to which we will compare is the Sample Average Approximation (SAA) policy

which proxies the solution of these de-coupled problems by replacing pk with p̂k:

1 Section 4.6 below discusses relaxing this discrete support assumption.
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Definition 2.1 (Sample Average Approximation). Let xSAA
k (m̂k) ∈ arg minxk∈Xk p̂

>
k ck(xk)

denote the SAA policy for the kth problem and let xSAA(m̂) = (xSAA
1 (m̂1), . . . ,xSAA

K (m̂K)).

As we will see, SAA is closely related to our proposed algorithm Shrunken-SAA, and hence provides

a natural (decoupled) benchmark when assessing the value of data-pooling.

Finally, we use the newsvendor problem as a running example in what follows. We say

the kth subproblem is a newsvendor problem with critical fractile 0 < s < 1 if ck(x; ξ) =

max
{

s
1−s(ξ−x), (x− ξ)

}
. Its full-information solution is the sth quantile of the kth distribution.

2.1. A Bayesian Perspective of Data-Pooling

To motivate data-pooling, we first consider a Bayesian approximation to our problem. Specifically,

suppose that each pk were independently drawn from a common Dirichlet prior, i.e.,

pk ∼Dir(p0, α0), k= 1, . . . ,K,

with α0 > 0 and p0 ∈∆d, the d-dimensional simplex. The Bayes-optimal decision minimizes the pos-

terior risk, which is E
[

1
K

∑K

k=1
λk
λavg

pk
>ck(xk) | m̂

]
= 1

K

∑K

k=1
λk
λavg

E [pk | m̂]
>
ck(xk), by linearity.

Furthermore, by independence and conjugacy, respectively,

E [pk | m̂] = E [pk | m̂k] =
α0

N̂k +α0

p0 +
N̂k

N̂k +α0

p̂k.

Hence, a Bayes-optimal solution is x(α0,p0,m̂k) = (x1(α0,p0,m̂1), . . . ,xK(α0,p0,m̂K)), where

p̂k(α) =

(
α

N̂k +α
p0 +

N̂k

N̂k +α
p̂k

)
, k= 1, . . . ,K (2.3)

xk(α,p0,m̂k)∈ arg min
xk∈Xk

p̂k(α)>ck(xk), k= 1, . . . ,K. (2.4)

For any fixed (non-data-driven) α and p0, xk(α,p0,m̂k) only depends on the data through m̂k,

but not on m̂l for l 6= k.

This policy has an appealing, intuitive structure. Notice p̂k(α) overloads notation slightly and

is a convex combination between p̂k= p̂k(0), a data-based estimated of pk, and p0, an a priori

estimate of pk. In traditional statistical parlance, we say p̂k(α) shrinks the empirical distribution

p̂k toward the anchor p0. The Bayes-optimal solution is the plug-in solution when using this

shrunken empirical measure, i.e., it optimizes xk as though that were the known true measure.

Note in particular, this differs from the SAA solution, which is the plug-in solution when using the

“unshrunken” p̂k.

The parameter α controls the degree of shrinkage. As α→ 0, xk(α,p0,m̂) converges to an SAA

solution, and as α→∞, xk(α,p0,m̂) converges to the (non-random) solution to the fully-shrunken
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kth subproblem. In this sense the Bayes-optimal solution “interpolates” between the SAA solution

and the fully-shrunken solution. The amount of data N̂k attenuates the amount of shrinkage, i.e.,

subproblems with more data are shrunk less aggressively for the same α.

Alternatively, we can give a data-pooling interpretation of xk(α,p0,m̂k) via the Bayesian notion

of pseudocounts. Observe xk(α,p0,m̂k)∈ arg minxk∈Xk

(
αp0+m̂k

N̂k+α

)>
ck(xk) and that αp0+m̂k

N̂k+α
is a dis-

tribution on {ak1, . . . ,akd}. In other words, we can interpret xk(α,p0,m̂k) as the solution obtained

when we augment each of our original K datasets with α additional “synthetic” data points with

counts αp0. As we increase α, we add more synthetic data.

For α> 0, xk(α,p0,0) is the solution to the fully shrunken kth subproblem. For emphasis, let

xk(∞,p0)∈ arg minxk∈Xk
∑d

i=1 p0icki(xk),

so that xk(α,p0,0) = xk(∞,p0) for all α > 0. For completeness, we also define xk(0,p0,0) =

xk(∞,p0), so that xk(α,p0, ·) is continuous in α.

In summary, xk(α,p0,m̂k) has an intuitive structure that is well-defined regardless of the precise

structure of the cost functions ck(·) or feasible region X . Importantly, this analysis shows that when

the pk follow a Dirichlet prior, data-pooling by α is never worse than decoupling, and will be strictly

better whenever xSAA
k (m̂k) is not an optimal solution to the problem defining xk(α,p0,m̂k).

2.2. Data-Pooling in a Frequentist Setting

It is perhaps not surprising that data-pooling (or shrinkage) improves upon the decoupled SAA

solution in the Bayesian setting because problems l 6= k contain information about α and p0 which

in turn contain information about pk. What may be surprising is that even in frequentist settings,

i.e., when the pk are fixed constants that may have no relationship to one another and there is no

“ground-truth” values for α or p0, policies like x(α,p0,m̂) can still improve upon the decoupled

SAA solution through a careful choice of α and p0 that depend on all the data. Indeed, this is the

heart of Stein’s result for Gaussian random variables and mean-squared error.

To build intuition, we first study the specific case of minimizing mean-squared error and show

that data-pooling can improve upon the decoupled SAA solution in the frequentist framework

of Eq. (2.1). This result is thus reminiscent of Stein’s classical result, but does not require the

Gaussian assumptions. Consider the following example:

Example 2.1 (A Priori-Pooling for Mean-Squared Error). Consider a special case of

Problem (2.2) such that for all k that λk = λavg, N̂k = N̂ ≥ 2, pk is supported on {ak1, . . . , akd} ⊆R,

Xk = R and cki(x) = (x− aki)2. In words, the kth subproblem estimates the unknown mean µk =

p>k ak by minimizing the mean-squared error. Let σ2
k = p>k (ak−µke)2.
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Fix any p0 ∈∆d and α≥ 0 (not depending on the data). A direct computation shows that

xk(α,p0,m̂k) ≡ µ̂k(α) ≡ N̂

N̂+α
µ̂k + α

N̂+α
µk0,

where µ̂k = 1

N̂

∑N̂

i=1 ξ̂ki is the usual sample mean, and µk0 = p>0 ak. Notice in particular that the

decoupled SAA solution is xSAA = (µ̂1, . . . , µ̂K), corresponding to α= 0.

For any p0 and α, the objective value of x(α,p0,m̂) is

1

K

K∑
k=1

p>k ck(xk(α,p0,m̂k)) =
1

K

K∑
k=1

E
[
(µ̂k(α)− ξk)2 | m̂

]
=

1

K

K∑
k=1

(
σ2
k + (µk− µ̂k(α))2

)
,

by the usual bias-variance decomposition of mean-squared error (MSE). This objective is the aver-

age of K independent random variables. Hence, we might intuit that under appropriate regularity

conditions (see Theorem 2.1 below) that, conditional on N̂ , as K→∞,

1
K

∑K

k=1 (σ2
k + (µk− µ̂k(α))2)− 1

K

(∑K

k=1 σ
2
k +E

[
(µk− µ̂k(α))2 | N̂

])
→p 0. (2.5)

Moreover, 1
K

(∑K

k=1 σ
2
k +E

[
(µk− µ̂k(α))2 | N̂

])
= 1

K

∑K

k=1

(
σ2
k +
(

α

N̂+α

)2

(µk−µk0)2 +
(

N̂

N̂+α

)2
σ2k
N̂

)
,

again using the bias-variance decomposition of MSE. We can minimize the righthand side over α

explicitly, yielding the value

αAP
p0

=

∑K

k=1 σ
2
k∑K

k=1(µk−µk0)2
> 0,

where AP stands for a priori, meaning αAP
p0

is the on-average-best a priori choice of shrinkage before

observing any data. In particular, substituting α= 0 and α= αAP
p0

into the second term of Eq. (2.5)

shows that, up to a term that is vanishing as K→∞, shrinking by αAP
p0

decreases the MSE by(
1

K

K∑
k=1

σ2
k

N̂

)
αAP
p0

N̂ +αAP
p0

=

(
1

KN̂

∑K

k=1 σ
2
k

)2

1

KN̂

∑K

k=1 σ
2
k + 1

K

∑K

k=1(µk−µk0)2
> 0. (2.6)

This benefit is strictly positive for any values of pk and p0, and increasing in αAP
p0

.

Unfortunately, we cannot implement x(αAP
p0
,p0,m̂) in practice because αAP

p0
is not computable

from the data; it depends on the unknown µk and σ2
k. The next theorem shows that we can,

however, estimate αAP
p0

from the data in a way that achieves the same benefit as K→∞, even if N̂

is fixed and small. See Appendix A for proof.

Theorem 2.1 (Data-Pooling for MSE). Consider a sequence of subproblems, indexed by k =

1,2, . . . . Suppose for each k, the kth subproblem minimizes mean-squared error, i.e., pk is supported

on {ak1, . . . , akd} ⊆R, Xk =R and cki(x) = (x−aki)2. Suppose further that there exists λavg, N̂ ≥ 2

and amax <∞ such that λk = λavg, N̂k = N̂ , and ‖ak‖∞ ≤ amax for all k. Fix any p0 ∈∆d, and let

αJS
p0

=

1
K

∑K

k=1
1

N̂−1

∑N̂

i=1(ξ̂ki− µ̂k)2

1
K

∑K

k=1(µk0− µ̂k)2− 1

KN̂

∑K

k=1
1

N̂−1

∑N̂

i=1(ξ̂ki− µ̂k)2
.
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Then, conditional on N̂ , as K→∞,

1

K

K∑
k=1

p>k ck(x
SAA
k )− 1

K

K∑
k=1

p>k ck(xk(α
JS
p0
,p0,m̂k))︸ ︷︷ ︸

Benefit over decoupling of α= αJS
p0

−

(
1
K

∑K

k=1 σ
2
k/N̂

)2

1
K

∑K

k=1 σ
2
k/N̂ + 1

K

∑K

k=1(µk−µk0)2︸ ︷︷ ︸
Expected benefit over decoupling of α= αAP

p0

→p 0.

Note that xk(α
JS
p0
,p0,m̂) = (1− θ)µ̂k + θµ̂k0 where θ = 1

N̂

1
K

∑K
k=1

1
N̂−1

∑N̂
i=1(ξ̂ki−µ̂k)2

1
K

∑K
k=1(µk0−µ̂k)2

. In this form,

we can see that the resulting estimator with pooling αJS
p0

strongly resembles the classical James-

Stein mean estimator (cf. Efron and Hastie 2016, Eq. (7.51)), with the exception that we have

replaced the variance σ2
k, which is assumed to be 1 in Stein’s setting, with the usual, unbiased

estimator of that variance. This resemblance motivates our “JS” notation. Theorem 2.1 is neither

stronger nor weaker than the James-Stein theorem. Our result applies to non-Gaussian random

variables and holds in probability, but is asymptotic; the James-Stein theorem requires Gaussian

distributions and holds in expectation, but applies to any fixed K ≥ 3.

Theorem 2.1 shows that data-pooling for mean-squared error always offers a benefit over decou-

pling for sufficiently large K, no matter what the pk may be. Data-pooling for general optimization

problems, however, exhibits more subtle behavior. In particular, as shown in the following exam-

ple and theorem, there exist instances where data-pooling offers no benefit over decoupling, and

instances where data-pooling may be worse than decoupling.

Example 2.2 (Data-Pooling for Simple Newsvendor). Consider a special case of Prob-

lem (2.2) such that for all k, λk = λavg, ξk is supported on {1,0}, Xk = [0,1] and ck(x, ξk) = |x− ξk| so
that p>k ck(x) = pk1 +x(1−2pk1). In words, the kth subproblem estimates the median of a Bernoulli

random variable by minimizing mean absolute deviation, or, equivalently, is a newsvendor problem

with critical fractile 0.5 for Bernoulli demand. We order the support so that pk1 = P(ξk = 1), as is

typical for a Bernoulli random variable. Suppose further for each k, pk1 >
1
2
, and fix any p01 <

1
2
.

Note xk(α,p0,m̂k) = I
[
p̂k1 ≥ 1

2
+ α

N̂k
( 1

2
− p01)

]
.2 Further, for any α (possibly depending on m̂),

p>k (ck(xk(α,p0,m̂k))− ck(xk(0,p0,m̂k))) = (2pk1− 1)

(
I [p̂k1 ≥ 1/2]− I

[
p̂k1 ≥

1

2
+

α

N̂k

(
1

2
− p01

)])
= (2pk1− 1)I

[
1/2 ≤ p̂k1 <

1

2
+

α

N̂k

(
1

2
− p01

)]
,

where the last equality follows since p̂k1 < 1/2 =⇒ p̂k1 <
1
2

+ α
2
( 1

2
−p01). Notice pk1 >

1
2

=⇒ (2pk1−
1)> 0, so this last expression is nonnegative. It follows that path by path, shrinkage by any α> 0

cannot improve upon the decoupled solution (α = 0). Moreover, if xk(α,p0,m̂k) 6= xk(0,p0,m̂k),

the performance is strictly worse.

One can check directly that if we had instead chosen p01 ≥ 1
2

and pk1 <
1
2
, a similar result holds.

2 This solution is non-unique, and the solution I
[
p̂k1 >

1
2

+ α

N̂k
( 1
2
− p01)

]
is also valid. We adopt the former solution

in what follows, but our comments apply to either solution.
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We summarize this example in the following theorem:

Theorem 2.2 (Data-Pooling Does Not Always Offer Benefit). Given any p0, there exist

instances of Problem (2.2) such that shrinkage does not outperform the (decoupled) SAA solution.

Moreover, if x(α,p0,m̂) performs the same as SAA, then x(α,p0,m̂) is, itself, an SAA solution.

On the other hand, there exist examples where the James-Stein estimator and traditional statis-

tical reasoning might suggest the benefits of pooling are marginal, but, by data-pooling in way that

exploits the optimization structure, we can achieve significant benefits. Specifically, our Bayesian

motivation in Section 2.1 suggests pooling offers little benefit when the pk are very dispersed,

i.e., the Dirichlet prior has high variance and α0 is small. Similarly, Theorem 2.1 and Efron and

Morris (1977) both suggest that the benefits of pooling over decoupling for MSE are marginal if

the subproblem means are quite dispersed (cf. Eq. (2.6)). Nonetheless, for general optimization

problems, we observe pooling might still offer substantive benefits in these situations:

Example 2.3 (Pooling Can Offer Benefit Even When pk are Dispersed). Let d > 3

and fix some 0 < s < 1. Suppose the kth subproblem is a newsvendor problem with critical frac-

tile fk > s and demand distribution supported on the integers 1, . . . , d. For each k, let pk1 = 0 ,

pkd = 1− s, and pkjk = s for some 1< jk < d. Consider the fixed anchor p01 = s, p0d = 1− s, and

p0j = 0 for 1< j < d. Notice typical pk’s are very far from p0 since ‖pk − p0‖2 =
√

2s. For s suffi-

ciently close to 1, this value is close to
√

2, which is the maximal distance between two points on

the simplex. In other words, the pk are not very similar. Moreover, the means are also dispersed

for s close to 1 since 1
K

∑K

k=1(µk−µ0)2 = s2 1
K

∑K

k=1(jk−1)2 ≈ s2d/2 if the jk are chosen uniformly.

Consequently, the James-Stein estimator does not shrink very much in this example. A straight-

forward computation shows that for K sufficiently large, αJS
p0
≤ (1−s)d2

s
with high probability, which

is close to 0 for s close to 1. However, the full-information solution for the kth problem is x∗k = d,

which also equals the fully-pooled (α=∞) solution, xk(∞,p0). Hence, pooling in an optimization-

aware way can achieve full-information performance, while both decoupling and an “estimate-then-

optimize” approach using James-Stein shrinkage necessarily perform worse. In other words, pooling

offers significant benefits despite the pk being as dispersed as possible, because of the optimization

structure, and leveraging this structure is necessary to obtain the best shrinkage. �

Theorems 2.1 and 2.2 and Examples 2.2 and 2.3 highlight the fact that data-pooling for general

optimization is more complex than Stein’s phenomenon. In particular, in Stein’s classical result for

mean-squared error and Gaussian data, data-pooling always offers a benefit for K ≥ 3. For other

optimization problems and data distributions, data-pooling may not offer a benefit, or may offer a

benefit but requires a new way of choosing the pooling amount. An interplay between p0, pk and

ck determines if data-pooling can improve upon decoupling and how much pooling is best.
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Algorithm 1 The Shrunken-SAA Algorithm.

Input: Data Sk = {ξ̂k1, . . . , ξ̂kN̂k
}, k= 1, . . . ,K, and an anchor distribution h(S)

Fix a finite grid A⊆ [0,∞)

for α∈A, k= 1, . . . ,K, j = 1, . . . , N̂k define:

xk,−j(α,h(S)) ← arg minxk∈Xk

∑
` 6=j ck(xk, ξ̂k`) +αEξk∼h(S) [ck(xk,ξk)] // Compute LOO solutions

end for

αS-SAA
h ← arg minα∈A

∑K

k=1

∑N̂k

j=1 ck(xk,−j(α,h(S)), ξ̂kj) // Modified LOO-Cross-Validation

for all k= 1, . . . ,K do

xS-SAA
k ← arg minxk∈Xk

∑N̂k

j=1 ck(xk, ξ̂kj) +αS-SAA
h Eξk∼h(S) [ck(xk,ξk)] // Compute Pooled solution

end for

return
(
xS-SAA

1 , . . . ,xS-SAA
K

)
This raises two important questions: First, how do we identify if an instance of Problem (2.2)

would benefit from data-pooling? Second, if it does, how do we compute the “optimal” amount of

pooling? In the next sections, we show how our Shrunken-SAA algorithm can be used to address

both questions in the relevant regime, where K is large but the average amount of data per sub-

problem remains small. Indeed, we show that Shrunken-SAA achieves the best-possible shrinkage

in an optimization-aware fashion for many types of problems and choices of anchor.

3. The Shrunken SAA Algorithm

Algorithm 1 formally defines Shrunken-SAA. The crucial step is the “Modified LOO-Cross-

Validation,” which we discuss in detail in Sections 3.2 and 3.3 below. To highlight similarities

to SAA, we have stated the algorithm in terms of the datasets Sk and S = (S1, . . . ,SK). Here

h(S) represents an arbitrary, possibly data-driven anchor distribution (see below for examples).

Recall that we can equivalently express Sk in terms of the counts m̂k. In that notation, we rec-

ognize that if the jth data point of Sk is aki, then xk,−j(α,h(m̂)) = xk(α,h(m̂),m̂k − ei) and

xS-SAA
k =xk(α

S-SAA, h(m̂),m̂k). In other words, Shrunken-SAA retains the particular pooling struc-

ture of Eq. (2.4) suggested by our Bayesian argument, but allows for a data-dependent anchor

h(S) (equiv. h(m̂)) and chooses the amount of pooling via a particular cross-validation scheme.

We present Algorithm 1 using a finite grid of α∈A, but our theory below will study the algorithm

with A= [0,∞).

Remark 3.1 (Computational Complexity). Computationally, Algorithm 1 does not depend

on d, the size of the support of ξk. Its bottleneck is computing xk,−j which is similar to solving

the kth subproblem by SAA with an augmented data set described by h(S). More specifically,

Algorithm 1 depends on the data only through h(S) and averages of functions over subsets of

S, neither of which explicitly depend upon d. Consequently, although our setup and analysis
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assumes ξk has finite discrete support, from an implementation perspective, we can apply Shrunken-

SAA when ξk has continuous support without discretization so long as we can efficiently solve

these augmented SAA problems (cf. our empirical study in Appendix E.7). From a theoretical

perspective, some of our analysis extends to this continuous setting (see Section 4.6 below). In the

remainder, we follow Section 2 and treat the data as discrete, referring to the data by m̂k and m̂.

We consider Shrunken-SAA to be roughly as tractable as SAA. We say “roughly” because, in the

worst-case, one must solve at most |A|
∑K

k=1 min(d, N̂k) problems in the LOO-cross-validation step,

which, if we sample from h(m̂), have a similar structure to SAA. Fortunately, we can parallelize

these problems in distributed computing environments and use previous iterations to “warm-start”

solvers. Moreover, in Appendix E.9 we observe empirically that less computationally expensive

κ-fold cross-validation procedures can be used in place of LOO with similar performance. �

For clarity, the αS-SAA
h parameter (with A= [0,∞)) computed by Algorithm 1 is

αS-SAA
h ∈ arg minα≥0

∑K

k=1 m̂
>
k ck(xk(α,h(m̂),m̂k−ei)). (3.1)

The Anchor Distribution h(m̂)

As stated, the anchor in Algorithm 1, h(m̂), is an input. We think of h(m̂) as a function that

selects an anchor distribution from a candidate set of distributions P. In what follows, we will

focus on two types of anchors and corresponding candidate sets P:

• Fixed Anchors: In this case, h(m̂) = p0, P = {p0} for some fixed p0, e.g., the uniform distribu-

tion p0 = e/d. In general, fixed-anchors might be used for computational/statistical simplicity or

when there is strong a priori knowledge of a good anchor. In this special case, we abuse notation

slightly, replacing the map h : m̂ 7→ p0 with the constant p0 when it is clear from context, e.g.,

we write αS-SAA
p0

for αS-SAA
h .

• Data-Driven Anchors: In this case h(m̂) is any procedure that uses the data m̂ to select

a distribution, and P is the image of h(·). One example might be to use all the data to fit

a parametric distribution, e.g., a lognormal distribution, via maximum likelihood and use this

fitted distribution as the anchor. Then, P would be the set of lognormal distributions.

We also pay particular focus to two special cases of data-driven anchors in what follows:

• LOO-Optimized Anchor: For a given P ⊆∆d, let

hP(m̂)∈ arg minq∈Pminα∈A
∑K

k=1 m̂
>
k ck(xk(α,q,m̂k−ei). (3.2)

We will see below that hP satisfies stronger optimality properties than general data-driven

anchors and, hence, we treat it separately. From an implementation point of view, when apply-

ing Algorithm 1, we only ever require the value of hP(m̂), not the full-function hP(·). Thus,
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Algorithm 1 with hP(·) amounts to replacing the “Modified LOO-Cross-Validation” step by a

joint optimization over anchor and pooling amount:

(αS-SAA
hP

, hP(m̂)) ← arg minα∈A,q∈P
∑K

k=1

∑N̂k
j=1 ck(xk,−j(α,q), ξ̂kj). (3.3)

We note that the multivariate optimization problem in Eq. (3.3) may be challenging depending

on the structure of P, motivating our second special case below.

• GM-Anchor We also consider a computationally simpler “grand-mean” anchor h(m̂) = p̂GM

where p̂GM ≡
∑K

k=1 p̂kI
[
N̂k > 0

]
/
∑K

k=1 I
[
N̂k > 0

]
if N̂max > 0 and e/d otherwise. (For this data-

driven anchor, P = ∆d.) This choice is motivated by our Bayesian perspective on data-pooling

from Section 2.1. In the Bayesian setting p̂GM is an unbiased estimator of the prior mean. We

observe empirically in Section 6 that p̂GM is a strong and computationally-efficient heuristic.

3.1. Oracle Benchmarks

From Theorem 2.2, data-pooling need not improve upon decoupling for a given h(·). To establish

appropriate benchmarks, we first define the oracle pooling for given h(·), i.e.,

αOR
h ∈ arg min

α≥0

ZK(α,h(m̂)), where ZK(α,q) = 1
K

∑K

k=1Zk(α,q), (3.4)

Zk(α,q) = λk
λavg

pk
>ck(xk(α,q,m̂k)).

Notice αOR
h is random, depending on the entire data-sequence. By construction, ZK(αOR

h , h(m̂))

lower bounds the performance of any other data-driven pooling policy with anchor h(m̂) path-

by-path. Hence, it serves as a strong performance benchmark. However, αOR
h also depends on the

unknown pk and λk, and hence, is not implementable in practice. In this sense, it is an oracle.

Given any α (possibly depending on the data), we measure the sub-optimality of pooling by α

relative to the oracle pooling for h(·) on a particular data-realization by

SubOpth,K(α) =ZK(α,h(m̂))−ZK(αOR
h , h(m̂)).

Good pooling procedures will have small sub-optimality with high-probability with respect to the

data. Note we allow for the possibility that αOR
h = 0, as is the case in Example 2.2. Thus, procedures

that have small sub-optimality will still have good performance in instances where data-pooling is

not beneficial. Moreover, studying when αOR
h > 0 gives intuition into when and why data-pooling

is helpful, a task we take up in Section 5.

The above oracle is defined with respect to a given anchor. One might also seek to benchmark

performance relative to the best-possible anchor. Given any P ⊆∆d, we define the oracle choice of

anchor and pooling amount for anchors in P and for a particular data realization by

(αOR
P , q

OR
P )∈ arg minα≥0,q∈P ZK(α,q). (3.5)
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Then, given any anchor q ∈ P and pooling amount α (both possibly depending the data), we

measure the sub-optimality of shrinking by α towards q by

SubOptP,K(α,q) = ZK(α,q)−ZK(αOR
P ,q

OR
P ).

For clarity, we observe that by construction αOR
P = αOR

qORP
.

3.2. Motivating αS-SAA through Unbiased Estimation

We first consider a fixed anchor h(m̂) = p0. Recall in this case, we abuse notation slightly, writing

αOR
p0
∈ arg minα≥0ZK(α,p0) (3.6)

One approach to choosing αp0 might be to construct a suitable proxy for ZK(α,p0) in Eq. (3.6)

based only on the data, and then choose the αp0 that optimizes this proxy.

If we knew the values of λk, a natural proxy might be to replace the unknown pk with p̂k,

i.e., optimize 1
K

∑K

k=1
λk
λavg

p̂>k ck(xk(α,q,m̂k)). Unfortunately, even for a fixed, non-data-driven α,

this proxy is biased, i.e. E
[

1
K

∑K

k=1
λk
λavg

p̂>k ck(xk(α,p0,m̂k))
]
6= E

[
ZK(α,p0)

]
, since both p̂k and

xk(α,p0,m̂k) depend on the data m̂k. Worse, this bias wrongly suggests α = 0, i.e. decoupling,

is always a good policy, because xk(0,p0,m̂k) always optimizes this proxy, by construction. By

contrast, Theorem 2.1 shows data-pooling can offer significant benefits. This type of bias and its

consequences are well-known in other contexts and are often termed the “optimizer’s curse” –

in-sample costs are optimistically biased and may not generalize well.

These features motivate us to seek an unbiased estimate of ZK(α,p0). At first glance, however,

ZK(α,p0), which depends on both the unknown pk and unknown λk, seems particularly intractable

unless xk(α,p0,m̂k) admits a closed-form solution as in Example 2.1. A key observation is that, in

fact, ZK(α,p0) does more generally admit an unbiased estimator, if we also introduce an additional

assumption on our data-generating mechanism, i.e., that the amount of data is random.

Assumption 3.1 (Randomizing Amount of Data). There exists an N such that N̂k ∼
Poisson(Nλk) for each k= 1, . . . ,K.

Under Assumption 3.1, (unconditional) expectations and probabilities should be interpreted as

over both the random draw of N̂k and the counts m̂k.

Analytically, the benefit of Assumption 3.1 is that it breaks the dependence across i in m̂k.

Namely, by the Poisson-splitting property, under Assumption 3.1,

m̂ki ∼Poisson(mki) where mki ≡Nλkpki, i= 1, . . . , d, k= 1, . . . ,K,

and, furthermore, the m̂ki are independent across i and k. Notice if N̂k were non-random, these

m̂ki would be dependent.
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Beyond its analytical convenience, we consider Assumption 3.1 to be reasonable in many applica-

tions. Consider for instance a retailer optimizing the price of k distinct products, i.e., xk represents

the price of product k, ξk, represents the (random) valuation of a typical customer, and ck(xk, ξk)

is the (negative) profit earned. In such settings, one frequently ties data collection to time, i.e.,

one might collect N = 6 months worth of data. To the extent that customers arrive seeking prod-

uct k in a random fashion, the number of arrivals N̂k that one might observe in N months is,

itself, random, and reasonably modeled as Poisson with rate proportional to N . Similar statements

apply whenever data for problem k is generated by an event which occurs randomly, e.g., when

observing response time of emergency responders (disasters occur intermittently), effectiveness of

a new medical treatment (patients with the relevant disease arrive sequentially), or any aspect of

a customer service interaction (customers arrive randomly to service).

In some ways, this perspective tacitly underlies the formulation of Problem (2.2), itself. Indeed,

one way to interpret the subproblem weights λk
Kλavg

= λk∑K
j=1 λj

is that the decision-maker incurs costs

ck(xk, ξk) at rate λk, so that problems of type k contribute a λk∑K
j=1 λj

fraction of the total long-run

costs. However, if problems of type k occur at rate λk, it should be that observations of type k, i.e.

realizations of ξk, also occur at rate λk, supporting Assumption 3.1.

In settings where data-collection is not tied to randomly occurring events, modeling N̂k as Poisson

may still be a reasonable approximation if d is large relative to N̂k and each of the individual pki are

small. Indeed, under such assumptions, a Multinomial(N̂k,pk) is well-approximated by independent

Poisson random variables with rates N̂kpki, i= 1, . . . d (see McDonald 1980, Deheuvels and Pfeifer

1988 for a formal statement). In this sense, we can view the consequence of Assumption 3.1 as a

useful approximation to the setting where N̂k are fixed, even if it is not strictly true.

In any case, under Assumption 3.1, we develop an unbiased estimate for ZK(α,p0,m̂). We use

the following identity (Chen 1975). For any f :Z+→R, for which the expectations exist,

W ∼Poisson(λ) =⇒ λE[f(W + 1)] =E[Wf(W )]. (3.7)

The proof of the identity is immediate from the Poisson probability mass function.3

Now, for any α≥ 0 and q ∈∆d, define

ZLOO
k (α,q)≡ 1

Nλavg

d∑
i=1

m̂kicki(xk(α,q,m̂k−ei)), and Z
LOO

K (α,q)≡ 1

K

K∑
k=1

ZLOO
k (α,p0). (3.8)

Lemma 3.1 (An Unbiased Estimator for ZK(α,p0)). Under Assumption 3.1, we have for any

α≥ 0, and q ∈∆d that E [ZLOO
k (α,q)] =E [Zk(α,q)] . In particular, E

[
Z

LOO

K (α,q)
]

=E
[
ZK(α,q)

]
.

3 In particular, E[Wf(W )] =
∑∞
w=0wf(w)e−λ λ

w

w!
= λ

∑∞
w=0 f(w)e−λ λw−1

(w−1)!
= λE[f(W + 1)].
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Proof. Recall that Zk(α,q) = 1
Nλavg

∑d

i=1mkicki(xk(α,q,m̂k)) and that under Assumption 3.1

m̂ki ∼Poisson(mki) independently over i= 1, . . . , d. Let m̂k,−i denote (m̂k,j)j 6=i. Then, by Eq. (3.7),

E [mkicki(xk(α,q,m̂k)) | m̂k,−i] = E [m̂kicki(xk(α,q,m̂k−ei)) | m̂k,−i] .

Taking expectations of both sides, summing over i = 1, . . . , d and scaling by Nλavg proves

E [ZLOO
k (α,q)] =E [Zk(α,q)]. Finally, averaging this last equality over k completes the lemma. �

We therefore propose selecting α by minimizing the estimate Z
LOO

K (α,p0). As written, Z
LOO

K (α,p0)

still depends on the unknown N and λavg, however, these values occur multiplicatively and are

positive, and so do not affect the optimizer. Hence, the optimizer is exactly αS-SAA
h as in Eq. (3.1).

3.3. Motivating αS-SAA via Modified Leave-One-Out Cross-Validation

Although we motivated Eq. (3.1) via an unbiased estimator, we can alternatively motivate it

through leave-one-out cross-validation. This latter perspective informs our “LOO” notation above.

Indeed, consider again our decision-maker, and assume in line with Assumption 3.1 that subprob-

lems of type k arrive randomly according to a Poisson process with rate λk, independently across k.

When a problem of type k arrives, she incurs a cost ck(xk,ξ). Again, the objective of Problem (2.2)

thus represents her expected, long-run costs.

We can alternatively represent her costs via the modified cost function C (x1, . . . ,xK , κ,ξ) =

cκ(xκ,ξ), where κ is a random variable indicating which of the k subproblems she is currently facing.

In particular, letting P(κ= k) = λk
Kλavg

and P(ξ = aki | κ= k) = pki, the objective of Problem (2.2)

can be more compactly written E [C (x1, . . . ,xK , κ,ξ)] .

Now consider pooling all the data into a single “grand” data set of size N̂1 + · · ·+ N̂K :{
(k, ξkj) : j = 1, . . . , N̂k, k= 1, . . . ,K

}
.

The grand dataset can be seen as i.i.d. draws of (κ,ξ).

For a fixed α and p0, the leave-one-out estimate of E [C (x1(α,p0,m̂), . . . ,xK(α,p0,m̂), κ,ξ)] is

given by removing one data point from the grand data set, training x1(α,p0, ·), . . . ,xK(α,p0, ·) on

the remaining data, and evaluating C(·) on the left-out point using these policies. We repeat this

procedure for each point in the grand data set and average. After some bookkeeping, we can write

this leave-one-out estimate as

1∑K

k=1 N̂k

K∑
k=1

d∑
i=1

m̂kicki(xk(α,p0,m̂k−ei)),

which agrees with the objective of Eq. (3.1) up to a positive multiplicative constant. Although this

multiplicative constant does not affect the choice of αS-SAA, it does cause the traditional leave-one-

out estimator to be biased. This bias agrees with folklore results in machine learning that assert

that leave-one-out does generally exhibit a small bias (Friedman et al. 2001).
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For data-driven anchors, we stress that, unlike traditional leave-one-out validation, we do not use

one fewer points when computing the anchor in Algorithm 1; we use h(m̂) for all iterations. Hence,

Shrunken-SAA is not strictly a leave-one-out procedure, motivating our qualifier “Modified.”

4. Performance Guarantees for Shrunken-SAA

In this section, we show that in the limit where the number of subproblems K grows, shrinking

by αS-SAA
h is essentially best possible. More precisely, for any K ≥ 2 and any 0 < δ < 1/2, with

probability at least 1− δ, we prove that

SubOpth,K(αS-SAA
h )≤ Õ

(
logβ(1/δ)√

K

)
, (4.1)

where the Õ(·) notation suppresses logarithmic factors in K, and 1 < β < 2 is a constant that

depends on the particular class of optimization problems under consideration. Imporantly, by Borel-

Cantelli lemma, Eq. (4.1) implies SubOpth,K(αS-SAA
h )→ 0, almost surely as K →∞, even if the

expected amount of data per subproblem remains fixed.

Equation (4.1) asserts that for a given anchor h(·), Shrunken-SAA achieves the best possible

shrinkage amount as K →∞. We will also prove similar bounds on SubOptP,K(αS-SAA
h , hP(m̂)).

Such bounds assert that for a given class P, Shrunken-SAA with hP(·) achieves the best possible

anchor and shrinkage amount simultaneously.

4.1. Overview of Proof Technique

To prove performance guarantees like Eq. (4.1), we first bound the sub-optimality of Shrunken-SAA

in terms of the maximal stochastic deviations of ZK(α,h) and Z
LOO

K (α,h) from their means.

Lemma 4.1 (Bounding Sub-Optimality). Suppose Assumption 3.1 holds.

For a non-data-driven anchor h(m̂) = p0,

SubOptp0,K(αS-SAA
p0

)≤ 2 sup
α≥0

∣∣ZK(α,p0)−E
[
ZK(α,p0)

]∣∣︸ ︷︷ ︸
Maximal Stochastic Deviation in ZK(·,p0)

+2sup
α≥0

∣∣∣ZLOO

K (α,p0, )−E
[
Z

LOO

K (α,p0)
]∣∣∣︸ ︷︷ ︸

Maximal Stochastic Deviation in Z
LOO
K (·,p0)

.

Similarly, for a general data-driven anchor with h(m̂)∈P,

SubOpth,K(αS-SAA
h )≤ 2 sup

α≥0
q∈P

∣∣ZK(α,q)−E
[
ZK(α,q)

]∣∣
︸ ︷︷ ︸
Maximal Stochastic Deviation in ZK(·, ·)

+2 sup
α≥0
q∈P

∣∣∣ZLOO

K (α,q)−E
[
Z

LOO

K (α,q)
]∣∣∣

︸ ︷︷ ︸
Maximal Stochastic Deviation in Z

LOO
K (·, ·)

. (4.2)

Finally, for h= hP , SubOptP,K(αS-SAA
hP

, hP(m̂)) is also bounded by the right-hand side of Eq. (4.2).
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Proof. By definition of αS-SAA
p0

, Z
LOO

K (αOR
p0
,p0)−ZLOO

K (αS-SAA
p0

,p0)≥ 0. Therefore,

SubOptp0,K(αS-SAA
p0

)≤ZK(αS-SAA
p0

,p0)−ZK(αOR
p0
,p0) +Z

LOO

K (αOR
p0
,p0)−ZLOO

K (αS-SAA
p0

,p0)

≤ 2 supα≥0

∣∣∣ZK(α,p0)−ZLOO

K (α,p0)
∣∣∣

≤ 2 supα≥0

∣∣ZK(α,p0)−EZK(α,p0)
∣∣+ 2supα≥0

∣∣∣ZLOO

K (α,p0)−EZLOO

K (α,p0)
∣∣∣

+ 2supα≥0

∣∣∣EZK(α,p0)−EZLOO

K (α,p0)
∣∣∣ .

By Lemma 3.1, the last term is zero, which establishes the first statement. The proof of the

second statement is similar, but in the second inequality, we take an additional supremum over

q ∈ P to replace h(m̂). The proof of the third statement is similar, using Z
LOO

K (αS-SAA
hP

, hP(m̂))≤

Z
LOO

K (αOR
P ,q

OR
P ), and taking a supremum over α≥ 0, q ∈P in the second inequality. �

Proving a performance guarantee for αS-SAA
h thus reduces to bounding the maximal deviations

in the lemma. Recall ZK(α,q) = 1
K

∑K

k=1Zk(α,q) and Z
LOO

K (α,q) = 1
K

∑K

k=1Z
LOO
k (α,q). Both pro-

cesses have a special form: they are the empirical average of K independent stochastic processes

(indexed by k). Fortunately, there exist standard tools to bound the maximal deviations of such

empirical processes that rely on bounding their metric entropy.

To keep our paper self-contained, we summarize one such approach presented in Pollard (1990),

specifically in Eq. (7.5) of that work. Recall, for any set S ⊆Rd, the ε-packing number of S, denoted

by D(ε,S), is the largest number of elements of S that can be chosen so that the Euclidean distance

between any two is at least ε. Intuitively, packing numbers describe the size of S at scale ε.

Theorem 4.1 (A Maximal Inequality; Pollard 1990). Let W(t) = (W1(t), . . . ,WK(t)) ∈ RK

be a stochastic process indexed by t ∈ T and let WK(t) = 1
K

∑K

k=1Wk(t). Let F ∈RK+ be a random

variable such that |Wk(t)| ≤ Fk for all t∈ T , k= 1, . . . ,K. Finally, define the random variable

J ≡ J ({W(t) : t∈ T },F ) ≡ 9‖F‖2
∫ 1

0

√
logD

(
‖F‖2u,

{
W(t) : t∈ T

})
du. (4.3)

Then, for any p≥ 1 and any 0< δ < 1, with probability at least 1− δ,4

supt∈T
∣∣WK(t)−E[WK(t)]

∣∣ ≤ 51/p√p‖J‖pK−1δ−1/p.

If T is finite, one can bound the maximal deviation with a union bound. Theorem 4.1 extends

beyond this simple case to cases where |T |=∞. The random variable F in the theorem is called

an envelope for the process W(t). The random variable J is often called the Dudley integral. While

4 Strictly speaking, eq. (7.5) of Pollard (1990) shows that E
[∣∣supt∈T

∣∣WK(t)−E[WK(t)]
∣∣∣∣p]≤ 2pCppE [Jp]K−p, for

some constant Cp that relates the `p norm of a random variable and a particular Orlicz norm. In Lemma B.4, we
prove that it suffices to take Cp = 51/p

√
p
2e

. The result then follows from Markov’s Inequality.
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packing numbers describe the size of a set at scale ε, the Dudley integral roughly describes the size

of the set at varying scales. We again refer the reader to Pollard (1990) for discussion.

Our overall proof strategy is to use Theorem 4.1 to bound the two suprema in Lemma 4.1, and

thus obtain a bound on the sub-optimality. Specifically, define the following stochastic processes:

Z(α,q) = (Z1(α,q), . . . ,ZK(α,q)), ZLOO(α,q) = (ZLOO
1 (α,q), . . . ,ZLOO

K (α,q)).

Our proof strategy will be to 1) Compute envelopes for both processes 2) Compute the packing

numbers and Dudley integrals for the relevant sets above 3) Apply Theorem 4.1 to bound the

relevant maximal deviations and 4) Use these bounds in Lemma 4.1 to bound the sub-optimality.

We execute this strategy for several special cases in the remainder of the section.

As a first step, we identify envelopes for each process. We restrict attention to the case where

the optimal value of each subproblem is bounded for any choice of anchor and shrinkage.

Assumption 4.1 (Bounded Optimal Values). There exists C such that for all i= 1, . . . , d, and

k= 1 . . . ,K, supq∈∆d
|cki(xk(∞,q))| ≤C.

Notice that supα≥0, q∈∆d
|cki(xk(α,q))|= supq∈∆d

|cki(xk(∞,q)|, so that the assumption bounds

the optimal value associated to every policy. Assumption 4.1 is a mild assumption, and follows for

example if cki(·) is continuous and Xk is compact. However, the assumption also holds, e.g, if cki(·)

is unbounded but coercive. With it, we can easily compute envelopes. Recall, N̂max ≡maxk N̂k.

Lemma 4.2 (Envelopes for Z,ZLOO). Under Assumption 4.1,

1. The vector FPerf ≡Cλ/λavg is an envelope for Z(α,q) with ‖FPerf‖2 = C
λavg
‖λ‖2.

2. The random vector FLOO =C N̂
Nλavg

is an envelope for ZLOO(α,q) with ‖FLOO‖2 = C
Nλavg

‖N̂‖2.

The proof is immediate from the definitions and omitted.

Our next step is to bound the packing numbers (and Dudley integrals) for the sets

{Z(α,p0) : α≥ 0} ⊆RK , and
{
ZLOO(α,p0) : α≥ 0

}
⊆RK , for the case of fixed anchors and the sets

{Z(α,q) : α≥ 0, q ∈P} ⊆ RK , and
{
ZLOO(α,q) : α≥ 0, q ∈P

}
⊆ RK , for the case of data-driven

anchors. Bounding these packing numbers is subtle and requires exploiting the specific structure of

the optimization problem (2.2). We separately consider two general classes of optimization problems

– strongly convex optimization problems and discrete optimization problems – in the remainder.

Although we focus on these classes, we expect a similar proof strategy and technique might be

employed to attack other classes of optimization problems.

Remark 4.1 (Performance of αS-SAA in the Large-Sample Regime). Although we focus

on performance guarantees for αS-SAA in settings where K is large and the expected amount of data

per problem is fixed, one could also ask how αS-SAA performs in the large-sample regime, i.e., where
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K is fixed and N̂k→∞ for all k. Using similar techniques, i.e., reducing the problem to bounding

a certain maximal stochastic deviation, one can show that xk(α
S-SAA,p0,m̂) performs comparably

to the full-information solution in Problem (2.2) in this limit. The proof uses somewhat standard

arguments for empirical processes. Moreover, the result is perhaps unsurprising; many data-driven

methods converge to full-information performance in the large-sample regime (see, e.g., Kleywegt

et al. (2002) for the case of SAA) since p̂k is consistent for pk for all k in this regime. Consequently,

we focus on the small-data, large-scale regime, where Shrunken SAA enjoys strong suboptimality

guarantees not enjoyed by SAA. This small-data, large-scale focus, however, causes the N depen-

dence in our bounds to be looser than that obtained from a direct large-sample analysis. Developing

a unified analysis of data-pooling for any sequence of N,K remains an open question. �

4.2. Fixed Anchors and Strongly-Convex Optimization Problems

In this section, we treat the case where the K subproblems are smooth enough so that xk(α,q,m̂k)

is smooth in α and q for each k. Specifically, in this section we assume:

Assumption 4.2 (Lipschitz, Strongly-Convex Optimization). There exists L,γ such that

cki(x) are γ-strongly convex and L-Lipschitz over Xk, and, moreover, Xk is non-empty and convex,

for all k= 1, . . . ,K, and i= 1, . . . , d.

Theorem 4.2 (Shrunken-SAA with Fixed Anchors for Strongly Convex Problems).

Fix any p0. Suppose Assumptions 3.1, 4.1 and 4.2 hold, K ≥ 2 and Nλmin ≥ 1. Then, there exists

a universal constant A such that for any 0< δ < 1/2, with probability at least 1− δ, we have that

SubOptp0,K(αS-SAA
p0

) ≤ A ·max

(
C,L

√
C

γ

)
·
(
λmax

λmin

)5/4

· log2(1/δ) · log3/2(K)√
K

.

The proof follows our strategy from Section 4.1. (See Appendix C.1.) We sketch the main ideas:

We first bound the packing numbers of {Z(α,p0) : α≥ 0} and
{
ZLOO(α,p0) : α≥ 0

}
. The key

observation is that since the subproblems are strongly-convex, the optimal solutions xk(α,p0,m̂k)

are continuous as functions of α. We utilize this continuity to construct a packing.

Specifically, consider {Z(α,p0) : α≥ 0}. Continuity in α implies that by evaluating x(α,p0,m̂)

on a sufficiently dense grid of α’s, we can construct a covering of
{

(xk(α,p0,m̂k))
K

k=1 : α≥ 0
}

,

which in turn yields a covering of {Z(α,p0) : α≥ 0}. By carefully choosing the initial grid

of α’s, we can ensure that this last covering is a valid (ε/2)-covering. By (Pollard 1990,

pg. 10), the size of this covering bounds the ε-packing number as desired. Figure 2 illus-

trates this intuition and further argues the initial grid of α’s should be of size O(1/ε2).
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Figure 2 Covering a continuous process. The set

{(xk(α,p0,m̂k))Kk=1 : α ≥ 0} can be thought of

as a parametric curve indexed by α in the space∏K
k=1Xk. Because of the continuity in α (cf.

Lemma C.1, part iii)), to cover this curve for any

compact set α ∈ [0, αmax] requires O(1/ε) balls

of size ε. Because of the continuity at α=∞ (cf.

Lemma C.1, part iv)), it suffices to take αmax =

O(1/ε). This yields a packing number bound of

O(1/ε2) (cf. Lemma C.2).

A similar argument holds for D(ε,
{
ZLOO(α,p0) : α≥ 0

}
), using a grid of α’s to cover{(

xk(α,p0,m̂k−ei) : i= 1, . . . , d, k= 1, . . . ,K
)

: α≥ 0
}

. The packing is also of size O(1/ε2).

To complete the proof, we use these packing numbers in Theorem 4.1 to bound the maximal

deviations of ZK(·,p0),Z
LOO

K (·,p0). Substituting into Lemma 4.1 proves Theorem 4.2 above. Again,

please see Appendix C.1 for details.

4.3. Data-Driven Anchors and Strongly Convex Problems

We next consider the case of a data-driven anchor h(m̂) ∈ P. Our performance guarantees will

depend on the complexity of P as measured by the size of its `1-packing numbers. Namely, we let

D1(ε,P) be the largest number of elements of P that can be chosen so that the `1-distance between

any two is at least ε.5 Then,

Theorem 4.3. (Shrunken-SAA with Data-Driven Anchors for Strongly Convex Prob-

lems) Suppose Assumptions 3.1, 4.1 and 4.2 hold, K ≥ 2. Let d0 ≥ 1 be such that for any 0 <

ε < 1/2, logD1(ε,P) ≤ d0 log(1/ε). Then, there exists a universal constant A such that for any

0< δ < 1/2, with probability at least 1− δ, we have that

SubOpth,K(αS-SAA
h ) ≤ A ·max

(
C,

L2

γ
+ L

√
C

γ

)(
λmax

λmin

)5/4
d2

0 log7/2(K) log2(1/δ)√
K

.

In the special case of hP(·), we can prove an even stronger result, i.e., that Shrunken-SAA with

hP performs comparably to pooling in an optimal way to the best anchor within the class P.

Theorem 4.4 (Shrunken-SAA with hP for Strongly Convex Problems). Under the

assumptions of Theorem 4.3, there exists a universal constant A such that for any 0 < δ < 1/2,

with probability at least 1− δ, we have that

SubOptP,K(αS-SAA
hP

, hP(m̂)) ≤ A ·max

(
C,

L2

γ
+ L

√
C

γ

)(
λmax

λmin

)5/4
d2

0 log7/2(K) log2(1/δ)√
K

.

5 Recall D(ε,S) is defined with respect to `2-distance.
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In both theorems, the constant d0 measures the complexity of P. Without loss of generality,

d0 ≤ 3d since P ⊆∆d and logD1(ε,∆d) ≤ 3d log(1/ε) (Pollard 1990, Lemma 4.1). In practice, we

might choose flexible, parametric families for P with small d0 that do not scale with d. An example

might be when P consists of all (truncated) Poisson distributions with mean at most Λ, in which

case one can take d0 = 2max(1, log(Λ)), independently of d (and the truncation). Another example

is given in Section 6 using Beta-distributions. In general, we expect that our performance bounds

must depend on the complexity of P in some way, because we impose no assumptions on the

function h(m̂) that selects the anchor, and, hence, must control behavior across all of P.

Both proofs follow the strategy of Section 4.1 (see Appendix C.2). The key idea to bounding

the packing numbers is again to leverage continuity and cover the set {(α,q) : α≥ 0,q ∈P}. Since

both proofs leverage Lemma 4.1, the right hand sides of the bounds are the same.

By contrast, the left-hand sides of Theorems 4.3 and 4.4 are different: the first measures subop-

timality relative to an oracle with a pre-specified anchor, while the second is relative to an oracle

that can optimize the choice of anchor. This distinction mirrors the difference between “estimate-

then-optimize” procedures and those which choose parameters in an optimization-aware fashion.

Continuing our example where P is a set of Poisson distributions, Theorem 4.3 bounds the subop-

timality of Shrunken-SAA when using (all) the data to fit a Poisson distribution without regard

to the downstream optimization, e.g., by maximum likelihood, and then choosing α and xk(·) to

optimize. By contrast, Theorem 4.4 bounds the performance of Shrunken-SAA when choosing the

anchor, α and xk(·) simultaneously to optimize the downstream optimization.

4.4. Fixed Anchors and Discrete Optimization Problems

In this section we consider the case where the K subproblems are discrete optimization problems.

Specifically, we require |Xk|<∞ for each k= 1, . . . ,K. This encompasses, e.g., binary linear or non-

linear optimization and linear optimization over a polytope, since we may restrict to its vertices.

Unlike the case of strongly convex problems, the optimization defining xk(α,p0,m̂k) (cf.

Eq. (2.4)) may admit multiple optima, and hence, xk(α,p0,m̂k) requires a tie-breaking rule. For

our results below, we assume this tie-breaking rule is consistent in the sense that if the set of min-

imizers to Eq. (2.4) is the same for two distinct values of (α,p0), then the tie-breaking minimizer

is also the same for both. We express this requirement by representing the tie-breaking rule as a

function from a set of minimizers to a chosen minimizer:

Assumption 4.3 (Consistent Tie-Breaking). For each k, there exists σk : 2Xk→Xk such that

xk(α,p0,m̂k) = σk
(
arg minxk∈Xk p̂k(α)>ck(xk)

)
.

Then,
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Figure 3 Counting Discrete Solutions.

A concave piecewise-linear function

consisting of |Xk| lines has at most

|Xk|−1 breakpoints, between which

the set of active supporting lines is

constant. Any function of this set

of active supporting lines is piece-

wise constant with at most |Xk| − 1

discontinuities.

Theorem 4.5 (Shrunken-SAA with Fixed Anchors for Discrete Problems). Suppose

that |Xk|<∞ for each k, K ≥ 2, and that Assumptions 3.1, 4.1 and 4.3 hold. Then, there exists

a universal constant A such that for any 0< δ < 1/2 we have that, with probability at least 1− δ,

SubOptp0,K(αS-SAA
p0

) ≤ A ·Cλmax

λmin

·

√√√√log

(
2Nmax

K∑
k=1

|Xk|

)
· log3/2(K) · log3/2(1/δ)√

K
.

We stress that |Xk| occurs logarithmically in the bound, so that the bound is reasonably tight

even when the number of feasible solutions per subproblem may be large. For example, consider

binary optimization. Then, |Xk| often scales exponentially in the number of binary variables, so that

log(|Xk|) scales like the number of binary variables. Thus, as long as the number of binary variables

per subproblem is much smaller than K, the sub-optimality will be small with high probability.

We also note that, unlike Theorem 4.2, the above bound depends on log(Nmax). This mild

dependence stems from the fact that we have made no assumptions of continuity on the functions

ck(x,ξ) in x or ξ. Since these functions could be arbitrarily non-smooth, we need to control their

behavior separately across all of the LOO iterations, which introduces the Nmax dependence. With

stronger assumptions, it might be possible to remove this dependence. However, since we are mostly

interested in the setting where Nk is moderate to small for all k, we do not pursue this idea.

To prove Theorem 4.5, we again follow the approach outlined in Section 4.1. Since the policy

x(α,p0,m̂) need not be smooth in α, however, we adopt a different strategy than in Section 4.2.

Specifically, we bound the cardinality of {Z(α,p0) : α≥ 0},
{
ZLOO(α,p0) : α≥ 0

}
, directly. (Recall

that the cardinality of a set bounds its ε-packing number for any ε.)

First note the cardinality of {Z(α,p0) : α≥ 0} is at most that of
{

(xk(α,p0,m̂k))
K

k=1 : α≥ 0
}

.

A trivial bound on this latter set’s cardinality is
∏K

k=1 |Xk|. This bound is too crude for our

purposes; it grows exponentially in K even if |Xk| is bounded for all k. Intuitively, this bound is

crude because it supposes we can vary each solution xk(α,p0,m̂k) independently of the others to

achieve all
∏K

k=1 |Xk| possible combinations. In reality, we can only vary a single parameter, α, that
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simultaneously controls all K solutions, rather than varying them separately. We use this intuition

to show that a much smaller bound, i.e., 2
∑K

k=1 |Xk|, is valid.

To this end, we fix k and study the dependence of xk(α,p0,m̂k) on α. In the trivial case N̂k = 0,

xk(α,p0,m̂k) takes only one value: xk(∞,p0). Hence we focus on the case N̂k ≥ 1.

Consider reparameterizing the solution in terms of θ= α

α+N̂k
∈ [0,1) and let α(θ) = θ

1−θ N̂k. Then

for any x∈Xk, define the linear function

gkx(θ) = ((1− θ)p̂k + θp0)>ck(x), θ ∈ [0,1).

Since gkx(·) is linear, the function θ 7→ minx∈Xk gkx(θ) is concave, piecewise-linear with

at most |Xk| − 1 breakpoints. By construction, xk(α(θ),p0,m̂k) ∈ arg minxk∈Xk gkx(θ). More

precisely, for any θ, the set of active supporting hyperplanes of minx∈Xk gkx(·) at θ is{
(p0− p̂k)>ck(x) : x∈ arg minxk∈Xk gkx(θ)

}
.

Since the set of active supporting hyperplanes is constant between breakpoints, the set of mini-

mizers arg minxk∈Xk gkx(θ) is also constant between breakpoints. By Assumption 4.3, this implies

θ 7→ xk(α(θ),p0,m̂k) is piecewise constant with at most |Xk| − 1 points of discontinuity. (See also

Fig. 3.) Viewed in the original parameterization in terms of α, it follows that α 7→xk(α,p0,m̂k) is

also piecewise constant with at most |Xk| − 1 points of discontinuity. Thus,

Lemma 4.3. Suppose Assumption 4.3 holds. Fix any p0 and m̂k. Then, the function

α 7→xk(α,p0,m̂k) is piecewise constant with at most |Xk| − 1 points of discontinuity.

Taking the union of all these points of discontinuity over k proves that (xk(α,p0,m̂k))
K

k=1 is also

piecewise constant with at most
∑K

k=1(|Xk|−1) points of discontinuity. Therefore, it takes at most

2
∑K

k=1 |Xk| − 2K + 1 different values – a distinct value for each of the
∑K

k=1(|Xk| − 1) break-

points plus a distinct value for the
∑K

k=1(|Xk| − 1) + 1 regions between breakpoints. This gives

the desired cardinality bound on |{Z(α,p0) : α≥ 0}|. A similar argument considering the larger

(xk(α,p0,m̂k−ei))i∈Ik,k=1,...,K , where Ik = {i= 1, . . . , d : m̂ki > 0}, gives a corresponding cardinal-

ity bound on
∣∣{ZLOO(α,p0) : α≥ 0

}∣∣. Noting |Ik| ≤min(d, N̂k) gives the following (proof omitted):

Corollary 4.1 (Size of Discrete Solutions Sets). Suppose Assumption 4.3 holds. Then,

|{Z(α,p0) : α≥ 0}| ≤ 2
∑K

k=1 |Xk| ,
∣∣{ZLOO(α,p0) : α≥ 0

}∣∣ ≤ 1 + 2
∑K

k=1 min(d, N̂k) |Xk|.

The additional “1” in the case of
∣∣{ZLOO(α,p0) : α≥ 0

}∣∣ covers the case where N̂max = 0 and{
ZLOO(α,p0) : α≥ 0

}
= {0}. Although these bounds may appear large, an important feature is that

they are only linear in K as long as |Xk| are bounded over k.

We use these cardinality bounds to bound the packing numbers and then apply our usual strategy

via Theorem 4.1 and Lemma 4.1 to prove Theorem 4.5. The details are in Appendix C.3.
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4.5. Data-Driven Anchors and Discrete Optimization Problems

We next extend the results of Section 4.4 to the case of a data-driven anchor, h(m̂). As in Sec-

tion 4.3, our bounds will depend on a measure of complexity of P, namely, the dimension of

span(P)≡ {
∑d

`=1 θ`q` : θ` ∈R, q` ∈P, `= 1, . . . , d} when viewed as a linear subspace. Denote this

dimension by d0 and note 1≤ d0 ≤ d. A canonical example might be when P consists of mixture

distributions with d0 (specified) components. We prove that:

Theorem 4.6 (Shrunken-SAA with Data-Driven Anchors for Discrete Problems).

Suppose that |Xk| <∞ for each k, that span(P) has dimension d0, and that Assumptions 4.1

and 4.3 hold. Then, there exists a universal constant A such that for all 0< δ < 1/2, we have that,

with probability at least 1− δ,

SubOpth,K(αS-SAA
h ) ≤ A ·Cλmax

λmin

√√√√d0 log

(
Nmax

K∑
k=1

|Xk|

)
· log3/2(K) log2(1/δ)√

K
.

Theorem 4.7 (Shrunken-SAA with hP for Discrete Problems). Under the assumptions of

Theorem 4.6, there exists a universal constant A such that for any 0< δ < 1/2, with probability at

least 1− δ, we have that

SubOptP,K(αS-SAA
hP

, hP(m̂)) ≤ A ·Cλmax

λmin

√√√√d0 log

(
Nmax

K∑
k=1

|Xk|

)
· log3/2(K) log2(1/δ)√

K
.

Both proofs follow the strategy from Section 4.1 (see Appendix C.4) and, hence, lead to the same

right hand sides. However, the left hand sides are distinct. We sketch the main ideas of the proof:

We first bound the cardinality of {Z(α,q) : α≥ 0,q ∈P},
{
ZLOO(α,q) : α≥ 0,q ∈P

}
. The key is

to generalize the argument of Section 4.4 from counting breakpoints in a univariate piecewise affine

function to counting the pieces in a multivariate piecewise affine function. First, we reparameterize

our policies. Let the columns of V ∈ Rd×d0 be a basis of span(P). Then, intrepreting 0/0 as an

arbitrary point in ∆d (e.g., e/d),

|{Z(α,q) : α≥ 0,q ∈P}| ≤
∣∣∣{(xk(α,q,m̂k))

K

k=1 : q ∈P, α≥ 0
}∣∣∣

≤
∣∣∣{(xk(‖w‖1,w/‖w‖1,m̂k))

K

k=1 : w ∈ span(P)∩Rd+
}∣∣∣

=
∣∣∣{(xk(‖V θ‖1,V θ/‖V θ‖1,m̂k))

K

k=1 : θ ∈Rd0 , V θ ∈Rd+
}∣∣∣ . (4.4)

Hence, it suffices to bound the right most side of Eq. (4.4). An advantage of this θ-parameterization

over the original (α,q)-parameterization is that, for N̂k > 0,

xk(‖V θ‖1,V θ/‖V θ‖1,m̂k)∈ arg minx∈Xk (V θ+ m̂k)
>ck(x), (4.5)
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Figure 4 Solution Induced Hyperplane

Arrangement. The hyperplanes Hkij

(cf. Eq. (4.6)) in Rd are indifference

curves between solutions xki and xkj

in Eq. (4.5). The total ordering on

each set Xk induced by the objective

of Eq. (4.5) is thus constant on the

interior of the fully-specified polyhedra

defined by the hyperplanes.

and θ occurs linearly in this representation.

The set of θ where we are indifferent between xki,xkj ∈Xk in Eq. (4.5) is the hyperplane

Hkij =
{
θ ∈Rd0 : (V θ+ m̂k)

>
(ck(xki)− ck(xkj)) = 0

}
. (4.6)

Consider drawing all
∑K

k=1

(|Xk|
2

)
such hyperplanes, as in Fig. 4. Then, for any θ ∈Rd0 , consider the

polyhedron given by the equality constraints of those hyperplanes containing θ, and the inequality

constraints defined by the side on which θ lies for the remaining hyperplanes. The relative order-

ing of {(V θ+ m̂k)
>
ck(xk) : xk ∈ Xk} is constant for all θ in this polyhedron’s interior. Hence,

(xk(‖V θ‖1,V θ/‖V θ‖1,m̂k))
K
k=1 is also constant. Thus, to bound {Z(α,q) : α≥ 0,q ∈P}, it suf-

fices to count the number of such polyhedra. We do this counting in Appendix C.4. A similar

argument (with a different hyperplane arrangement) can be used to bound the cardinality of{
ZLOO(α,q) : α≥ 0,q ∈P

}
. We summarize the results as:

Lemma 4.4 (Size of Discrete Solutions Sets). Under the assumptions of Theorem 4.6,

|{Z(α,q) : α≥ 0,q ∈P}| ≤
(∑K

k=1 |Xk|
2
)d0

,
∣∣{ZLOO(α,q) : α≥ 0,q ∈P

}∣∣≤ 1 + N̂d0
max

(∑K

k=1 |Xk|
2
)d0

.

Importantly, both bounds are polynomial in K if |Xk| are bounded over k. We then apply The-

orem 4.1 to bound the maximal deviations in Lemma 4.1, proving the theorems. Again, see

Appendix C.4 for details.

4.6. Performance Guarantees for Continuous Distributions

Notice that none of our previous theorems (cf. Theorems 4.2 to 4.7) depend explicitly on d, the

size of the support of pk. Recall also that Algorithm 1 does not depend on d. These observations

beg the question of whether similar performance guarantees hold for Shrunken-SAA when ξk are

not discrete with finite support.

For the case of strongly-convex optimization problems, the short answer is “yes.” One simply

applies Algorithm 1 as written to the potentially continous ξk, but analyzes a discretized system
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where the discretization is chosen sufficiently fine that the two systems behave similarly. The details

are somewhat tedious. See Appendix F in the appendix for a formal statement and proof.

Unfortunately, for the case of discrete optimization problems, the answer is more subtle, and it

is not clear that similar performance guarantees hold without additional assumptions. Again, see

Appendix F for a discussion of the key issues.

5. The Sub-Optimality-Stability Tradeoff: An Intuition for Data-Pooling

In the previous section, we established that for various classes of optimization problems, Shrunken

SAA pools the data in the best possible way for a given anchor, or, when used with hP , pools

the data in the best possible way to the best-in-class anchor, asymptotically as K →∞. In this

section, we show how Shrunken SAA can also be used to build a strong intuition into when and

why data-pooling improves upon decoupling.

We focus first on the case of a non-data-driven anchor p0 for simplicity. Lemma 3.1 shows

that (under Assumption 3.1) E
[
ZK(α,p0)

]
=E

[
Z

LOO

K (α,p0)
]
. Theorems 4.2 and 4.5 establish that

under mild conditions, we often have the stronger statement

ZK(α,p0)︸ ︷︷ ︸
True Performance of α

= Z
LOO

K (α,p0)︸ ︷︷ ︸
LOO Performance of α

+ Õp(1/
√
K)︸ ︷︷ ︸

Stochastic Error

,

where the error term is uniformly small in α. In these two senses, optimizing ZK(α,p0) over α is

roughly equivalent to optimizing Z
LOO

K (α,p0) over α, especially for large K.

A simple algebraic manipulation then shows that

Z
LOO

K (α,p0) = 1
Nλavg

(
SAA-SubOpt(α) + Instability(α) + SAA(0)

)
,

where SAA-SubOpt(α) ≡ 1
K

∑K

k=1

∑d

i=1 m̂ki

(
cki
(
xk(α,p0,m̂k)

)
− cki

(
xk(0,p0,m̂k)

))
Instability(α) ≡ 1

K

∑K

k=1

∑d

i=1 m̂ki

(
cki
(
xk(α,p0,m̂k−ei)

)
− cki

(
xk(α,p0,m̂k)

))
,

SAA(0) ≡ 1
K

∑K

k=1

∑d

i=1 m̂kicki
(
xk(0,p0,m̂k)

)
.

Note SAA(0) does not depend on α. In other words, optimizing ZK(α,p0) over α is roughly

equivalent to optimizing Z
LOO

K (α,p0), which in turn is equivalent to optimizing

minα≥0 SAA-SubOpt(α) + Instability(α). (Sub-Optimality-Instability Tradeoff)

We term this last optimization the “Sub-Optimality-Instability Tradeoff.”

To develop some intuition, notice SAA-SubOpt(α) is nonnegative, and measures the average

degree to which each xk(α,p0,m̂k) is sub-optimal with respect to a (scaled) SAA objective. In

particular, SAA-SubOpt(α) is minimized at α = 0, and we generally expect it is increasing in

α. By contrast, Instability(α) measures the average degree to which the (scaled) performance of
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xk(α,p0,m̂k) changes on the training sample if we were to use one fewer data points. It is minimized

at α =∞, since the fully-shrunken solution xk(∞,p0,m̂k) does not depend on the data and is,

hence, completely stable. Intuitively, we might expect Instability(α) to be decreasing since as α

increases, the shrunken measure p̂k(α) depends less and less on the data. In reality, Instability(α)

is often decreasing for large enough α, but for smaller α can have subtle behavior depending on

the optimization structure. (See below for examples.)

This tradeoff is intuitive in light of our data-pooling interpretation of xk(α,p0,m̂k) from Sec-

tion 2.1. Recall, we interpret xk(α,p0,m̂k) as the solution when we augment our original dataset

with a synthetic dataset of size α drawn from p0. As we increase α, we introduce more SAA-

sub-optimality into xk(α,p0,m̂k) because we “pollute” the kth dataset with draws from a distinct

distribution. However, we also increase the stability of xk(α,p0,m̂k) because we reduce its depen-

dence on m̂k. Shrunken-SAA seeks an α in the “sweet spot” that balances these two effects.

Importantly, this tradeoff also illuminates when data-pooling offers an improvement, i.e., when

αS-SAA > 0. Intuitively, αS-SAA > 0 only if Instability(0) is fairly large and decreasing. Indeed, in this

setting, the SAA-sub-optimality incurred by choosing a small positive α is likely outweighed by the

increased stability. However, if Instability(0) is already small, the marginal benefit of additional

stability likely won’t outweigh the cost of sub-optimality.

More precisely, we intuit that data-pooling offers a benefit whenever i) the SAA solution is unsta-

ble, ii) the fully-shrunken solution xk(∞,p0,m̂) is not too sub-optimal, and iii) K is sufficiently

large. In particular, when N̂k is relatively small for most k, the SAA solution is likely to be very

unstable. Hence, intuition suggests data-pooling likely provides a benefit whenever N̂k is small but

K is large, i.e., the small-data, large-scale regime.

The intuition for a data-driven anchor h(m̂) is essentially the same. The proofs of Theorems 4.3

and 4.6 show that the approximation ZK(α,p0)≈ ZLOO

K (α,p0) holds uniformly in α and p0. Con-

sequently, the Sub-Optimality-Instability Tradeoff also holds for all p0. Hence, it holds for the

specific realization of h(m̂), and changing α balances these two sources of error for this anchor. We

recall in contrast to traditional leave-one-out validation, however, Shrunken-SAA does not remove

a data point and retrain the anchor. This detail is important because it ensures the fully-shrunken

solution xk(∞, h(m̂),m̂) is still completely stable per our definition, i.e., has instability equal to

zero, despite depending on the data.

The Sub-Optimality-Instability Tradeoff resembles the classical bias-variance tradeoff for MSE.

Both tradeoffs decompose performance into a systematic loss (bias or SAA-sub-optimality) and a

measure of dispersion (variance or instability). An important distinction, however, is that the Sub-

Optimality-Instability tradeoff applies to general optimization problems, not just mean-squared

error. Even if we restrict to the case of MSE (cf. Example 2.1), however, the two tradeoffs still

differ and are two different ways to split the “whole” into “pieces.” See Appendix D.
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5.1. Sub-Optimality-Instability Tradeoff as a Diagnostic Tool

Our comments above are qualitative, focusing on developing intuition. However, the Sub-

Optimality-Instability Tradeoff also provides a quantitative diagnostic tool for studying data-

pooling. Indeed, for simple optimization problems such as minimizing MSE, it may be possible

to analytically study the effects of pooling (cf. Theorem 2.1), but for more complex optimization

problems where xk(α,h(m̂),m̂k) is not known analytically, such a study is not generally possi-

ble. Fortunately, both SAA-SubOpt(α) and Instability(α) can be evaluated directly from the data.

Studying their dependence on α for a particular instance provides insight into how data-pooling

improves (or does not improve) solution quality. We illustrate with Example 2.2:

Example 5.1 (Simple Newsvendor Revisited). We revisit Example 2.2 and simulate an

instance with K = 1000, pk1 distributed uniformly on [.6, .9] and p01 = .3. One can confirm that as

in Example 2.2, data-pooling offers no benefit over decoupling (regardless of the choice of N̂k) for

these parameters. We take N̂k ∼Poisson(10) for all k, and simulate a single data realization m̂.

Using the data, we can evaluate SAA-SubOpt(α) and Instability(α) explicitly. We plot them in

the first panel of Fig. 5. Notice that as expected, SAA-SubOpt(α) increases steadily in α, however,

perhaps surprisingly, Instability(α) increases at first, before ultimately decreasing. The reason is

that as in Example 2.2, xk(α,p0,m̂k) = I [p̂k1(α)≥ 1/2]. For small positive α, p̂k1(α) is generally

closer to 1
2

than p̂k1, and since 1
2

is the critical threshold where xk(α,p0,m̂) changes values, the

solution is less stable. Hence, Instability(α) increases for small α. Because of this initial increasing

behavior, the “gains” in stability never outweigh the costs of sub-optimality, and hence decoupling

is best. Indeed, the first panel of Fig. EC.1 in the appendix shows αS-SAA
p0

= αOR
p0

= 0.0.

We earlier observed that the benefits of pooling depend on the anchor. We next consider the

same parameters and data as above but let p01 = .75. The second panel of Fig. 5 shows the

Sub-Optimality-Instability tradeoff. We see here that again Sub-Optimality(α) is increasing, and,

perhaps more intuitively, Instability(α) is decreasing. Hence, there is a positive α that minimizes

their sum, and the second panel Fig. EC.1 shows αS-SAA
p0

≈ αOR
p0
≈ 16.16.

Finally, as mentioned previously, the potential benefits of data-pooling also depends on the

problem structure. The Sub-Optimality-Instability tradeoff allows us to study this dependence.

Consider again letting p01 = .3, but now consider newsvendor problems with critical fractile s= .2.

We again see a benefit to pooling. The Sub-Optimality-Instability tradeoff is in the last panel of

Fig. 5. The last panel of Fig. EC.1 shows αS-SAA
p0

≈ 2.42 and αOR
p0
≈ 2.22.

In summary, while αS-SAA
h identifies a good choice of shrinkage in many settings, Sub-Optimality

and Instability graphs as above often illuminate why this is a good choice of shrinkage, providing

insight. This is particularly helpful for complex optimization problems for which it may be hard

to reason about xk(α,h(m̂),m̂k).
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Figure 5 Sub-Optimality-Instability Curves. We consider K = 10,000 newsvendors where pk1 ∼

Uniform[.6, .9], N̂k ∼Poisson(10), and a single data draw. The values of p01 and the critical fractile s is

given in each panel. In the first panel, instability initially increases, and there is no benefit to pooling.

In the second and third, instability is decreasing and there is a benefit to pooling.

6. Computational Experiments

In this section we study the empirical performance of Shrunken-SAA on synthetic and real data. All

code for reproducing these experiments and plots is available at https://github.com/vgupta1/

JS_SAA We focus on assessing the degree to which Shrunken-SAA is robust to violations of the

assumptions underlying Theorems 4.2 to 4.7. Specifically, we ask how Shrunken-SAA performs

when i) K is small to moderate, and not growing to infinity; ii) Assumption 3.1 is violated, i.e.,

each N̂k is fixed and non-random; iii) the true Pk do not have finite, discrete support; or iv) N

grows large.

For simplicity, we take each subproblem to be a newsvendor problem with critical fractile s=

95%. Since the performance of Shrunken-SAA depends on the true distributions pk, we use real

sales data from a chain of European pharmacies. (See Section 6.1 for more details.)

We compare several policies: The first two, SAA and KS, are decoupled-benchmarks. Recall that

for the newsvendor problem, SAA, i.e., x(0,p0,m̂), is also the optimal solution to a distributionally

robust formulation using a Wasserstein ambiguity set (Esfahani and Kuhn (2018)). We define KS

to be an optimal solution to a distributionally robust formulation of the newsvendor problem using

the Kolmogorov-Smirnov ambiguity set (see Appendix E.3 for formal definition). This set enjoys

strong large-sample statistical guarantees (Bertsimas et al. 2018).

The next three policies, JS-Fixed, S-SAA-Fixed and Oracle-Fixed, each shrink towards the

uniform distribution, i.e., a fixed anchor. They differ in the amount of shrinkage. JS-Fixed, i.e.,

x(αJS
p0
,p0,m̂), pools according to Theorem 2.1; S-SAA-Fixed, i.e., x(αS-SAA

p0
,p0,m̂), is our Shrunken-

SAA algorithm; and Oracle-Fixed, i.e., x(αOR
p0
,p0,m̂) is the oracle shrinkage.

https://github.com/vgupta1/JS_SAA
https://github.com/vgupta1/JS_SAA
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The next two policies, S-SAA-Beta and Oracle-Beta, each shrink towards a data-driven choice

of anchor in P, where P consists of scaled beta-distributions (cf. Appendix E.3). S-SAA, i.e.,

x(αS-SAA
P , hP(m̂),m̂), uses hP , while Oracle-Beta, i.e., x(αOR

P ,q
OR
P ,m̂), uses the oracle anchor.

Finally, the last set of policies, JS-GM, S-SAA-GM and Oracle-GM each shrink towards the

grand-mean distribution, p̂GM. They differ in the amount of shrinkage. JS-GM, pools according to

Theorem 2.1, S-SAA-GM is our Shrunken-SAA Algorithm, and Oracle-GM is the oracle pooling.

Intuitively, the difference between the JS policies and the decoupled policies illustrates the value

of data-pooling in a “generic” fashion that does not account for the shape of the cost functions.

By contrast, the difference between the Shrunken-SAA policies and the JS policies quantifies the

additional benefit of tailoring the amount of pooling to the specific newsvendor cost function.

Similarly, the difference between the “Beta” anchor versions and the Fixed versions help quantify

the value of a good choice of anchor, and, as we will see, the GM variants highlight that the

grand-mean is often a good heuristic choice of anchor.

Before presenting the details, we summarize our main findings. When N is moderate to large, all

methods (including Shrunken-SAA) perform comparably to the full-information solution. When N

is small to moderate, however, our Shrunken-SAA policies provide a significant benefit over SAA

and a substantial benefit over JS variants that do not leverage the optimization structure. This is

true even for moderate K (K ≤ 100) and even when N̂k are fixed (violating Assumption 3.1). The

value of d has little effect on the performance of Shrunken-SAA; it strongly outperforms decoupling

even as d→∞. Finally, our GM heuristic has very strong performance, comparable to the Beta

variants which optimize the choice of anchor, at a much smaller computational cost.

For ease of comparison in what follows, we present all results as “% Benefit over SAA,” i.e.,

bigger values are better. In many cases, to aid readability, we only present a subset of benchmark

policies on a graph. In these cases, larger tables with all benchmarks are available in Appendix E.

6.1. Data Description

Our dataset consists of daily sales at the store level for a European pharmacy chain with locations

across 7 countries. We treat these aggregated store sales as if they were the realized daily demand of

a single product. Although this is clearly a simplification of the underlying inventory management

problem, we do not believe it significantly impacts the study of our key questions outlined above.

Additionally, aggregating over products makes demand censoring insignificant.

The original dataset contains 942 days of data across 1115 stores. After some preliminary data-

cleaning (see Appendix E.3), we are left with 629 days. Due to local holidays, individual stores

may still be closed on these 629 days. Almost all (1105) stores have at least one missing day, and

16% of stores have 20% of days missing.



34 Gupta and Kallus: Data-Pooling in Stochastic Optimization

0.0%

5.0%

10.0%

15.0%

10 100 1000

K

B
en

efi
t

ov
er

S
A

A
(%

)

(a) N̂k ∼Poisson(10)

0.0%

4.0%

8.0%

12.0%

10 100 1000

K

B
en

efi
t

ov
er

S
A

A
(%

)

(b) N̂k = 10 (non-random)

Oracle-GM

S-SAA-GM

JS-GM

Oracle-Fixed

S-SAA-Fixed

JS-Fixed

Figure 6 Robustness to Assumption 3.1. Performance of policies on simulated data. In the first panel, the

amount of data per store follows Assumption 3.1 with Nk = 10. In the second panel, the amount of data

is fixed at N̂k = 10 for all runs. Error bars show ±1 standard error.

Stores vary in size, available assortment of products, promotional activities and prices, creating

significant heterogeneity in demand. The average daily demand ranges from 3,183 to 23,400. The

first panel of Fig. EC.3 in Appendix E plots the average daily demand by store. The second

panel provides a more fine-grained perspective, showing the distribution of daily demand for a few

representative stores. The distributions are quite distinct, at least partially because the overall

scale of daily sales differs wildly between stores.

Finally, with the exception of Appendix E.7, we discretize demand by dividing the range of

observations into d equally-spaced bins to form the true distributions pk. Figure EC.2 plots pk for

some representative stores when d= 20. We consider these distributions to be quite diverse and far

from the uniform distribution (our fixed anchor). We also plot the distribution of the 95% quantile

with respect to this discretization in the second panel of Fig. EC.2. Note that it is not the case

that 95% quantile occurs in the same (discretized) bin for each pk, i.e., the quantile itself displays

some heterogeneity, unlike Example 2.3.

6.2. An Idealized Synthetic Dataset

We first consider an ideal setting for Shrunken-SAA. Specifically, after discretizing demand for

each store into d= 20 buckets, we set pk to be the empirical distribution of demand over the entire

dataset with respect to these buckets. We then simulate synthetic data according to Eq. (2.1)

under Assumption 3.1. We train each of our methods using this data, and then evaluate their true

performance using the pk. We repeat this process 200 times. The left panel of Fig. 6 shows the

average results for a subset of the policies. Table EC.1 in the appendix includes all policies.
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As suggested by Theorems 4.5 and 4.6, Shrunken-SAA significantly outperforms decoupling even

for K as small as 10. For large K, the benefit is as large as 10− 15%. Both of our Shrunken-SAA

policies converge quickly to their oracle benchmarks. We note the JS policies also outperform the

decoupled solutions, but by a smaller amount (5-10%). For both sets of policies, shrinking to the

grand mean outperforms shrinking to the uniform distribution, since, as observed earlier, the true

distributions are far from uniform and have quantiles far from the uniform quantile. Indeed, the

grand-mean policies perform comparably to our Beta policies (cf. Table EC.1).

We also illustrate the standard deviation of the performance for each of these methods in

Fig. EC.4 in Appendix E. For all approaches, the standard deviation tends to zero as K →∞,

because the true performance concentrates at its expectation for each method. For small K, our

Shrunken-SAA approaches exhibit significantly smaller standard deviation than SAA, and, for

larger K, the standard deviation is comparable to the oracle values, and much less than JS variants.

The reduction in variability compared to SAA follows intuitively since pooling increases stability.

Finally, we plot the average amount of shrinkage across runs as a function of K for each method

in Fig. EC.5 in Appendix E. We observe that the shrinkage amount converges quickly as K→∞,

and that our Shrunken-SAA methods pool much more than the JS variants. In particular, when

shrinking to the grand-mean or to an optimized Beta distribution, our Shrunken-SAA methods use

a value of α≥ 30 for large K, i.e., placing 3 times more weight on the anchor than the data, itself.

By contrast, JS variants eventually engage in almost no pooling.

6.3. Relaxing Assumption 3.1

We next consider robustness to Assumption 3.1. Specifically, we repeat the experiment of the

previous section but now simulate data with N̂k = 10 for all k and all runs. Results are shown in

the second panel of Fig. 6, and Figs. EC.4 and EC.5 and Table EC.2 in Appendix E. We see the

same qualitative features. Specifically, our Shrunken-SAA methods converge to oracle performance,

and, even for moderate K, they significantly outperform decoupling. The JS methods offer a much

smaller improvement over SAA. Many of the other features with respect to convergence in α and

standard deviation of the performance are also qualitatively similar.

6.4. Historical Backtest

For our remaining tests we consider a more realistic setting for Shrunken-SAA. Specifically, we

employ repeated random subsampling validation with our data to assess each method: for each store

we select N̂k = 10 days randomly from the dataset, then train each method with these points, and

finally evaluate their out-of-sample performance on Ntest = 10 data points, again chosen randomly

from the dataset. Note that unlike the previous experiment, it is possible that some of sampled
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training days have missing data for store k. In this cases, we will have fewer than N̂k points when

training store k. Similar missing data occur for the Ntest testing points. We prefer repeated, random

subsampling validation to more traditional 5-fold cross-validation when evaluating our methods,

in order to finely control the number of data points N̂k used in each subproblem.

We evaluate each of our policies using our historical backtest set-up with d= 20 in Fig. 7. For

readability, the figure shows a subset of policies. Table EC.3 in the appendix shows all policies.

Importantly, we see the same features as in our synthetic data experiment: our Shrunken-SAA

methods converge to oracle optimality and offer a substantive improvement over SAA for large

enough K. They also outperform JS variants that do not leverage the optimization structure.

6.5. Other Experiments with Synthetic and Real Data

Appendices E.7 to E.9 in the appendix study the robustness of Shrunken-SAA to the number

of support points d, its performance as N →∞, and compares computationally cheaper variants

of the algorithm that substitute 2–fold or 5–fold cross-validation for the LOO validation step.

We omit details for space. Generally, we find that: i) Shrunken-SAA is quite robust to d. ii) As

N increases Shrunken-SAA retains many of SAA’s strong large-sample properties. Namely, both

methods approach full-information optimum, so there is less “room” to improve upon decoupling,

but Shrunken-SAA offers some marginal benefit for large K. iii) Other forms of cross-validation

perform quite well and are viable alternatives in computationally limited settings.

7. Conclusion and Future Directions

In this paper, we introduce and study the data-pooling phenomenon for stochastic optimization

problems, i.e., that when solving many separate data-driven stochastic optimization subproblems,

there exist algorithms which pool data across subproblems that outperform decoupling, even when

1) the underlying subproblems are distinct and unrelated, and 2) data for each subproblem are

independent. We propose a simple algorithm Shrunken-SAA that exploits this phenomenon by

pooling data in a particular fashion motivated by a Bayes model. We prove that under frequentist
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assumptions, in the limit as the number of subproblems grows large, Shrunken-SAA identifies

whether pooling in this way can improve upon decoupling, and, if so, the ideal amount to pool,

even if the amount of data per subproblem is fixed and small. In other words, Shrunken-SAA

identifies an optimal level of pooling in the so-called small-data, large-scale regime. In particular,

we prove explicit high-probability bounds on the performance of Shrunken-SAA relative to an

oracle benchmark that decay like Õ(1/
√
K) where K is the number of subproblems.

Shrunken-SAA need not offer a strict benefit over decoupling in all instances. Hence, we also

introduce the Sub-Optimality-Instability tradeoff, a decomposition of the benefits of data-pooling

that provides strong intuition into the kinds of problems for which data-pooling offers a benefit.

Overall, this intuition and empirical evidence with real data suggest Shrunken-SAA offers signifi-

cant benefits in the small-data, large-scale regime for a variety of problems.

We hope our work inspires fellow researchers to think of data-pooling as an “additional knob”

that might be leveraged to improve performance when designing algorithms for data-driven

decision-making under uncertainty.
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Online Appendix: Data-Pooling for Stochastic Optimization

Appendix A: Proof of Theorem 2.1: Data-Pooling for MSE

Proof of Theorem 2.1. First note that
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+

∣∣∣∣∣ 1
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(
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(µk− µ̂k(αJS))2 | N̂

]
−E

[
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We begin by showing Eq. (EC.A.1) converges to zero in probability. Notice Eq. (EC.A.1) is the

maximal deviation of a stochastic process (indexed by α) composed of averages of independent,

but not identically distributed, random variables. Such processes are discussed in Theorem 4.1,

and we follow that approach to establish convergence here.

We first claim that the constants Fk = 4a2
max yield an envelope. Specifically,

|µk− µ̂k(α)| ≤
∣∣p>ak∣∣+ ∣∣p̂(α)>ak

∣∣ ≤ 2‖ak‖∞.

which is at most 2amax. Hence (µk− µ̂k(α))2 ≤ Fk.

We next show that the set

{(
(µk− µ̂k(α))2

)K
k=1

: α≥ 0

}
⊆RK has pseudo-dimension at most 3.

Indeed, this set is contained within the set{(
(θ(µk−µk0) + (1− θ)(µk− µ̂k))2

)K
k=1

: θ ∈R
}
⊆ RK

This set is the range of a quadratic function of θ, and is hence contained within a linear subspace

of dimension at most 3. Thus, it has pseudo-dimension at most 3.

Since this set has pseudo-dimension at most 3, there exists a constant A1 (not depending on

K or other problem parameters) such that the corresponding Dudley integral can be bounded as
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J ≤A1‖F ‖2 (Pollard 1990, pg. 37). Theorem 4.1 with p= 1 thus implies there exists a constant A2

(not depending on K or other problem parameters) such that

E

[
sup
α≥0

∣∣∣∣∣ 1

K

K∑
k=1

(
(µk− µ̂k(α))2−E

[
(µk− µ̂k(α))2

])∣∣∣∣∣
]
≤ A2 · a2

max/
√
K.

Markov’s inequality then yields the convergence of Eq. (EC.A.1) to 0.

We will next show that Eq. (EC.A.2) converges to 0. Let θJS = αJS
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αAP+N̂
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proceed to show αJS→p α
AP. We show this second convergence by showing that both the numerator

and denominator converge in probability. For the numerator,
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Entirely analogously, 0≤ (µ̂k−µk0)
2

= ((p̂k−p0)>ak)
2 ≤ 4a2

max. Hence, by Hoeffding’s inequal-
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as K →∞. Recall E
[
(µk0− µ̂k)2 | N̂

]
= σ2

k/N̂ + (µk0 − µk)2 by the bias-variance decomposition.

Combining the numerator and denominator, we have by Slutsky’s Theorem that αJS→ αAP. �

Appendix B: Auxiliary Lemmas

In this section,, we first prove some auxiliary lemmas that we will need when proving our perfor-

mance guarantees. These results are largely elementary or well-known facts about tails of random

variables.

Lemma B.1 (Bounding a Gaussian Integral). Suppose t≥ 1. Then∫ 1
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where we have a standard inequality for the tail CDF of the normal distribution:
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Substituting above completes the proof. �

Lemma B.2 (Lp-norms of Products). For any p ≥ 1 and random variables X, Y . Then,

‖XY ‖p ≤ ‖X‖2p‖Y ‖2p.

Proof. By Hölder’s inequality, E[|XY |p] ≤
√

E[X2p] ·
√
E[Y 2p]. Taking the pth root of both

side yields the result. �
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The following lemma is a specific case of Lemma 2.2.2 of Van der Vaart and Wellner (1996) with

explicit constants:

Lemma B.3 (Tails of the Maximum). Suppose the random variables Y1, . . . , YK satisfy

E exp(β0Yk) ≤ 2 for all k = 1, . . . ,K, K ≥ 2. Let Ymax = maxk=1,...,K Yk, and define β = β0
1+logK

.

Then, E exp(βYmax)≤ 6.

Proof. By definition of β,

t≤ βYmax ⇐⇒ 1≤ eβ0Ymax−t(1+logK). (EC.B.1)

Then, writing exp(·) as an integral,

exp(βYmax) = e+

∫ βYmax
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etdt
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1
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where in the last step we have bounded the maximum by a sum and extended the limits of

integration because the integrand is positive. Now take expectations of both sides and evaluate the

integral, yielding

E [exp(βYmax)] ≤ e+ 2K

∫ ∞
1

e−t logKdt = e+
2

logK
≤ 6,

since K ≥ 2. �

Recall, for any random variable Y and function Ψ(·), ‖Y ‖Ψ ≡ inf {β > 0 :E [Ψ (|Y |β−1)]≤ 1} is

the Orlicz norm of Y with respect to Ψ(·).

Lemma B.4 (Relating Ψ-norm and Lp-norm). Fix p ≥ 1. Let Ψ(t) = 1
5

exp(t2), and ‖ · ‖Ψ be

the corresponding Orlicz norm. Then,

i) For any t≥ 0, tp ≤
(
p
e

)p
et.

ii) For any t≥ 0, tp ≤
(
p
2

) p
2 e−

p
2 et

2
.

iii) Let Cp = 51/p
(
p
2

)1/2
e−1/2. For any random variable Y , ‖Y ‖p ≤Cp‖Y ‖Ψ.

iv) For any random variable Y ≥ 1, ‖
√

logY ‖p ≤ 51/p
(
p
2e

)1/2
max(1,

√
E[Y ]/2).

Proof. Consider the optimization maxt≥0 t
pe−t. Taking derivatives shows the optimal solution

is t∗ = p, and the optimal value is ppe−p. Hence, tpe−t ≤ ppe−p for all t. Rearranging proves the first

statement. The second follows from the first since, tp = (t2)(
p
2 ) ≤

(
p
2

)p/2
e−

p
2 et

2
.
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For the third, statement, let β = ‖Y ‖Ψ, i.e., E
[
exp

(
Y 2

β2

)]
≤ 5. Then,
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Rearranging and taking the pth root of both sides proves the third statement.

Finally, for the last statement, we will first bound ‖
√

logY ‖Ψ where Ψ(t) = 1
5

exp(t2). To this

end, it suffices to find a B > 0 such that

1

5
E
[
exp(log(Y )/B2)

]
≤ 1 or, equivalently, E

[
Y 1/B2

]
≤ 5.

We have two possibilities: Suppose first E[Y ] ≤ 5. Then B = 1 is feasible above, and so

‖
√

log(Y )‖Ψ ≤ 1.

On the other hand, suppose E[Y ]> 5. Consider θ = 4
E[Y ]−1

∈ (0,1). Then, from convexity of the

function t 7→E[Y t],

E[Y θ] ≤ θE[Y 1] + (1− θ)E[Y 0] = θE[Y ] + (1− θ) = 5.

Thus, if we let B =
√
E[Y ]/2, we have

E
[
Y 1/B2

]
= E

[
Y 4/E[Y ]

]
≤ E

[
Y 4/(E[Y ]−1)

]
= E[Y θ]≤ 5.

Hence, ‖
√

log(Y )‖Ψ ≤
√
E[Y ]/2. Combining both cases proves ‖

√
log(Y )‖Ψ ≤max(1,

√
E[Y ]/2).

Apply Part iii) to complete the proof. �

Lemma B.5 (Properties of Poisson Random Variables). Suppose N̂k ∼ Poisson(Nk), for

k = 1, . . . ,K, where Nk ≥ 1 for all k, and K ≥ 2. Let N̂max ≡maxk N̂k, Nmax ≡maxkNk, N̂min ≡

mink N̂k and Nmin ≡minkNk. Then for any p≥ 1:

i) E
[
exp

(
N̂k
2Nk

)]
≤ 2,

ii) E
[
exp

(
Nk

2(N̂k+1)

)]
≤ 2,

iii) E
[
exp

(
N̂max

2(1+logK)Nmax

)]
≤ 6,

iv) E
[
exp

(
Nmin

2(1+log(K))(N̂min+1)

)]
≤ 6,

v) ‖N̂max‖p ≤ 61/p
(

2p
e

)
Nmax(1 + log(K)) ≤ 61/p

(
6p
e

)
Nmax log(K),

vi)
∥∥∥√ N̂max

N̂min+1

∥∥∥
p
≤ 61/p

(
6p
e

)√
λmax
λmin
· log(K).

Proof.

Part i) Let β0 ≡ log
(

1 + log 2
Nk

)
. From the Poisson moment generating function,

E
[
exp(β0N̂k)

]
= exp(Nk(e

β
0 − 1)) = 2.
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Thus, to prove i), it suffices to show that β0 = log
(

1 + log 2
Nk

)
≥ 1

2Nk
. The function N 7→

log
(
1 + log 2

N

)
− 1

2N
is positive at N = 1 and tends to zero as N →∞. By differentiating, we see

it has one critical point at N = log 2
2 log 2−1

which by inspection is a maximum. Hence, it is always

non-negative, proving the claim and the first statement.

Part ii) Use the Poisson probability mass function to write

E

[
exp

(
Nk

2(N̂k + 1)

)]
= e−Nk

∞∑
n=0

Nn
k

n!
· exp

(
Nk

2(n+ 1)

)
= e−Nk

∞∑
n=0

Nn
k

n!
·
∞∑
j=0

(
Nk

2(n+ 1)

)j
1

j!

= e−Nk
∞∑
j=0

1

j!

(
Nk

2

)j
·
∞∑
n=0

Nn
k

n!

(
1

n+ 1

)j
,

where the first equality uses the Taylor expansion of exp(·) and the second from reversing the

summations. Since 1
n+1
≤ i

n+i
for all n, i≥ 1, we obtain that(

1

n+ 1

)j
≤ 1

n+ 1
· 2

n+ 2
· · · j

n+ j
=

n!j!

(n+ j)!
.

Substituting above yields

E

[
exp

(
Nk

2(N̂k + 1)

)]
≤ e−Nk

∞∑
j=0

1

j!

(
Nk

2

)j
·
∞∑
n=0

Nn
k

n!

n!j!

(n+ j)!

= e−Nk
∞∑
j=0

1

2j
·
∞∑
n=0

Nn+j
k

(n+ j)!

= e−Nk
∞∑
j=0

1

2j
·
∞∑
n=j

Nn
k

n!

≤ e−Nk
∞∑
j=0

1

2j
·
∞∑
n=0

Nn
k

n!

= 2.

Parts iii) and iv) These results follow by combining Lemma B.3 with parts i) and ii) respectively.

Part v) Let β = 1
2(1+logK)Nmax

. Then, from Lemma B.4 Part i),

E[N̂p
max] = β−pE[(βN̂max)p] ≤ β−p

(p
e

)p
E[exp(βN̂max)] ≤ 6

(
2p

e

)p
Np

max(1 + logK)p,

where the second inequality uses Part iii). Taking the pth root of both sides proves the first state-

ment. The second follows because K ≥ 2 implies that 1 + logK ≤ 3 logK.
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Part vi) Applying an identical argument to the previous part but with Part iv) , we have

E
[
(N̂min + 1)−p

]
≤ 6

(
2p

eNmin

)p
(1 + logK)p.

Therefore, we have∥∥∥∥∥∥
√

N̂max

N̂min + 1

∥∥∥∥∥∥
p

p

=E

( N̂max

N̂min + 1

)p/2
≤
√

EN̂p
max ·

√
E
[
(N̂min + 1)−p

]
(Cauchy-Schwarz Inequality)

≤ 6 · 2p (log(K) + 1))pe−ppp
(
Nmax

Nmin

)p/2
= 6 ·

(
2p

e

)p
(log(K) + 1)

p

(
λmax

λmin

)p/2
.

Finally, since K ≥ 2, we have 1 + logK ≤ 3 logK. Making this substitution and simplifying com-

pletes the proof. �

Appendix C: Deferred Proofs for Sub-Optimality Guarantees from Section 4

In this section, we provide the complete proofs for the high-probability sub-optimality bounds

presented in Section 4.

C.1. Proof of Theorem 4.2: Shrunken-SAA with Fixed Anchors for Strongly Convex Problems

We first prove the results summarized in Section 4.2.

C.1.1. Proof of continuity lemma and packing number bounds As mentioned in the

main text, the key idea is to establish continuity of the solutions xk(α,p0,m̂k) in the parameters.

Lemma C.1 (Continuity properties of xk(α,p0,m̂k)). Under the assumptions of Theo-

rem 4.2,

i) (Continuity in anchor) For any α≥ 0, and any p,p∈∆d,

‖xk(α,p,m̂k)−xk(α,p,m̂k)‖2 ≤
L

γ
· ‖p−p‖1.

ii) (Continuity in m̂k) For any m̂k such that N̂k ≥ 1 we have

‖xk(α,p0,m̂k)−xk(α,p0,m̂k−ei)‖2 ≤
4L

γN̂k

.

iii) (Continuity in α) For any α, α≥ 0, and p0 ∈∆d,

‖xk(α,p0,m̂k)−xk(α,p0,m̂k)‖2 ≤
4L

γ
· |α−α|
N̂k + 1

.
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iv) (Continuity at α=∞) For any α≥ 0 and p0 ∈∆d such that max(α, N̂k)> 0,

‖xk(α,p0,m̂k)−xk(∞,p0,m̂k)‖2 ≤
2L

γ

N̂k

N̂k +α
.

Proof. Fix k. For any q ∈∆d, define

fq(x)≡ q>ck(x), x(q)∈ arg min
x∈Xk

fq(x).

We first prove the general inequality for any q,q ∈∆d,

‖x(q)−x(q)‖2 ≤
L

γ
· ‖q− q‖1. (EC.C.1)

We will then use this general purpose inequality to prove the various parts of the lemma by choosing

particular values for q and q.

Note that since each cki(x) is γ-strongly convex for each i, fq(x) is also γ-strongly convex. From

the first-order optimality conditions, ∇fq(x(q))> (x(q)−x(q))≥ 0. Then, from strong-convexity,

fq(x(q))− fq(x(q)) ≥ ∇fq(x(q))> (x(q)−x(q)) +
γ

2
‖x(q)−x(q)‖22

≥ γ

2
‖x(q)−x(q)‖22.

A symmetric argument holds switching q and q yielding

fq(x(q))− fq(x(q))≥ γ

2
‖x(q)−x(q)‖22.

Adding yields,

γ‖x(q)−x(q)‖22 ≤
(
fq(x(q))− fq(x(q))

)
+
(
fq(x(q))− fq(x(q))

)
= (q− q)

> (
ck(x(q))− ck(x(q))

)
≤
∥∥ck(x(q))− ck(x(q))

∥∥
∞‖q− q‖1

≤ L‖x(q)−x(q)‖2‖q− q‖1,

by the Hölder inequality and assumed Lipschitz constant. Rearranging proves Eq. (EC.C.1).

We can now prove each part of the lemma.

Part i) First suppose α+ N̂k > 0. Take

q=
α

α+ N̂k

p+
N̂k

N̂k +α
p̂k, and q=

α

α+ N̂k

p+
N̂k

N̂k +α
p̂k.

Then, ‖q−q‖1 = α

N̂k+α
‖p−p‖1 ≤ ‖p−p‖1. Substituting into Eq. (EC.C.1) proves the result in

this case. Next, suppose α+ N̂k = 0. Then, applying Eq. (EC.C.1) with q= p and q= p yields the

result.
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Part ii) First suppose N̂k ≥ 2. Take

q=
α

N̂k +α
p0 +

1

N̂k +α
m̂k and q=

α

N̂k +α− 1
p0 +

1

N̂k +α− 1
(m̂k−ei).

Then,

‖q− q‖1 ≤
∣∣∣∣ α

N̂k +α
− α

N̂k +α− 1

∣∣∣∣‖p0‖1 +

∣∣∣∣ 1

N̂k +α
− 1

N̂k +α− 1

∣∣∣∣‖m̂k‖1 +
1

N̂k +α− 1

=
2

N̂k− 1 +α

≤ 4

N̂k

.

Substituting into Eq. (EC.C.1) proves the result when N̂k ≥ 2.

Next, when N̂k = 1, let q be as above and q = p0. Then ‖q− q‖1 ≤ 2≤ 4

N̂k
. Again, substituting

into Eq. (EC.C.1) proves the result.

Part iii) Notice if N̂k = 0, then ‖xk(α,p0,m̂k)−xk(α,p0,m̂k)‖2 = 0 and the bounds holds trivially.

Hence, suppose N̂k ≥ 1. Consider taking q= p̂k(α) and q= p̂k(α). Then

‖q− q‖1 =

∥∥∥∥∥
((

α

N̂k +α
− α

N̂k +α

)
p0 +

(
N̂k

N̂k +α
− N̂k

N̂k +α

)
p̂k

)∥∥∥∥∥
1

≤

(∣∣∣∣ α

N̂k +α
− α

N̂k +α

∣∣∣∣+
∣∣∣∣∣ N̂k

N̂k +α
− N̂k

N̂k +α

∣∣∣∣∣
)

= 2

∣∣∣∣∣ N̂k

N̂k +α
− N̂k

N̂k +α

∣∣∣∣∣ ,
=

2N̂k |α−α|
(N̂k +α)(N̂k +α)

,

where second equality follows because
∣∣∣ α

N̂k+α
− α

N̂k+α

∣∣∣= ∣∣∣ N̂k
N̂k+α

− N̂k
N̂k+α

∣∣∣. Next write,

2N̂k |α−α|
(N̂k +α)(N̂k +α)

≤ 2 |α−α|
(N̂k +α)

≤ 2 |α−α|
N̂k

≤ 4 |α−α|
(N̂k + 1)

,

where the last inequality follows because 1
N
≤ 2

N+1
for N ≥ 1.

Substituting into Eq. (EC.C.1) completes the proof of part iii).

Part iv) Take q= p0 and q= p̂k(α). Then,

‖q− q‖1 =

∥∥∥∥∥
(

1− α

N̂k +α

)
p0 +

(
0− N̂k

N̂k +α

)
p̂k

∥∥∥∥∥
1

≤
∣∣∣∣1− α

N̂k +α

∣∣∣∣+
∣∣∣∣∣0− N̂k

N̂k +α

∣∣∣∣∣
= 2

N̂k

N̂k +α
.

Again, substituting into Eq. (EC.C.1) proves the inequality. �
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Lemma C.2 (Packing Numbers for Strongly-Convex Problems). Under the assumptions

of Theorem 4.2, we have for any 0< ε≤ 1,

D
(
ε‖FPerf‖2, {Z(α,p0) : α≥ 0}

)
≤ 2 +

N̂max

N̂min + 1

32L4

C2γ2ε2
, (EC.C.2)

D
(
ε‖FLOO‖2,

{
ZLOO(α,p0) : α≥ 0

})
≤ 2 +

N̂max

N̂min + 1

32L4

C2γ2ε2
. (EC.C.3)

Proof. We first prove Eq. (EC.C.2). We proceed by constructing an ε
2
‖FPerf‖2-covering. The

desired packing number is at most the size of this covering. Recall, by Lemma 4.2, ‖FPerf‖22 =

C2

λ2avg
‖λ‖22, and let Zk(∞,p0) = 1

λavg

∑d

i=1 λkpkicki(xk(∞,p0)).

First, suppose N̂max = 0, which implies N̂k = 0 for all k= 1, . . . ,K. In this case, xk(α,p0,m̂k) =

xk(∞,p0) for all k, whereby {Z(α,p0) : α≥ 0}= {Z(∞,p0)}, and the covering number is 1, so the

above bound is valid.

Now suppose N̂max > 0. Let αmax = 4L2N̂max
Cγε

. For any α≥ αmax > 0,

|Zk(α,p0)−Zk(∞,p0)| ≤ λk
λavg

d∑
i=1

pki |cki(xk(α,m̂))− cki(xk(∞))|

≤ λk
λavg

d∑
i=1

pkiL‖xk(α,m̂))−xk(∞)‖2 (Lipschitz continuity)

≤ λk
λavg

2L2

γ
· N̂k

N̂k +α
(Lemma C.1, part iv) since α> 0).

It follows that for all α≥ αmax we have

‖Z(α,p0)−Z(∞,p0)‖2 ≤

 4L4

λ2
avgγ

2

K∑
k=1

λ2
k

(
N̂k

N̂k +α

)2
1/2

≤ 2L2‖λ‖2
λavgγ

(
N̂max

N̂max +α

)

≤ 2L2‖λ‖2
λavgγ

(
N̂max

N̂max +αmax

)

≤ 2L2‖λ‖2
λavgγ

(
1

1 + 4L2

Cγε

)

≤ 2L2‖λ‖2
λavgγ

· Cγε
4L2

=
ε

2
‖FPerf‖.

Thus, in our covering, we place one point at Z(∞,p0) to cover all points Z(α,p0) with α≥ αmax.
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Next let {α1, . . . , αM} be a γ(N̂min+1)Cε

8L2 covering of [0, αmax]. Note, M ≤ 1 + 8L2αmax

γ(N̂min+1)Cε
. We claim

{Z(α,p0), . . . ,Z(αM ,p0)} is an ε
2
‖FPerf‖-covering of {Z(α,p0) : α ∈ [0, αmax]}. Indeed, for any α ∈

[0, αmax], let αj be the nearest element of the α-covering. Then,

|Zk(α,p0)−Zk(αj,p0)| ≤ λk
λavg

d∑
i=1

pki |cki(xk(α,p0,m̂j))− cki(xk(αj,p0,m̂k))|

≤ λk
λavg

d∑
i=1

pkiL‖xk(α,p0,m̂j)−xk(αj,p0,m̂k)‖2

≤ λk
λavg

4L2

γ(N̂min + 1)
|α−αj| (Lemma C.1, part iii))

≤ λk
λavg

4L2

γ(N̂min + 1)
· γ(N̂min + 1)Cε

8L2

=
Cελk
2λavg

Thus, ‖Z(α,p0)−Z(αj,p0)‖2 ≤ Cε‖λ‖2
2λavg

= ε
2
‖FPerf‖ as was to be shown.

The total size of the covering is thus

1 +M ≤ 2 +
8L2αmax

γ(1 + N̂min)Cε
= 2 +

N̂max

1 + N̂min

32L4

C2γ2ε2
.

We next prove Eq. (EC.C.3). We again proceed by constructing an ε
2
‖FLOO‖-covering, since the

desired packing is at most the size of this covering. Recall by Lemma 4.2, ‖FLOO‖22 = C2

N2λ2avg
‖N̂‖22.

If N̂max = 0, then N̂k = 0 for all k, and {ZLOO(α,p0) : α≥ 0}= {0}, so this covering number is 1.

Otherwise, N̂max > 0. Let αmax = 4N̂maxL
2

Cγε
. Then, for any α≥ αmax > 0,

∣∣ZLOO
k (α,p0)−ZLOO

k (∞,p0)
∣∣≤ 1

Nλavg

d∑
i=1

m̂ki |cki(xk(α,m̂k−ei))− cki(xk(∞))|

≤ L

Nλavg

d∑
i=1

m̂ki‖xk(α,m̂k−ei)−xk(∞)‖2 (Lipschitz-Continuity)

≤ L

Nλavg

d∑
i=1

m̂ki

2L

γ

N̂k− 1

N̂k− 1 +α
(Lemma C.1, part iv))

≤ 2L2N̂k

γNλavg

N̂k

N̂k +α
,

because x 7→ x
x+α

is an increasing function. Thus, for any α≥ αmax,

‖ZLOO
k (α,p0)−ZLOO

k (∞,p0)‖2 ≤
2L2

γ

 K∑
k=1

N̂ 2
k

N 2λ2
avg

·

(
N̂k

N̂k +α

)2
1/2

≤ 2L2

γC

(
K∑
k=1

C2N̂ 2
k

N 2λ2
avg

)1/2

· N̂max

N̂max +α
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=
2L2

γC
‖FLOO‖2

N̂max

N̂max +α

≤ 2L2

γC
‖FLOO‖2

N̂max

N̂max +αmax

=
2L2

γC
‖FLOO‖2

1

1 + 4L2

Cγε

≤ 2L2

γC
‖FLOO‖2

Cγε

4L2

=
ε

2
‖FLOO‖2

Thus, in our covering, we place one point at ZLOO(∞,p0) to cover all points ZLOO(α,p0) for α≥ αmax.

Next let {α1, . . . , αM} be a γ(N̂min+1)Cε

8L2 -covering of [0, αmax]. Note, M ≤ 1 + 8L2αmax

γ(N̂min+1)Cε
. We claim

this covering induces an ε
2
‖FLOO‖2-covering of {ZLOO(α,p0) : α ∈ [0, αmax]}. Indeed, for any α ∈

[0, αmax], let αj be the nearest element of the α-covering. Then, for any k such that N̂k ≥ 1,

∣∣∣ZLOO
k (α,p0)−ZLOO

k (αj,p0)
∣∣∣

≤ 1

Nλavg

d∑
i=1

m̂ki |cki(xk(α,m̂ki−ei))− cki(xk(αj,m̂ki−ei))|

≤ L

Nλavg

d∑
i=1

m̂ki‖xk(α,m̂ki−ei))−xk(αj,m̂ki−ei)‖2 (Lipschitz Continuity)

≤ N̂k

Nλavg

· 4L2

γ(N̂min + 1)
· |α−αj| (Lemma C.1, part iii))

≤ N̂k

Nλavg

· 4L2

γ(N̂min + 1)
· γ(N̂min + 1)Cε

8L2

=C
N̂k

Nλavg

ε

2
.

On the other hand, for any k such that N̂k = 0,
∣∣ZLOO

k (α,p0)−ZLOO
k (αj,p0)

∣∣ = 0. In total, this

implies ‖ZLOO(α,p0)−ZLOO(αj,p0)‖22 ≤ ε2

4
C2

N2λ2avg
‖N̂‖22, which implies ‖ZLOO(α,p0)−ZLOO(αj,p0)‖ ≤

ε
2
‖FLOO‖2, as was to be proven.

Thus, the total size of the covering is at most

1 +M ≤ 2 +
8L2αmax

γ(1 + N̂min)Cε
= 2 +

N̂max

1 + N̂min

32L4

C2γ2ε2
.

This completes the proof. �

C.1.2. Maximal deviation bounds. We next use the above lemmas to bound the maximal

deviations of interest via Theorem 4.1.
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Lemma C.3 (Bounding the Maximal Deviations). Suppose 4L2

Cγ
≥ 1. Then, under the

assumptions of Theorem 4.2, there exists a universal constant A such that for any 0< δ < 1/2, the

following two statements each hold (separately) with probability at least 1− δ:

sup
α≥0

∣∣∣∣∣ 1

K

K∑
k=1

(Zk(α,p0)−E[Zk(α,p0)])

∣∣∣∣∣≤ A ·L

√
C

γ
·
(
λmax

λmin

)5/4

·
log(1/δ) ·

√
log(K)√

K
,

sup
α≥0

∣∣∣∣∣ 1

K

K∑
k=1

(
ZLOO
k (α,p0)−E[ZLOO

k (α,p0)]
)∣∣∣∣∣≤ A ·L

√
C

γ
·
(
λmax

λmin

)5/4

· log2(1/δ) · log3/2(K)√
K

.

Proof. To prove the first inequality, our strategy will be to apply Theorem 4.1 to the process

{Z(α,p0) : α≥ 0}. To that end, we first bound the variable J in Eq. (4.3). Recall by Lemma 4.2, the

size of the envelope is at most C ‖λ‖2
λavg

. Using the bound on the packing numbers from Lemma C.2,

J ≤ 9C
‖λ‖2
λavg

∫ 1

0

√√√√log

(
2 +

N̂max

N̂min + 1

32L4

C2γ2ε2

)
dε ≤ 9C

‖λ‖2
λavg

∫ 1

0

√
log

(
t

ε2

)
dε

where the second inequality uses 2≤ 2/ε2 and t= 2+ N̂max

N̂min+1

32L4

C2γ2
Substitute log(t/ε2) = 2 log(

√
t/ε)

in the integral above, and then apply Lemma B.1, yielding

J ≤ 9
√

2 ·C ‖λ‖2
λavg

√π/2 +

√√√√√log

√2 +
N̂max

N̂min + 1

32L4

C2γ2




≤ 9
√

2 ·C ‖λ‖2
λavg

(
√
π+ 1)

√√√√√log

√2 +
N̂max

N̂min + 1

32L4

C2γ2

,
where in the second inequality we have used

√
π log

(√
2 + N̂max

N̂min+1

32L4

C2γ2

)
≥
√
π log(

√
2) >

√
π/2.

Thus, taking the p-norm of both sides and rounding up the leading constant shows that there exists

a universal constant A1 such that

‖J‖p ≤ A1 ·C
‖λ‖2
λavg

∥∥∥∥∥∥∥
√√√√√log

√2 +
N̂max

N̂min + 1

32L4

C2γ2


∥∥∥∥∥∥∥
p

. (EC.C.4)

We next bound the p-norm on the right. Invoke Lemma B.4 Part iv) with Y =
√

2 + N̂max

N̂min+1

32L4

C2γ2
≥

√
2≥ 1. Notice

√
2 ·
√
E[Y ]≥ 1, which implies

max(1,
√
E[Y ]/2) ≤ 1 +

√
E[Y ]/2 ≤ (

√
2 + 1)

√
E[Y ]/2≤

√
E[Y ].

Hence, the norm on the right-hand side of Eq. (EC.C.4) is at most

51/p
( p

2e

)1/2

√√√√√E

√2 +
N̂max

N̂min + 1

32L4

C2γ2


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≤ 51/p
( p

2e

)1/2
4

√√√√2 +E

[
N̂max

N̂min + 1

]
· 32L4

C2γ2
, (Jensen’s Inequality)

≤ 51/p
( p

2e

)1/2
4

√
2 +

32L4

C2γ2
· 6
(

12

e

)2
λmax

λmin

log2K, (Lemma B.5 Part vi) )

We next use the assumptions on the parameters to rewrite this bound more simply. By the

assumption that 4L2

Cγ
≥ 1, we have 32L4

C2γ2
≥ 2. Moreover, since K ≥ 2, ( 12

e
logK)2 ≥ 1. Hence, the term

under the square root is at most 64L4

C2γ2
· 6
(

12
e

)2 λmax
λmin

log2K.

Substituting and simplifying thus shows there exists a universal constant A2 such that∥∥∥∥∥∥∥
√√√√√log

√2 +
N̂max

N̂min + 1

32L4

C2γ2


∥∥∥∥∥∥∥
p

≤ A2 · 51/p√p · L√
Cγ

(
λmax

λmin

)1/4√
logK

Hence, substituting above into Eq. (EC.C.4) shows there exists a universal constant A3 such

that

‖J‖p ≤ A3 ·L

√
C

γ
· λmax

λmin

5/4

· 5 1
p
√
p ·
√
K logK.

Finally, applying Theorem 4.1 yields

sup
α≥0

∣∣∣∣∣ 1

K

K∑
k=1

(Zk(α,p0)−E[Zk(α,p0)])

∣∣∣∣∣ ≤ A3 ·
(

25

δ

)1/p

p ·L

√
C

γ

(
λmax

λmin

)5/4 √
logK√
K

.

This expression is minimized to first order by taking p= 2 log(1/δ)≥ 1 and observing
(

25
δ

) 1
2 log(1/δ)

is at most a constant for 0< δ < 1
2
. Substituting and simplifying proves the first result.

The proof of the second result is very similar, applying Theorem 4.1 to the process{
ZLOO(α,p0) : α≥ 0

}
. The only key difference is the envelope of this process is now C

Nλavg
‖N̂‖2 ≤

C
√
K

Nλavg
N̂max (cf. Lemma 4.2). Thus, following the same steps that lead to Eq. (EC.C.4) but with

this envelope shows that J for this process satisfies

‖J‖p ≤ A4 ·
C
√
K

Nλavg

∥∥∥∥∥∥∥N̂max ·

√√√√√log

√2 +
N̂max

N̂min + 1

32L4

C2γ2


∥∥∥∥∥∥∥
p

≤ A4 ·
C
√
K

Nλavg

∥∥∥N̂max

∥∥∥
2p
·

∥∥∥∥∥∥∥
√√√√√log

√2 +
N̂max

N̂min + 1

32L4

C2γ2


∥∥∥∥∥∥∥

2p

,

for some constant A4, where the second inequality follows from Hölder’s Inequality (cf. Lemma B.2).

Following an argument entirely analogous to the one that followed Eq. (EC.C.4) but with p

replaced by 2p shows∥∥∥∥∥∥∥
√√√√√log

√2 +
N̂max

N̂min + 1

32L4

C2γ2


∥∥∥∥∥∥∥

2p

≤ A5 · 5
1
2p · √p · L√

Cγ
·
(
λmax

λmin

)1/4

·
√

logK
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We bound ‖N̂max‖2p using Lemma B.5 Part v).

Then combining these bounds proves

‖J‖p ≤ A6 ·L

√
C

γ
· λmax

λmin

5/4

61/pp3/2 ·
√
K log3/2(K).

Applying Theorem 4.1, substituting p= 2 log(1/δ)> 1 and simplifying yields the result. �

C.1.3. Proof of Theorem 4.2 We now can prove our main result:

Proof of Theorem 4.2. Combining Lemmas C.3 and 4.1 shows if 4L2

Cγ
≥ 1, then there exists a

universal constant A such that

SubOptp0,K(αS-SAA
p0

) ≤ A ·L

√
C

γ
·
(
λmax

λmin

)5/4

· log2(1/δ) · log3/2(K)√
K

.

If 4L2

Cγ
< 1, we can always increase L until 4L2

Cγ
= 1 as the larger L remains a valid Lipschitz constant.

Increasing the leading constant in this case proves the theorem. �

C.2. Deferred Proofs from Section 4.3: Shrunken-SAA with Data-Driven Anchors for

Strongly-Convex Problems

Our strategy to proving Theorems 4.3 and 4.4 is similar to proving to Theorem 4.2 except that

our process is now indexed by both α≥ 0 and q ∈P.

C.2.1. Maximal deviation bounds. Our first step is to use Lemma C.1, part i) to reduce

bounding the maximal deviations of ZK(·, ·), ZLOO

K (·, ·) to bounding the maximal deviations of

ZK(·,q), Z
LOO

K (·,q) for a finite number of fixed anchors q ∈P.

Lemma C.4 (Reduction to Maximal Deviations with Fixed Anchor). Under the assump-

tions of Theorem 4.3, if {q1, . . . ,qM} is an ε0-covering of P with respect to `1, then

sup
α≥0,q∈Im(h)

∣∣Z(α,q)−E[Z(α,q)]
∣∣ ≤ 2L2

γ
ε0 + max

j=1,...,M
sup
α≥0

∣∣Z(α,qj)−E[Z(α,qj)]
∣∣ , (EC.C.5)

sup
α≥0,q∈Im(h)

∣∣∣ZLOO
(α,q)−E[Z

LOO
(α,q)]

∣∣∣ ≤ 2L2

γ

N̂avg

Nλavg

ε0 (EC.C.6)

+ max
j=1,...,M

sup
α≥0

∣∣∣ZLOO
(α,qj)−E[Z

LOO
(α,qj)]

∣∣∣ .
Proof. Consider the first inequality. Fix some q ∈ P, and suppose qj is the closest member of

the covering. Then,∣∣Zk(α,q)−Zk(α,qj)
∣∣ ≤ λk

λavg

∣∣pk> (ck(xk(α,q,m̂k))− ck(xk(α,qj,m̂k))
)∣∣

≤ L · λk
λavg

∥∥xk(α,q,m̂k)−xk(α,qj,m̂k)
∥∥

2
(Lipschitz Continuity)

≤ L2

γ

∥∥q− qj∥∥
1

λk
λavg

(Lemma C.1, part i))

≤ L2

γ
ε0
λk
λavg
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Averaging over k shows
∣∣Z(α,q)−Z(α,qj)

∣∣ ≤ L2

γ
ε0. By Jensen’s inequality, this bound also implies

that
∣∣E[Z(α,q)]−E[Z(α,qj)]

∣∣≤E
[∣∣Z(α,q)−Z(α,qj)

∣∣]≤ L2

γ
ε0. Hence, by the triangle inequality,

∣∣Z(α,q)−E
[
Z(α,q)

]∣∣ ≤ ∣∣Z(α,q)−Z(α,qj)
∣∣+ ∣∣E [Z(α,q)−Z(α,qj)

]∣∣+ ∣∣Z(α,qj)−E
[
Z(α,qj)

]∣∣ .
≤ 2L2

γ
ε0 +

∣∣Z(α,qj)−E
[
Z(α,qj)

]∣∣ .
Substituting yields the first inequality in the result.

We next prove the second inequality. Fix some q ∈ P, and suppose qj is the closest member of

the covering. Then,∣∣∣ZLOO
(α,q)−ZLOO

(α,qj)
∣∣∣

≤ 1

KNλavg

K∑
k=1

d∑
i=1

m̂ki

∣∣cki(xk(α,q,m̂k−ei))− cki(xk(α,qj,m̂k−ei))
∣∣

≤ L

KNλavg

K∑
k=1

d∑
i=1

m̂ki

∥∥xk(α,q,m̂k−ei)−xk(α,qj,m̂k−ei)
∥∥

2
(Lipschitz Continuity)

≤ L2

Nλavgγ

∥∥q− qj∥∥
1

1

K

K∑
k=1

N̂k (Lemma C.1, part i))

≤ L2

γ

N̂avg

Nλavg

ε0

By Jensen’s inequality, this further implies that
∣∣∣E[Z

LOO
(α,q)]−E[Z

LOO
(α,qj)]

∣∣∣ ≤
E
[∣∣∣ZLOO

(α,q)−ZLOO
(α,qj)

∣∣∣] ≤ L2

γ

N̂avg

Nλavg
ε0. Using the triangle inequality as before and applying

the two bounds above yields our second inequality in the result. �

We next use the above lemmas to bound the maximal deviations of interest via Theorem 4.1:

Lemma C.5 (Bounding Maximal Deviations General Anchors). Under the assumptions of

Theorem 4.3, there exists a universal constant A such that for any 0 < δ < 1
2
, the following two

statements each hold (separately) with probability at least 1− δ:

sup
α≥0, q∈P

∣∣∣∣∣ 1

K

K∑
k=1

Zk(α,q)−E[Zk(α,q)]

∣∣∣∣∣ ≤ A ·max

(
C,

L2

γ
+L

√
C

γ

)(
λmax

λmin

)5/4
d0 log3/2(K) log(1/δ)√

K
,

sup
α≥0, q∈P

∣∣∣∣∣ 1

K

K∑
k=1

ZLOO
k (α,q)−E[ZLOO

k (α,q)]

∣∣∣∣∣ ≤ A ·max

(
C,

L2

γ
+ L

√
C

γ

)(
λmax

λmin

)5/4
d2

0 log7/2(K) log2(1/δ)√
K

.

Proof. First consider the case 4L2

Cγ
≥ 1. Fix some 0< ε0 <

1
2

and consider a minimal ε0-covering

of P with respect to `1. Denote its size by M . Necessarily, M ≤D1(ε0,P) (cf. Pollard 1990, pg.

10). Apply Lemma C.4 with this covering, and then apply the first part of Lemma C.3 with
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δ← δ/M to bound the remaining suprema. This shows that there exists a constant A1 such that

with probability at least 1− δ,

sup
α≥0, q∈P

∣∣∣∣∣ 1

K

K∑
k=1

Zk(α,q)−E[Zk(α,q)]

∣∣∣∣∣ ≤ A1 ·
L2

γ
ε0 + A1L

√
C

γ

(
λmax

λmin

)5/4
log1/2(K)√

K
·log

(
D1(ε0,P)

δ

)
.

Directly optimizing the choice of ε0 appears difficult. We instead take the (suboptimal) choice

ε0 = 1

2
√
K

and note ε0 <
1
2

since K ≥ 2. Furthermore, by assumptions on the parameters, d0 ≥ 1,

2 logK ≥ 1 and 2 log(1/δ)≥ 1. Hence,

log(D1(ε0,P)/δ) ≤ log(1/δ) + d0 log(1/ε0)

= log(1/δ) + d0 log 2 +
d0

2
logK

≤ 2d0 logK log(1/δ) + 2d0 logK log(1/δ) + d0 logK log(1/δ)

= 5d0 logK log(1/δ).

Substituting above shows there exists a constant A2 such that

sup
α≥0, q∈P

∣∣∣∣∣ 1

K

K∑
k=1

Zk(α,q)−E[Zk(α,q)]

∣∣∣∣∣ ≤ A2 ·
L2

γ
√
K

+ A2L

√
C

γ

(
λmax

λmin

)5/4
d0 log3/2(K) log(1/δ)√

K
,

≤ A3 ·

(
L2

γ
+ L

√
C

γ

)(
λmax

λmin

)5/4
d0 log3/2(K) log(1/δ)√

K
,

by collecting constants.

In the case 4L2

Cγ
< 1, we can always increase L until 4L2

Cγ
= 1 as the larger L remains a valid

Lipschitz constant. Substituting this increased L yields the leading term 3C/4 and proves the first

inequality.

The proof of the second inequality is very similar. Assume 4L2

Cγ
≥ 1. Again, applying Lemma C.4

over an ε0-covering and using Lemma C.3 with δ← δ
2M

to bound the remaining suprema shows

that with probability at least 1− δ/2,

sup
α≥0, q∈P

∣∣∣∣∣ 1

K

K∑
k=1

Zk(α,q)−E[Zk(α,q)]

∣∣∣∣∣
≤ A4 ·

L2

γ

N̂avg

Nλavg

ε0 + A4L

√
C

γ

(
λmax

λmin

)5/4
log3/2(K)√

K
· log2

(
2D1(ε0,P)

δ

)
.

Take the (suboptimal) choice ε0 = 1

2
√
K

. The same simplifications from above show that

log(2D1(ε0,P)/δ) ≤ log 2 + 5d0 logK log(1/δ) ≤ 7d0 logK log(1/δ),
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whereby with probability at least 1− δ/2,

sup
α≥0, q∈P

∣∣∣∣∣ 1

K

K∑
k=1

Zk(α,q)−E[Zk(α,q)]

∣∣∣∣∣
≤ A5 ·

L2

γ
√
K

N̂avg

Nλavg

+ A5L

√
C

γ

(
λmax

λmin

)5/4
d2

0 log7/2(K) log2(1/δ)√
K

.

It remains to bound the fraction
N̂avg

Nλavg
=

KN̂avg

KNλavg
. Notice KN̂avg ∼ Poisson(KNλavg). From

Lemma B.5 Part i) applied to KN̂avg and Markov’s inequality, we have that with probability at

least 1− δ/2,
N̂avg

Nλavg
≤ log(4/δ).

Substitute this bound above, apply the union bound and collect constants to show that with

probability at least 1− δ

sup
α≥0, q∈P

∣∣∣∣∣ 1

K

K∑
k=1

Zk(α,q)−E[Zk(α,q)]

∣∣∣∣∣ ≤ A6 ·

(
L2

γ
+ L

√
C

γ

)(
λmax

λmin

)5/4
d2

0 log7/2(K) log2(1/δ)√
K

.

In the case 4L2

Cγ
< 1, we can again increase L until 4L2

Cγ
= 1 since the larger L is still a valid

Lipschitz constant. Substituting this increased L yields the leading term 3C/4 and proves the

second claim. �

C.2.2. Proofs of Theorems 4.3 and 4.4. We can now prove the main results of the section

via our previously outlined strategy.

Proof of Theorems 4.3 and 4.4. The proofs of both theorems are identical. For both theorems,

by Lemma 4.1, the quantity to be bounded is bounded by the sum of the same two maximal

deviations. These are in turn bounded by Lemma C.5. Instantiating each bound for δ← δ/2, adding

the right hand sides and applying the union bound yields a bound on the sub-optimality. Collecting

dominant terms yields the result. �

C.3. Proof of Theorem 4.5: Shrunken-SAA with Fixed Anchors for Discrete Problems

We first use Corollary 4.1 proven in Section 4.4 to prove the following bounds on the maximal

deviations of interest via Theorem 4.1.

Lemma C.6 (Bounding Maximal Deviations for Discrete Problems). Under the assump-

tions of Theorem 4.5, there exists a constant A such that for any 0< δ < 1/2, the following two

statements hold (separately) each with probability at least 1− δ:

sup
α≥0

∣∣∣∣∣ 1

K

K∑
k=1

Zk(α,p0)−E[Zk(α,p0)]

∣∣∣∣∣ ≤ A ·Cλmax

λmin

·

√√√√log

(
K∑
k=1

|Xk|

)
·

√
log
(

1
δ

)
√
K

,

sup
α≥0

∣∣∣∣∣ 1

K

K∑
k=1

ZLOO
k (α,p0)−E[ZLOO

k (α,p0)]

∣∣∣∣∣ ≤ A ·Cλmax

λmin

·

√√√√log

(
Nmax

K∑
k=1

|Xk|

)
· log3/2(K) · log3/2(1/δ)√

K
.
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Proof. Consider the first inequality. We first bound the variable J in Eq. (4.3) corresponding

to the process {Z(α,p0) : α≥ 0} with the envelope given by Lemma 4.2. By Corollary 4.1,

J ≤ 9C · λmax

λmin

·
√
K

√√√√log

(
2

K∑
k=1

|Xk|

)
,

where we have upper bounded ‖λ‖2 ≤ λmax

√
K. From Theorem 4.1, there exists a constant A1 such

that with probability at least 1− δ,

sup
α≥0

∣∣∣∣∣ 1

K

K∑
k=1

Zk(α,p0)−E[Zk(α,p0)]

∣∣∣∣∣≤A1 ·
(

5

δ

)1/p

p1/2 ·Cλmax

λmin

·

√√√√ log
(

2
∑K

k=1 |Xk|
)

K
.

Let p= 2 log(1/δ)> 1, and collect constants to complete the proof.

The proof of the second inequality is similar but uses different envelopes (cf. Lemma 4.2) and

the larger packing numbers of Corollary 4.1. Specifically, we note that min(d, N̂k) ≤ N̂max and

‖N̂‖2 ≤ N̂max

√
K, and bound J as

J ≤ 9
C
√
K

Nλavg

N̂max

√√√√log

(
1 + 2N̂max

K∑
k=1

|Xk|

)
.

Recall Nmax ≡Nλmax ≥Nλmin ≥ 1. Thus, we can upper bound the logarithm as

log

(
1 + 2N̂max

K∑
k=1

|Xk|

)
≤ log

(
6Nmax

K∑
k=1

|Xk|+ 2N̂max

K∑
k=1

|Xk|

)

= log

(
2Nmax

K∑
k=1

|Xk|

)
︸ ︷︷ ︸

≥log 4

+log

(
3 +

N̂max

Nmax

)
︸ ︷︷ ︸

≥log 3

≤ 2 log

(
2Nmax

K∑
k=1

|Xk|

)
· log

(
3 +

N̂max

Nmax

)
,

where the last inequality follows because a+ b≤ 2ab when a, b≥ 1

Substituting above and taking the p-norm shows there exists a constant A2 such that

‖J‖p ≤ A2 ·
C
√
K

Nλavg

√√√√log

(
2Nmax

K∑
k=1

|Xk|

)
·

∥∥∥∥∥∥N̂max

√√√√log

(
3 +

N̂max

Nmax

)∥∥∥∥∥∥
p

≤ A2 ·
C
√
K

Nλavg

√√√√log

(
2Nmax

K∑
k=1

|Xk|

)
·
∥∥∥N̂max

∥∥∥
2p
·

∥∥∥∥∥∥
√√√√log

(
3 +

N̂max

Nmax

)∥∥∥∥∥∥
2p

,

where the second inequality follows from Hölder’s Inequality (cf. Lemma B.2) We next bound these

two 2p-norms.
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We bound the second 2p-norm using Lemma B.4 Part iv) with Y = 3 + N̂max
Nmax

> 3, yielding∥∥∥∥∥∥
√√√√log

(
3 +

N̂max

Nmax

)∥∥∥∥∥∥
2p

≤ 5
1
2p

√
p

e
max

1,
1

2

√√√√3 +E

[
N̂max

Nmax

]
≤ 5

1
2p

√
p

e
max

(
1,

1

2

√
3 +

36

e
logK

)
(Lemma B.5 Part v))

≤ 2 · 5
1
2p
√
p
√

logK,

since K ≥ 2.

Similarly, bound
∥∥∥N̂max

∥∥∥
2p

using Lemma B.5 Part v).

Combining shows

‖J‖p ≤ A3 ·
CNmax

√
K

Nλavg

√√√√log

(
2Nmax

K∑
k=1

|Xk|

)
· 6 1

p p3/2 · log3/2(K).

Applying Theorem 4.1 and substituting p= 2 log(1/δ)> 1 proves the second inequality. �

We can now prove the main result of the section.

Proof of Theorem 4.5. Lemma C.6 bound the maximal deviations in Lemma 4.1. Instantiating

them for δ← δ/2, adding their righthand sides and applying the union bound bounds the sub-

optimality. Collecting dominant terms proves the result. �

C.4. Deferred Proofs from Section 4.5: Shrunken-SAA with Data-Driven Anchors for

Discrete Problems.

As a first step towards our proof, we prove Lemma 4.4. Recall the m ≡
∑K

k=1

(|Xk|
2

)
hyperplanes

defined in Section 4.5:

Hkij =
{
θ ∈Rd0 : (V θ+ m̂k)

>
(ck(xki)− ck(xkj)) = 0

}
, ∀ k= 1, . . . ,K, i 6= j = 1, . . . , |Xk| .

In words, for θ on Hkij we are indifferent between xki and xkj when using θ in Eq. (4.5). On either

side, we strictly prefer one solution.

For any fixed θ ∈ Rd0 , we considered the polyhedron induced by the equality constraints of

those hyperplanes containing θ, and the inequality constraints defined by the side on which θ lies

for the remaining hyperplanes. We call such polyhedra fully-specified because they are defined by

their relationship to all m hyperplanes in the arrangement. Because this polyhedron lives in Rd0 ,

it necessarily has dimension j ≤ d0. For example the shaded region in Fig. 4 is a fully-specified

polyhedron with j = 2, the bold line segment has j = 1 and the bold point has j = 0. As argued in

the main text, to bound |{Z(α,q) : α≥ 0,q ∈P}| it suffices to count the number of j-dimensional

fully-specified polyhedron in the arrangement of the above m hyperplanes for all 0≤ j ≤ d0.
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Counting the polyhedra induced by hyperplane arrangements is a classical problem in geometry.

For example, it is well-known that the number of d0-dimensional, fully-specified polyhedra in a

hyperplane arrangement with m hyperplanes in Rd0 is at most
∑d0

i=0

(
m
i

)
(Stanley 2004, Prop. 2.4).

We first use this result to bound the total number of polyhedra in an arbitrary arrangement with

m hyperplanes in Rd0 .

Lemma C.7 (Number of Fully-Specified Polyhedra). In a hyperplane arrangement with m

hyperplanes in Rd0, the number of fully-specified polyhedra is at most

d0∑
j=0

(
m

d0− j

) j∑
i=0

(
m− d0 + j

i

)
≤ (1 + 2m)d0 .

Proof of Lemma C.7 Each fully-specified polyhedron has some dimension, 0≤ j ≤ d0. We will

count the number of such fully-specified polyhedra by counting for each dimension j.

Fix some 0≤ j ≤ d0. Notice that each j-dimensional polyhedron lives in a j-dimensional subspace

defined by d0 − j linearly independent hyperplanes from the arrangement. There are at most(
m

d0−j

)
ways to choose these linearly independent d0 − j hyperplanes. Next project the remaining

hyperplanes onto this subspace which yields at most m − d0 + j non-trivial hyperplanes in the

subspace, i.e., hyperplanes that are neither the whole subspace nor the empty set. These non-trivial

hyperplanes “cut up” the subspace into various polyhedra, including j-dimensional, fully-specified

polyhedra. By (Stanley 2004, Prop. 2.4), the number of j-dimensional, fully-specified polyhedra in

this hyerplane arrangement of at most m− d0 + j hyperplanes in j-dimensional space is at most∑j

i=0

(
m−d0+j

i

)
. In summary, it follows that there are at most

(
m

d0−j

)∑j

i=0

(
m−d0+j

i

)
j-dimensional,

fully-specified polyhedra in the arrangement.

Summing over j gives the lefthand side of the bound in the lemma.

For the righthand side, recall that

j∑
i=0

(
m− d0 + j

i

)
≤

j∑
i=0

(m− d0 + j)i · 1m−d0+j−i ≤ (1 +m− d0 + j)j ≤ (1 +m)j,

where the penultimate inequality is the binomial expansion and the last follow because j ≤ d0.

Next,

d0∑
j=0

(
m

d0− j

) j∑
i=0

(
m− d0 + j

i

)
≤

d0∑
j=0

(
m

d0− j

)
(1 +m)j

≤
d0∑
j=0

md0−j(1 +m)j

= (1 + 2m)d0 ,

where the last equality is again the binomial expansion. �



ec22

We can now bound the cardinality of the relevant solution sets.

Proof of Lemma 4.4. Recall there are m =
∑K

k=1

(|Xk|
2

)
hyperplanes in the arrangement

Eq. (4.6) in Rd0 , and the number of fully-specified polyhedra in this arrangement upper-bounds

|{Z(α,q) : α≥ 0,q ∈P}|. Noting 1 + 2m = 1 +
∑K

k=1 |Xk| (|Xk| − 1) ≤
∑K

k=1 |Xk|
2

yields the first

bound.

A similar argument can be used to bound
∣∣{ZLOO(α,q) : α≥ 0,q ∈P

}∣∣. Suppose first N̂max = 0.

Then this set has size 1. On the other hand, if N̂max > 0, let Ik = {i= 1, . . . , d : m̂ki > 0}, so that∣∣{ZLOO(α,q) : α≥ 0,q ∈P
}∣∣≤ ∣∣∣{(xk(α,q,m̂k−ei))k=1,...,K,i∈Ik

: q ∈P, α≥ 0
}∣∣∣

≤
∣∣∣{(xk(‖V θ‖1, V θ/‖V θ‖1,m̂k−ei))k=1,...,K,i∈Ik

: θ ∈Rd0 , V θ ∈Rd+
}∣∣∣ . (EC.C.7)

We then consider the arrangement generated by

Hkijl =
{
θ ∈Rd0 : (V θ+ m̂k−el)> (ck(xki)− ck(xkj)) = 0

}
,

for all k= 1, . . . ,K, i, j = 1, . . . , |Xk| with i 6= j, and l ∈ Ik. Notice that since |Ik| ≤ N̂k there are at

most N̂max

∑K

k=1

(|Xk|
2

)
such hyperplanes. Moreover,

∣∣{ZLOO(α,q) : α≥ 0,q ∈P
}∣∣ is upper-bounded

by the number of fully-specified polyhedra in this arrangement. Note that 1 + 2N̂max

∑K

k=1

(|Xk|
2

)
=

1 + N̂max

∑K

k=1 |Xk| (|Xk| − 1) ≤ N̂max

∑K

k=1 |Xk|
2
. Adding 1 covers the case N̂max = 0. Plugging in

this value into Lemma C.7 yields the second bound above. �

C.4.1. Maximal Deviation Bounds. We next use Lemma 4.4 to bound the maximal devia-

tions of interest via Theorem 4.1.

Lemma C.8 (Bounding Maximal Deviations, Discrete Case, General Anchors). Under

the assumptions of Theorem 4.6, there exists a constant A such that for any 0< δ < 1
2
, both of the

following statements hold (separately) with probability at least 1− δ:

sup
α≥0, q∈P

∣∣∣∣∣ 1

K

K∑
k=1

Zk(α,q)−E[Zk(α,q)]

∣∣∣∣∣ ≤ A ·Cλmax

λmin

·

√√√√d0 log

(
K∑
k=1

|Xk|

)
·
√

log (1/δ)√
K

.

sup
α≥0, q∈P

∣∣∣∣∣ 1

K

K∑
k=1

ZLOO
k (α,q)−E[ZLOO

k (α,q)]

∣∣∣∣∣ ≤ A ·Cλmax

λmin

√√√√d0 log

(
Nmax

K∑
k=1

|Xk|

)
· log3/2(K) log2(1/δ)√

K
.

Proof. Using Lemmas 4.2 and 4.4 to bound the variable J in Eq. (4.3) and since(∑K

k=1 |Xk|
2
)d0
≤
(∑K

k=1 |Xk|
)2d0

, proves

‖J‖p ≤ 9C
λmax

λmin

√
K

√√√√2d0 log

(
K∑
k=1

|Xk|

)
.

Next apply Theorem 4.1 and let p= 2 log(1/δ) to prove the first statement.
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For the second inequality, we follow a similar strategy with the appropriate envelope and packing

number (cf. Lemmas 4.2 and 4.4). In this case,

J ≤ 9CN̂max

√
K

Nλavg

·

√√√√√log

1 + N̂d0
max

(
K∑
k=1

|Xk|

)2d0
.

Consider the inner logarithm, and let Xtot ≡
∑K

k=1 |Xk| ≥K ≥ 2. Then,

log
(

1 + N̂d0
maxX

2d0
tot

)
≤ d0 log

(
1 + N̂maxX 2

tot

)
(since N̂maxX 2

tot > 0)

≤ d0 log
(

3NmaxX 2
tot + N̂maxX 2

tot

)

≤ d0

log
(
NmaxX 2

tot

)︸ ︷︷ ︸
≥log(4)

+log

(
3 +

N̂max

Nmax

)
︸ ︷︷ ︸

≥log(3)


≤ 2d0 log

(
NmaxX 2

tot

)
· log

(
3 +

N̂max

Nmax

)
,

where the last inequality follows because a+ b≤ 2ab for a, b≥ 1.

Substituting above shows

‖J‖p ≤
9C
√
K

Nλavg

·
√

2d0 log (NmaxX 2
tot)

∥∥∥∥∥∥N̂max ·

√√√√log

(
3 +

N̂max

Nmax

)∥∥∥∥∥∥
p

.

≤ 9C
√
K

Nλavg

·
√

2d0 log (NmaxX 2
tot) ·

∥∥∥N̂max

∥∥∥
2p
·

∥∥∥∥∥∥
√√√√log

(
3 +

N̂max

Nmax

)∥∥∥∥∥∥
2p

,

We next bound these norms. The first is bounded by Lemma B.5 Part v). The second was

bounded in the proof of Lemma C.6 as∥∥∥∥∥∥
√√√√log

(
3 +

N̂max

Nmax

)∥∥∥∥∥∥
2p

≤ 2 · 5
1
2p
√
p
√

logK.

Combining proves

‖J‖p ≤ A3 ·C ·
λmax

λmin

√
d0 log (NmaxX 2

tot) · 6
1
p p3/2 · log3/2(K)

√
K,

for some constant A3. Now apply Theorem 4.1 and substitute p= 2 log(1/δ) to prove the second

inequality. �
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C.4.2. Proofs of Theorems 4.6 and 4.7. We can now prove the main results of the section

via our usual strategy.

Proof of Theorems 4.6 and 4.7. The proofs of both theorems are identical. For both theorems,

by Lemma 4.1, the quantity to be bounded is bounded by the sum of the same two maximal

deviations. These are in turn bounded by Lemma C.8. Instantiating each bound for δ← δ/2, adding

the right hand sides and applying the union bound yields a bound on the sub-optimality. Collecting

dominant terms yields the result. �

Appendix D: Contrasting the Sub-Optimality-Stability Bias-Variance Tradeoffs

We here expand on the discussion from Section 5 comparing the Sub-Optimality-Stability tradeoff

to the classic bias-variance tradeoff. As mentioned in Section 5, one important distinction is that

the former applies to general optimization problems. In the following we will show that they are

different even when we restrict to the case of MSE (cf. Example 2.1).

To be more precise, fix the cost functions ck(x, ξ) = (x− ξ)2, let µk and σ2
k denote the mean

and variance of ξk ∈ R and assume λk = 1 for all k for simplicity. There are at least two ways to

interpret the classical bias-variance tradeoff in context of Assumption 3.1. First, we can decompose

conditionally on N̂ , yielding

E
[
ZK(α,p0) | N̂

]
=

1

K

K∑
k=1

(
α

N̂k +α

)2

(µk−µk0)2︸ ︷︷ ︸
Conditional Bias Squared

+

(
N̂k

N̂k +α

)2

σ2
k

N̂k︸ ︷︷ ︸
Conditional Variance

,

where µk0 = p>0 ak. Taking expectations of both sides yields the identity for α> 0

E
[
ZK(α,p0)

]
=

1

K

K∑
k=1

E

[(
α

N̂k +α

)2
]

(µk−µk0)2

︸ ︷︷ ︸
Expected Conditional Bias Squared

+ E

[
N̂k

(N̂k +α)2

]
σ2
k︸ ︷︷ ︸

Expected Conditional Variance

. (EC.D.1)

This perspective is perhaps most appropriate if view Assumption 3.1 as a smoothing that random-

izes over instances.

Alternatively, we can apply the bias-variance decomposition unconditionally, yielding for α> 0,

E
[
ZK(α,p0)

]
=

1

K

K∑
k=1

(E [xk(α,p0, µ̂k)−µk])2
+ Var(xk(α,p0, µ̂k)),

=
1

K

K∑
k=1

(
E
[

α

N̂k +α

])2

(µ0k−µk)2︸ ︷︷ ︸
Bias Squared

+Var(xk(α,p0, µ̂k))︸ ︷︷ ︸
Variance

, (EC.D.2)

(We can, if desired, evaluate the second term using the law of total variance after conditioning

on N̂k, but this expression will not be needed in what follows.) This perspective is perhaps most

appropriate if we view the randomization of N̂k as intrinsic to the data-generating process.
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Finally, from Lemma 3.1 and our previous comments, we have that

E
[
ZK(α,p0)

]
=

1

Nλavg

(E [SAA-SubOptimality(α)] +E [Instability(α)] +E [SAA(0)]) ,

where, again, SAA(0) does not depend on α. A straightforward calculation yields,

Lemma D.1 (SAA-Sub-Optimality for MSE). For α> 0, we have

SAA-SubOpt(α) =
1

K

K∑
k=1

N̂k

(
α

N̂k +α

)2

(µ̂k−µk0)2

E [SAA-SubOpt(α)] =
1

K

K∑
k=1

E

[
N̂k

(
α

N̂k +α

)2
]

(µk−µk0)2 +
1

K

K∑
k=1

E

[(
α

N̂k +α

)2
]
σ2
k,

where µ̂k is the sample mean for the kth subproblem.

Proof of Lemma D.1 By definition, the kth term of SAA-SubOpt(α) is

d∑
i=1

m̂ki (cki(xk(α,p0,m̂k))− cki(xk(0,p0,m̂k))) = N̂k

d∑
i=1

p̂ki (cki(xk(α,p0,m̂k))− cki(xk(0,p0,m̂k)))

= N̂k

(
E
[
(ξ̂k− µ̂k(α))2 | m̂k

]
+E

[
(ξ̂k− µ̂k)2 | m̂k

])
where xk(α,p0,m̂k) = µ̂k(α)≡ α

N̂k+α
µk0 + N̂k

N̂k+α
µ̂k, and ξ̂k ∼ p̂k.

Note E
[
(ξ̂k− µ̂k(α))2 | m̂k

]
= (µ̂k − µ̂k(α))2 + σ̂2

k, where σ̂2
k is the variance of ξ̂k | m̂k. Similarly,

E
[
(ξ̂k− µ̂k)2 | m̂k

]
= σ̂2

k. Hence from above, the kth term of SAA-SubOpt(α) is N̂k(µ̂k − µ̂k(α))2.

Using the definition of µ̂k(α) we have (µ̂k − µ̂k(α))2 =
(

α

N̂k+α

)2

(µ0− µ̂k)2. Summing across the k

terms yields the expression for SAA-SubOpt(α) in the lemma.

Now consider taking the conditional expectation of the kth term of SAA-SubOpt(α) where we

condition on N̂ . From our previous expression, this is simply

N̂k

(
α

N̂k +α

)2

E
[
(µ0− µ̂k)2 | N̂

]
= N̂k

(
α

N̂k +α

)2(
(µ0−µk)2 +

σ2
k

N̂k

)
.

= N̂k

(
α

N̂k +α

)2

(µ0−µk)2 +

(
α

N̂k +α

)2

σ2
k.

Taking expectations and then averaging over k yields the expression for E [SAA-SubOpt(α)], com-

pleting the lemma. �

By inspection, 1
Nλavg

E[SAA-SubOpt(α)] involves a non-zero term that depends on both σ2
k and

α. Consequently, it must differ from the bias-squared term in Eq. (EC.D.2) and the expected

conditional bias-squared term in Eq. (EC.D.1). In particular, since the difference depends on α and

SAA(0) does not depend on α, the difference is not solely due to the treatment of this constant.

Finally, since each of the identities decomposes the same quantity E
[
ZKα,p0

]
, it follows that the

bias-variance tradeoff and the Sub-Optimality-Instability Tradeoff are fundamentally different for

this example.
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Figure EC.1 LOO and Oracle Curves. We consider K = 10,000 newsvendors where pk1 ∼ Uniform[.6, .9],

N̂k ∼Poisson(10). We consider a single data draw. The values of p01 and the critical fractile s are

(p01, s) = (.3, .5), (p01, s) = (.75, .5), and (p01, s) = (.3, .2), respectively. In the first panel, instability

initially increases, and there is no benefit to pooling. In the second and third, instability is decreasing

and there is a benefit to pooling.

Appendix E: Computational Details and Additional Numerical Experiments

E.1. Simulation Set-up for Fig. 1

For d = 10, we generate 5,000 distributions pk according to a uniform distribution on the sim-

plex and additional 5,000 distributions pk according to the Dirichlet distribution with parameter

(3, . . . ,3), for a total of K = 10,000 subproblems. We take λk = 1 for all k. Across all runs, these

pk and λk are fixed. Then, for each run, for each k, we then generate N̂k = 20 data points inde-

pendently according to Eq. (2.1). We train each of our policies on these data, and evaluate against

the true pk. Results are averaged across 10,000 runs.

E.2. Additional Figures from Example 5.1.

Figure EC.1 shows the companion figures for Example 5.1 from Section 5.

E.3. Implementation Details for Computational Experiments from Section 6

On average, less than 2.5% of stores are open on weekends, and hence we drop all weekends

from our dataset. Similarly, the data exhibits a mild upward linear trend at a rate of 215 units

a year (approximately 3.7% increase per year), with a p-value < .001. This trend is likely due to

inflation and growing GDP over the time frame. We remove this trend using simple ordinary least

squares. Finally, many stores engage in promotional activities periodically throughout the month

of December leading up to Christmas. These promotions distort sales in the surrounding period.

Hence we drop data for the month of December from our dataset.

Throughout, αOR
p0
, αS-SAA
p0

are obtained by exhaustively searching a grid of length 120 points from 0

to 180. The grand-mean and Beta variants are obtained similarly. Notice when N̂k = 10, a value of
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α= 180 amounts to having 18 times more weight on the anchor point than the data, itself. Unless

otherwise specified in an experiment, d= 20 and N̂k = 10 (fixed, non-random for all k).

The “KS” policy described in the main-text corresponds to solving a data-driven distributionally

robust version of the newsvendor problem, namely,

xKS
k (ρk,Sk) ∈ min

x
sup

P∈PKS(ρk,Sk)

Eξ∼P
[
max

{
s

1− s
(ξ−x), (x− ξ)

}]
,

where the ambiguity set PKS(ρk,Sk) is the Kolmogorov-Smirnov ball around the empirical distri-

bution, i.e.,

PKS(ρk,Sk)≡

P : sup
t∈R

∣∣∣∣∣∣P(ξ ≤ t)− 1

N̂k

N̂k∑
j=1

I
[
ξ̂jk ≤ t

]∣∣∣∣∣∣≤ ρk
 .

This ambiguity set enjoys strong statistical guarantees in the large-sample setting, and, for the

special case of the newsvendor problem, xKS
k (ρk,Sk) can be evaluated in closed-form (Bertsimas

et al. 2018). For these reasons, we employ it in our experiments as a strong, distributionally robust

benchmark. Throughout, we select the parameters ρk in a decoupled fashion, using 5-fold cross-

validation on Sk to select ρk for each k.

As mentioned, our “Beta” policies use data-driven anchors selected from P, the class of all

(scaled) Beta-distributions. More specifically, this class consists of all Beta
(

µ
1−µθ2, θ2

)
distributions

with mean µ∈ {1e−6, .05, .1, . . . ,1} and shape parameter θ2 ∈ {0, .05, .1, .15, . . . ,3}. (In cases where

d<∞, we discretize this distribution into d equal sized bins on [0,1].) This beta-distribution should

be interpreted as the distribution of the normalized demand at the kth store. Said differently, when

shrinking the kth problem, we shrink to the un-normalized demand, i.e., towards the distribution

of ξ̂k,min + (ξ̂k,min− ξ̂k,max) ·Beta
(

µ
1−µθ2, θ2

)
.

E.4. Summary of Historical Dataset

Figure EC.2 illustrates typical demand distributions at our stores as described in Section 6. The

stores display significant heterogeneity.

The first panel of Fig. EC.3 shows the average daily demand by store for each of the 1,115 stores

in our dataset. The second panel shows estimates of the demand distributions at a few stores. We

stress that the individual demand distributions exhibit markedly different means, variances and

skewness.

E.5. Additional Figures from Sections 6.2 and 6.3.

The relative performance improvement over all SAA for all of our policies from the experiment in

Section 6.2 is displayed in Tables EC.1 and EC.2 for the case where N̂k is random and non-random,

respectively. To ease comparison, policies that shrink to the same type of anchor are grouped

together. Notice qualitative features are similar in both tables.
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Figure EC.2 Heterogeneity in pk across stores. The left panel shows some representative (discretized) dis-

tributions pk when d= 20 for several stores. The right panel shows a histogram of the number of

stores whose critical quantile occurs in each bin.
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(b) Demand Distributions by Store

Figure EC.3 Heterogeneity in Store Demand. The first panel shows a histogram of average daily demand

by store across 1,115 stores in a European drugstore chain. The second panel shows estimates of

the demand distribution at a few representative stores.

Figure EC.4 shows the standard deviation of each of our methods on simulated data from

Section 6.2 as a function of K, both when Assumption 3.1 holds and when it is violated and the

amount of data is fixed. Performance is again quite similar in both cases.
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Table EC.1 Relative Performance Improvement over SAA (%), N̂k ∼Poisson(10).

Performance using simulated data as described in Section 6.2.

Beta Grand-Mean Fixed (Uniform) Decoupled
K Oracle S-SAA Oracle S-SAA JS Oracle S-SAA JS SAA KS

10 17.20 10.19 15.28 12.61 9.83 12.49 8.43 5.53 0 -8.71
32 11.02 6.42 9.44 7.07 4.00 6.09 3.48 0.56 0 -12.05
64 11.34 8.57 10.17 8.71 5.20 7.40 6.65 1.24 0 -11.57

128 13.04 11.75 12.38 11.68 5.27 9.38 9.34 1.37 0 -11.49
256 13.10 12.37 12.66 12.27 4.94 9.66 9.66 0.92 0 -10.71
362 13.08 12.57 12.69 12.43 5.13 9.71 9.71 0.36 0 -10.43
431 13.26 12.80 12.91 12.68 5.13 9.95 9.95 0.46 0 -10.25
512 12.95 12.48 12.50 12.29 5.21 9.67 9.67 0.27 0 -10.64
609 13.12 12.72 12.69 12.49 5.32 9.82 9.82 0.20 0 -10.57
724 13.21 12.85 12.80 12.63 5.39 9.97 9.97 0.17 0 -10.43
861 13.35 13.04 12.95 12.78 5.40 10.08 10.08 0.13 0 -10.46

1024 13.07 12.79 12.67 12.52 5.29 9.78 9.78 0.05 0 -10.62
1115 13.12 12.86 12.73 12.58 5.27 9.82 9.82 0.05 0 -10.68

Table EC.2 Relative Performance Improvement over SAA (%), N̂k = 10 (non-random).

Performance using simulated data as described in Section 6.2.

Beta Grand-Mean Fixed (Uniform) Decoupled
K Oracle S-SAA Oracle S-SAA JS Oracle S-SAA JS SAA KS

10 13.07 6.89 11.13 8.54 6.46 10.12 7.42 4.46 0 -13.89
32 7.37 3.19 6.19 3.49 1.00 4.52 2.36 0.05 0 -17.05
64 7.09 4.75 6.27 4.70 1.27 4.70 3.88 0.16 0 -16.93

128 8.71 7.62 8.28 7.69 1.28 6.43 6.35 0.47 0 -17.20
256 8.92 8.25 8.67 8.37 1.13 6.68 6.68 0.25 0 -16.26
362 8.93 8.47 8.71 8.50 1.08 6.65 6.65 0.03 0 -16.06
431 9.11 8.75 8.95 8.78 1.26 6.83 6.83 0.03 0 -15.92
512 8.87 8.52 8.57 8.40 1.55 6.69 6.69 0.00 0 -16.22
609 9.03 8.70 8.70 8.53 1.47 6.83 6.83 0.00 0 -16.33
724 9.16 8.88 8.88 8.73 1.57 6.98 6.98 0.00 0 -16.21
861 9.42 9.15 9.12 8.98 1.61 7.27 7.27 0.00 0 -16.26

1024 9.19 8.96 8.86 8.74 1.67 7.02 7.02 0.00 0 -16.45
1115 9.22 8.98 8.90 8.77 1.62 7.05 7.05 0.00 0 -16.49

Figure EC.5 shows the average amount of pooling by method by K on our simulated data set

from Section 6.2, both when Assumption 3.1 holds and when the amount of data is fixed. Again,

in both cases the performance is quite similar, and we see that both Shrunken-SAA and the oracle

method when using p̂GM shrink more than the other methods.

E.6. Additional Figures from Section 6.4: Historical Backtest

Table EC.3 shows the relative performance improvement over SAA for all of our policies in the

historical data experiment described in Section 6.4 with d= 20. For convenience, policies with the

same type of anchor are grouped together for comparison.
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Figure EC.4 Standard Deviation of Performance For each method, the standard deviation of converges to

zero because performance concentrates at its expectation as K→∞. Notice that our Shrunken-SAA

methods are less variable than the decoupled SAA solution because pooling increases stability.

Table EC.3 Relative Performance Improvement over SAA (%), Historical Data.

Performance using historical data as described in Section 6.4, d= 20.

Beta Grand-Mean Fixed (Uniform) Decoupled
K Oracle S-SAA Oracle S-SAA JS Oracle S-SAA JS SAA KS

10 18.96 4.72 13.99 8.98 8.16 11.82 5.04 4.13 0 -12.56
32 11.34 4.17 8.65 3.96 1.63 5.83 2.32 0.26 0 -14.62
64 10.47 6.25 8.74 6.22 2.44 5.99 4.70 0.17 0 -14.02

128 11.88 9.92 11.10 9.92 2.55 8.44 8.44 0.38 0 -13.25
256 11.92 10.89 11.44 10.98 2.38 9.06 9.06 0.59 0 -12.60
362 11.49 10.78 11.16 10.81 2.08 8.67 8.67 0.00 0 -12.44
431 11.55 10.89 11.25 10.95 2.25 8.72 8.72 0.00 0 -12.28
512 11.12 10.43 10.73 10.48 2.49 8.38 8.38 0.00 0 -12.50
609 11.19 10.57 10.81 10.58 2.57 8.48 8.48 0.00 0 -12.42
724 11.25 10.77 10.94 10.79 2.65 8.62 8.62 0.00 0 -12.31
861 11.40 11.01 11.12 10.96 2.61 8.75 8.75 0.00 0 -12.47

1024 11.20 10.85 10.93 10.80 2.58 8.59 8.59 0.00 0 -12.56
1115 11.30 10.95 11.05 10.94 2.55 8.68 8.68 0.00 0 -12.61

E.7. Performance as d→∞

Recall that the Shrunken-SAA algorithm, does not require that the random variables ξk have

discrete support (cf. Remark 3.1). Consequently, we next study the robustness of Shrunken-SAA

to d, the number of support points of ξk.
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Figure EC.5 Amount of Pooling by Method We plot the amount of data-pooling (α) for each of the above

methods (plotted separately for clarity). In panels a) and b), the amount of data follows Assump-

tion 3.1. In the remainder, it is fixed. In general, optimization-aware methods shrink much more

aggressively in both instances.

To this end, we increase d from our base case. Figure EC.6 below shows results for d = 50

and d =∞, i.e., not performing any discretization. The complete set of policies can be seen in

Tables EC.4 and EC.5 below.
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Figure EC.6 Robustness to choice of d. Performance of policies on our historical data. In the first panel,

d= 50. In the second panel, the distributions Pk are treated as continuous in the Shrunken-SAA

algorithm, i.e., d=∞. Error bars show ±1 standard error. The differences between the plots are

essentially indiscernible.

Table EC.4 Relative Performance Improvement over SAA (%).

Performance using historical data as described in Appendix E.7, d= 50.

Beta Grand-Mean Fixed (Uniform) Decoupled
K Oracle S-SAA Oracle S-SAA JS Oracle S-SAA JS SAA KS

10 18.39 6.38 13.81 8.84 8.41 11.61 5.43 4.45 0 -17.50
32 10.73 3.44 8.01 4.01 1.33 5.44 2.26 0.27 0 -18.56
64 10.01 6.51 8.31 6.21 2.26 5.82 4.96 0.21 0 -18.02

128 11.60 9.96 10.77 9.68 2.35 8.32 8.32 0.37 0 -16.03
256 11.73 10.86 11.27 10.86 2.21 8.95 8.95 0.58 0 -15.86
362 11.36 10.80 10.97 10.67 1.93 8.55 8.55 0.00 0 -16.01
431 11.44 10.92 11.09 10.77 2.11 8.56 8.56 0.00 0 -15.69
512 11.02 10.57 10.59 10.34 2.35 8.33 8.33 0.00 0 -16.14
609 11.08 10.70 10.68 10.43 2.40 8.43 8.43 0.00 0 -16.03
724 11.15 10.82 10.78 10.62 2.47 8.54 8.54 0.00 0 -15.76
861 11.36 11.09 11.02 10.86 2.47 8.70 8.70 0.00 0 -15.72

1024 11.20 10.93 10.85 10.70 2.44 8.56 8.56 0.00 0 -15.98
1115 11.32 11.08 10.97 10.81 2.40 8.65 8.65 0.00 0 -15.85

The performance is nearly identical to the case of d = 20. To make this clearer, in the second

panel of Fig. EC.7 we plot the performance of our Shrunken-SAA methods for varying d. Again, the

differences are quite small. In our opinion, these results suggest that the performance of Shrunken-
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Figure EC.7 Robustness to d on Historical Data.

We limit attention to the Shrunken-SAA

policies and compare them on the same

historical datasets for d= 20,50,∞. The

performance of each variant is insensitive

to d.

SAA is quite robust to size of the support of ξk, and is still effective if ξk may be continuous.

Table EC.5 Relative Performance Improvement over SAA (%).

Performance using historical data as described in Appendix E.7, d=∞.

Beta Grand-Mean Fixed (Uniform) Decoupled
K Oracle S-SAA Oracle S-SAA JS Oracle S-SAA JS SAA KS

10 18.13 6.39 13.78 8.82 8.26 11.65 6.18 4.25 0 -23.75
32 10.60 3.71 8.06 3.73 1.29 5.52 2.25 0.24 0 -26.99
64 9.94 6.41 8.30 6.25 2.27 5.92 4.75 0.19 0 -25.18

128 11.52 9.98 10.72 9.76 2.35 8.39 8.39 0.26 0 -23.38
256 11.66 10.96 11.22 10.88 2.19 9.03 9.03 0.60 0 -21.83
362 11.31 10.83 10.92 10.68 1.98 8.62 8.62 0.00 0 -21.49
431 11.38 10.98 11.03 10.80 2.08 8.64 8.64 0.00 0 -20.74
512 10.99 10.65 10.55 10.35 2.31 8.39 8.39 0.00 0 -21.51
609 11.06 10.75 10.66 10.50 2.39 8.48 8.48 0.00 0 -21.43
724 11.13 10.92 10.75 10.62 2.45 8.60 8.60 0.00 0 -21.09
861 11.34 11.17 10.99 10.88 2.48 8.77 8.77 0.00 0 -20.76

1024 11.17 11.00 10.81 10.71 2.40 8.62 8.62 0.00 0 -20.88
1115 11.29 11.16 10.93 10.85 2.38 8.71 8.71 0.00 0 -20.83

E.8. Performance as N →∞

We next study the performance of our methods as we increase N̂k. Recall in the experiment above,

N̂k = 10, with some instances having fewer training points due to missing values. In Fig. EC.8 we

consider N̂k = 20 days and N̂k = 40 days for training (again with some instances having fewer data

points), and let d=∞. (See also Tables EC.6 and EC.7 for all benchmarks.) As N̂k increases for

all k, SAA, itself, converges in performance to the full-information optimum. Consequently, there

is “less-room” to improve upon SAA, and we see that for N̂k = 40, our methods still improve upon
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Figure EC.8 Dependence on N . Evaluated on historical data with d=∞. Error bars show ±1 standard error.

decoupling, but by a smaller amount. We also note that the JS-GM variant performs relatively

better than for small N̂k. We intuit this is because as N̂k →∞, the empirical distribution p̂k

converges in probability to the true distribution pk, i.e., the variance of p̂k around pk decreases. For

large enough N̂k, this variance is a “second order” concern, and hence accounting for discrepancy

in the mean (which is how αJS
p0

is chosen) captures most of the benefits. This viewpoint accords

more generally with intuition that estimate-then-optimize procedures work well in environments

with high signal-to-noise ratios.

In summary, we believe these preliminary studies support the idea that Shrunken-SAA retains

many of SAA’s strong large-sample properties, but still offers a marginal benefit for large K.

E.9. Other Forms of Cross-Validation

Our theoretical development of Shrunken-SAA naturally motivated our Modified-LOO procedure

in Algorithm 1. When KN̂avg is very large, however, LOO may be computationally demanding,

and simpler 5-fold or 10-fold cross-validation methods might be preferred. We next study the

performance of Algorithm 1 when we replace the Modified-LOO Cross-Validation step by a simpler

Modified κ-fold cross-validation step, where κ ∈ {2,5,10}. Here the qualifier “Modified” indicates

that, as in Algorithm 1, we do not update the anchor (even if it depends on the data) for each fold.

Figure EC.9 shows some indicative results under the synthetic data setting of Section 6.2 in the

case d=∞ (continuous data). We consider both N̂k ∼ Poisson(10) (left panels) or N̂k = 10 (right

panels). In both settings, each form of cross-validation converges to oracle performance qualitatively

similarly to the LOO performance. We have repeated this test for other values of N and d and
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Table EC.6 Relative Performance Improvement over SAA (%) when N = 20.

Evaluated on historical data with d=∞.

Beta Grand-Mean Fixed (Uniform) Decoupled
K Oracle S-SAA Oracle S-SAA JS Oracle S-SAA JS SAA KS

10 15.09 5.58 10.72 7.57 7.29 8.26 2.90 1.03 0 -7.79
32 8.74 2.76 5.85 2.96 3.81 2.81 0.29 -0.14 0 -16.33
64 6.73 3.62 5.27 3.87 3.98 1.74 -0.17 -0.06 0 -16.46

128 6.32 4.53 5.21 3.93 3.89 1.51 0.18 0.02 0 -16.94
256 5.87 4.32 4.93 3.92 3.80 1.23 0.02 -0.13 0 -15.75
362 5.68 4.56 4.75 4.04 3.89 1.28 0.05 0.00 0 -15.72
431 5.65 4.59 4.81 4.23 3.96 1.32 0.23 0.07 0 -15.69
512 5.72 4.79 4.98 4.55 4.00 1.35 0.50 0.00 0 -16.09
609 5.58 4.88 4.89 4.56 3.94 1.28 0.58 0.00 0 -16.33
724 5.54 4.85 4.87 4.56 3.97 1.29 0.62 0.00 0 -16.28
861 5.54 5.09 5.04 4.82 4.09 1.32 0.74 0.00 0 -16.34

1024 5.50 4.97 4.93 4.75 3.95 1.26 0.45 0.00 0 -16.58
1115 5.44 4.95 4.90 4.75 3.90 1.19 0.30 0.00 0 -16.50

Table EC.7 Relative Performance Improvement over SAA (%) when N = 40.

Evaluated on historical data with d=∞.

Beta Grand-Mean Fixed (Uniform) Decoupled
K Oracle S-SAA Oracle S-SAA JS Oracle S-SAA JS SAA KS

10 10.09 1.21 7.07 3.62 3.66 4.61 0.76 0.95 0 -3.58
32 5.44 0.63 2.77 0.53 1.47 1.71 0.23 0.00 0 -9.09
64 3.71 0.80 2.06 0.39 1.45 1.17 0.01 0.00 0 -6.20

128 2.55 1.44 1.56 0.86 1.20 0.77 -0.08 0.15 0 -5.58
256 2.08 1.51 1.19 0.84 0.92 0.37 0.05 -0.03 0 -5.40
362 1.92 1.16 1.10 0.74 0.89 0.16 0.01 0.00 0 -5.35
431 1.85 1.32 1.00 0.72 0.88 0.19 0.03 0.00 0 -5.23
512 1.67 1.22 0.94 0.65 0.80 0.18 0.05 0.00 0 -5.06
609 1.49 1.11 0.94 0.65 0.80 0.14 -0.06 0.00 0 -5.20
724 1.57 1.22 0.95 0.69 0.84 0.16 -0.02 0.00 0 -5.04
861 1.49 1.16 0.95 0.71 0.86 0.13 -0.00 0.00 0 -4.99

1024 1.41 1.13 0.87 0.67 0.81 0.13 0.04 0.00 0 -5.05
1115 1.44 1.19 0.90 0.73 0.84 0.17 0.01 0.00 0 -4.99

with our historical data setting of Section 6.4, and largely observe similar results. In summary,

this suggests empirically that when computational budgets require it, Shrunken-SAA can safely be

implemented with other forms of cross-validation.

Appendix F: Extension to Continuous Distributions

In this section, we extend our results from Sections 4.2 and 4.3 to the case where the random

variables ξk may have continuous support and discuss the challenges of similar extensions for

discrete problems. Specifically, we no longer assume ξk ∈ {ak1, . . . ,akd}, i.e., that ξk is supported

on a finite set. Instead we allow any compact support.
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(d) Anchor at p̂GM, Nk = 10 (non-random)

Figure EC.9 Other Types of Cross-Validation We compare variants of the Shrunken-SAA procedure that

leverage (modified) 2, 5 or 10-fold cross-validation instead of LOO cross-validation in Algorithm 1,

both when the amount of data is random (Assumption 3.1 hold) and when it is fixed. In each

case, all methods of cross-validation seem to converge to oracle optimality. Plots show relative

suboptimality to oracle performance.

Assumption F.1 (Compact Support for Pk and h(S)). There exists a compact set Ξ ⊆ R`

such that, for each k = 1, . . . ,K, ξk ∼ Pk is an `-dimensional real random vector whose support is

contained in Ξ, and, with probability 1 with respect S, h(S)∈P and has support contained in Ξ.

As mentioned in Section 4.6, our proof technique will be to consider a discretized system whose

performance is arbitrarily close to the true, continuous system and invoke our results for this
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discretized system. In order to construct an arbitrarily close discretized system, we will require

some additional continuity on the cost functions.

Assumption F.2 (Equicontinuity). For each k = 1, . . . ,K, {ck(x,ξk) : x ∈ Xk} is equicon-

tinuous in ξ for all ξ ∈ Ξ. Namely, for every ε > 0, ξ ∈ Ξ there exists δ > 0 such that

|ck(x,ξ)− ck(x,ξ′)| ≤ ε for all x∈X , ‖ξ− ξ′‖ ≤ δ.

Remark F.1. Notice that in principle, ck(x,ξk) need only be defined for ξk in the support of Pk.

Assuming that it is defined and equicontinuous on the larger Ξ is without loss of generality via the

Tietze continuous extension theorem (Munkres 1974, Theorem 3.2). �

Finally, we assume the same assumptions on the cost functions as in Sections 4.2 and 4.3. We

restate these below in terms of ξ that may not be finitely supported.

Assumption F.3 (Bounded, Lipschitz, Strongly-Convex Optimization). There exists L,γ

such that ck(x,ξ) are γ-strongly convex and L-Lipschitz over Xk, and, moreover, Xk is non-empty

and convex, for all k= 1, . . . ,K, and ξ ∈Ξ.

For clarity, we repeat the definitions of some of our primitives, but now in terms of general

distributions and data sets Sk and S:

xk(α,Q,Sk)∈ arg min
xk∈Xk

N̂k∑
j=1

ck(xk, ξ̂kj) +αEξk∼Q [ck(xk,ξk)] ,

ZK(α,Q) =
1

K

K∑
k=1

Zk(α,Q), where Zk(α,Q) =
λk
λavg

Eξk∼Pk [ck(xk(α,Q,Sk),ξk)],

Z
LOO

K (α,Q) =
1

K

K∑
k=1

ZLOO
k (α,Q), where ZLOO

k (α,Q) =
1

Nλavg

N̂k∑
j=1

ck(xk(α,Q,Sk\{ξ̂kj}), ξ̂kj).

Notice xk(α,Q,Sk) is precisely as in Algorithm 1.

The oracle pooling amount for a specified h(·) is given by

αOR
h ∈ arg min

α≥0

ZK(α,h(S)),

and the simultaneous oracle pooling amount and oracle anchor within a class P is given by

(αOR
P , QOR

P )∈ arg min
α≥0,Q∈P

ZK(α,Q).

Again, we will measure performance of a policy relative to these oracle benchmarks:

SubOpth,K(α) =ZK(α,h(S))−ZK(αOR
h , h(S)),

SubOptP,K(α,Q) =ZK(α,Q)−ZK(αOR
P ,QOR

P ).



ec38

For convenience, we again often refer to the constant function S 7→Q as just Q. Notice that in the

special case that ξk has finite, discrete support, each of these above definitions is equivalent to our

original definitions in Section 2.

We can now prove an extension of Theorem 4.2 to the case of continuous random variables.

Theorem F.1. (Shrunken-SAA with Fixed Anchors for Strongly-Convex Problems and

Continuous Distributions) Fix any P0. Suppose Assumptions 3.1 and F.1 to F.3 hold, K ≥ 2

and Nλmin ≥ 1. Then, there exists a universal constant A such that for any 0 < δ < 1/2, with

probability at least 1− δ, we have that

SubOptP0,K(αS-SAA
P0 ) ≤ A ·max

(
C,L

√
C

γ

)
·
(
λmax

λmin

)5/4

· log2(1/δ) · log3/2(K)√
K

.

The first step in the proof of Theorem F.1 is to construct our approximate discrete system:

Lemma F.1 (A Discrete Approximate System). Suppose Assumptions F.1 to F.3 hold.

Then, for any ε > 0, there exists a finite partition B′1, . . . ,B
′
d of Ξ and, for each k = 1, . . . ,K,

random variables ξdisck supported on {ak1, . . . ,akd} such that

i) aki ∈B′i,

ii) P(ξdisck = aki) = P(ξk ∈B′i), and

iii) |ck(xk,ξk)− ck(x,aki)| ≤ ε for all k= 1, . . . ,K, i= 1, . . . , d, ξk ∈B′i and x∈Xk.

Proof. Since K is finite, Assumption F.2 implies that the larger set {ck(x;ξ) : x ∈ Xk, k =

1, . . . ,K} is equicontinuous in ξ for all ξ ∈Ξ. In other words, for every ξ ∈Ξ, there exists δ(ξ)> 0

such that |ck(x;ξ)− ck(x;ξ′)| ≤ ε for all k = 1, . . . ,K and x ∈ Xk whenever ‖ξ − ξ′‖ ≤ δ(ξ) and

ξ′ ∈ Ξ. Let B(ξ) = {ξ′ ∈ Ξ : ‖ξ − ξ′‖ ≤ δ(ξ)}. Then
⋃
ξ∈ΞB(ξ) necessarily covers Ξ. Since Ξ is

compact, there exists a finite subcover, B(ξ1), . . . ,B(ξd). We construct a partition from this finite

subcover, namely,

B′i =B(ξi) \
⋃

1≤j≤i−1

B(ξj)∩B(ξi).

In words, B′i is the same as B(ξi) but omits any point that was already covered by a previous set.

Let χ : Ξ→{1, . . . , d} be the indicator of this partition, i.e., ξ ∈B′χ(ξ) for all ξ ∈Ξ.

Now let

aki ≡ ξi, for i= 1, . . . , d, and k= 1, . . . ,K

and define the discrete random variable ξdisck such that P(ξdisck = aki) = P(ξk ∈B′i).

Then the first two claims in the lemma are immediate. For the last, notice by construction of

the partition, ‖ξk−aki‖ ≤ δ(aki) so that the third claim holds by equicontinuity. �
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We will now apply our existing analysis to the discretized system. For clarity, given B′i, ξ̂
disc
k as

in Lemma F.1, we define

cki(x) ≡ ck(x,aki), ∀i= 1, . . . , d, k= 1, . . . ,K,

pki ≡ Pk(B′i), ∀i= 1, . . . , d, k= 1, . . . ,K,

m̂ki ≡
N̂k∑
j=1

I
[
ξ̂kj ∈B′i

]
, ∀i= 1, . . . , d, k= 1, . . . ,K

xdisc
k (α,q,m̂k) ∈ arg min

xk∈Xk
(m̂k +αq)Tck(xk), ∀k= 1, . . . ,K.

One can confirm directly that, under Assumption F.3, cki(x) are each C-bounded, L-Lipschitz,

and γ-strongly convex for every k, i. Finally, for any distribution Q on R`, define its discretization

disc(Q) = (Q(B′1), . . . ,Q(B′d))∈∆d.

The next step of the proof establishes that the policies xdisc
k (·, ·, ·) of the discretized system are

suitably close to the policies xk(··, ·) of the original, continuous system.

Lemma F.2 (Bounding Differences in Policies). Suppose Assumptions F.1 to F.3 hold. For

given ε > 0, consider the discretization given by Lemma F.1. Then for any Q∈P and data set Sk,∥∥xk(α,Q,Sk)−xdisc
k (α,disc(Q),m̂k)

∥∥
2
≤
√

2ε

γ
.

Proof. Define

f disc
k (xk) ≡

(
m̂k +αdisc(Q)

N̂k +α

)T
ck(xk) =

1

N̂k +α

N̂k∑
j=1

ck(xk, ξχ(ξ̂kj)
) +

α

N̂k +α
Eξk∼Q

[
ck(xk,ak,χ(ξk))

]
,

f cts
k (xk) ≡

1

N̂k +α

N̂k∑
j=1

ck(xk, ξ̂kj) +
α

N̂k +α
Eξk∼Q [ck(xk,ξk)] .

Using Lemma F.1 part iii) and the triangle inequality, we have that
∣∣f disc
k (xk)− f disc

k (xk)
∣∣≤ ε for

all xk ∈Xk, and all k.

By construction f disc
k and f cts

k are both γ-strongly convex, and xdisc
k (α,q,m̂k) and xk(α,Q,Sk)

are their respective optimizers. Hence, we can use an argument similar to Lemma C.1 to show that

xdisc
k (α,q,m̂k) and xk(α,Q,Sk) are close. More specifically, by strong-convexity

f cts
k (xdisc

k (α,disc(Q),m̂k))− f cts
k (xk(α,Q,Sk))≥

γ

2

∥∥xk(α,Q,Sk)−xdisc
k (α,disc(Q),m̂k)

∥∥2

2

f disc
k (xk(α,Q,Sk))− f disc

k (xdisc
k (α,disc(Q),m̂k))≥

γ

2

∥∥xk(α,Q,Sk)−xdisc
k (α,disc(Q),m̂k)

∥∥2

2
.

Combining, we obtain

γ
∥∥xk(α,Q,Sk)−xdisc

k (α,disc(Q),m̂k)
∥∥2

2
≤
∣∣f cts
k (xdisc

k (α,disc(Q),m̂k))− f disc
k (xdisc

k (α,disc(Q),m̂k))
∣∣

+
∣∣f disc
k (xk(α,Q,Sk))− f cts

k (xk(α,Q,Sk))
∣∣

≤ 2ε.
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Rearranging proves the result. �

Finally, we introduce discrete analogues of our usual stochastic processes

Z
disc

K (α,q) =
1

K

K∑
k=1

Zdisc
k (α,q) where Zdisc

k (α,q) =
λk
λavg

pTk ck(x
disc
k (α,q)),

Z
LOO,disc

K (α,q) =
1

K

K∑
k=1

Zdisc
k (α,q) where ZLOO,disc

k (α,q) =
1

Nλavg

d∑
i=1

m̂kicki(x
disc
k (α,q,m̂k−ei)).

We can now prove our first main result.

Proof of Theorem F.1. Fix any k, and xk,yk ∈Xk. Then,

∣∣Eξk∼Pk [ck(xk,ξk)]−p>k ck(yk)
∣∣ =

∣∣∣∣∣Eξk∼Pk [ck(xk,ξk)]−Eξk∼Pk

[
d∑
i=1

I [ξk ∈B′i] ck(yk,aki)

]∣∣∣∣∣
=

∣∣∣∣∣Eξk∼Pk
[

d∑
i=1

ck(xk,ξk)I [ξk ∈B′i]

]
−Eξk∼Pk

[
d∑
i=1

I [ξk ∈B′i] ck(yk,aki)

]∣∣∣∣∣
≤ Eξk∼Pk

[
d∑
i=1

I [ξk ∈B′i] |ck(xk,ξk)− ck(yk,aki)|

]
,

where the first equality uses the definition of pki, the second equality uses that B′i form a partition,

the last inequality uses the triangle inequality. Now, whenever ξk ∈B′i,

|ck(xk,ξk)− ck(yk,aki)| ≤ |ck(xk,ξk)− ck(xk,aki)|+ |ck(xk,aki)− ck(yk,aki)| ≤ ε+L‖xk−yk‖2.

Substituting above shows∣∣Eξk∼Pk [ck(xk,ξk)]−p>k ck(yk)
∣∣ ≤ ε+L‖xk−yk‖2,

by construction of B′i and the Assumption F.3.

Now for any α, Q, we can instantiate this inequality with xk ← x(α,Q,Sk) an yk ←

xdisc
k (α,disc(Q),m̂k) to see that∣∣∣Zk(α,Q)−Zdisc

k (α,disc(Q))
∣∣∣ ≤ λk

λavg

(
ε+L‖x(α,Q,Sk)−xdisc

k (α,disc(Q),m̂k)‖
)
≤ λk

λavg

(
ε+L

√
2ε

γ

)
,

by Lemma F.2. Averaging over k proves∣∣∣ZK(α,Q)−Zdisc

K (α,disc(Q))
∣∣∣≤L√2ε

γ
+ ε.

An entirely analogous argument yields∣∣∣ZLOO

K (α,Q)−ZLOO,disc

K (α,disc(Q))
∣∣∣≤(L√2ε

γ
+ ε

)
N̂avg

Nλavg

.

Notice KN̂avg ∼ Poisson(KNλavg). From Lemma B.5 Part i) applied to KN̂avg and Markov’s

inequality, we have that with probability at least 1− δ/2,
N̂avg

Nλavg
≤ log(4/δ).
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Now suppose 4L2

Cγ
≥ 1. Then, applying Lemma C.3 and Lemma 3.1 to Z

disc

K and Z
LOO,disc

K with

p0← disc(P0) and δ← δ/4 shows that there exists a universal constant A1 such that with probability

at least 1− δ/2,

sup
α≥0

∣∣∣Zdisc

K (α,disc(P0))−ZLOO,disc

K (α,disc(P0))
∣∣∣≤A1 ·L

√
C

γ
·
(
λmax

λmin

)5/4

· log2(1/δ) · log3/2(K)√
K

,

Therefore, with probability at least 1− δ,

sup
α≥0

∣∣∣ZK(α,P0)−ZLOO

K (α,P0)
∣∣∣

≤ A1 ·L

√
C

γ
·
(
λmax

λmin

)5/4

· log2(1/δ) · log3/2(K)√
K

+

(
L

√
2ε

γ
+ ε

)
(1 + log(4/δ)) , (EC.F.1)

Similar to Lemma 4.1, Z
LOO

K (αS-SAA
P0 ,P0)≤ZLOO

K (αOR
P0 ,P0) implies that

SubOptP0,K(αS-SAA
P0 ) ≤ Zk(α

S-SAA
P0 ,P0)−ZLOO

k (αS-SAA
P0 ,P0)

+ Z
LOO

k (αORP0,P0)−Zk(αOR
P0 ,P0)

≤ 2 sup
α≥0

∣∣∣ZK(α,P0)−ZLOO

K (α,P0)
∣∣∣ ,

and, hence, SubOptP0,K(αS-SAA
P0 ) is at most twice Eq. (EC.F.1).

Finally, recall the choice of ε > 0 was arbitrary. Thus, taking a limit ε→ 0, shows that there

exists a constant A2 such that

SubOptP0,K(αS-SAA
P0 )≤A2 ·L

√
C

γ
·
(
λmax

λmin

)5/4

· log2(1/δ) · log3/2(K)√
K

.,

In the case that that 4L2

Cγ
< 1, we can always increase L until 4L2

Cγ
= 1, since the larger L is still

a valid Lipschitz constant. Substituting this larger L above and collecting constants proves the

theorem. �

The same key idea can also be used to prove analogues of Theorems 4.3 and 4.4. In the case of

continuous distributions, we measure the complexity of P by its packing number with respect to

total variation distance. Specifically, let DTV(ε,P) be the largest number of elements of P that are

each at least ε separated in total-variation distance.

Theorem F.2. (Shrunken-SAA with Data-Driven Anchors for Strongly-Convex Prob-

lems and Continuous Distributions) Fix any h(·). Suppose Assumptions 3.1 and F.1 to F.3

hold, K ≥ 2 and Nλmin ≥ 1. Suppose moreover that there exists d0 such that for any 0< ε < 1/2,

logDTV(ε,P)≤ d0 log(1/ε). Then, there exists a universal constant A such that for any 0< δ < 1/2,

with probability at least 1− δ, we have that

SubOpth,K(αS-SAA
h ) ≤ A ·max

(
C,

L2

γ
+ L

√
C

γ

)(
λmax

λmin

)5/4
d2

0 log7/2(K) log2(1/δ)√
K

.
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Proof. Fix an ε > 0. We apply the same discretization as in the proof of Theorem F.1. Let

Pdisc = {disc(Q) : Q∈P}. Since ‖disc(Q)− disc(Q′)‖1 ≤ 2‖Q−Q′‖TV, we have that logD1(ε,Pdisc)≤

2d0 log(1/ε). Thus, the assumptions of Theorem 4.3 hold for P ←Pdisc and d0← 2d0, and we can

apply Lemma C.5 to bound the maximal deviations in the discrete system.

The remainder of the proof follows the proof of Theorem F.1 closely. Specifically, we bound

the difference between the discrete system and the original continuous system, and then bound

SubOpth,K(αS-SAA
h ) by twice the maximal deviations and take a limit as ε→ 0 to yield the result.

�

Theorem F.3. (Shrunken-SAA with hP for Strongly-Convex Problems and Continuous

Distributions) Under the assumptions of Theorem F.2, there exists a universal constant A such

that for any 0< δ < 1/2, with probability at least 1− δ, we have that

SubOptP,K(αS-SAA
hP

, hP(m̂)) ≤ A ·max

(
C,

L2

γ
+ L

√
C

γ

)(
λmax

λmin

)5/4
d2

0 log7/2(K) log2(1/δ)√
K

.

Proof. The proof is the same as Theorem F.2. �

Remark F.2 (Challenges with Discrete Problems). Proving similar extensions for contin-

uous distributions and discrete problems poses some technical challenges . The key issue appears

to be establishing an analogue of Lemma F.2. Indeed, without further assumptions, it is not clear

that the set of policies
{

(xk(α,Q,Sk))Kk=1 : α≥ 0, Q∈P
}

as indexed by α and Q will be identi-

cal to
{

(xdisc
k (α,disc(Q),m̂k))

K

k=1 : α≥ 0, Q∈P
}

, and, it also not clear in what sense these two

sets might be “approximately equal” and under what conditions. Thus, we leave establishing the

suitable additional assumptions to analyze this case to future work.
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