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Abstract

The data collected by the wireless sensor nodes often has some spatial or temporal redundancy, and the

redundant data impose unnecessary burdens on both the nodes and networks. Data prediction is helpful to

improve data quality and reduce the unnecessary data transmission. However, the current data prediction methods

of wireless sensor networks seldom consider how to utilize the spatial-temporal correlation among the sensory

data. This paper has proposed a new data prediction method multi-node multi-feature (MNMF) based on

bidirectional long short-term memory (LSTM) network. Firstly, the data quality is improved by quartile method and

wavelet threshold denoising. Then, the bidirectional LSTM network is used to extract and learn the abstract features

of sensory data. Finally, the abstract features are used in the data prediction by adopting the merge layer of the

neural network. The experimental results show that the proposed MNMF model has better performance compared

with the other methods in many evaluation indicators.
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1 Introduction
The Internet of Thing (IoT) has developed rapidly in

recent years, in which the wireless sensor network is

becoming popular with low energy consumption, multi-

function and large-scale deployment by sensing, collecting,

processing, and transmitting the sensory data through co-

operation between nodes [1, 2]. However, the number of

data transmission between common nodes and sink nodes

will increase significantly together with network size ex-

plosion, which possibly leads to data congestion, and ac-

cordingly high loss rate of sensory data and low signal-

noise ratio [3–5]. Using data prediction methods to reduce

unnecessary data transmission is an effective way to im-

prove the quality of data collection and increase the net-

work lifetime. The current methods usually use the

periodicity and redundancy to predict the specific sensory

data based on historical data, which often results in low

prediction stability and biased predictions [6–11].

Data correlation among the sensory data is helpful

to recover the lost data. For example, the temporal

correlation can be observed in case that the physical

environment condition changes in a continuous way.

On the one hand, the value of sequential sensory data

for one single node is generally continuous when the

collection duration is small enough. On the other

hand, the sensors are deployed to observe the similar

physical or environmental conditions; the collected

data is generally spatial correlated. This similarity

among the data tendency can be used to support the

prediction process in a more relatively accurate and

stable way. By exploiting these correlations among the

sensory data, the impact of abnormal data on the pre-

diction can also be weakened. The prediction process

can support the end-users to predict the periodic

change of the monitoring object or area and thus

makes it possible to control the potential risk of the

monitored object or area.

The prediction model needs to take into account

the structure of sensory data and find the main fac-

tors which play important roles during the prediction

process. These factors can be described as following:

(1) time correlation—sensory data has periodicity and

it has a dependency on its historical data; (2) spatial

correlation—sensory data of wireless sensor node has

a dependency on its surrounding node data; (3) data

quality control—some of the sensory data is lost or a
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noised version compared with the original value, and

data quality can be improved by data preprocessing.

In recent years, deep learning has developed rapidly.

The recurrent neural network (RNN) has many good ap-

plications in speech recognition, machine translation, and

time-series data prediction because of its memory ability.

Long short-term memory (LSTM) neural network is based

on the development of RNN. It has good performance in

processing long-term dependencies of time series data

and predicting long-interval events [12–15]. Using the

LSTM neural network to extract and fuse high-quality

sensory data with spatial-temporal correlation can im-

prove the efficiency and accuracy of the prediction model.

Therefore, how to use or improve the above three factors

and select good neural network model architecture to im-

prove prediction accuracy has become an important issue

that needs further study.

2 Related works

Data prediction can be used in many applications in-

cluding data prediction in wireless sensor networks,

traffic flow prediction, weather prediction, financial

prediction, and disaster early warning.

Song et al. [6] proposed a wireless sensor network data

prediction model PLB based on periodicity and linear

relationship. The model used the large amount of redun-

dancy in the data to predict future data and reduce the

transmission of predictable data. Yang and Tsai [7] pro-

posed a link stability prediction model based on current

link relationships and user information. The prediction

result could be used for link performance prediction, sys-

tem performance analysis, service quality prediction, and

route search applications. Kolodziej and Xhafa [8] pro-

posed an activity-based method Markov chain model to

define and predict the human movement patterns. Then,

they used the Nonparametric Belief Propagation technique

for prediction of the areas that would be visited and those

that would not in the future. Liu et al. [9] proposed a

microclimate data prediction model based on the extreme

learning machine. The model is oriented to improve the

prediction speed while ensuring accurate prediction. Sinha

et al. [10] proposed a data aggregation model TDPA based

on time data prediction. The model generates an estimate

of future data to analyze the prediction error and uses the

predicted value to save transmission energy consumption

when the prediction meets a predefined threshold. Spenza

et al. [11] proposed an energy prediction model called

Pro-Energy. The prediction model gets good results in

short and medium-term predictions by using historical

energy observation. The above methods do not utilize the

spatial-temporal correlation among the sensory data and

do not make a quantitative analysis for the dependencies

between nodes.

Weather prediction or disaster early-warning models

based on deep learning have become popular in recent

years. Tian and Chen proposed a neural network-based

multivariate correspondence analysis model (MCA-NN)

for disaster information monitoring. The model aims to

improve the detection results by combining features from

multivariate shallow learning models [16]. Zhang et al. use

cellular neural networks to predict the degree of desertifi-

cation. The Ruoqiang Basin is used as an example to

predict the trend of land desertification from 2000 to

2011, and the experiment shows that the model is better

than others [17]. Traore et al. proposed a method based

on artificial neural network to predict the recent irrigation

requirement. The paper uses the multi-layer perceptron

model to extract the climate information retrieved from

the public weather forecast to predict the recent crop

evapotranspiration [18]. Biswas et al. proposed a multi-

weather attribute model to predict weather based on

nonlinear autoregressive neural networks. In this paper,

the weather seasonality is captured, and the nonlinear

autoregressive neural network is used to map the

nonlinear relationship of weather data to obtain reliable

prediction results [19].

Financial prediction has become popular in recent

years, and it provides a method different from trad-

itional financial models. Shah and Liao proposed a

stock forecasting method based on event sentiment

analysis. The model extracts the emotional sentiment

of stock events in social media and aggregates daily

sentiment trends to predict subsequent stock market

trends [20]. Dong et al. proposed an error constraint

algorithm based on the single-step prediction model

by finding better weights and deviations. The experi-

ment shows the proposed model accumulates less

error in multi-step predictions than others [21]. Chen

and Du proposed a stock forecasting method that

combines sentiment analysis and online social behav-

ior analysis. By constructing social behavior graphs

and calculating key features, it finds the correlation

between transaction volume or price and these fea-

tures [22]. Wang et al. used delayed neural network

models to predict public housing prices in Singapore.

Nine independent economic and demographic vari-

ables are used to predict the trend of the resale price

index (RPI). The results show that the proposed pre-

diction model produces a good fit [23]. Teye and Ahe-

legbey used the Bayesian Graphical Vector Autoregression

to research the spatial-temporal relationship between

house prices in twelve provinces of the Netherlands. The

result shows the house price diffusion patterns in the

Netherlands and the patterns [24]. Che-Yu Lee used re-

current convolutional neural networks (RCN) to predict

stock price. The proposed prediction model combines

convolutions, word embedding, and sequence modeling to
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extract information from financial news, then the tech-

nical analysis indicators are added to predict the stock

price [25].

Traffic flow prediction needs to consider the surround-

ing environment and the periodicity of traffic flow. The

traffic flow data has strong spatial-temporal correlations,

and this correlation is similar to the spatial-temporal cor-

relation in wireless sensor networks. Lv et al. proposed a

self-encoder based on spatial-temporal correlation to learn

the traffic flow feature. The experiments show that the

spatial-temporal-based prediction model has better per-

formance [26]. Huang et al. proposed a depth framework

that combines multi-task learning. By using the weight

sharing in the depth framework, a grouping method based

on top-level weights is proposed to make the prediction

model more efficient [27]. Fu et al. proposed a model for

predicting traffic flow using long short-term memory net-

works (LSTM). They compare the performance of ARIMA

and LSTM in predicting traffic flow problems and prove

that LSTM has certain advantages in traffic flow predic-

tion [28]. Dai et al. proposed a deep learning model Deep-

Trend for traffic flow prediction. The model consists of an

extraction layer and a prediction layer, in which the ex-

traction layer is used to extract the trends of raw data and

the trends are used by the prediction layer to make predic-

tions [29].

3 Data preprocessing
This paper uses Intel indoor dataset [30] to study the

data prediction problem in the wireless sensor networks.

The dataset was collected by Intel Berkeley Research La-

boratory using Mica2Dot sensors in 2004 with the

TinyDB in-network query processing system built on the

TinyOS platform. The dataset contains 2.3 million pieces

of sensory data collected by 54 nodes, including date,

time, timestamp, node id, temperature, humidity, light,

and voltage. Figure 1 shows the location distribution of

54 sensor nodes. Each sub-area has multiple sensor

nodes to collect sensory data.

Node failure or data transmission errors sometimes

occur in wireless sensor networks. In order to avoid

the impact of abnormal data on the data prediction

problem, this paper mainly deals with two forms of

data outliers to improve data quality:

� Global outlier: The data deviates from the range of

the entire dataset.

� Local outlier: The data is with the range of entire

dataset, but abnormal compared with its

neighborhood.

Figure 2 shows an example to demonstrate these

two kinds of data outliers. We consider the sine

function with the normal data range as [− 1, 1]. The

value of node A is 1.2, which falls out of range [− 1,

1]. In this case, we can say that the value of node A

is a global outlier. On the other hand, the value of

node B, 0, is regarded as a local outlier because it is

in range of [− 1, 1] and is abnormal with its neigh-

boring data.

Fig. 1 Diagram of sensor node distribution
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3.1 Global outliers processing

Global outlier has a great influence on data normalization

and feature extraction, so it must be removed before using

the neural network to extract features of sensory data. In

this paper, the quartile method is used to process the global

outliers. First, find the lower quartile (Q1), median (Q2),

and upper quartile (Q3) in the sensory data. Then, calculate

the interquartile range (IQR), where IQR = Q3 − Q1. Fi-

nally, calculate the lower fence (Q1 − 1.5IQR) and upper

fence (Q3 + 1.5IQR), which are regarded as the lower and

upper bound for the range of the entire dataset. In this way,

the data which falls out of range [Q1 − 1.5IQR, Q3 +

1.5IQR] are considered as global outliers. In the Intel indoor

dataset [30], there are four different types of data collected

by the sensors, i.e., temperature, humidity, voltage, and light.

We can obtain IQR and the upper and lower fences accord-

ingly by calculating Q1, Q2, and Q3 for each given attribute.

Figure 3 shows the boxplot for these four different at-

tributes of node 8. The whiskers represent lower and

upper fences for each given attribute, and the red line

inside the box is the median value. The collected data

which falls out of the fences are marked with label +

which means that they are outliers. As we can see from

Fig. 3, there are less outliers with the temperature attri-

bute, while many outliers can be found with the voltage

and humidity. Especially, most of the outliers of the

humidity is close to the lower fence, while the outlier

distribution of voltage is relatively scattered.

3.2 Local outliers processing

After the sensory dataset is processed by the quartile

method, there are still a large number of local outliers,

which generally appear different from their adjacent data

although they are collected by the same node with the

same attribute. The local outlier occurs sometimes due

to the environmental noise which will influence the col-

lected data in a random manner. Figure 4 shows the im-

pact of noise on the data of node 8.

In order to reduce the noise influence on the data pre-

diction problem, we adopt the wavelet threshold denoising

to illuminate the noise in the original data. Wavelet

threshold denoising can be divided into three sequential

steps: wavelet decomposition, threshold acquisition, and

wavelet denoising.

3.2.1 Wavelet decomposition

Given a 1-dimensional signal, in this paper, we use the

multi-level wavelet decomposition in which the decom-

position level is set to 4 (which is generally proposed in

[31]), to obtain the wavelet decomposition coefficient C

and the coefficient length L which is used to calculate

the threshold and while the multi-level decomposition is

completed.

Fig. 2 Classification of data outliers

Fig. 3 Boxplot diagram of node 8 Fig. 4 Partial voltage data of node 8

Cheng et al. EURASIP Journal on Wireless Communications and Networking        (2019) 2019:203 Page 4 of 12

http://www.baidu.com/link?url=VIH_dyAi6ebCOtrRA-qXr0gPBukt1wq2l3S_H3NZ6DKV4_cdld2rmr3VEdAP4H2zHs2pot3PRpMUoqaGKt4CwPe7lar3urjno63VJzGr8eUoJotHdFIQFe0kNF9XTOdA


Assuming that the input signal is s, the first step in the

wavelet decomposition process of the signal s is shown

in Fig. 5. HiD and LoD represent the high-pass and low-

pass decomposition filter separately, and ↓2 presents the

down-sampling process. In this way, the input signal s is

converted to two outputs as cA1 and cD1.

The decomposition process continues four times with

the previous output cAj as the input (Fig. 6). Finally, we

can obtain the coefficients [cA4, cD4, cD3, cD2, cD1] and

the length L of each decomposition coefficient.

3.2.2 Threshold acquisition

In this paper, we use the unbiased risk estimation model

to get the threshold of the one-dimensional wavelet

transform. The threshold is calculated by the following

steps:

a. Obtain the absolute value of each element in the

signal; then, sort all the absolute values from small

to large; finally, square the sorted data to get a new

signal f (k), (k = 0, 1, 2, ..., N − 1).

b. Calculate Risk (k) with Eq. (1) for k = 0, 1, 2, ... ,N

− 1:

Risk kð Þ ¼

N−2k þ
X

k

i¼1

f ið Þ þ N−kð Þ f N−kð Þ

N
ð1Þ

c. Find the minimum one among these Risk(k), k = 0,

1, 2,... , N-1, and let its square root be the final

threshold λ.

3.2.3 Wavelet denoising

The soft wavelet threshold denoising method uses differ-

ent thresholds for denoising in each layer. The calculation

process is:

wλ ¼
sgn wð Þ wj j−λð Þ; wj j≥λ

0; wj j < λ

�

ð2Þ

where w is the wavelet coefficient, λ is the pre-selected

threshold, and sgn(·) is the sign function. wλ is the wave-

let coefficient filtered by the threshold function. Experi-

ments have shown that the local outliers present are

controlled after wavelet denoising [32–34]. Figure 7

shows the comparison between the original data and the

data after wavelet denoising. Similar wavelet denoising

process can be applied to different attributes of nodes in

the network. In this way, we can finally get a wireless

sensor network dataset with better data quality.

4 Correlation analysis

4.1 Data correlation in a single node

The Intel Indoor Dataset [23] contains a variety of sensory

data collected by 54 nodes. In order to select appropriate

sensory data to training the neural network and making

the predictions reasonable, this paper takes the node 8 as

an example to study the correlation of various sensory

data and quantify the correlation. The sensory data used

in this paper includes temperature, humidity, voltage, and

light. Temperature is in degrees Celsius. Humidity is

expressed in temperature corrected relative humidity, ran-

ging from 0 to 100%. Light is in Lux, ranging from 0 to

2000. Voltage is in Volt, ranging from 2 to 3. Considering

the different range of several sensory data, in order to ex-

tract the correlation features, this paper uses min-max

normalization to linearly transform the sensory data to [0,

Fig. 5 Wavelet decomposition for signal s

Fig. 6 Wavelet decomposition of cAj Fig. 7 Effect of wavelet denoising on voltage data of node 8
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1]. The min-max normalization is calculated as shown in

Eq. (3):

x0 ¼
x−xmin

xmax−xmin
ð3Þ

where x is the raw data, xmin is the minimum of the

dataset, xmax is the maximum of the dataset, and x' is the

normalized data. After the normalization process, all

sensory data is mapped to [0, 1]. Figure 8 shows the nor-

malized temperature and humidity data.

According to the Fig. 8, there is a correlation between

temperature and humidity. In order to improve the

accuracy of the correlation analysis, this paper uses the

Spearman correlation coefficient to quantify the correl-

ation. The Spearman correlation coefficient is calculated

as shown in Eq. (4):

ρ ¼ 1−

P

6d2
i

n n2−1ð Þ
ð4Þ

where di is the difference between the two ranks of each

observation. n is the number of observations.

Using the calculation Eq. (4) of the Spearman correl-

ation coefficient, the correlation coefficient of temperature

and humidity in node 8 is ρ = − 0.4830. The correlation

between various types of sensory data according to this

method is shown in Table 1.

Table 1 shows a strong correlation between temperature

and humidity, temperature, and light, where temperature

is negatively correlated with humidity and positively corre-

lated with light. Humidity has a strong correlation with

temperature and voltage, and humidity is negatively corre-

lated with voltage.

4.2 Data correlation between multiple nodes

In order to get the spatial-temporal correlation between

multi-node sensory data for neural network learning, this

paper takes the node 8 as the center and selects the near-

est node 7 and 9 to study the correlation of multi-node

sensory data and quantizes it by Spearman’s correlation

coefficient. The correlation of various types of sensory

data among the three nodes is shown in Table 2.

The same type of sensory data under multiple nodes

has a strong correlation, and the temperature, humidity,

and voltage are most obvious. From the position of node

8 and node 7 and node 9 in the wireless sensor network,

the correlation of light data is mainly affected by the dis-

tance between light source, the position of the shelter,

and the orientation of the room. It is not suitable as a

feature to train the spatial-temporal correlation-based

prediction model.

Considering the sensory data correlation analysis of

single-node and multi-node, this paper selects the

temperature and humidity data of node 8 and the

temperature data of nodes 7 and 9 as the input parame-

ters of the spatial-temporal correlation-based prediction

model, which is used to predict temperature data of

node 8.

5 Method

This section describes the features learning process of

prediction model based on the two-directional LSTM

neural network which is named as multi-node multi-

feature (MNMF) prediction model in this paper. As a

special form of recurrent neural network (RNN), bidirec-

tional LSTM neural network has a natural advantage in

long-term memory [12–14]. Both LSTM and RNN have

a chain structure consisting of a certain neural network

module, which is called cell in LSTM. The cell consists

of three gates: input gate, output gate, and forget gate.

The structure of the cell used in this paper is as follows:

Fig. 8 Temperature and humidity change

Table 1 Correlation coefficient of sensory data

Correlation Temperature Humidity Voltage Light

Temperature 1.0000 − 0.4830 0.0415 0.5617

Humidity -0.4830 1.0000 − 0.5026 − 0.2742

Voltage 0.0415 − 0.5026 1.0000 0.2088

Light 0.5617 − 0.2742 0.2088 1.0000

Table 2 Correlation coefficient of multi-node

Correlation Temperature Humidity Voltage Light

No.8, no.7 0.9633 0.9726 0.9724 0.8674

No.8, no.9 0.9945 0.9909 0.9880 0.9180

No.7, no.9 0.9575 0.9661 0.9690 0.8461
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it ¼ σ W ixt þ U iht−1 þ bið Þ ð5Þ

f t ¼ σ W f xt þ U f ht−1 þ b f

� �

ð6Þ

~Ct ¼ tanh W cxt þ Ucht−1 þ bcð Þ ð7Þ

Ct ¼ f t�Ct−1 þ it�~Ct ð8Þ

ot ¼ σ W oxt þ Uoht−1 þ boð Þ ð9Þ

ht ¼ ot� tanh Ctð Þ ð10Þ

Equation (5) is the input gate process, ht-1 is the out-

put of the previous cell, xt is the current cell input, σ is

the sigmoid function, and Wi and Ui are the input gate

weights. Equation (6) is the function of forgot gate,

which determines the information discarded in the cell,

and Wf and Uf are the forgot gate weights. Equation (7)

is a candidate memory unit that generates alternative

updates. Equation (8) is the function of updating the cell

state. The forgot gate decides what to be discarded in

the old state information and adds the updated informa-

tion to get the new state. Wc and Uc are the weights of

the alternative new state, and * is the Hadamard prod-

uct. Equations (9) and (10) are the output gate functions.

Firstly, the sigmoid layer is used to determine the state

of the cells to be output, then the updated cell state is

processed by the tanh layer. Finally, the two parameters

are multiplied to get the output, where Wo and Uo are

weights of the output gate.

With the cell as the basic structure, this paper uses two-

layer bidirectional LSTM neural network to construct the

prediction model. Compared with the ordinary LSTM

neural network, the bidirectional LSTM provides more

local information to the network, which uses the forward

and backward time series to get available information of

timestamps in the past and future, so that it has better

prediction result [15]. There is no direct connection be-

tween the backward layer and the forward layer in Fig. 9,

ensuring that the expansion is acyclic. For the input layer

data xt, the results of the forward and backward layers are

combined at the output layer to get the output yt. The

basic structure of the bidirectional LSTM is shown in

Fig. 9.

In wireless sensor networks, the sensory data collected

by nodes has regional characteristics; in this way, the

sensory data of different nodes have similar distribution

patterns. Similarly, there is a correlation between different

sensory data originated from the same node, which is rep-

resented by a positive or negative correlation between

various sensory data. In this paper, the spatial-temporal

correlation of multi-node sensory data is used to construct

a wireless sensor network data prediction model. As an

example, the MNMF model structure is shown in Fig. 10.

In Fig. 10, Va and Vb are the temperature and humid-

ity data of node 8. Vd and Ve are the temperature data

of nodes 7 and 9. To extract the spatial correlation be-

tween nodes, the timestamps of the node 8 needs to be

exactly the same as nodes 9 and 7. LSTM1 is the first

layer of bidirectional LSTM neural network that pro-

cesses the input layer features and transmits them to the

next layer. LSTM2 is the second layer of bidirectional

LSTM neural network, which extracts abstract features

from the previous layer. The FC is a fully connected

layer, which performs the nonlinear transformation on

the high-dimensional data in the previous layer. Merge

is a fusion layer, which combines the abstract features of

each node in the previous layer to predict temperature.

Since LSTM is used as the main structure of the pre-

diction model, the shape of the input layer data needs to

suit the parameter shape of the LSTM neural network,

including the number of features input, the length of the

time step, and the number of data. The stability and

training speed of the prediction model need to be con-

sidered when choosing the number of bidirectional

LSTM neural network nodes. Too few neural network

nodes are likely to cause insufficient training and under-

fitting, and too many neural network nodes are likely to

cause over-fitting and increase the duration of the model

Fig. 9 Bidirectional LSTM neural network structure Fig. 10 Structure diagram of the MNMF model
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training. The length of the time step also has an effect

on the prediction. The model dimensions adopted in this

paper are shown in Table 3.

In Table 3, the first dimension of the input layer and

the LSTM1 layer is determined by the time steps of the

specified feature, the time steps of Va are 50, and the

time steps of Vb, Vd, Ve are 10. The length of the data

sequence used by the LSTM model is determined by the

time step. Using the appropriate time steps for different

features can make the prediction model get a relatively

good prediction. In this paper, the mean square error

(MSE) is used as a loss function to estimate the devi-

ation. The calculation process is as shown in Eq. (11):

L θð Þ ¼
1

m

X

m

i¼1

yi−ŷið Þ2 ð11Þ

where θ represents all parameters in the model, yi repre-

sents the true value, and ŷi represents the predicted

value. In this paper, the model uses the backpropagation

algorithm to train and uses the Adam algorithm as the

optimizer to calculate and update the network parame-

ters. The adopted batch_size is set as 50, and the train-

ing ends when the epochs of the training exceed 200.

The model training process is described in Table 4.

6 Results and discussion

6.1 Time step selection

In this paper, Tensorflow, Keras, and Matlab are used

as the primary tools of the experiment, and GPU ac-

celeration is used to train the model. By testing a var-

iety of parameter configurations, it is found that the

time step length has a great influence on the extrac-

tion efficiency of data features in MNMF. If the se-

quence is too short, the prediction model will get less

information and can not make an accurate prediction.

If the sequence is too long, the model will get too

much information to extract useful feature from data.

In this paper, 10, 20, 50, 100, 200, and other specific

time steps are used as the basic unit of the combin-

ation, the first 50% of the entire sensory dataset is

used as the train set, and the last 50% is used as the

test set to evaluate the prediction. Table 4 and 5

shows the relationship between the time step length

Table 4 Training process of MNMF model

Table 3 Feature shape of each layer in MNMF

Dimension Va Vb Vd Ve

Input layer (50, 1) (10, 1) (10, 1) (10, 1)

LSTM1 (50, 128) (10, 128) (10, 128) (10, 128)

LSTM2 64 64 64 64

FC 16 16 16 16

Merge layer 16

Output layer 1

Table 5 Prediction deviation of multi-node multi-feature model

Timesteps Va Vb Vd Ve RMSE

100 200 10 10 10 0.201

100 10 10 10 0.160

100 20 10 10 0.172

100 20 20 20 0.248

100 10 20 20 0.424

50 10 10 10 0.139

10 10 10 10 0.290

50 100 10 10 10 0.443

50 10 10 10 0.101

20 10 10 10 0.156

10 10 10 10 0.261
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of the multi-node multi-feature model (MNMF) and

the prediction error, where Va and Vb are the

temperature and humidity of node 8, and Vd and Ve

are the temperatures of nodes 7 and 9.

The RMSE in Table 4 and 5 is the root-mean-square

error, which is calculated as the square root of the Eq.

(10). The root-mean-square error is used to measure the

accuracy of the predicted value. This paper uses a variety

of batch size training models and then compares them.

Through the change of time step length and RMSE, it can

be known that selecting a reasonable time step length is

an effective way to improve the prediction effect. The pre-

diction deviation of multi-node multi-feature model is de-

scribed in Table 5.

6.2 Feature selection

In the dataset used in this paper, there are many kinds

of sensory data that can be used for prediction. Accord-

ing to the correlation between data and experimental re-

sults, the MNMF prediction model selects four features

for prediction, in which Vb represents the temporal cor-

relation between the data to be predicted and other sen-

sory data of the same node, and Vd and Ve represent

the spatial-temporal correlation between adjacent nodes.

Va represents the temporal correlation between the data

to be predicted and its historical data. In addition, this

paper also constructs two prediction models based on

single-node multi-features and multi-node single-fea-

tures. The parameter configuration is similar to the

MNMF model. The combination of the chosen sensory

data and the length of the time step is shown in Tables

6 and 7.

Va shown in Table 6 is the temperature data sequence

of node 8, Vb is the humidity data sequence, and Vc is

the light data sequence. Since the sensory data of a

single node is used, this model is called a single node

multi-feature model (SNMF), where batch_size is set to

100. Table 6 shows the experimental results of the sin-

gle-node model at each time step length, two extra-sen-

sory data are used to extract useful correlation features,

and the influence of the time step on the prediction is

reasonable.

Va in Table 7 is the temperature data of node 8,

Vd is the temperature data of node 7, and Ve is the

temperature data of 9. Because using the same kind

of sensory data in multiple nodes to train, it is called

a multi-node single-feature model (MNSF) in this

paper, and the batch size is set to 100 in training.

Table 7 shows a prediction result that only consider-

ing the correlation of the same kind sensory data in

multiple nodes. Node 8 is in the same room with

nodes 7 and 9 and they are close to each other so

that the collected sensory data has a strong correl-

ation. As shown in Table 2, the temperature data cor-

relation coefficient between node 8 and node 7 is

0.9633, and the temperature data correlation between

nodes 8 and 9 is 0.9945. The above results prove that

constructing a prediction model using sensory data

correlation in a wireless sensor network is an effective

method. This paper combines the advantages of the

above two models, constructing a multi-node multi-

feature model (MNMF). Figure 11 shows the partial

sensory data prediction of the above three models.

6.3 Comparative experiment

To verify the performance of the model (MNMF), three

neural network prediction models were used to compare

the performance in the simulations.

Table 6 Prediction deviation of single-node multi-feature

model

Va Vb Vc RMSE

5 2 2 0.184

10 10 10 0.171

20 10 10 0.190

50 10 10 0.322

50 50 10 0.424

Table 7 Prediction deviation of multi-node single-feature

model

Va Vd Ve RMSE

5 2 2 0.174

10 10 10 0.159

20 10 10 0.140

50 10 10 0.213

50 50 10 0.305

Fig. 11 Diagram of temperature prediction
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1. Elman neural network. It is a typical local forward

network (global feed forward local recurrent). The

Elman network can be seen as a recurrent neural

network with local memory units and local

feedback connections.

2. NARX (nonlinear autoregressive exogenous model).

The nonlinear autoregressive exogenous model

mainly consists of four layers: input layer, hidden

layer, bearing layer, and output layer, wherein the

bearing layer uses a nonlinear autoregressive model

with exogenous input.

3. GRNN (general regression neural network). A

generalized regression neural network is an artificial

neural network that uses a radial basis function as

an activation function, which is an improvement of

the radial basis network.

In order to improve the comprehensiveness of the

evaluation, the root-mean-square error (RMSE), mean

absolute error (MAE), mean absolute percentage error

(MAPE), and R2 are used as evaluation indicators to

evaluate the prediction model. RMSE is sensitive to out-

liers that appear in prediction errors, while outliers in

prediction errors have a relatively small impact on MAE,

so RMSE and MAE are both used to evaluate the predic-

tion. MAPE shows the ratio between the error and the

actual value, which can be used to measure errors in dif-

ferent orders of magnitude. R2 is used to measure how

well the regression prediction approximates to actual

data, which is necessary for regression. Multi-type of

evaluation indicators can estimate the quality of model

predictions better and avoid incomplete evaluation, so

the above four indicators are both used to evaluate the

predictions. Equation (12) is the calculation process of

MAE, Eq. (13) is the calculation of MAPE, and Eqs. (14),

(15), and (16) are the calculation of R square.

MAE y; ŷð Þ ¼
1

m

X

m

i¼1

yi−ŷij j ð12Þ

MAPE y; ŷð Þ ¼
100%

m

X

m

i¼1

yi−ŷi
yi

�

�

�

�

�

�

�

�

ð13Þ

R2 ¼ 1−
SSresidual

SStotal
ð14Þ

SSresidual ¼
X

i

yi−ŷið Þ2 ð15Þ

SStotal ¼
X

i

yi−yð Þ2 ð16Þ

In the above equations, yi is the true value, ŷi is the pre-

dicted value, y is the average value, and m is the number

of samples. MAPE is the percentage of prediction bias and

true value. Because the data range of each type of data is

different, the calculated error is very different among vari-

ous types of data. The R2 can be interpreted as the ratio of

the predicted mean square error to the data variance. It

represents the fitness of the predicted value and the actual

value. The calculated evaluation indicators are shown in

Table 8.

The experiment shows that the MNMF model has a

great advantage over Elman and NARX, and it has an

advantage in RMSE and R2 when compared with GRNN.

Figure 12 shows the partial temperature data prediction

curves of MNMF, GRNN, and Elman. Since the NARX

neural network is obviously weaker than other models in

various indicators, no further comparison is made here.

It can be seen from Figure 12 that the MNMF model

has lower prediction error and the prediction is more

stable than the other two models.

7 Conclusion
The sensory data in the wireless sensor network is col-

lected by multiple sensors of different nodes, which shows

the relative variation of several environmental factors in

different regions. In this paper, we quantify the correlation

features between different sensory data and construct a

Table 8 Predictive evaluation of multiple models

RMSE MAE MAPE R2

MNMF 0.10095 0.07272 0.31804 0.99625

Elman 0.25578 0.14736 0.69806 0.98654

GRNN 0.18955 0.08076 0.32872 0.99193

NARX 0.34793 0.25057 1.17430 0.98090

Fig. 12 Diagram of prediction comparison
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sensory data prediction multi-node multi-feature

(MNMF) model, based on bidirectional LSTM. The model

considers three factors including the temporal correlation

between the sensory data and its historical data, the spatial

correlation of the sensory data between different nodes,

and the low data quality caused by the transmission error

of the sensor network. Firstly, the quartile method and

wavelet threshold denoising method are used to improve

the data quality. Then, the bidirectional LSTM neural net-

work is used to learn the prediction features respectively.

Finally, the merge layer of the neural network is used to

fuse multiple data features to predict the specific sensory

data. In this paper, Intel indoor dataset is used for experi-

mentation. The experiments show that the proposed

MNMF model has high prediction accuracy and reason-

able prediction bias.
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