
Data prefetching in a cache hierarchy

with high bandwidth and capacity

ABSTRACT
In this paper we evaluate four hardware data prefetchers in the con-
text of a high-performance three-level on chip cache hierarchy with
high bandwidth and capacity. We consider two classic prefetchers
(Sequential Tagged and Stride) and two correlating prefetchers: PC/
DC, a recent method with a superior score and low-sized tables, and
P-DFCM, a new method. Like PC/DC, P-DFCM focuses on local
delta sequences, but it is based on the DFCM value predictor. We
explore different prefetch degrees and distances. Running
SPEC2000, Olden and IAbench applications, results show that this
kind of cache hierarchy turns prefetching aggressiveness into suc-
cess for the four prefetchers. Sequential Tagged is the best, and
deserves further attention to cut it losses in some applications. PC/
DC results are matched or even improved by P-DFCM, using far
fewer accesses to tables while keeping sizes low..

Categories and Subject Descriptors
B.3.2 [Memory structures]: Design Styles – Cache memories

General Terms
Performance, Design

Keywords
Hardware data prefeching

1. INTRODUCTION
Hardware data prefetching techniques are fairly efficient if data are
timely prefetched and eventually demanded by the CPU, if they do
not replace other contents immediately demanded, and if they do
not waste bandwidth and other critical resources [6]. These condi-
tions depend on both applications and memory hierarchy, which
implies two facts. Firstly, no prefetching method succeeds for every
application so far, and therefore new prefetchers are being pro-
posed. Secondly, memory hierarchies and processors evolve: cur-
rent on-chip huge memory hierarchies offer a new arena and call for
the evaluation of the classic and new prefetching approaches.

The main purpose of this article is to explore the prefetching capa-

bilities of a high performance on-chip cache hierarchy. We simulate
a detailed model similar to that of Itanium 2, where sizes and band-
width are far generous regarding the cache hierarchies often used in
current prefetching evaluations. We compare four prefetchers.
Sequential Tagged and Stride are almost compulsory for our pur-
pose. Correlating prefetchers have been an attractive approach
since they appeared, and we have chosen PC/DC because it is a
recent proposal with a superior score [8][16][17][18]. Since PC/DC
relies on a table with linked lists, we have arranged a new correlat-
ing prefetcher with a more traditional organization that needs far
less acesses to tables. It is based on DFCM, a value predictor very
precise for detecting delta pattern streams (differences between
consecutive values) [7].

A way of increasing the timeliness of prefetching consist of increas-
ing the prefetch degree or distance. Let us consider a stream of ref-
erences a program is going to demand (ai, ai+1, ai+2,...), where ai
has been demanded by the program. Then a prefetcher can dis-
patch ai+1,...ai+n, where n is the prefetch degree. Alternatively, it is
also possible to prefetch only ai+n, and then we say n is the prefetch
distance. Increasing the prefetch degree has always been a good
theoretical choice, yet highly limited by real resources, namely
cache size and bandwidth, and for this reason we experiment with
these parameters.

The rest of the paper is organized as follows. Section 2 reviews the
two classic prefetchers and situates PC/DC in the context of corre-
lating prefetchers. Section 3 introduces the new P-DFCM
prefetcher. Section 4 presents the baseline architecture, focusing on
our detailed cache memory model, and specifies implementation
parameters and details of the four methods we compare. Section 5
presents and discuses the experimental results. We finally draw
some conclusions and mention future work in the last Section.

2. RELATED WORK
Sequential prefetching has been known for three decades. It
prefetchs the block or blocks that follow the current demanded
block, and suits programs that reference consecutive memory
blocks [24][12]. Sequential tagged prefetching does only issue a
prefetch upon a cache miss or when a block is referenced for the
first time, and it needs an extra bit per block. These methods tend to
issue many prefetches that are not used by the CPU (useless
prefetches), but they increase performance on a broad range of
applications at a low cost.

Stride prefetching identifies and predicts accesses to memory
addresses separated by a constant distance. Conventional stride
prefetching uses a Load Table (LT) indexed by the program counter

Luis M. Ramos, José Luis Briz, Pablo E. Ibáñez, Victor Viñals
Depto. Informática e Ing. de Sistemas and I3A, Univ. Zaragoza. HiPEAC Network of Excellence

c/ Ma. de Luna, 1 - 50018 ZARAGOZA (SPAIN)

+34976762106

{luis.ramos,briz,imarin,victor}@unizar.es

Partially granted by the Aragonese Government (Research Group n. 48,
BOA 122, 15 Oct. 2004) and the Spanish Ministry of Education and Science
/European Union FEDER, TIN2004-07739-C02-02.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. MEDEA '06, September 16-20, 2006 Seattle, WA, Copyright 2006 ACM 1-59593-568-1/06/09... $5.00

ACM SIGARCH Computer Architecture News 37 Vol. 35, No. 4, September 2007
Reprinted with permission of the ACM.

(PC) that associates strides to the loads following this kind of
memory access pattern [1]. When address a is referenced by a load
that hits in the table, and the matching entry indicates that the load
is following a stride pattern, the prefetch controller issues the
addresses a+s, where s is the associated stride. The size of the
table can be much reduced without severe performance losses by
applying on-miss insertion in the LT [10]. In this case only a load
that misses in the cache is stored in the LT, but the entry is updated
whenever the load hits in the table, independently of whether it
misses or not in the cache.

During the past decade, both sequential and stride prefetching were
actively explored, and specialized prefetchers were also proposed
for tracking other memory accesses [25]. Several proposals were
specifically targeted to pointer-intensive applications
[3][4][19][26]. Correlating prefetchers apply to a broader range of
applications with good results, predicting future addresses from
tables that record the past memory program behaviour. They gen-
eralize the stride table by registering the stream of addresses asso-
ciated either to the load PC or to an address that misses, usually in
the second cache level (L2). The seminal idea handled miss
address streams as Markov’s chains and was extended or modified
in different ways [9][11][13][14][15]. Markov prefetching stores
the miss address streams that followed an address that missed in
L2 in the past [11]. Each table entry represents a node in a Mark-
ovian graph, and its list of addresses represents the arcs with the
higher probabilities. In order to decrease the size of the table,
Tagged Correlating Prefetching (TCP) only stores the most signif-
icant bits of each address (tag), making the most of the fact that a
tag can appear in one or more cache sets, while an address only
appear in one [9].

Instead of addresses, differences between consecutive addresses
(deltas) can be alternatively stored. A delta sequence can stand for
many miss address sequences. Therefore we can predict miss
addresses that did not occur in the past, and a stride reference pat-
tern is a particular case where all deltas have the same value. Dis-
tance Prefetching was firstly proposed for prefetching TLB entries.
A delta is used to index in the correlation table the stream of deltas
that previously followed [13].

DBCP (Dead-block Correlating Prefetching) correlates and pre-
dicts miss streams per block frame. An entry in the History Table
encodes a list of prior memory addresses mapped to the block
frame along with the sequence of PCs of the last instructions that
have referenced that frame in the first cache level (L1). An entry in
the Dead-block Table stores the sequence of instruction PCs that
resulted in a block eviction some time in the past, the addresses of
the evicted block, and the address of the block that replaced it [14].
Whenever a sequence of PCs referencing block A matches a
sequence stored in the Dead-block Table that also ends with the
eviction of A, the block B that replaced A in the past (recorded in
the table) is prefetched. The History Table can be moderate in size,
but we need a multimegabyte Dead-block table hierarchy on- and
off-chip, with high associativities.

Often times in correlating prefetchers the recorded history stales,
mega-sized tables are needed, or the number of table accesses mul-
tiplies. A novel table structure (GHB) focuses on the first two
problems [8][16][17][18]. GHB prefetching organizes the history
table as a circular buffer (GHB, Global History Buffer). Miss

addresses are inserted in the GHB as they appear in the global L2
miss stream. GHB entries are linked into address lists. Head point-
ers for each address list are stored in the Index Table (IT), indexed
by a key. The PC of a missing load, any address that misses in L2,
or some combination, may act as a key. This structure can be
adapted to different prefetching methods, named on a X/Y basis,
where X is the prefetch key and Y the method for detecting address
patterns. The best performer in the family is PC/DC: the PC of the
loads missing in L2 is used as the key, and consecutive addresses
in a linked list are substracted to calculate deltas. Prefetching is
issued when a repeating pattern of deltas is detected. [17]. Calcu-
lating deltas and tracking patterns implies several accesses (cycles)
to the GHB, but the mechanism acts only upon L2 misses. Perfor-
mance is lower when using miss address instead of load PCs as a
key. For this case, an adaptive mechanism was proposed that finds
out an optimal tag size and prefetch degree [18].

A GHB indexed by PC was evaluated and reported to outperform
all the former prefetchers using the MicroLib platform in [8]. Our
contribution here differs in scope and experimental procedures,
specially in the processor and memory hierarchy. In addition, we
use LT on-miss insertion, trained with the memory reference
stream, instead of the stride prefetcher, trained with L2 misses,
used in [8] and also in the original papers of GHB ([16][17][18]).
Moreover the GHB prefetcher in [8] issues up to four prefetches
per L2 miss, but sequential, stride and the other prefetchers seem
to operate with a degree of one. We explore different prefetching
degrees and distances across the four prefetchers, and analyze total
and useful prefetches per reference, for establishing a precise

parametrization of ports in the three table-based methods.

3. P-DFCM: PREFETCH BASED IN DFCM
DFCM (Differential Finite Context Method) [7] is a value predic-
tor based on deltas that can be adapted for prefetching with some
advantage. It uses a table indexed by PC, where each entry holds
the last value produced by the instruction, and the differences (del-
tas) between recent values. Deltas are hashed for indexing a sec-
ond table, to find out the following probable delta. In this way,
stride sequences (constant delta) only occupy one entry in the sec-
ond table. A prediction can be done as soon as the PC is available,

and the table is updated once the final value is known.

Differences between the P-DFCM prefetcher and the DFCM value
predictor are as follows. On the one hand, value prediction applies
on every instruction in the program, but address prediction for
prefetching does not. It only applies to loads missing in L2, consid-
erably lowering table sizes. On the other hand, the most remark-
able difference with DFCM lies in the way of updating and
predicting values or addresses. We could predict the address a load
is going to produce as soon as the load PC is known. However, it
makes little sense to prefetch a datum that is going to be demanded
by a load just a few cycles later. In P-DFCM a prefetch is issued as
soon as the data address is known, on behalf of a later instance of
the same load. Let us consider Figure 1a. The History Table (HT)
is indexed by PC. Each entry holds the last address produced by a
load instruction, and the differences (deltas) between recent
addressees issued by this load. Deltas are hashed for indexing the
Delta Table (DT), to find out the following probable delta. Once
the data address @i is known, it is substracted from the address

ACM SIGARCH Computer Architecture News 38 Vol. 35, No. 4, September 2007

issued in the previous instance of the load (@i- 1), which is stored
in HT, for calculating i (Figure 1a, (1)). This delta is stored in the
DT indexed by the load history of deltas, while the new delta
sequence is hashed (Figure 1a (2)), and the proper HT entry is next
updated (Figure 1a (3)). Now, this new delta sequence indexes the
next (predicted) delta in the sequence, i+1, used to produce the
prefetching address (Figure 1 b). All in all, each L2 miss requires
one read and one write in HT, plus one read and one write in DT.

We apply the same hashing function used in DFCM, FS R-5, that
yields the best results for finite context predictors [22]. In this
function the length of the history (order) is a function of the loga-

rithm of the number of DT entries (). Confidence

counters are used in HT.

4. EXPERIMENTAL FRAMEWORK

4.1. Baseline architecture

The simulation environment is based on Simple Scalar 3.0 using
Alpha binaries [2]. Simple Scalar was modified to model in detail a
superscalar processor with a three-level on-chip cache memory
(Figure 2). Table 2 shows baseline architecture parameters. The
first-level data cache (L1d) supports up to four loads, one store and
up to two loads, or two stores, and includes a store buffer, repli-
cated for supporting four lookups by cycle. Four Coalescing Write
Buffers allow to write in spare cycles. Store-load dependences go
through a perfect predictor. L2 follows the Itanium 2 model. It is
organized in 16 banks, and L2Q holds all data references to the
banks. Refill of the L1d critical block proceeds in parallel with
refill in L2. Relevant details on the memory pipeline are given in
Figure 3. When a load references L1d, its dependent instructions
are speculatively issued. L2 tags and L1d are accessed in parallel
in the M1 stage.

Table 3 shows the characteristics of the benchmark programs. We
selected those applications that achieve a speedup greater than 2%
with an ideal L2 among Olden [20], SPEC CPU 2000 and IAbench
[19]. Olden and IAbench applications were run up to completion.
For SPEC CPU applications, we run the simple Simpoints, warm-
ing caches and branch predictor during 200 million instructions
[23]. Software prefetching instructions were ignored during the

simulations.

4.2. Implementation details of the prefetchers

 The four prefetchers we compare aim to reduce L2 misses, and
consequently data are brought into L2 in all cases. However, each
prefetch controller uses information from different levels, as we
explain below. We selected optimal table sizes for each prefetching
method setting a prefetch degree of one and varying table configu-
ration over a wide range (Table 1). A Prefetch Address Buffer
holds up to eight addresses issued for prefetching. In all prefetch-
ers, when the prefetch degree is greater than one, the second and
following prefetches are issued at a one-per-cycle rate.

Sequential tagged prefetching operates at the second level cache,
and therefore a bit was added to each entry in L2tags. We have
observed experimentally that placing it in the first level exacer-

bates its aggressiveness.

Stride prefetching is implemented as LT on-miss insertion [10], and
use information from L1 and L2: a) Loads are inserted in the LT
only upon L2 miss, but note that b) every load that hits in LT is

Figure 1. Prefetch based on DFCM. HT: History Table;
DT: Delta Table.

Figure 2. Baseline architecture: main components of the mem-
ory hierarchy. AGU:Address Generation Unit; L1d: first-level
data cache; L2 (tags/-): second-level cache (tags /data): MAF /
2: Miss Address File in first /second level; L3: third-level cache;

fwd: forwarding crossbar.

history

PC

-

hash

DT

history

@ i

(1)

(2)

(3)
(1)

(2)

(3)

(a) Update

PC

+

prefetch @ i+1

(b) Predict

(2)

@ id i d i+1

HT HT

DT

@ i-1

AGU
L1d

L2

MAF

L2Q

MAF2

L2
L3

Main
Mem

Bus 2

32

fwd Bus 1

32
CPU

2

tags
Main
Mem

order n 5=

Table 1: Table configurations

Prefetching method Entries per table Size ordera

Stride with on-miss insertion 32 512 Bytes

PC/DC 256 (IT) x 256 (GHB) 4 KB

P-DFCM 256 (HT) x 512 (DT) 5 KB

aIncluding tags and rounded to the ceiling power of two

ACM SIGARCH Computer Architecture News 39 Vol. 35, No. 4, September 2007

trained with the address issued to memory (i.e to L1). Whenever a
load hits in the LT, if the confidence counter indicates that a stride
pattern has been found, a prefetch is issued. LT is read in the AG
stage for every load. Prefetches are issued in the M1 stage. LT
entries are always updated (or assigned) in the Commit stage only
for loads that hit in LT (or miss in L2). The table has four read
ports and one write port, for supporting up to four lookups and one
update in a cycle.

Methods based in GHB can hardly be trained with the stream of
references to memory, as we do in LT on-miss insertion, because

Figure 3. Baseline architecture: memory pipeline. Stages: IQ (Instruction Queue), R (Read registers); AG (Address generation); M1
(L1 data access and L2 tag lookup); M2 (data forwarding); WB (Write data in register); Com (Commit: architecturally complete); Ret

(Retire: leave ROB). Other stages indicate the component accessed. tr stands for transport cycle.

RIQ AG M1

tags
L2

M2

fwd

WB

L2Q tr L2 bank refill

MAF

MAF2

tags L3 tr data L2 bankbus 2

bus1 M2 WB

L1 hit

L1 miss

L2 miss

Com Ret

L1

bus1 M2 WB

fwd

fwd

Table 2: Baseline architecture: parameters

Fetch & Decode 8 instructions/cycle

Issue 8 int + 4 fp

Retire 16 instructions/cycle

ROB 256 entries

Execution Units 8 int ALU, 2 int MUL, 4 fpALU, 4 fpMUL

IQ 64 int + 32 fp (1 cycle for reading operands)

Store Buffer (STB) 128 entries

Branch Pred. hybrid bi-modal, gshare (16 bits)

Cache L1 d

16 KB, block 32 B, 2-way, lat. 2 cycles
write-through non-allocate,

4 Coalescing Write Buffers (CWB)
Mem. Address File (MAF): 16 entries

Cache L1 i ideal

Cache L2

256 KB, block 128 B, 8-way
16 banks 16B -interleaved

bank access lat.: 2 cycles; ld/use lat.: 8 cycles,
write-back allocate

L2Q 32 entries, WB 6 entries, MAF2: 8
entries

Cache L3

4 MB, block 128 B, 16-way
tag access: 2 cycles, pipelined

data access: 4 cycles; ld/use lat.: 13 cycles
write-back allocate; WB 2 entries

Memory Latency 200 cycles; bandwith 1/20 cycles

Table 3: L1, L2 and L3 miss rates and IPC for the different
benchmarks.

Progr.
L1

mr

L2

mr

L3

mr
IPC Parameters and group

vpr 7,2% 2,5% 0,3% 1.29

SPEC CPU 2000 int

(CINT)

gcc 2,4% 0,5% 0,1% 5.19

mcf 34,1% 19,6% 13,2% 0.24

parser 7,6% 0,8% 0,0% 2.27

gap 1,4% 0,1% 0,1% 1.74

vortex 2,5% 0,3% 0,1% 4.72

bzip2 3,1% 1,2% 0,0% 2.44

twolf 12,6% 4,3% 0,0% 1.96

wupwise 3,3% 0,8% 0,7% 2.88

SPEC CPU 2000 fp

(CFP)

swim 23,8% 5,0% 5,0% 0.81

mgrid 7,4% 1,8% 0,9% 1.94

applu 13,8% 3,0% 2,9% 1.33

galgel 15,7% 3,3% 0,2% 3.31

art 73,7% 41,5% 0,0% 2.22

equake 19,3% 3,4% 3,2% 0.50

facerec 4,5% 2,2% 0,2% 2.07

ammp 12,1% 4,6% 0,1% 2.74

fma3d 3,0% 0,5% 0,4% 2.45

apsi 1,2% 0,1% 0,1% 4.57

em3d 28 % 3,8% 0,0% 2.92 em3d 2000 10 100 100

Olden
mst 14,1% 10,9% 9,4% 0.76 mst 1024 1

perimeter 4,3% 0,5% 0,6% 1.60 perimeter 10 1

treeadd 4,7% 0,6% 0,6% 1.63 treeadd 20 1

tsp 1,9% 0,2% 0,1% 2.60 tsp 100000 0

csrlite 12,4% 3,1% 2,8% 0.72

csrlite 30 20 gre__115.rua

impcol_c.rua mcca.rua

west0156.rua
IA

bench

sparse 37,1% 12,3% 0,4% 0.64
(500x500 sparse matrix with

5000 non-zero elements)

ACM SIGARCH Computer Architecture News 40 Vol. 35, No. 4, September 2007

the GHB should be much greater for holding the greater history.
According to the original proposal, insertion and prediction in PC/
DC is made upon a miss in L2. To keep the demand address stream
unaltered, prefetched lines are tagged. The loads that hit on lines
with a set prefetch tag update the tables as they were L2 misses. IT
and GHB are assumed to have one port, enough to support the
stream of L2 misses. The PC/DC predictor is updated in M1 at a
maximum rate of one per cycle (see Figure 3). This requires read-

ing IT, updating GHB, and next updating IT. Along the next cycles
the GHB is walked looking for a pattern. Every table access takes a
cycle, and the activity of the GHB state machine when serving an
L2 miss occurrence is overridden if a subsequent L2 miss shows
up [17][18]. Update and predict activities in P-DFCM are also car-
ried out in M1 at a maximum rate of one per cycle. Details were

given in Section 3.

5. RESULTS

A preliminary comparison of the four prefetchers is given in
Figure 4. The upper graph (a) plots the IPC speedups achieved
regarding the baseline architecture without prefetching. There are
thirteen applications where at least one prefetcher gets a 5% IPC

speedup (gap, wupwise, swim, mgrid, applu, galgel, equake,
fma3d, mst, perim, treadd, tsrlite, and sparse). Sequential Tagged
is the best in ten out of these thirteen applications, but also the only
one having significative IPC losses (art, ammp). The graphs below
show the total (b) and useless (c) prefetches issued per non-specu-
lative load. It can be observed that Sequential Tagged is the most

Figure 4. Performance comparison of the four prefetchers, as IPC improvement percentage over the baseline system with no prefetch
(a). Total (b) and useless (c) prefetches per committed load.

0%

15%

30%

v
p

r

g
c
c

m
c
f

p
a

rs
e

r

g
a

p

v
o

rt
e

x

b
z
ip

2

tw
o

lf

w
u

p
w

is
e

s
w

im

m
g

ri
d

a
p

p
lu

g
a

lg
e

l

a
rt

e
q

u
a

k
e

fa
c
e

re
c

a
m

m
p

fm
a

3
d

a
p

s
i

e
m

3
d

m
s
t

p
e

ri
m

tr
e

e
a

d
d

ts
p

c
s
rl
it
e

s
p

a
rs

e

%
 u

s
e

le
s

s
 p

re
fe

tc
h

e
s

 p
e

r
lo

a
d

0%

15%

30%

v
p

r

g
c
c

m
c
f

p
a

rs
e

r

g
a

p

v
o

rt
e

x

b
z
ip

2

tw
o

lf

w
u

p
w

is
e

s
w

im

m
g

ri
d

a
p

p
lu

g
a

lg
e

l

a
rt

e
q

u
a

k
e

fa
c
e

re
c

a
m

m
p

fm
a

3
d

a
p

s
i

e
m

3
d

m
s
t

p
e

ri
m

tr
e

e
a

d
d

ts
p

c
s
rl
it
e

s
p

a
rs

e

%
 p

re
fe

tc
h

e
s

 p
e

r
lo

a
d

-20%

0%

20%

40%

60%

80%

100%

v
p

r

g
c
c

m
c
f

p
a

rs
e

r

g
a

p

v
o

rt
e

x

b
z
ip

2

tw
o

lf

w
u

p
w

is
e

s
w

im

m
g

ri
d

a
p

p
lu

g
a

lg
e

l

a
rt

e
q

u
a

k
e

fa
c
e

re
c

a
m

m
p

fm
a

3
d

a
p

s
i

e
m

3
d

m
s
t

p
e

ri
m

tr
e

e
a

d
d

ts
p

c
s
rl

it
e

s
p

a
rs

e

IP
C

 i
m

p
ro

v
e

m
e

n
t

p
e

rc
e

n
ta

g
e

Seq. Tag. Stride PC/DC P-DFCM

(a)

(b)

(c)

ACM SIGARCH Computer Architecture News 41 Vol. 35, No. 4, September 2007

active prefetcher, but also the one that issues more useless
prefetches, yielding irregular results with great losses some times.
Among the other three prefetchers (table-based) in this Figure 4,
the best performer is Stride in gap, applu, and fma3d, PC/DC in
wupwise, mst and treeadd, and P-DFCM in swim, mgrid, galgel,
equake and csrlite. PC/DC performance is similar to P-DFCM, in
spite of the fact that walking the linked lists in the GHB multiplies
by four, on average, the number of accesses to the correlation
tables performed by P-DFCM. Note that Stride is the only
prefetcher in this experiment getting a speedup greater than 5% in
a CINT application (gap). It is also interesting to observe in
Figure 4 (b and c) that Stride, PC/DC and P-DFCM are certainly

selective prefetchers: most prefetches are useful.

Figure 5 shows the impact of varying distance and degree for each
one of the four prefetchers. Increasing distance or degree is benefi-
cial for all, but note that losses in Sequential Tagged are very high
in amp and mst (Figure 5 a), because useless prefetches increase by
a factor of 2.8x on average. Stride Prefetching speedups are quite
comparable when increasing either distance or degree, but increas-
ing distance seems a better option because it can be implemented
without additional cost, and far less prefetches are issued. In the
case of PC/DC there is little advantage in increasing the distance,
and some losses can appear. Increasing the prefetching degree is
always positive, and seems the best option because in this method
implies little extra effort. Similar conclusions apply to P-DFCM.
The cost of increasing the degree is a bit higher in this method, but
similar to increasing the distance, and results appear slightly more
favorable when increasing the degree.

Finally, we gather all prefetchers again in Figure 6 but selecting the
most reasonable option for each of them: distance four for Stride,
and degree four for the rest. Let us now focus on the fourteen
applications where at least one prefetcher gets a 5% IPC speedup
(the same thirteen that before plus parser). Sequential Tagged
turns out to be the best in ten of them. Stride clearly outperforms
the two correlating prefetchers in four applications (parser, gap,
mgrid and fma3d). If we compare the two correlating prefetchers,
considering differences greater than 5% in IPC speedup, PC/DC is
better than P-DFCM in wupwise and mst, but falls behind P-DFCM
in swim, mgrid, equake and csrlite. Increasing degree or distance
does not bias the outcome in favor of one of them. The number of
references to the correlation tables keeps higher in PC/DC (2.6x on
average with respect to P-DFCM).

 It is worth noting that speedups on CINT applications keep low,
and that only Sequential Tagged and Stride get some success with
them. In many cases L3 serves most data or IPC is kind of high
(gcc, vortex, see Table 3), but it should be noted that few
prefetches are issued in those applications. With a low base IPC
and high miss ratios on the three levels, mcf remains a challenge
for the four prefetchers: not even the two correlating prefetchers
manage to deal with the erratic behavior of its object pointers,
although only a 10% of memory references follow an unknown
pattern [21].

6. FINAL REMARKS

We have simulated in detail a three-level on chip cache hierarchy,
serving an 8-way processor capable of issuing up to four memory
references per cycle. We evaluate two classic prefetchers (Sequen-
tial Tagged and Stride) and two correlating prefetchers: PC/DC, a
recent method with a superior score and low-sized tables, and
P-DFCM, a more conventional approach inside the class. It is sim-
ilar to PC/DC in that it focuses on local delta sequences, but it
takes the most of the simpler approach of the DFCM value predic-
tor, while keeping table sizes low.

Our experimental results show that incrementing the prefetch
degree and distance up to a value of four is beneficial in the arena
of a high-performance cache hierarchy. Sequential Tagged per-
forms notably well. It is worth devoting some research again to fil-
ter its useless prefetches and to cut its losses. Stride prefetching
falls short in recent comparisons [17][8]. However, here we show
that when used with on-miss insertion in LT it offers results com-
parable to smart correlating prefetchers, but using negligible
resources. In addition, degree or distance can be increased in Stride
with little effort. P-DFCM demonstrates that the performance of
PC/DC can be achieved or even improved avoiding costly linked
list traversals along the correlation tables while keeping sizes low.

Beside from we have just pointed out regarding Sequential
Tagged, our future work includes exploiting additional
opportunities of P-DFCM and measuring the effects of dif-
ferent prefetchers at different hierarchy levels, including
hybrids that can cope with the still challenging applications
Further delving into simulation results taking into account
the characteristics of some application programs may help
to understand why prefetchers do or do not work in each
case.

REFERENCES
[1] J.L. Baer and T.F. Chen. “An Effective On-chip Preloading

Scheme to Reduce Data Access Penalty”. In Int. Conf. on
Supercomputing (ICS) pp.176-186, 1991.

[2] D. Burger and T. Austin, The SimpleScalar Toolset, v. 3.0.
http://www.simplescalar.org.

[3] J. Collins, S. Sair, B. Calder and D. M. Tullsen. “Pointer
Cache Assisted Prefetching”. In Procs. 35th Int. Symp. on
Microarchitecture (MICRO-35) pp. 62-73, Nov. 2002

[4] R. Cooksey, S. Jordan, D. Grundwald. “A Stateless, Content-
Directed Data Prefetching Mechanism”. In Proc. of 10th Int.
conf. on Architectural support for programming languages
and operating systems (ASPLOS X) pp. 279 - 290 San José,
California, Oct. 2002.

[5] A. S. Dhodapkar and J. E. Smith. “Managing Multi-Configu-
ration Hardware via Dynamic Working Set Analysis”. In
Proc. of the 29th Ann. Intl. Symp. on Computer Architecture,
(ISCA) pp. 233-245. May 2002.

[6] P. G. Emma, A. Harstein, T. R. Puzac and V. Srinivasan.
“Exploring the limits of prefetching”. IBM Journal of Res.
and Dev. 49 (1) pp. 127-144, Jan. 2005.

[7] B. Goeman, H. Vandierendonck and K. De Bosschere. “Dif-
ferential FCM: Increasing Value Prediction Accuracy by
Improving Table Usage Efficiency”. In Procs. of the 7th Int.
Symp. on High-Performance Computer Architecture (HPCA)

ACM SIGARCH Computer Architecture News 42 Vol. 35, No. 4, September 2007

Figure 5. IPC speedups over the baseline system with no prefetch when varying the prefetch degree and distance for Sequential
Tagged (a), Stride (b), PC/DC (c) and P-DFCM (d). Each group of bars, from left to right, stands for degree 1, distance 2, degree 2,

distance 4 and degree 4.

-20%

0%

20%

40%

60%

80%

100%

v
p

r

g
c
c

m
c
f

p
a

rs
e

r

g
a

p

v
o

rt
e

x

b
z
ip

2

tw
o

lf

w
u

p
w

is
e

s
w

im

m
g

ri
d

a
p

p
lu

g
a

lg
e

l

a
rt

e
q

u
a

k
e

fa
c
e

re
c

a
m

m
p

fm
a

3
d

a
p

s
i

e
m

3
d

m
s
t

p
e

ri
m

tr
e

e
a

d
d

ts
p

c
s
rl

it
e

s
p

a
rs

e

IP
C

 i
m

p
ro

v
e

m
e

n
t

p
e

rc
e

n
ta

g
e

10
2%

12
5%

15
5%

-20%

0%

20%

40%

60%

80%

100%

v
p

r

g
c
c

m
c
f

p
a

rs
e

r

g
a

p

v
o

rt
e

x

b
z
ip

2

tw
o

lf

w
u

p
w

is
e

s
w

im

m
g

ri
d

a
p

p
lu

g
a

lg
e

l

a
rt

e
q

u
a

k
e

fa
c
e

re
c

a
m

m
p

fm
a

3
d

a
p

s
i

e
m

3
d

m
s
t

p
e

ri
m

tr
e

e
a

d
d

ts
p

c
s
rl
it
e

s
p

a
rs

e

IP
C

 i
m

p
ro

v
e

m
e

n
t

p
e

rc
e

n
ta

g
e

-20%

0%

20%

40%

60%

80%

100%

v
p

r

g
c
c

m
c
f

p
a

rs
e

r

g
a

p

v
o

rt
e

x

b
z
ip

2

tw
o

lf

w
u

p
w

is
e

s
w

im

m
g

ri
d

a
p

p
lu

g
a

lg
e

l

a
rt

e
q

u
a

k
e

fa
c
e

re
c

a
m

m
p

fm
a

3
d

a
p

s
i

e
m

3
d

m
s
t

p
e

ri
m

tr
e

e
a

d
d

ts
p

c
s
rl
it
e

s
p

a
rs

e

IP
C

 i
m

p
ro

v
e

m
e

n
t

p
e

rc
e

n
ta

g
e

-20%

0%

20%

40%

60%

80%

100%

v
p

r

g
c
c

m
c
f

p
a

rs
e

r

g
a

p

v
o

rt
e

x

b
z
ip

2

tw
o

lf

w
u

p
w

is
e

s
w

im

m
g

ri
d

a
p

p
lu

g
a

lg
e

l

a
rt

e
q

u
a

k
e

fa
c
e

re
c

a
m

m
p

fm
a

3
d

a
p

s
i

e
m

3
d

m
s
t

p
e

ri
m

tr
e

e
a

d
d

ts
p

c
s
rl
it
e

s
p

a
rs

e

IP
C

 i
m

p
ro

v
e

m
e

n
t

p
e

rc
e

n
ta

g
e

Distance 2Degree 1 Degree 2 Distance 4

(a) Sequential Tagged

(b) Stride

(d) P-DFCM

Degree 4

16
5%

16
8%

26
2%

27
8%

14
6%

14

2%
18

4%
17

6%

12
8%

20
8%

12
0%

12
1%

13
6%

17
0%

(c) PC/DC

ACM SIGARCH Computer Architecture News 43 Vol. 35, No. 4, September 2007

pp. 207-218. Monterrey, Mexico 2001.

[8] D. Gracia, G. Mouchard and O. Temam. “MicroLib: A Case
for the Quantitative Comparison of Micro-Architecture
Mechanisms”. Proc. of the 37th Int. Symp. on Microarchitec-
ture (MICRO-37), pp. : 43-54. December 2004.

[9] Z. Hu, M. Martonosi, S. Kaxiras, “TCP Tag Correlating
Prefetchers”, In Proceedings of the 9th Int. Symposium on
High Performance Computer Architecture (HPCA), 2003.

[10] P. Ibáñez, V. Viñals, J.L. Briz, and M.J. Garzarán. “Character-
ization and Improvement of Load/Store Cache-based
Prefetching”. In Proc. of Int. Conf. on Supercomputing (ICS)
Melbourne, Australia. pp.369-376 July 1998.

[11] D. Joseph and D. Grunwald. “Prefetching Using Markov Pre-
dictors”. IEEE Trans. on Computer Systems, 48(2), pp. 121–
133, 1999.”

[12] N. Jouppi. “Improving direct-mapped cache performance by
addition of a small fully associative cache and prefetch buff-
ers”. In Procs. of the 17th International Symposium on Com-
puter Architecture (ISCA), Seattle, WA, 1990.

[13] G. B. Kandiraju and A. Sivasubramaniam. “Going the Dis-
tance for TLB Prefetching: An Application-driven Study”. In
Procs. of the 29th Int. Symposium on Computer Architecture
(ISCA), May 2002.

[14] A. Lai, C. Fide and B. Falsafi. Dead-Block Correlating
Prefetchers”. In Procs. of the 28th Intl. Symp. on Computer
Architecture (ISCA) pp. 144-154, 2001

[15] Mark J. Charney and Anthony P. Reeves. “Generalized corre-
lation-based hardware prefetching”. TR EECEG-95-1, School
of Electrical Engineering, Cornell University, February 1995.

[16] K. J. Nesbit and J. E. Smith. “Data Cache Prefetching Using a
Global History Buffer”. In Procs. of the 10th Annual Int.
Symp. on High Performance Computer Architecture (HPCA)
pp: 96-105, Madrid, Spain 2004.

[17] K. J. Nesbit and J. E. Smith. “Data Cache Prefetching Using a
Global History Buffer”. IEEE Micro 25 (3), pp. 90-97. May/
June 2005.

[18] K. J. Nesbit, A. S. Dhodapkar and J. E. Smith. “AC/DC: An
Adaptive Data Cache Prefetcher”. In Proc. of the 13th Int.
Conf. on Parallel Architecture and Compilation Techniques
(PACT) Sept. 2004.

[19] L. Ramos, P. Ibáñez, V. Viñals and J.M. Llabería. “Modelling
Load Address Behaviour Through Recurrences”. In Proc. of
Int. Symp. on Performance Analysis of Systems and Software
(ISPASS), Austin, Texas. pp. 101-108 April, 2000.

[20] A. Rogers, M. Carlisle, J. Reppy and L. Hendren. “Supporting
Dynamic Data Structures on Distributed Memory Machines”.
ACM Trans. on Programming Languages and Systems,
March 1995.

[21] S. Sair, T. Sherwood and B. Calder. “Quntifying load stream
behavior”. In Proc 8th. Annual International Symposium on
High Performance Computer Architecture (HPCA) 2002.

[22] Y. Sazeides and J. E. Smith. “Implementations of context
based value predictors. TR ECE97-8, Dept. of Electrical and
Computer Engineering, Univ. Wiscosin-Madison, Dec. 1997.

[23] T. Sherwood et al., “Automatically Characterizing Large
Scale Program Behaviour,” ASPLOS X, Oct. 2002.

[24] A.J. Smith, “Sequential Program Prefetching in Memory
Hierarchies”, IEEE Transactions on Computers., 11(12), pp.7-
21, Dec. 1978.

[25] S.P. Vanderwiel and D.J. Lilja.- “Data Prefetch Mechanisms”.
ACM Computing Surveys 32 (2) June 2000.

[26] Z. Wang, D. Burger, K. S. McKinley, S. K. Reinhardt and C.
C. Weems. “Guided Region Prefetching: A Cooperative
Hardware/Software Approach”. In Proc. 30th Int. Symp. on
Computer Architecture (ISCA) 2003.

Figure 6. IPC speedups comparing the selected point of each prefetcher regarding prefetch degree or distance. Stride operates with
distance 4, and Sequential Tagged, PC/DC and P-DFCM with degree 4.

-20%

0%

20%

40%

60%

80%

100%

v
p

r

g
c
c

m
c
f

p
a

rs
e

r

g
a

p

v
o

rt
e

x

b
z
ip

2

tw
o

lf

w
u

p
w

is
e

s
w

im

m
g

ri
d

a
p

p
lu

g
a

lg
e

l

a
rt

e
q

u
a

k
e

fa
c
e

re
c

a
m

m
p

fm
a

3
d

a
p

s
i

e
m

3
d

m
s
t

p
e

ri
m

tr
e

e
a

d
d

ts
p

c
s
rl

it
e

s
p

a
rs

e

IP
C

 i
m

p
ro

v
e

m
e

n
t

p
e

rc
e

n
ta

g
e

Stride Distance 4Seq. Tagged Degree 4 PC/DC Degree 4 P-DFCM Degree 4

27
8%

12

5%
20

8%
22

1%

16
7%

17
0%

ACM SIGARCH Computer Architecture News 44 Vol. 35, No. 4, September 2007

