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Abstract. In this paper, we develop a set of data processing algorithms for generating textured facade meshes of

cities from a series of vertical 2D surface scans and camera images, obtained by a laser scanner and digital camera

while driving on public roads under normal traffic conditions. These processing steps are needed to cope with

imperfections and non-idealities inherent in laser scanning systems such as occlusions and reflections from glass

surfaces. The data is divided into easy-to-handle quasi-linear segments corresponding to approximately straight

driving direction and sequential topological order of vertical laser scans; each segment is then transformed into a

depth image. Dominant building structures are detected in the depth images, and points are classified into foreground

and background layers. Large holes in the background layer, caused by occlusion from foreground layer objects,

are filled in by planar or horizontal interpolation. The depth image is further processed by removing isolated points

and filling remaining small holes. The foreground objects also leave holes in the texture of building facades, which

are filled by horizontal and vertical interpolation in low frequency regions, or by a copy-paste method otherwise.

We apply the above steps to a large set of data of downtown Berkeley with several million 3D points, in order to

obtain texture-mapped 3D models.
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1. Introduction

Three-dimensional models of urban environments are

useful in a variety of applications such as urban

planning, training and simulation for urban terrorism

scenarios, and virtual reality. Currently, the standard

technique for creating large-scale city models in an au-

tomated or semi-automated way is to use stereo vi-

sion approaches on aerial or satellite images (Frere

et al., 1998; Kim et al., 2001). In recent years, ad-

vances in resolution and accuracy of airborne laser

scanners have also rendered them suitable for the gener-

ation of reasonable models (Haala and Brenner, 1997;

Maas, 2001). Both approaches have the disadvantage

that their resolution is only in the range of 1 to 2 feet,

and more importantly, they can only capture the roofs

of the buildings but not the facades. This essential dis-

advantage prohibits their use in photo realistic walk or

drive-through applications.

There exist a number of approaches to acquire the

complementary ground-level data and to reconstruct

building facades; however, these approaches are

typically limited to one or few buildings. Debevec

et al. (1996) propose to reconstruct buildings based

on few camera images in a semi-automated way. Dick

et al. (2001), Koch et al. (1999), and Wang et al.
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(2002) apply automated vision-based techniques for

localization and model reconstruction, but varying

lighting conditions, the scale of the environment, and

the complexity of outdoor scenes with many trees and

glass surfaces generally pose enormous challenges to

purely vision-based methods.

Stamos and Allen (2002) use a 3D laser scanner and

Thrun et al. (2000) use 2D laser scanners mounted on

a mobile robot to achieve complete automation, but the

time required for data acquisition of an entire city is

prohibitively large; in addition, the reliability of au-

tonomous mobile robots in outdoor environments is

a critical issue. In Zhao and Shibasaki (1999), use a

vertical laser scanner mounted on a van, which is lo-

calized by using odometry, an inertial navigation sys-

tem, and the Global Positioning System (GPS), and

thus with limited accuracy. While GPS is by far the

most common source of global position estimates in

outdoor environments, even expensive high-end Dif-

ferential GPS systems become inaccurate or erroneous

in urban canyons where there are not enough satellites

in a direct line of sight.

In previous work, we have developed a fast, auto-

mated data acquisition system capable of acquiring

3D geometry and texture data for an entire city at the

ground level by using a combination of a horizontal

and a vertical 2D laser scanners and a digital camera

(Frueh et al., 2001; Frueh and Zakhor, 2001a). This sys-

tem is mounted on a truck, moving at normal speeds on

public roads, collecting data to be processed offline. It

is similar to the one independently proposed by Zhao

and Shibasaki (2001), which also use 2D laser scanners

in horizontal and vertical configuration; however, our

system differs from that of Zhao and Shibasaki (2001)

in that we use a normal camera instead of a line cam-

era. Both approaches have the advantage that data can

Figure 1. Triangulated raw points: (a) front view; (b) side view.

be acquired continuously, rather than in a stop-and-

go fashion, and are thus extremely fast; relative posi-

tion changes are computed with centimeter accuracy

by matching successive horizontal laser scans against

each other. In Frueh and Zakhor (2001b), we proposed

to use the particle-filtering-based Monte-Carlo Local-

ization (Fox et al., 2000) to correct accumulating pose

uncertainty by using airborne data such as an aerial

photo or a digital surface model (DSM) as a map. An

advantage of our approach is that both scan points and

camera images are registered with airborne data, facil-

itating a subsequent fusion with models derived from

this data (Frueh and Zakhor, 2003).

In this paper, we describe our approach to processing

the globally registered scan points and camera images

obtained in our ground-based data acquisition, and to

creating detailed, textured 3D facade models. As there

are many erroneous scan points, e.g. due to glass sur-

faces, and foreground objects partially occluding the

desired buildings, the generation of a facade mesh is

not straightforward. A simple triangulation of the raw

scan points by connecting neighboring points whose

distance is below a threshold value does not result

in an acceptable reconstruction of the street scenery,

as shown in Figs. 1(a) and (b). Even though the 3D

structure can be easily recognized when viewed from

a viewpoint near the original acquisition position as in

Fig. 1(a), the mesh appears cluttered due to several rea-

sons; first, there are holes and erroneous vertices due

to reflections off the glass on windows; second, there

are pieces of geometry “floating in the air”, correspond-

ing to partially captured objects or measurement errors.

The mesh appears to be even more problematic when

viewed from other viewpoints such as the one shown in

Fig. 1(b); this is because in this case the large holes in

the building facades caused by occluding foreground
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objects, such as cars and trees, become entirely visi-

ble. Furthermore, since the laser scan only captures the

frontal view of foreground objects, they become almost

unrecognizable when viewed sideways. As we drive by

a street only once, it is not possible to use additional

scans from other viewpoints to fill in gaps caused by

occlusions, as is done in Curless and Levoy (1996) and

Stamos and Allen (2002). Rather, we have to recon-

struct occluded areas by using cues from neighboring

scan points; as such, there has been little work to solve

this problem (Stulp et al., 2001).

In this paper, we propose a class of data processing

techniques to create visually appealing facade meshes

by removing noisy foreground objects and filling holes

in the geometry and texture of building facades. Our

objectives are robustness and efficiency with regards

to processing time, in order to ensure scalability to the

enormous amount of data resulting from a city scan.

The outline of this paper is as follows: In Section 2, we

introduce our data acquisition system and position esti-

mation; Section 3 discusses data subdivision and depth

image generation schemes. We describe our strategy to

transform the raw scans into a visually appealing fa-

cade mesh in Sections 4 through 6; Section 7 discusses

foreground and background segmentation of images,

automatic texture atlas generation, and texture synthe-

sis. The experimental results are presented in Section 8.

2. Data acquisition and Position Estimation

As described in Frueh et al. (2001) and Frueh and

Zakhor (2001a), we have developed a data acquisition

system consisting of two Sick LMS 2D laser scanners,

and a digital color camera with a wide-angle lens. As

Figure 2. Truck with data acquisition equipment.

seen in Fig. 2, this system is mounted on a rack approx-

imately 3.6 meters high on top of a truck, in order to

obtain measurements that are not obstructed by pedes-

trians and cars. The scanners have a 180◦ field of view

with a resolution of 1◦, a range of 80 meters and an

accuracy of ±3.5 centimeters. Both 2D scanners face

the same side of the street and are mounted at a 90-

degree angle. The first scanner is mounted vertically

with the scanning plane orthogonal to the driving di-

rection, and scans the buildings and street scenery as

the truck drives by. The data captured by this scanner

is used for reconstructing 3D geometry as described

in this paper. The second scanner is mounted horizon-

tally and is used for determining the position of the

truck for each vertical scan. Finally, the digital camera

is used to acquire the appearance of the scanned build-

ing facades. It is oriented in the same direction as the

scanners, with its center of projection approximately

in the intersection line of the two scanning planes. All

three devices are synchronized with each other using

hardware-generated signals, and their coordinate sys-

tems are calibrated with respect to each other prior to

the acquisition. Thus, we obtain long series of vertical

scans, horizontal scans and camera images that are all

associated with each other.

We introduce a Cartesian world coordinate system

[x, y, z] where x, y is the ground plane and z points

into the sky. While our truck performs a 6 degree-

of-freedom motion, its primary motion components

are x, y, and θ (yaw), i.e. its two-dimensional (2D)

motion. As described in detail in Frueh and Zakhor

(2001a), we reconstruct the driven path and determine

the global pose for each scan by using the horizontal

laser scanner: First, an estimate of the 2D relative pose

(�x, �y, �θ ) between each pair of subsequent scans is

obtained via scan-to-scan matching; these relative esti-

mates are concatenated to form a preliminary estimate

for the driven path. Then, in order to correct the global

pose error resulting from accumulation of error due to

relative estimates, we utilize an aerial image or a DSM

as a global map, and apply Monte-Carlo-Localization

(Frueh and Zakhor, 2001b). Matching ground-based

horizontal laser scans with edges in the global map, we

track the vehicle and correct the preliminary path ac-

cordingly to obtain a globally registered 2D trajectory

as shown in Fig. 3. As described in Frueh and Zakhor

(2003), we obtain the secondary motion components

z and pitch by utilizing the altitude information pro-

vided by the DSM, and the roll motion by correlating

subsequent camera images, respectively.
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Figure 3. Driven path superimposed on top of a DSM.

While we use the full 6 degree-of-freedom pose to

compute the final x, y, z coordinates of each scan point

in the final model, we can for convenience and sim-

plicity neglect the 3 secondary motion components for

most of the intermediate processing steps described in

the following sections of this paper. Furthermore, to re-

duce the amount of required processing and to partially

compensate for the unpredictable, non-uniform speed

of the truck, we do not utilize all the scans captured

during slow motion; rather, we subsample the series of

vertical scans such that the spacing between succes-

sive scans is roughly equidistant. Thus, in our process-

ing steps described in this paper, we assume the scan

data to be given as a series of roughly equally spaced

vertical scans Sn with an associated tuple (xn , yn , θn)

describing 2D position and orientation of the scanner

in the world coordinate system during acquisition. Fur-

thermore, we use sn,υ to denote the distance measure-

ment on a point in scan Sn with azimuth angle υ, and

dn,υ = cos(υ) · sn,υ to denote the depth value of this

point with respect to the scanner, i.e. its orthogonal

projection into the ground plane, as shown in Fig. 4.

3. Data Subdivision and Depth Image Generation

3.1. Segmentation of the Driving Path into Quasi

Linear Segments

The captured data during a 20-minute drive consists

of tens of thousands of vertical scan columns. Since

successive scans in time correspond to spatially close

points, e.g. a building or a side of a street block, it is

computationally advantageous not to process the entire

data as one block, rather to split it into smaller segments

to be processed separately. We impose the constraints

Figure 4. Scanning setup.

that (a) path segments have low curvature, and (b) scan

columns have a regular grid structure. This allows us

to readily identify the neighbors to right, left, above

and below for each point, and, as seen later, is essential

for the generation of a depth image and segmentation

operations.

Scan points for each truck position are obtained as

we drive by the streets. During straight segments, the

spatial order of the 2D scan rows is identical to the

temporal order of the scans, forming a regular topol-

ogy. Unfortunately, this order of scan points can be

reversed during turns towards the scanner side of the

car. Figure 5(a) and (b) show the scanning setup dur-

ing such a turn, with scan planes indicated by the two

dotted rays. During the two vertical scans, the truck per-

forms not only a translation but also a rotation, making

the scanner look slightly backwards during the second

scan. If the targeted object is close enough, as shown in

Fig. 5(a), the spatial order of scan points 1 and 2 is still

the same as the temporal order of the scans; however, if

the object is further away than a critical distance dcrit,

the spatial order of the two scan points is reversed, as

shown in Fig. 5(b).

For a given truck translation of �s, and a rotation

�θ between successive scans, the critical distance can

be computed as

dcrit =
�s

sin(�θ )
.

Thus, dcrit is the distance at which the second scan-

ning plane intersects with the first scanning plane. For

a particular scan point, the order with its predecessors

should be reversed if its depth dn,υ exceeds dcrit; this
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Figure 5. Scan geometry during a turn: (a) normal scan order for closer objects; (b) reversed scan order for farther objects.

Figure 6. Scan points with reversed order.

means that its geometric location is somewhere in be-

tween points of previous scans. The effect of such order

reversal can be seen in the marked area in Fig. 6. At the

corner, the ground and the building walls are scanned

twice, first from a direct view and then from an oblique

angle, and hence with significantly lower accuracy. For

the oblique points, the scans are out of order, destroy-

ing the regular topology between neighboring scan

points.

Since the “out of order” scans obtained in these sce-

narios correspond to points that have already been cap-

tured by “in order” scans, and are therefore redundant,

our approach is to discard them and use only “in or-

der” scans. For typical values of displacement, turn-

ing angle, and distance of structures from our driving

path, this occurs only in scans of turns with significant

angular changes. By removing these “turn” scans and

splitting the path at the “turning points”, we obtain path

segments with low curvature that can be considered as

locally quasi-linear, and can therefore be conveniently

Figure 7. Driven path: (a) before segmentation; (b) after segmen-

tation into quasi-linear segments.

processed as depth images, as described later in this

section. In addition, to ensure that these segments are

not too large for further processing, we subdivide them

if they are larger then a certain size; specifically, in

segments that are longer than 100 meters, we identify

vertical scans that have the fewest scan points above

street level, corresponding to gaps between buildings,

and segment at these locations. Furthermore, we detect

redundant path segments for areas captured multiple

times due to multiple drive-bys, and use only one of

them for reconstruction purposes. Figures 7(a) and (b)

show an example of an original path, and the resulting

path segments overlaid on a road map, respectively.

The small lines perpendicular to the driving path indi-

cate the scanning plane of the vertical scanner for each

position.

3.2. Converting Path Segments into Depth Images

In the previous subsection, we described how to create

path segments that are guaranteed to contain no scan
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pairs with permuted horizontal order. As the vertical

order is inherent to the scan itself, all scan points of a

segment form a 3D scan grid with regular, quadrilateral

topology. This 3D scan grid allows us to transform the

scan points into a depth image, i.e. a 2.5D representa-

tion where each pixel represents a scan point, and the

gray value for each pixel is proportional to the depth

of the scan point. The advantage of a depth image is its

intuitively easy interpretation, and the increased pro-

cessing speed the 2D domain provides. However, most

operations that are performed on the depth image can

be done just as well on the 3D point grid directly, only

not as conveniently.

A depth image is typically used for representing data

from 3D scanners. Even though the way the depth value

is assigned to each pixel is dependent on the specific

scanner, in most cases it is the distance between scan

point and scanner origin, or its cosine with respect to

the ground plane. As we expect mainly vertical struc-

tures, we choose the latter option and use the depth

dn,υ = cos(υ) · sn,υ rather than the distance sn,υ , so

that the depth image is basically a tilted height field.

The advantage is that in this case points that lie on a

vertical line, e.g. a building wall, have the same depth

value, and are hence easy to detect and group. Note

that our depth image differs from one that would be

obtained from a normal 3D scanner, as it does not have

a single center from which the scan points are mea-

sured; instead, there are different centers for each in-

dividual vertical column along the path segment. The

obtained depth image is neither a polar nor a parallel

projection; it resembles most to a cylindrical projec-

tion. Due to non-uniform driving speed and non-linear

driving direction, these centers are in general not on a

line, but on an arbitrary shaped, though low-curvature

curve, and the spacing between them is not exactly uni-

form. Because of this, strictly speaking the grid position

only specifies the topological order of the depth pix-

els, and not the exact 3D point coordinates. However,

as topology and depth value are a good approximation

for the exact 3D coordinates, especially within a small

neighborhood, we choose to apply our data process-

ing algorithms to the depth image, thereby facilitating

use of standard image processing techniques such as

region growing. Moreover, the actual 3D vertex coor-

dinates are still kept and used for 3D operations such as

plane fitting. Figure 8(a) shows an example of the 3D

vertices of a scan grid, and Fig. 8(b) shows its corre-

sponding depth image, with a gray scale proportional to

dn,υ .

4. Properties of City Laser Scans

In this section, we briefly describe properties of scans

taken in a city environment, resulting from the physics

of a laser scanner as an active device measuring time-

of-flight of light rays. It is essential to understand these

properties and the resulting imperfections in distance

measurement, since at times they lead to scan points

that appear to be in contradiction with human eye per-

ception or a camera. As the goal of our modeling ap-

proach is to generate a photo realistic model, we are

interested in reconstructing what the human eye or a

camera would observe while moving around in the city.

As such, we discuss the discrepancies between these

two different sensing modalities in this section.

4.1. Discrepancies Due to Different Resolution

The beam divergence of the laser scanner is about 15

milliradians (mrad) and the spacing, hence the angu-

lar resolution, is about 17 mrad. As such, this is much

lower than the resolution of the camera image with

about 2.1 mrad in the center and 1.4 mrad at the image

borders. Therefore, small or thin objects, such as ca-

bles, fences, street signs, light posts and tree branches,

are clearly visible in the camera image, but only par-

tially captured in the scan. Hence they appear as “float-

ing” vertices, as seen in the depth image in Fig. 9.

4.2. Discrepancies Due to the Measurement Physics

Camera and eye are passive sensors, capturing light

from an external source; this is in contrast with a laser

scanner, which is an active sensor, and uses light that

it emits itself. This results in substantial differences

in measurement of reflecting and semitransparent sur-

faces, which are in form of windows and glass fronts

frequently present in urban environments. Typically,

there is at least 4% of the light reflected at a single

glass/air transition, so a total of at least 8% per win-

dow; if the window has a reflective coating, this can be

larger. The camera typically sees a reflection of the sky

or a nearby building on the window, often distorted or

merged with objects behind the glass. Although most

image processing algorithms would fail in this situa-

tion, the human brain is quite capable of identifying

windows. In contrast, depending on the window re-

flectance, the laser beam is either entirely reflected,

most times in a different direction from the laser itself,
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Figure 8. Scan grid representations: (a) 3D vertices; (b) depth image.

Figure 9. “Floating” vertices.

resulting in no distance value, or is transmitted through

the glass. In the latter case, if it hits a surface as shown

in Fig. 10, the backscattered light travels again through

the glass. The resulting surface reflections on the glass

only weaken the laser beam intensity, eventually below

Figure 10. Laser measurement in case of a glass window.

the detection limit, but do not otherwise necessarily af-

fect the distance measurement. To the laser, the window

is quasi non-existent, and the measurement point is gen-

erally not on the window surface, unless the surface is

orthogonal to the beam. In case of multi-reflections, the
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situation becomes even worse as the measured distance

is almost random.

4.3. Discrepancies Due to Different Scan

and Viewpoints

Laser and camera are both limited in that they can only

detect the first visible/backscattering object along a

measurement direction and as such cannot deal with

occlusions. If there is an object in the foreground, such

as a tree in front of a building, the laser cannot cap-

ture what is behind it; hence, generating a mesh from

the obtained scan points results in a hole in the build-

ing. We refer to this type of mesh hole as occlusion

hole. As the laser scan points resemble a cylindrical

projection, but rendering is parallel or perspective, in

presence of occlusions, it is impossible to reconstruct

the original view without any holes, even for the view-

points from which data was acquired. This is a special

property of our fast 2D data acquisition method. An

interesting fact is that the wide-angle camera images

captured simultaneously with the scans often contain

parts of the background invisible to the laser. These

could be potentially used either to fill in geometry us-

ing stereo techniques, or to verify the validity of the

filled in geometry obtained from using interpolation

techniques.

For a photo realistic model, we need to devise

techniques for detecting discrepancies between the

two modalities, removing invalid scan points, and

filling in holes, either due to occlusion or due to

unpredictable surface properties; we will describe

our approaches to these problems in the following

sections.

5. Multi-Layer Representation

To ensure that the facade model looks reasonable from

every viewpoint, it is necessary to complete the geom-

etry for the building facades. Typically, our facades are

2 1/2 D objects rather than full 3D objects, and hence

we introduce a representation based of multiple depth

layers for the street scenery, similar to the one pro-

posed in Chang and Zakhor (1999). Each depth layer

is a scan grid, and the scan points of the original grid

are assigned to exactly one of the layers. If at a certain

grid location there is a point in a foreground layer, this

location is empty in all layers behind it and needs to be

filled in.

Even though the concept can be applied to an arbi-

trary number of layers, we found that it is in our case

sufficient to generate only two, namely a foreground

and a background layer. To assign a scan point to ei-

ther one of the two layers we make the following as-

sumptions about our environment: Main structures, i.e.

buildings, are usually (a) vertical, and (b) extend over

several feet in horizontal dimension. Furthermore, we

assume that (c) building facades are roughly perpen-

dicular to the driving direction and that (d) most scan

points correspond to facades rather than to foreground

objects, as it can occur in residential areas with houses

hidden behind trees. Under these conditions, we can ap-

ply the following steps to identify foreground objects:

For each vertical scan n corresponding to a column in

the depth image, we define the main depth as the depth

value that occurs most frequently, as shown in Fig. 11.

The scan vertices corresponding to the main depth lie

on a vertical line, and the first assumption suggests that

this is a main structure, such as a building, or perhaps

other vertical objects, such as a street light or a tree

trunk. With the second assumption, we filter out the

Figure 11. Main depth computation for a single scan n: (a) laser

scan with rays indicating the laser beams and dots at the end the

corresponding scan points; (b) computed depth histogram.
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Figure 12. Two-dimensional histogram for all scans.

latter class of vertical objects. More specifically, our

processing steps can be described as follows:

We sort all depth values sn,υ for each column n of

the depth image into a histogram as shown in Fig. 11(a)

and (b), and detect the peak value and its correspond-

ing depth. Applying this to all scans results in a 2D

histogram as shown in Fig. 12, and an individual main

Figure 13. (a) Foreground layer; (b) background layer. .

depth value estimate for each scan. Based on the second

assumption, isolated outliers are removed by applying

a median filter on these main depth values across the

scans, and a final depth value is assigned to each col-

umn n. We define a “split” depth, γn , for each column

n, and set it to the first local minimum of the histogram

occurring immediately before main depth, i.e. with a

depth value smaller than the main depth. Taking the first

minimum in the distribution instead of the main value

itself has the advantage that points clearly belonging

to foreground layers are splits off, whereas overhang-

ing parts of buildings, for which the depth is slightly

smaller than the main depth, are kept in the main layer

where they logically belong to, as shown in Fig. 11.

A point can be identified as a ground point if its z co-

ordinate has a small value and its neighbors in the same

scan column have a similarly low z value. We prefer

to include the ground in our models, and as such, as-

sign ground points also to the background layer. There-

fore, we split layers by assigning a scan point Pn,υ to

the background layer, if sn,υ > γn or Pn,υ is a ground

point, and to the foreground layer otherwise. Figure 13

shows an example for the resulting foreground and

background layers.

Since the steps described in this section assume the

presence of vertical buildings, they cannot be expected
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to work for segments that are dominated by trees; this

also applies to the processing steps we introduce in

the following sections. As our goal is to reconstruct

buildings, path segments can be left unprocessed and

included “as is” in the city model, if they do not contain

any structure. A characteristic of a tree area is its fractal-

like geometry, resulting in a large variance among ad-

jacent depth values, or even more characteristically,

many significant vector direction changes for the edges

between connected mesh vertices. We define a coeffi-

cient for the fractal nature of a segment by counting

vertices with direction changes greater than a specific

angle, e.g. twenty degrees, and dividing them by the

total number of vertices. If this coefficient is large, the

segment is most likely a tree area and should not be

made subject to the processing steps described in this

section. This is for example the case for the segment

shown in Fig. 9.

After splitting layers, all grid locations occupied in

the foreground layer are missing in the background

layer as the vertical laser does not capture any oc-

cluded geometry; in the next section we will describe

an approach for filling these missing grid locations

based on neighboring pixels. However, in our data ac-

quisition system there are 3D vertices available from

other sources, such as stereo vision and the horizon-

tal scanner used for navigation. Thus, it is conceiv-

able to use this additional information to fill some

in the depth layers. Our approach to doing so is as

follows:

Given a set of 3D vertices Vi obtained from a dif-

ferent modality, determine the closest scan direction

for each vertex and hence the grid location (n, υ) it

should be assigned to. As shown in Fig. 14, each Vi

is assigned to the vertical scanning plane, Sn , with the

smallest Euclidean distance, corresponding to column

Figure 14. Sorting additional points into the layers.

Figure 15. Background layer after sorting in additional points from

other modalities.

n in the depth image. Using simple trigonometry, the

scanning angle under which this vertex appears in the

scanning plane, and hence the depth image row υ, can

be computed, as well as the depth dn,υ of the pixel.

We can now use these additional vertices to fill in

the holes. To begin with, all vertices that do not belong

to background holes are discarded. If there is exactly

one vertex falling onto a grid location, its depth is di-

rectly assigned to that grid location; for situations with

multiple vertices, median depth value for this location

is chosen. Figure 15 shows the background layer from

Fig. 13(b) after sorting in 3D vertices from stereo vi-

sion and horizontal laser scans. As seen, some holes

can be entirely filled in, and the size of others becomes

smaller, e.g. the holes due to trees in the tall building on

the left side. Note that this intermediate step is optional

and depends on the availability of additional 3D data.

6. Background Layer Postprocessing

and Mesh Generation

In this section, we will describe a strategy to remove

erroneous scan points, and to fill in holes in the back-

ground layer. There exists a variety of successful hole

filling approaches, for example based on fusing mul-

tiple scans taken from different positions (Curless and

Levoy, 1996; Stamos and Allen, 2002). Most previ-

ous work on hole filling in the literature has been fo-

cused on reverse engineering applications, in which a

3D model of an object is obtained from multiple laser

scans taken from different locations and orientations.

Since these existing hole filling approaches are not ap-

plicable to our experimental setup, our approach is to

estimate the actual geometry based on the surrounding

environment and reasonable heuristics. One cannot ex-

pect this estimate to be accurate in all possible cases,

rather to lead to an acceptable result in most cases, thus
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reducing the amount of further manual interventions

and postprocessing drastically. Additionally, the esti-

mated geometry could be made subject to further veri-

fication steps, such as consistency checks by applying

stereo vision techniques to the intensity images cap-

tured by the camera.

Our data typically exhibits the following character-

istics:

• Occlusion holes, such as those caused by a tree,

are large and can extend over substantial parts of a

building.

• A significant number of scan points surrounding a

hole may be erroneous due to glass surfaces.

• In general, a spline surface filling is unsuitable, as

building structures are usually piecewise planar with

sharp discontinuities.

• The size of data set resulting from a city scan is huge,

and therefore the processing time per hole should be

kept to a minimum.

Based on the above observations, we propose the

following steps for data completion.

6.1. Detecting and Removing Erroneous Scan

Points in the Background layer

We assume that erroneous scan points are due to

glass surfaces, i.e. the laser measured either an in-

ternal wall/object, or a completely random distance

due to multi-reflections. Either way, the depth of the

scan points measured through the glass is substantially

greater than the depth of the building wall, and hence

these points are candidates for removal. Since glass

windows are usually framed by the wall, we remove

the candidate points only if they are embedded among

a number of scan points at main depth. An example

of the effect of this step can be seen by comparing the

windows of the original image in Fig. 16(a) with the

processed background layer in Fig. 16(b).

6.2. Segmenting the Occluding Foreground Layer

into Objects

In order to determine holes in the background layer

caused by occlusion, we segment the occluding fore-

ground layer into objects and project segmentation onto

the background layer. This way, holes can be filled in

one “object” at a time, rather than all at the same time;

this approach has the advantage that more localized

Figure 16. Processing steps of depth image. (a) Initial depth im-

age. (b) Background layer after removing invalid scan points. (c)

Foreground layer segmented. (d) Occlusion holes filled. (e) Final

background layer after filling remaining holes.
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hole filling algorithms are more likely to result in vi-

sually pleasing models than global ones. We segment

the foreground layer by taking a random seed point

that does not yet belong to a region, and applying a

region growing algorithm that iteratively adds neigh-

boring pixels if their depth discontinuity or their local

curvature is small enough. This is repeated until all pix-

els are assigned to a region, and the result is a region

map as shown in Fig. 16(c). For each foreground re-

gion, we determine boundary points on the background

layer; these are all the valid pixels in the background

layer that are close to hole pixels caused by the occlud-

ing object.

6.3. Filling Occlusion Holes in the Background

Layer for Each Region

As the foreground objects are located in front of main

structures and in most cases stand on the ground, they

occlude not only parts of a building, but also parts of

the ground. Specifically, an occlusion hole caused by

a low object, such as a car, with a large distance to

the main structure behind it, is typically located only

in the ground and not in the main structure. This is be-

cause the laser scanner is mounted on top of a rack, and

as such has a top down view of the car. As a plane is a

good approximation to the ground, we fill in the ground

section of an occlusion hole by the ground plane. There-

fore, for each depth image column, i.e. each scan, we

compute the intersection point between the line through

the main depth scan points and the line through ground

scan points. The angle υ ′
n at which this point appears

in the scan marks the virtual boundary between ground

part and structure part of the scan; we fill in structure

points above and ground points below this boundary

differently.

Applying a RANSAC algorithm, we find the plane

with the maximum consensus, i.e. maximum number

of ground boundary points on it, as the optimal ground

plane for that local neighborhood. Each hole pixel with

υ < υ ′
n is then filled in with a depth value according

to this plane. It is possible to apply the same tech-

nique for the structure hole pixels, i.e. the pixels with

υ > υ ′
n , by finding the optimal plane through the struc-

ture boundary points and filling in the hole pixels ac-

cordingly. However, we have found that in contrast to

the ground, surrounding building pixels do not often

lie on a plane. Instead, there are discontinuities due to

occluded boundaries and building features such as mar-

quees or lintels, in most cases extending horizontally

across the building. Therefore, rather than filling holes

with a plane, we fill in structure holes line by line hori-

zontally, in such a way that the depth value at each pixel

is the linear interpolation between the closest right and

left structure boundary point, if they both exist; other-

wise no value is filled in. In a second phase, a similar

interpolation is done vertically, using the already filled

in points as valid boundary points. This method is not

only simple and therefore computationally efficient, it

also takes into account the surrounding horizontal fea-

tures of the building in the interpolation. The resulting

background layer is shown in Fig. 16(d).

6.4. Postprocessing the Background Layer

The resulting depth image and the corresponding 3D

vertices can be improved by removing scan points that

remain isolated, and by filling small holes surrounded

by geometry using linear interpolation between neigh-

boring depth pixels. The final background layer after

applying all processing steps is shown in Fig. 16(e).

In order to create a mesh, each depth pixel can be

transformed back into a 3D vertex, and each vertex Pn,υ

is connected to a depth image neighbor Pn+�n,υ+�υ if

|sn+�n,υ+�υ − sn,υ | < smax or if

cos ϕ > cos ϕmax

with

cos ϕ =
( �Pn−�n,υ−�υ − �Pn,υ) · ( �Pn,υ − �Pn+�n,υ+�υ)

| �Pn−�n,υ−�υ − �Pn,υ | ·| �Pn,υ − �Pn+�n,υ+�υ |

Intuitively, neighbors are connected if their depth

difference does not exceed a threshold smax or the

local angle between neighboring points is smaller

than threshold angle ϕmax. The second criteria is

intended to connect neighboring points that are on a

line, even if their depth difference exceeds smax. The

resulting quadrilateral mesh is split into triangles, and

mesh simplification tools such as Qslim (Garland and

Heckbert, 1997) can be applied to reduce the number of

triangles.

7. Atlas Generation for Texture Mapping

As photorealism cannot be achieved by using geometry

alone, we need to enhance our model with texture data.

To achieve this, we equip our data acquisition system

with a digital color camera with a wide-angle lens. The
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Figure 17. Background mesh triangles projected onto camera images. (a) Camera image. (b) Hole filled background mesh projected onto the

image and shown as white triangles; occluded background triangles project onto foreground objects. The texture of foreground objects such as

the trees should not be used for texturing background triangles corresponding to the building facade.

camera is synchronized with the two laser scanners,

and is calibrated against the laser scanners’ coordinate

system; hence, the camera position can be computed for

all images. After calibrating the camera and removing

lens distortion in the images, each 3D vertex can be

mapped to its corresponding pixel in an intensity image

by a simple projective transformation. As the 3D mesh

triangles are small compared to their distance to the

camera, perspective distortions within a triangle can

be neglected, and each mesh triangle can be mapped

to a triangle in the picture by applying the projective

transformation to its vertices.

As described in Section 4, camera and laser scanners

have different viewpoints during data acquisition, and

in most camera pictures, at least some mesh triangles

of the background layer are occluded by foreground

objects; this is particularly true for triangles that con-

sist of filled-in points. An example of this is shown in

Fig. 17 where occluded background triangles project

onto foreground objects such as the tree. The back-

ground triangles are marked in white in Fig. 17. Al-

though the pixel location of the projected background

triangles is correct, some of the corresponding texture

triangles merely correspond to the foreground objects,

and thus should not be used for texture mapping the

background triangles.

In this section, we address the problem of segment-

ing out the foreground regions in the images so that their

texture is not used for the background mesh triangles.

After segmentation, multiple images are combined into

a single texture atlas; we then propose a number of tech-

niques to fill in the texture holes in the atlas resulting

from foreground occlusion. The resulting hole filled at-

las is finally used for texture mapping the background

mesh.

7.1. Foreground/Background Segmentation

in the Images

A simple way of segmenting out the foreground objects

is to project the foreground mesh onto the camera im-

ages and mark out the projected triangles and vertices.

While this process works adequately in most cases, it

could miss out some parts of the foreground objects

such as those shown in Fig. 18, where projected fore-

ground geometry is marked in white. As seen in the

figure, some small portions of the foreground tree are

incorrectly considered as background. This is due to

following reasons:

1. The foreground scan points are not dense enough

for segmenting the image with pixel accuracy, es-

pecially at the boundaries of foreground objects.

2. The camera captures side views of foreground

objects whereas the laser scanner captures a di-

rect view, as illustrated in Fig. 19. Hence, some

foreground geometry does not appear in the

laser scans and as such cannot be marked as

foreground.
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Figure 18. Identifying foreground in images by projection of the foreground mesh. White denotes the projected foreground and thus image

areas not to be used for texture mapping of facades.

Figure 19. Some foreground objects at oblique viewing angle are not entirely marked in camera images.

To overcome this problem, we have developed a

second, more sophisticated method for pixel-accurate

foreground segmentation based on the use of corre-

spondence error. The overview of our approach is as

follows:

After splitting the scan points into the foreground

and background layers, the foreground scan points are

projected onto the images. A flood-filling algorithm is

applied to all the pixels within a window centered at

each of the projected foreground pixels using cues of

color constancy and correspondence error. The color

at every pixel in the window is compared to that of

the center pixel. If the colors are in agreement, and the

correspondence error value at the test pixel is close or

higher than the value at the center pixel, the test pixel

is assigned to the foreground.

In what follows we describe the notion of correspon-

dence error in more detail. Let I = {I1, I2, . . . , In}
denote the set of camera images available for a quasi-

linear path segment. Consider two consecutive images

Ic−1 and Ic. Consider a 3D point x belonging to the

background mesh obtained after geometry hole filling

described in Section 7. x is projected to the images Ic−1

and Ic using the available camera position. Assuming

that the projected point is within the clip region of both

images, let its coordinates in Ic−1 and Ic be denoted

by uc−1 and uc respectively. If x is not occluded by

any foreground object in an image, then its pixel co-

ordinates in the image belong to the background and

represent x; otherwise its pixel coordinates correspond

to the occluding foreground object. This leads to three

cases described below, and illustrated in Fig. 20:
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Figure 20. Illustration of correspondence error. (a) background scan point is unoccluded in both images. (b) background scan point occluded

in one of the images. (c) background scan point occluded in both images. The search window and correlation window are marked for clarity. The

line represents the correspondence error vector. The correlation window slides in the search window in order to find the best matching window.

1. x is occluded in neither images as shown in

Fig. 20(a); uc−1, and uc both belong to the back-

ground. If the camera position is known precisely,

uc would be the correspondence point for uc−1. In

practice, the camera position is known only approx-

imately, and taking uc−1 as a reference, its corre-

spondence point in Ic can be located close to uc.

2. x is occluded only in one of the images as shown in

Fig. 20(b); one of uc−1 or uc belongs to a foreground

object due to occlusion of point x, and the other

belongs to the background.

3. Point x is occluded in both images as shown in

Fig. 20(c), and both uc−1 and uc belong to fore-

ground objects.

In all three cases the best matching pixel to uc−1

in Ic, denoted by uc−1,c, is found by searching in a

window centered around uc, and performing color cor-

relation as illustrated in Fig. 20. The length of vec-

tor v(uc, uc−1,c) then denotes the correspondence error

between uc−1 and uc. If |v(uc, uc−1,c)| is large, one

or both of uc−1 and uc belong to a foreground object
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resulting in cases 2 or 3. In the next step when im-

ages Ic and Ic+1 are considered, v(uc+1, uc,c+1) is com-

puted and we define the correspondence error at pixel

uc as:

ε(uc) = max(|v(uc, uc−1,c)|, |v(uc+1, uc,c+1)|)

Intuitively, if the correspondence error at a pixel is large

the pixel likely belongs to a foreground object. The

above equation is used to compute the correspondence

error at all the pixels corresponding to projected back-

ground scan points. To compute the correspondence

error at all other pixels within the window centered at

each of the projected foreground scan points, we apply

nearest neighbor interpolation. Each pixel in the win-

dow is declared to be foreground if (a) its color is in

agreement with the center pixel, and (b) its correspon-

dence error value is close or higher than the value at

the center pixel.

The max operation in the above equation has the ef-

fect of not missing out any foreground pixels. Even

though this approach results in large values of cor-

Figure 21. (a), (b), (c) sequence of three camera images Ic−1, Ic, Ic+1. (d) correspondence error for Ic shown as gray values. White corresponds

to low value and black corresponds to high value of ε. Red pixels are pixels where no background scan points projected. ε is not computed

at these pixels. (e) Foreground scan points marked as white pixels. (f) Foreground regions of Ic marked as white, using color constancy and

correspondence error. The green triangles are the triangles used for texture mapping/atlas generation from this image.

respondence error at some background pixels corre-

sponding to case 2 above, we choose to adopt it for

following reasons:

1. The flood filling algorithm is applied to projected

foreground scan points only within a square win-

dow w, the size of which is 61 × 61 pixels in our

case; so if a background pixel has a high value of ε

but has no projected foreground scan point within a

neighborhood equal to size of w, it is never sub-

jected to flood filling and thus never marked as

foreground.

2. Marking non-foreground pixels as foreground is

not as problematic as leaving foreground pixels un-

marked. This is because the same 3D point is ob-

served in multiple camera images, and even though

it may be incorrectly classified as foreground in

some images, it is likely to be correctly classified as

background in others. On the other hand incorrect

assignment of foreground pixels to the background

and using then for texturing, results in a erroneous

texture as discussed before.
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Figures 21(a)–(c) show a sequence of three cam-

era images, and Fig. 21(d) shows the correspondence

error for the center image shown as gray values; the

gray values have been scaled so that 0 or black corre-

sponds to maximum value of ε, and 255 or white cor-

responds to minimum value of ε. The correspondence

error has been computed for each projected background

scan point. A 7 × 7 window is centered at each pro-

jected background scan point, and ε at all pixels in the

window has been determined using nearest neighbor

interpolation. The red pixels denote those for which

ε has not been computed or interpolated in the im-

age. The image looks like a roughly segmented fore-

ground and background. Figure 21(e) shows the pro-

jected foreground scan points marked as white pixels.1

Figure 21(f) shows the foreground segmentation using

flood-filling with color and correspondence error com-

parisons as explained in this section. The foreground

has been marked in white color. The green triangles

are the triangles used for texture mapping/atlas gener-

ation from this image. As seen, there are some back-

ground pixels that have been incorrectly assigned to the

foreground. This can be attributed to the fact that our

algorithm has been purposely biased to maximize the

size of foreground region in order to avoid erroneously

assigning background pixels to foreground.

7.2. Texture Atlas Generation

Since most parts of a camera image correspond to ei-

ther foreground objects, or facade areas visible in other

images at a more direct view, we can reduce the amount

of texture imagery by extracting only the parts actually

used. The vertical laser scanner results in a vertical col-

umn of scan points, and triangulation of the scan points

thus results in a mesh with a row-column structure as

can be seen in Fig. 17(b). The inherent row-column

structure of the triangular mesh permits to assemble a

new artificial image with a corresponding row-column

structure, and reserved spaces for each texture triangle.

This so-called texture atlas is created by performing

the following steps: (a) Determining the inter-column

and inter-row spacing for each consecutive column and

row pair in the mesh and using this to reserve space in

the atlas. (b) Warping each texture triangle to fit to the

corresponding reserved space in the atlas and copying

it into the atlas. (c) Setting texture coordinates of the

mesh triangles to the location in the atlas.

Since in this manner the mesh topology of the tri-

angles is preserved and adjacent triangles align auto-

matically due to the warping process, the resulting tex-

ture atlas resembles a mosaic image. While the atlas

image might not visually look precisely proportionate

due to slightly non-uniform spacing between vertical

scans, these distortions are inverted by the graphics

card hardware during the rendering process, and are

thus negligible.

Figures 22(a) and (b) illustrate the atlas generation:

From the acquired stream of images, the utilized texture

triangles are copied into the texture atlas as symbolized

by the arrows. In this illustration, only five original im-

ages are shown; in this example we have actually com-

bined 58 images of 1024 × 768 pixels size to create

a texture atlas of 3180 × 540 pixels. Thus, the texture

size is reduced from 45.6 million pixels to 1.7 mil-

lion pixels, while the resolution remains the same. If

occluding foreground objects and building facade are

too close, some facade triangles might not be visible

in any of the captured imagery, and hence cannot be

texture mapped at all. This leaves visually unpleasant

holes in the texture atlas, and hence in final rendering

of the 3D models. In the following, we propose ways of

synthesizing plausible artificial texture for these holes.

7.3. Hole Filling of the Atlas

Early work relating to disocclusion in images was done

by Nitzberg et al. (1993). Significant improvements

to this were made in Masnou and Morel (1998) and

Ballester et al. (2000, 2001). These methods are capable

of filling in small holes in non-textured regions and

essentially deal with local Inpainting; they thus cannot

be used for filling in large holes or holes in textured

regions (Chan and Shen, 2001). We propose a simple

and efficient method of hole filling that first completes

regions of low spatial frequency by interpolating the

values of surrounding pixels, and then uses a copy-paste

method to synthesize artificial texture for the holes.

In what follows, we explain the above steps in more

detail.

Horizontal and Vertical Interpolation. Our pro-

posed algorithm first fills in holes in regions of low

variance using linear interpolation of surrounding pixel

values. A generalized two-dimensional (2D) linear in-

terpolation is not advantageous over a one-dimensional

(1D) interpolation in a man-made environment where

features are usually either horizontal or vertical e.g.

curbs run across the streets horizontally, edges of fa-

cades are vertical, banners on buildings are horizontal.
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Figure 22. (a) Images obtained after foreground segmentation are combined to create a texture atlas. In this illustration only five images are

shown, whereas in this particular example 58 images were combined to create the texture atlas. (b) Atlas with texture holes for the facade

portions that were not visible in any image. (c) Artificial texture is synthesized in the texture holes to result in a filled in atlas that is finally used

for texturing the background mesh.

One-dimensional interpolation is simple, and is able to

recover most sharp discontinuities and gradients. We

perform 1D horizontal interpolation in the following

way: for each row, pairs of pixels between which RGB

information is missing are detected. The missing values

are filled in by a linear interpolation of the boundary

pixels if (a) the boundary pixels at the two ends have

similar values, and (b) the variances around the bound-

aries are low at both ends. We follow this by vertical

interpolation in which for each column the missing val-

ues are interpolated vertically.

Figure 23(a) shows part of a texture atlas with holes

marked in red. Figure 23(b) shows the image after a

pass of 1D horizontal interpolation. As seen, horizontal

edges such as the blue curb are completed. Figure 23(c)

shows the image after horizontal and vertical interpo-

lation. We find the interpolation process to be simple,

fast, and to complete the low frequency regions well.

The Copy-Paste Method. Assuming that building fa-

cades are highly repetitive, we fill holes that could not

be filled by horizontal and vertical interpolation, by

copying and pasting blocks from other parts of the im-

age. This approach is similar to the one proposed in

Efros and Freeman (2001) where a large image is cre-

ated with a texture similar to a given template. In our

copy-paste method the image is scanned pixel by pixel

in raster scan order, and pixels at the boundary of holes
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Figure 23. (a) part of a texture atlas with holes marked in red (b) after horizontal interpolation (c) after horizontal and vertical

interpolation.

are stored in an array to be processed. A square win-

dow w of size (2M + 1) × (2M + 1) pixels is centered

at a hole pixel p, and the atlas is searched for a win-

dow denoted by bestmatch(w) which (a) has the same

size as w, (b) does not contain more than 10% hole

pixels, and (c) matches best with w. If the difference

between w and bestmatch(w) is below a threshold, the

bestmatch is classified as a good match to w and hole

pixels of w are replaced with corresponding pixels in

bestmatch(w). The method is illustrated in Fig. 24.

For the method to work well, we need a suitable met-

ric that accurately measures the perceptual difference

between two windows, an efficient search process that

finds the bestmatch of a window w, a decision rule that

classifies whether the bestmatch found is good enough,

and a strategy to deal with cases when the bestmatch

of a window w is not a good match. In our proposed

scheme, the difference between two windows consists

of two components: (a) the sum of color differences

of corresponding pixels in the two windows, and (b)

the number of outliers for the pair of windows. These

components are weighted appropriately to compute the

resulting difference. An efficient search is performed

by constructing a hierarchy of Gaussian pyramids, and

performing an exhaustive search at a coarse level to

find a few good matches, which are then successively

refined at finer levels of the hierarchy. In cases when

no good match is found the window size is changed

adaptively. If a window of size (2M + 1) × (2M + 1)

does not result in a good match, the algorithm finds

the bestmatch for a smaller window of size (M + 1) ×
(M + 1) and this process continues until the window

size becomes too small, in our case 9 × 9 pixels. If no

good match is found even after reducing the window

size, the hole pixels are filled by averaging the known

neighbors provided the pixel variance of the neighbors

is low; otherwise the colors of hole pixels are set to the

value of randomly chosen neighbors.
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Figure 24. Illustrating the copy-paste method.

8. Results

We drove our equipped truck on a 6769 meters

long path in downtown Berkeley, starting from Blake

street through Telegraph avenue, and in loops around

the downtown blocks. During this 24-minute-drive,

we captured 107,082 vertical scans, consisting of

14,973,064 scan points. For 11 minutes of driving time

in the downtown area, we also recorded a total of 7,200

camera images. Applying the described path splitting

techniques, we divide the driven path into 73 segments,

as shown in Fig. 25 overlaid with a road map. There is

no need for further manual subdivision, even at Shat-

tuck Avenue, where Berkeley’s street grid structure is

not preserved.

8.1. Geometry Reconstruction

For each of the 73 segments, we generate two meshes

for comparison: the first mesh is obtained directly from

the raw scans, and the second one from the depth im-

age to which we have applied the postprocessing steps

described in previous sections. For 12 out of the 73

segments, additional 3D vertices derived from stereo

vision techniques are available, and hence, sorting in

Figure 25. Entire path after split in quasi-linear segments.

these 3D points into the layers based on Section 5

does fill some of the holes. For these specific holes,

we have compared the results based on stereo vision

vertices with those based on interpolation alone as de-

scribed in Section 6, and have found no substantial dif-

ference; often the interpolated mesh vertices appear to

be more visually appealing, as they are less noisy than

the stereo vision based vertices. Figure 26(a) shows

an example before processing, and Fig. 26(b) shows

the tree holes completely filled in by stereo vision ver-

tices. As seen, the outline of the original holes can

still be recognized in Fig. 26(b), whereas the points

generated by interpolation alone are almost indistin-

guishable from the surrounding geometry, as seen in

Fig. 26(c).

We have found our approach to work well in the

downtown areas, where there are clear building struc-

tures and few trees. However, in residential areas,

where the buildings are often almost completely hid-

den behind trees, it is difficult to accurately estimate

the geometry. As we do not have the ground truth

to compare with, and as our main concern is the vi-

sual quality of the generated model, we have manu-

ally inspected the results and subjectively determined

the degree to which the proposed postprocessing pro-

cedures have improved the visual appearance. The

evaluation results for all 73 segments before and af-

ter postprocessing techniques described in this paper

are shown in Table 1; the postprocessing does not uti-

lize auxiliary 3D vertices from horizontal laser scan-

ner or the camera. Even though 8% of all processed

segments appear visually worse than the original, the

overall quality of the facade models is significantly im-

proved. The important downtown segments are in most
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Figure 26. Hole filling. (a) Original mesh with holes behind occlud-

ing trees; (b) filled by sorting in additional 3D points using stereo

vision; (c) filled by using the interpolation techniques of Section 6.

cases ready to use and do not require further manual

intervention.

The few problematic segments all occur in residen-

tial areas, consisting mainly of trees. The tree detection

algorithm described in Section 5 classifies ten segments

as “critical” in that too many trees are present; all six

problematic segments corresponding to “worse” and

“significantly worse” rows in Table 1 are among them,

yet none of the improved segments in rows 1 and 2 are

Table 1. Visual comparison of the processed

mesh vs. the original mesh for all 73 segments.

Significantly better 35 48%

Better 17 23%

Same 15 21%

Worse 5 7%

Significantly worse 1 1%

Total 73 100%

Table 2. Visual comparison of the processed

mesh vs. the original mesh for the segments au-

tomatically classified as non-tree-areas.

Significantly better 35 56%

Better 17 27%

Same 11 17%

Worse 0 0%

Significantly worse 0 0%

Total 63 100%

detected as critical. This is significant because it shows

that (a) all problematic segments correspond to regions

with a large number of trees, and (b) they can be suc-

cessfully detected and hence not be subjected to the

proposed steps. Table 2 shows the evaluation results if

only non-critical segments are processed. As seen, the

postprocessing steps described in this paper together

with the tree detection algorithm improve over 80% of

the segments, and never result in degradations for any

of the segments.

In Fig. 27 we show before and after examples, and

the corresponding classifications according to Tables 1

and 2. As seen, except for pair “f”, the proposed post-

processing steps result in visually pleasing models. Pair

f in Fig. 27 is classified by our tree detection algorithm

as critical, and hence, should be left “as is” rather than

processed.

8.2. Texture Reconstruction

For 29 path segments or 3 1
2

city blocks, we recorded

camera images for texture mapping, and hence we re-

construct texture atlases as described in Section 7. Most

facade triangles which were occluded in the direct view

could be texture mapped from some other image with

an oblique view. Only 1.7% of the triangles were not

visible in any image, and therefore required texture

synthesis.

Figure 28 demonstrates our texture synthesis algo-

rithm. Figure 28(a) shows a closer view of the facade to-

gether with holes caused by occlusion from foreground

objects. The holes are marked in white. Figure 28(b)

shows the result using the hole filling technique de-

scribed in Section 7. As seen, the synthesized texture

improves the visual appearance of the model. For com-

parison purposes, Fig. 28 (c) shows the image resulting

from the inpainting algorithm described in Bertalmio

et al. (2000). A local algorithm such as inpainting only

uses the information contained in a thin band around the
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Figure 27. Generated meshes, left side original, right side after the proposed foreground removal and hole filling procedure. The classification

for the visual impression is “significantly better” for the first four image pairs, “better” for pair e and “worse” for pair f.

hole, and hence interpolation of surrounding boundary

values cannot possibly reconstruct the window arch or

the brick pattern on the wall. The copy-paste method on

the other hand, is able to reconstruct the window arch

and brick pattern by copying and pasting from other

parts of the image.

In Fig. 29 we apply the texture atlas of Fig. 28 to the

geometry shown in Fig. 27(d) and compare the model
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Figure 28. (a) part of texture atlas with holes marked in white; (b)

hole filled atlas using the copy-paste method described in Section 7;

(c) result of Inpainting.

with and without the data processing algorithms de-

scribed in this paper. Figure 29(a) shows the model

without any processing, Fig. 29(b) the same model af-

ter our proposed geometry processing, and Fig. 29(c)

Table 3. Processing times for 3 1
2

downtown Berkeley blocks.

Processing Times for Automated Reconstruction on 2 GHz Pentium 4

Data conversion 14 min

Path reconstruction based on scan matching and global correction 70 min

with Monte Carlo Localization (with DSM and 5,000 particles)

Path segmentation 1 min

Geometry reconstruction 6 min

Texture mapping and atlas generation 27 min

Texture synthesis for atlas holes (including 20 h 51 min

pixel-accurate image foreground removal)

Model optimization for rendering 19 min

Total model generation time without texture synthesis 2 h 17 min

Total model generation time with texture synthesis 23 h 08 min

the model after both geometry processing and texture

synthesis. Note that in the large facade area occluded

by the two trees on the left part of the original mesh,

geometry has been filled in; while most of it could

be texture mapped using oblique camera views, a few

remaining triangles could only be textured via synthe-

sis. As seen, the visual difference between the original

mesh and the processed mesh is striking and appears

to be even larger than in Fig. 27(d). This is because

texture distracts the human eye from missing details

and geometry imperfections introduced by hole filling

algorithms. Finally, Fig. 30 shows the facade model for

the entire 3 1
2

city blocks area.

8.3. Complexity and Processing Time

Table 3 shows the processing time measured on a 2

GHz Pentium 4 PC for the automated reconstruction of

the 3 1
2

complete street blocks of downtown Berkeley

shown in Fig. 30. Without the texture synthesis tech-

nique of Section 7, thus leaving 1.7% of the triangles

untextured, the processing time for the model recon-

struction is 2 hours and 17 minutes. Due to the size

of the texture, our texture synthesis algorithm is much

slower, with processing time varying between <1 min

and 8 hours per segment, depending on the number and

the size of the holes. If quality is more important than

processing speed, the entire model can be reconstructed

with texture synthesis in about 23 hours.

Our approach is not only fast, but also automated:

Besides the driving, which took 11 minutes for the

model shown, the only manual step in our modeling

approach is one mouse click needed to enter the ap-

proximate starting position in the digital surface map

for Monte-Carlo Localization, which is needed once
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Figure 29. Textured facade mesh: (a) without any processing; (b) with geometry processing; and (c) with geometry processing, pixel-accurate

foreground removal and texture synthesis.

Figure 30. Reconstructed facade models: (a) overview; (b) close-up view.
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at the beginning of a model acquisition, and could be

automated by using a low-cost GPS.

8.4. Accuracy, Limitations, and Possible

Failure Scenarios

We have demonstrated that our approach is capable

of reconstructing facade models for a large-scale ur-

ban area. Since we do not have access to ground-truth

geometry or texture data, it is difficult, if not impossi-

ble, to assess the accuracy of the reconstructed models.

However, the following observations can be made:

The accuracy of the reconstructed model depends on

(a) the accuracy of the raw scan points and (b) errors

made during hole filling and mesh reconstruction. The

vertical scan points have a basic random error of σs =
±3.5 centimeters due to the scanner’s measurement

noise. As determined in Frueh (2002), the horizontal

scan matching is accurate to within σx = σy = 1 cm

for successive horizontal scans, which are on average

about 1 meter apart. Thus, the relative position accu-

racy for a path corresponding to N matched horizon-

tal scans, or about N meters, is σN =
√

N · (σ 2
x + σ 2

y ).

Therefore, the total uncertainty between 2 scan points

p1, p2 recorded within N meters of driving can be esti-

mated to σp1,p2 =
√

N · (σ 2
x + σ 2

y ) + 2σ 2
s . For exam-

ple for a 10 meter wide facade,σp1,p2 is 6.67 centimeter.

Additionally, our Monte-Carlo-Localization-based ap-

proach utilizes a DSM to correct drift-like global pose

offsets in the vehicle’s path by redistributing correction

vectors among the relative motion estimates. By virtue

of the parameters chosen in our Monte-Carlo localiza-

tion, these correction vectors are designed to be of the

same order of magnitude as σx . While the correction

vectors are intended to compensate for errors made

during the horizontal scan matching, they can add to

the uncertainty due to inaccuracies in the DSM itself.

Thus, our models are accurate, locally to about σp1,p2,

e.g. few centimeters, and globally to the accuracy of

the DSM as a global map, e.g. one meter.

Errors made during hole filling and mesh reconstruc-

tion can be severe, depending on the scene and the

amount of geometry that needs to be “invented”. First,

facades perpendicular to the driving direction or en-

tirely occluded by large foreground objects are invisi-

ble to the laser scanner and hence not even result in a

hole to be filled in—such structures do not appear in

the model at all. Similarly, facades that are nearly all

glass without surrounding solid walls would not pro-

vide enough vertical scan points to be recognized as a

facade and would therefore not be reconstructed. Sec-

ond, complicated facade objects such as fences, fire es-

capes, or wires cannot be adequately reconstructed; due

to their non-contiguous structure, corresponding scan

points are classified as outliers and removed. Third, it

is obvious that even a human operator can be wrong

in filling a hole, since clues at the boundaries might be

misleading; this is more so for an automated hole filling

algorithm such as ours, which is based on interpolation

and hence implicitly assumes a rather simple geometric

structure. Forth, and most importantly, there are scenes

for which a simple foreground/facade layer concept is

not sufficient. Examples of these are more complex

staged building structures with porches, pillars, oriels,

or non-vertical walls, and residential areas with many

trees. In these cases, our assumptions of Section 5 do

not hold true any longer; using histogram analysis to

separate the scan points into either foreground or fa-

cades is inadequate and results in oddly reconstructed

models as seen in Fig. 27(f).

As a matter of fact, for complicated structures which

differ substantially from a foreground/background sce-

nario, our drive-by approach with one single vertical

scanner does not provide enough data to successfully

reconstruct a satisfactory model and hence is inappli-

cable. Fortunately however, as demonstrated for down-

town Berkeley, the street scenery in most downtown

areas consists of a foreground/background composi-

tion. As a solution to more complicated structures, mul-

tiple vertical laser scanners could be mounted at dif-

ferent orientations; similar to merging 3D scans taken

from multiple viewpoints, these oblique scans could be

used if direct scans are not sufficient.

9. Conclusions

We have proposed a method to reconstruct building fa-

cade meshes from large laser surface scans and camera

images, even in presence of occlusion. Future work will

focus on using color and texture cues to verify filled-

in geometry. Additionally, foreground objects could be

classified and replaced by appropriate generics.
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Note

1. The original image is more than 4 times larger in each dimension.

This image is produced by subsampling the original image in

a special way. Each white pixel corresponding to a foreground

scan point in the original image is retained as a white pixel in the

subsampled image. This gives a false impression that the density

of foreground scan points is very high. On the other hand if the

image is subsampled in the normal fashion, there would almost

be no white pixels left in the subsampled image.
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