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Abstract

The artificial neural network (ANN) is a machine learning (ML) methodology
that evolved and developed from the scheme of imitating the human brain. Artifi-
cial intelligence (AI) pyramid illustrates the evolution of ML approach to ANN and
leading to deep learning (DL). Nowadays, researchers are very much attracted to
DL processes due to its ability to overcome the selectivity-invariance problem. In
this chapter, ANN has been explained by discussing the network topology and
development parameters (number of nodes, number of hidden layers, learning
rules and activated function). The basic concept of node and neutron has been
explained, with the help of diagrams, leading to the ANN model and its operation.
All the topics have been discussed in such a scheme to give the reader the basic
concept and clarity in a sequential way from ANN perceptron model to deep
learning models and underlying types.

Keywords: ANN, artificial neural network, node, network training, gradient
descent, deep learning

1. Introduction

Artificial Intelligence (AI) is the knowledge domain that targets the develop-
ment of computer systems to solve problems by giving them cognitive powers for
performing tasks that usually require human intelligence. Hence, simulation of
human intelligence, with computer programing and technologies, is the main
objective of AI. Whereas, machine learning is one of the branches of AI, in which
computer systems are programmed based on the data and type of input. Machine
learning (ML) gives the capability to AI for solving problems based on available
data. Likewise, artificial neural network (ANN) is an evolved method of ML
algorithms, developed on a concept of imitating the human brain [1–3].

A single neuron is considered as a cell, processing electrochemical signals or nerve
impulses, and the human brain is a complicated network of neurons that transfers
information, with the help of various interlinked neurons. ANN models are consid-
ered as most popular among AI models because of their architecture, which is the
collection of neurons linked with other neurons in various layers. ANN is non-linear
and complex systems of neurons and neuron is a mathematical unit [4].

Literature depicts that ML, ANN and deep learning (DL) falls under the pyramid
of AI and shown in Figure 1. Under ANN, DL has gained much importance among
researchers. DL is a complex network set of ANN with various layers of processing,
which improves the results by developing high levels of insight. DL methodologies
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are popular due to their computational powers and handling of large data sets, and
this makes them more attractive than conventional methods.

Past studies illustrated the comparison between DL and conventional ML
methods for effective outputs, with the help of graphical representation, as shown
in Figure 2. Figure 2 illustrates the behaviour of curves, for DL and conventional
ML, by comparing the accuracy of results (outputs) against the amount of data
(input). The graph shows that the result accuracy of conventional ML methods is
better for limited data, but it decreases as the amount of data is increased. Instead,
the result accuracy of DL improves for large data sets, due to the presence of a vast
neural network than conventional ML, hence, making DL more famous. DL is
usually used for complicated tasks, such as image classification, image recognition,
and handwriting identification [1, 3].

2. History of ANN

The origins of all the work on ANN are in neurobiological studies that date back
to about a century ago. A brief overview of evolution in ANN and significant
milestones are shown in the timeline, as shown in Figures 3 and 4.

Figure 1.
AI pyramid.

Figure 2.
Comparison between DL and conventional ML.
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Literature depicts that, in the 1980s, very few researchers were working on deep
NNs, and it gained popularity in the early 1990s. Since then, a large number of
research articles have been published on applications of ANN and this journey is on-
going. The few significant milestones, after 1990, regarding ANN evolution is
shown in Figure 4 [5–10].

3. Basic architecture of ANN

The architecture of ANN is stimulated by the framework of biological neurons,
like in the human brain. The human brain is the composition of a vast number of the
interlinked neurons forming a network. A neuron is like a cell, and each neuron
executes a simple task, i.e., response to an input signal. Likewise, the ANN is a
framework of interlinked nodes, similar to neurons, forming a network model.
Hence in ANN, several artificial neurons are interlinked and become a robust
computer-based tool that can handle large amounts of data to execute enormously
simultaneous calculations using input data. ANN operations are not based on
explicit rules and outputs are generated by trial and error procedures through
sequential computations. The ANN is also classified as ‘connectionism’ because the
given data is not conceded from neuron to neuron, but it is encoded in the compli-
cated interconnected network of neurons, unlike the traditional computers [2, 11, 12].

Figure 3.
ANN evolution timeline (1938–1988).
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To comprehend the basic structure of ANN, firstly, the understanding of ‘node’
is necessary. The generic model for a node is shown in Figure 5.

Each node receives various inputs through connections and transfers it to adja-
cent nodes. Figure 6 represents the general model of ANN, which is stimulated by a
biological neuron.

The nodes are arranged and organised into linear arrays known as layers.
Figure 6 shows that there are three layers in ANN called the input layer, the output
layer and the hidden layer.

In the input layer X1, X2, X3, … Xn signifies several inputs to the network.
Whereas, W1, W2, W3, … Wn are known as connection weights, which shows the
strength of a particular node. In ANN, weights are considered as the most signifi-
cant factors as these are numerical parameters that determine the effect of neurons
to each other and also impact the output, by converting the input.

In the ANN, the processing part is performed in the hidden layer. The hidden
layer executes two operational functions, i.e., summation function and transfer func-
tion, also known as an activation function. The summation function is the first step,
and in this part, each input (Xi) to ANN is multiplied by its respective weight (Wi)
and then, the products Wi.Xi is cumulated into the summation function ξ = ΣWi.Xi.
‘B’ is a bias value; this parameter is used to regulate the output of the neuron in
association with the weighted sum of the inputs. This process is denoted as Eq. (1):

Figure 4.
ANN evolution timeline (after 1988).

Figure 5.
Basic node model.
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Output ¼ Σ Weights� Inputsð Þ þ Bias (1)

The activation function is the second step; which converts the input signal,
received from the summation function module and transformed it to an output of a
node for an ANN model [1–3, 12, 13].

Generally speaking, each ANN has three main components, i.e., node character,
network topology and the learning rules. The node character controls the processing
of signals by determining the associated number of inputs and outputs, the associ-
ated weight for each input and output and the activation function, for each node.
Learning rules establish the initiation and adjustment of weights. Whereas, the
network topology defines the ways the nodes will be connected and organised
(details are discussed in Section 3.2). The operation of the ANNmodel is computing
the output of all the neurons, which is an entirely deterministic calculation [1, 2].

3.1 The activation function

An activation function is a mathematical function. In simple words, it receives
the output of the summation function as an input and converts that into the final
output of a node with the help of ANN processing.

There are different types of activation functions, but non-linear functions are
more popular than the linear function. A linear function is just a polynomial of one
degree, and it is considered as single-layer ANN model has less power and limited
complexity to process complicated data. Therefore, non-linear activation functions
are mostly included in designing of ANN models for solving complex problems and
this unique quality makes ANN true universal function approximators.

The activation function uses the value ξ = ΣWi.Xi as an input for processing and
controlling the input Xi for activation of the neuron. The most commonly known
activation functions [1, 12–15] are shown in Table 1.

Figure 6.
Generic ANN model.
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Transfer

functions

Graphical presentation Numerical

equation

Remarks

Linear Y ¼ f ξð Þ ¼ ξ Output = Input.

Range (�∞, +∞)

Unit step f ξð Þ ¼ 0

if ξ<0

f ξð Þ ¼ 1

If ξ≥0

Useful for binary

schemes.

Range (0,1)

Rectified

linear unit

(ReLU)

f ξð Þ ¼ 0

if ξ<0

f ξð Þ ¼ ξ

If ξ≥0

Most popular activation

function since 2015.

Range (0, ∞)

Sigmoid f ξð Þ ¼ 1
1þeξ

Commonly used

function. Range (0, 1)

Gaussian f ξð Þ ¼ e� ξð Þ2 Named after the

mathematician Carl

Friedrich Gauss

Range (0,1]

Hyperbolic

tangent
f ξð Þ ¼ 2

1þe�2:ξ

- 1

Alternative to sigmoid

function.

Range (�1, 1)

Table 1.
Activation functions.
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3.2 Network topology

The nodes are arranged and organised into linear arrays known as layers. The
interconnecting network model, between the nodes of ANN, with each other, is
called the topology (or architecture). ANN is composed of input layers, hidden layers
and output layers, as already discussed in Figure 6. Also, the hidden layers can be
from none to numerous, based on the model-complexity. Each layer is a combination
of many nodes, and these nodes, based on some properties, can be grouped in layers.
A single-layer ANN, with a single output, is known as Perceptron. A conceptual
model for layers and ANN topology is shown in Figure 7. Figure 7 shows n number
of data entries in the input layer as X1, X2, … . Xn. Also, it can be seen that there is L
number of hidden layers in the ANNmodel. Whereas, there are i number of nodes in
each hidden layer. The notations 1 � 1, 1 � i, L � 1 and L � i, on each node giving its
information, expressing ‘L’ as (hidden) layer number, i.e., from 1 to L and ‘i’ as node
number, i.e., from 1 to i. Y is the output for the mentioned ANN model.

Designing of network topology is based on following factors; (1) the number of
nodes in each layer, (2) the number of layers in the network and (3) the connected
path among the nodes [1, 2, 12].

3.2.1 Perceptron and multi-layer architectures

A single-layered ANN, with a single output, is known as the perceptron. The
perceptron mostly uses the step function, in which, if the computed sum of the
inputs transcends a threshold point, the output is 1; otherwise, it is 0.

Multi-layer perceptrons (MLPs) are themost commonly used architecture for ANN.
CompositionofMLPs contains layers ofneuronswith an input layer, anoutput layer, and
the hidden layer (at least one). The layers of the perceptron are interlinkedwith each
other by developing amulti-layered architecture, and thismakes themodel essentially
complex for the ANNprocessing. TheMLP terminology is originated fromperceptron
neural networks, but its problem-solving capabilitiesmakes it unique [1, 14].

3.3 Connection types between nodes

The connections between nodes of ANN are classified into two categories: (1)
the feedforward network, and (2) the feedback network or recurrent network.

Figure 7.
Conceptual model for ANN topology.
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3.3.1 Feedforward networks

Feedforward network is a one-way connection having no loop backwards. They
are static in nature as their signal travels in one way only. Figure 8 is a model
example of feedforward networks.

3.3.2 Feedback networks

In feedback network, nodes have backward connected loops, and in these
connections, the output of the nodes can be the input to the same level or previous
nodes. Unlike the feedforward network, the feedback networks are dynamic. In
feedback networks, signals are transmitted in forward as well as in backward
directions [16]. Feedback process occurs when the output (partial or full) is
channelled back into the input of a network as part of a repeated cause-and-effect
process [17]. In the feedback network, a single input generates a series of outputs
cycles until it reaches an equilibrium point. Equilibrium point refers to minimum
error, i.e., for each predicted output if the error is enormous then, the output is
routed back, and parameters (weights and biases) are modified until the error
becomes minimum [18]. Figure 9 shows the ANN model for feedback network

Figure 8.
Feedforward network connection.

Figure 9.
Feedback network connection.
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connections. It can be observed that node H2x1 is sending the information back to
node H1x1 and the cycle goes on until the output will reach an equilibrium state,
i.e., with minimum error. In a feedback network, there exists at least one
interconnected path that drives it back to the starting neuron. It may cause a delay
in specific time units, and this interconnected path is called a cycle [1, 2, 12]. This
process will be better understood, after going through the next section.

4. Training of ANN (learning process)

The training of the ANN is accomplished through a learning process. While in
the training process, weights are modified for attaining required results. In the
training process, some sample data is processed to the network and weights are
modified to attain better approximation of the desired output.

The learning process is mostly classified into two categories: (1) supervised
learning, and (2) unsupervised learning.

4.1 Supervised learning

In supervised learning, a training set is presented to the model. The training set
constitutes of input examples and corresponding target outputs. The inputs are
noted for the response of the network, and the weights between with networks are
adjusted for error reduction, for the attainment of the desired output. The network
follows successive iterations during this process until the computed result con-
verges to the correct one. Construction of the training set requires special consider-
ation. A training set is considered an ideal one, and it should be giving a better
representation of the underlying model. Otherwise, a reliable model with desirable
results cannot be achieved with an unrepresentative training set.

In the supervised learning process, the networks are trained first before its
operation in a model for predictive outputs. Significantly, when the network starts
computing the intended outputs with the series of inputs, with fixed weights, then
the ANN model can be set for the required operation. Few of the well-known
algorithms with a supervised learning method are the Adaline (used for binary
data), the Perceptron (used for continuous data), and the Madaline (developed
from the Adaline).

4.1.1 Reinforcement learning

Reinforcement learning is a particular case scenario of supervised learning. It is,
when the external environment only checks for the information for acceptance and
rejection, instead of indicating the correct output. In this process, the well-
performing and the most active neuron connections for the input are strengthened
over successive iterations. Few of the renown algorithms of reinforcement learning
are the Boltzmann machine, the learning vector quantisation, and Hopfield
networks.

Supervised ANN models have many applications for image classification,
plant control, forecasting, prediction, robotics, ECG signals classification and many
more [19–21].

4.2 Unsupervised learning

Unsupervised learning does not follow a training set or a targeted output
approach. Instead, it trails the input data pattern of the underlying model. In this
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process, the ANN model adjusts its weights, against the supplied inputs, thus pro-
ducing outputs similar to inputs. The model, without any outer support, recognises
the patterns and differences in the inputs. In this process, the clusters are formed,
each cluster consists of a group of several weights, in such a way that related input
path results in a similar output. If any new pattern is detected during the iteration
process, it is classified as a new cluster.

Autoencoders, Hebbian Learning, Deep Belief Nets, Self-Organising Map, Gen-
erative Adversarial Networks, and Algebraic Reconstruction Technique (ART) are
the few most renown algorithms for unsupervised learning. Unsupervised ANN
models are used in diagnosing diseases, image segmentation and many more.
Unsupervised algorithms have become very useful and powerful tools in segmenta-
tion of magnetic resonance images for detection of anomalies in the body systems
[1, 2, 4, 12, 14, 22–24].

5. Mapping by ANNs

The primary reason for ANN popularity is due to approximated data output.
There are five main steps for the approximation function in the ANN model, as
given below.

5.1 Data pre-processing

In data pre-processing, the appropriate predictors are selected as inputs before
processing to a network for mapping. There are three general processes in data
pre-processing, mentioned as follows:

a. Standardising: The input values are rescaled to a uniformed scale.

b. Normalising: It normalises a vector to have unity variance and zero mean
value.

c. Principal component analysis: This process replaces the groups of related
variables by new unrelated variables by detecting linear dependencies
between them.

5.2 Selection of network architecture

A network architecture comprises several hidden neurons, the number of hidden
layers, the flow of data, the way neurons are interconnected, and specific transfer
functions. Recurrent neural networks, multi-layer perceptron (MLP), probabilistic
neural networks, radial basis function networks, generalised regression neural
networks and time-delay neural networks are the few of the renown architectures.

5.3 Network training

About function mapping, the training process is known as the calibration of the
network through input and out pairs. During the training process, ANN might
suffer from the overfitting and underfitting. The overall performance of the net-
work decreases because of these two mentioned factors. This unfitting of the net-
work, during the training process, can be managed by increasing the number of
epochs, but it may result in network overfitting if the number of epochs is more
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significant than a required number. Epoch is defined as a process of providing one
pass or iteration of input through the network and modifying the weights. The
optimal number of epochs can be determined by the comparison of training error
and model testing procedure.

5.4 Simulation

Simulation is the ultimate goal of applying ANN networks. It is the representa-
tion of predicted output data for an ANN model.

5.5 Post-processing

There are three types of sets in which sample data is distributed: (i) the training
set, (ii) the validation set, and (iii) the testing set. The training set is used to train
the ANNmodel; it is a set of sample data that is used to modify or adjust the weights
in the ANN to produce the desired outcome. The validation set is used to inform the
ANN when training is to be terminated (when the minimum error point is
achieved). The test set provides an entirely independent way of examining the
precision of the ANN. The test set is a set of sample data that is used for the
evaluation of the ANN model. A rule of thumb for this random split regarding
percentage is 70, 15, 15%, respectively [3, 12, 14].

The post-processing comprises of all the tests, which are applied on a specific
network for the validation of results, also, to analyse, describe, and to improve its
final performance. The comparison of results is achieved by using three different
statistics. The first one is the root-mean-square error (RMSE), and it is described
in Eq. (2):

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i obsi � estið Þ2

n

s

(2)

The second statistical factor is percentage volume error (%VE), which is the
measuring of the absolute relative bias error of estimated values. It is formulated
as Eq. (3):

%VE ¼

Pn
i¼1

obsi�esti
obsi

� �

n
(3)

whereas, esti = ith estimated variable, obsi = ith observed data, and n = number
of observed values.

The third statistical factor is the correlation, and it is used in the measuring of
the linear correlation coefficient between the predicted and observed data.

In case of unsatisfactory results in the post-processing, modification can be
made in the following: (1) weights and biases, (2) number of hidden neurons,
(3) transfer functions, and (4) number of hidden layers [4, 25].

6. Gradient descent

The term ‘gradient descent’ is a combination of two words the ‘gradient’, which
means a slope and the ‘descent’, which means to incline. Therefore, with gradient
descent, the slope of gradients is descended to find the lowest point with the
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smallest error. It is an iterative process until the correction of the error in the ANN
learning model. It is defined as during the backpropagation in the ANN model, the
process of iteration keeps updating biases and weights with the error times deriva-
tive of the activation function. The steepest descent step size is substituted by a
similar size from the previous step.

A gradient is the derivative of the activation function, as shown in Figure 10.
The primary purpose of using gradient descent is to find the overall cost mini-

mum at each step, with the lowest error. Also, at this point, model predictions are
more reliable because of upright fit data. Evaluation of slope can be done with the
help of Figure 11, and Eq. (4) can be derived.

∆xi ¼ �α
dy

dxi
(4)

Figure 10.
Gradient descent.

Figure 11.
Slope computation.
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whereas, α = learning rate and dy/dxi, also known as the partial derivative of y
with respect to xi. For gradient descent, this equation can be used for each variable
when δy < 0 (δ is a partial derivative).

Gradient descent can be achieved either for the stochastic or full batch. In
stochastic, gradient descent performs calculation for gradient by taking a single
sample. Whereas, in full batch, the gradient is calculated for the full training
dataset. One of the advantages of stochastic gradient descent is the fast calculation
of gradients [1, 13, 23].

6.1 Training algorithm by delta rule

The biases and weights are the parameters of the network that are required to be
adjusted before operating an ANN. These parameters can be modified by using
either supervised or unsupervised approach for any ANN model. For training pur-
pose, the supervised learning process is generally considered for determining biases
and weights of an ANN network. The supervised training process of an ANN
network could be attained by using delta rule. The delta rule is expressed as Wij

with the help Eqs. (5)–(7), as shown:

W
new Lð Þ
ij ¼ W

old Lð Þ
ij þ α �

∂ep

∂
W

Lð Þ
ij

0

@

1

A (5)

E ¼
1

n

Xn

p¼1
ep (6)

ep ¼ tp � yp

� �

(7)

whereas, n = the number of pairs of data, W = the weight of the link between the
ith neuron to the jth neuron in the Lth layer, E = the average error of estimation,
tp = target output, yp = simulated output, α = learning rate, the value of which is
selected between 0 and 1 experimentally.

The backpropagation algorithm is mostly used for the application of delta rule
for the training process of an ANN. The mathematical expression of delta rule is
changed to computational relation because of the backpropagation algorithm,
which can be applied through an iterative process. This process provides a way to
the gradient for determining of the minimum error function, and it is efficiently
calculated by using the chain rule of differentiation provided by the backpropaga-
tion algorithm. This characteristic makes this process to also be known as the
generalised delta rule. In this algorithm, during each iteration, the network weights
are shifted along with the negative of the gradient in the steepest descent direction
of the performance function (epoch). For a certain weight in the Lth hidden layer,
the chain rule gives Eq. (8):

∂ep

∂
Lð Þ
W ij

¼
∂ep

∂ILpj
:

∂I
Lð Þ
pj

∂w
Lð Þ
ij

(8)

This algorithm keeps the iterations continued until the expected output of net-
work training is achieved. The basis for stopping the training process may be the
minimum target value of performance function, the number of epochs and run time
of the process; this is known as stopped training. The above mentioned equations
lead to the following weight calculating Eqs. (9) and (10):

13

Data Processing Using Artificial Neural Networks
DOI: http://dx.doi.org/10.5772/intechopen.91935



For the last layer

Wnew
ij ¼ Wold

ij þ αδpjy
L�1ð Þ
pi (9)

For the hidden layer

Wnew
ij ¼ Wold

ij þ αδ
Lð Þ
pj y

L�1ð Þ
pi (10)

Following this procedure of training, based on the specific input vectors using
the final derived weights and biases, the ANN model will be operated on sample
data for initiation of simulation for the related outputs. The ANN training can be
achieved either by batch training or incremental training. During the batch training
process, the adjustment of biases and weights is attained after the presentation of all
the inputs and targets. Whereas, during the incremental training, the adjustment of
biases and weights is attained just after the presentation of individual input. In
training, the process affects network performance. In the case of the low learning
rate, the time required for learning the synaptic weights will be extremely long. On
the other hand, if the set learning rate will be too high, this will tend the algorithm
to oscillate, and the trained network performance will be reduced because the
weight changes are too drastic. Therefore, the learning rate controls the conver-
gence of the algorithm. These weight modifications can be applied after each
pattern is completed, and these computed weight changes can be summed up to be
applied to the network weights, as shown in Eq. (11):

∆wl
ij ¼

X

n

p¼1

∆wL
pij (11)

Usually, in dynamic networks, the inputs and targets are shown in sequence.
In the adaptive learning process, the recent data, that is perceived before the time of
simulation is considered as necessary as compared to all the data [4, 14, 26].

7. Deep learning

In the field of AI, deep learning (DL) has gained much popularity and trending
for investigation domains. One of the foremost shortcomings of conventional
machine learning is their inability to solve the selectivity-invariance problem, and
because of this drawback, these methods have limited capability of data processing
in their real state. Selectivity-invariance enables the model for the selection of those
parameters that comprise of more information and disregard parameters with less
information. This characteristic of DL, i.e., ability to overcome the selectivity-
invariance dilemma, makes it more likeable among researchers and motivate them
to the advancement of machine learning using the DL approach.

The architecture of DL is composed of various layers of trainable parameters,
and this helps DL-based algorithms for excellent performance in machine learning
and AI applications. DL algorithm is Deep Neural Networks (DNNs), and they
usually use backpropagation optimised algorithms for end-to-end training. DNNs
capability of selectivity-invariance extracts the compound features through succes-
sive layers of neurons equipped with differentiable, non-linear activation functions,
and this provides a suitable platform for the backpropagation algorithm. A generic
architectural model of DNNs is shown in Figure 12.
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Figure 12 depicts a DNNs model with numerous hidden layers. The outer layer
of DNN mostly uses the softmax module for the solution of most of the classifica-
tion problems. The softmax formula is also known as normalised exponential, is
given below in Eq. (12):

Y i ¼
exp aið Þ

P

j exp a j

� � (12)

whereas, j is the set of output nodes, ai is the net input to a particular output
node, and Yi is the value of output node between range (0, 1).

DNNs models with non-linear behaviour can go up to several abstractions of
levels that helps in decision making by transforming original data into higher
abstract levels. This process streamlines finding the solution for non-linear and
complex functions. Basis of DL is automated learning of features that offer the
facility of transfer learning and modularity. Unlike conventional machine learning,
training of DL networks requires a large amount of data. Convolutional neural
network (CNN) and recurrent neural network (RNN) are the renown deep net-
works [27, 28].

7.1 Convolutional neural network (CNN)

CNN is the popular DL methodology, based on the animal’s visual cortex. CNNs
are very much similar to ANN that can be observed as the acyclic graph in the form
of a well-arranged collection of neurons. Although, in CNNs, the neurons in the
hidden layers are only interconnected with a subset of neurons in the preceding
layer, unlike regular ANN model. This rare type of interconnectivity enables CNN
models to learn the discreet features on an object. CNN models are used for face
recognition, scene labelling, image classification, document analysis and many
more.

The police department of the Penang Island, Malaysia had installed more than
500 CCTV cameras around the Island and many of them were equipped with face
recognition technology, which was developed by IBM. Their main objective was to
control crime and capture the wanted criminals [29]. Likewise, in China Pharma-
ceutical University, to control the student attendance and class discipline the uni-
versity management installed the facial recognition system in the campus, including

Figure 12.
DNNs generic model.
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the classrooms, labs, library and entrance gates. This overall improved the students’
response towards academics [30]. Face recognition technology is based on deep
CNN models. This process can be performed by using both supervised and
unsupervised approaches but supervised methodologies are mostly preferred. Face
recognition is performed by taking an input from video or image and detection is
made by taking input to greyscale. The features in greyscale are applied one by one
and compared with pixel values. The CNN models give high accuracy than past
techniques by overcoming the problems, like light intensity and expressions, with
the help of trained models using more training samples [31–33].

7.2 Recurrent neural network (RNN)

RNNs are used for the tasks that require consecutive sequential inputs for
processing. Initially, training of RNNs was done by using backpropagation. RNNs
approach utilises one factor of input, at a time, in sequence by keeping state vector
in their hidden nodes, in which implicitly within nodes contains information of all
the past value of factors of that sequence. RNNs are dynamic and fairly powerful
systems, but during the training process the problem occurs as in gradients of
backpropagation algorithm either would shrink or grow at every time step, ulti-
mately they might disappear after many cycles. If we explore RNN, deep
feedforward networks will be found having all layers sharing the same weight. RNN
lags to the capability of storing information for a long time, and deficiency is known
as long-term dependencies. To control this shortcoming, one approach has been
introduced with explicit memory known as long short-term memory (LSTM). In
this method, particular hidden nodes are used to store the information in the form
of input data for a much higher time. LSTM is very much recognised for the better-
quality performance in speech recognition systems [1, 27, 28].

Apple’s Siri, Amazon’s Alexa, Microsoft’s Cortana, and Google’s Assistant are the
most popular voice recognizer tools and they are used for making a phone call, play
reminders, alarms, provide driving directions and much more. The speech recog-
nizers are developed on RNN networks, which are based on LSTM-RNN architec-
ture. This gives the RNN models the ability to deal with long-distance patterns and
makes them suitable for learning long-span relations. The models are trained end-
to-end and output is attained [34, 35]. Other few applications of RNN models are
keyphrase recognition, meteorological data updating, speech to text [35–38]. Mas-
sachusetts Institute of Technology (MIT) had performed an interesting simulated
study on self-driving cars, and its framework was also being developed on the deep
reinforced model [39].

8. Examples of ANN model using Python

8.1 Supervised ANN model

A simple ANN model was developed using Python. The model was designed by
using supervised CNN methodology for image classification. Images were collected
for training and validation purpose of the model for apples and oranges. For train-
ing purpose, 20 images were collected for each (apple and orange), making a total
of 40 images. For validation purpose, 10 more images were collected for each,
making a total of 20 images. The data for the supervised process, of the ANNmodel,
was arranged in a specific way with a separate folder for each process, i.e., training
and validation. In a folder named as ‘Training’, images of each fruit were placed
separately in the folders having their name titles, i.e., ‘Apple’ and ‘Orange’, and
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same was done for ‘Validation’ folder. In the classification and prediction process,
the model output was analysed, for the effectiveness of the results, against two
parameters: (1) effect of increasing the number of epochs per run, and (2) the
number of hidden layers.

8.1.1 Number of epochs per run

The effect of increasing the number of epochs on the model, for each run, is
shown in Table 2. The effectiveness of the output is measured against the %
accuracy, and % loss for different number epochs. The number of hidden layers for
these tests were kept constant for each run.

Table 2 clearly shows that an increasing number of epochs refines the output by
increasing the accuracy and decreasing the data loss. The model gave a correct
prediction of the fruit classification in all the runs.

8.1.2 Number of hidden layers

The effect of increasing the number of hidden layers on the model, for each run,
is shown in Table 3. The effectiveness of the output is measured against the %
accuracy, and % loss for various number hidden layers. The number of epochs for
these tests was kept constant for each run.

Table 3 clearly shows that an increasing number of hidden layers increases the
model effectiveness by increasing the accuracy and decreasing the data loss. The
model gave one wrong prediction, when there were 2 hidden layers. Whereas, by
increasing the number of hidden layers, the model started to predict correctly.

8.1.3 Overall summary

The output window from the model is shown in Figure 13. It can be seen that the
model successfully predicted the correct output (‘Apple’). The accuracy of the
model was increasing with each epoch from almost 37 to 89% and data loss was also
decreasing, consecutively. The program code for this model is given in Appendix A.

Number of epochs % Accuracy % Loss Prediction

4 74.14 56.41 Correct

8 81.25 43.44 Correct

12 100 27.77 Correct

Table 2.
Output summary for increasing number of epochs.

Number of hidden layers % Accuracy % Loss Prediction

2 45.83 67 Incorrect

4 70 64.90 Correct

6 100 61.38 Correct

Table 3.
Output summary for increasing number of hidden layers.
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8.2 Unsupervised ANN model

A simple unsupervised ANNmodel was developed for the colour quantization of
an image, using Python, and Self-Organising Maps (SOM) methodology was
adopted. SOM is basically used for feature detection.

Two different images of houses were selected for colour quantization by the
SOM model. Separate tests were conducted with each image keeping the same
model conditions. In each test, the developed SOM model reduced the distinct
colours of the image, and another image was developed. This technique helped the
model to learn the colours in the image and then use the same colours to reconstruct
that image. The pictorial views for each output are shown in Figure 14.

Figure 13.
Output summary of CNN model.

Figure 14.
Pictorial output of SOM model.
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8.2.1 Overall summary

It can be seen in the output results that for each test the model detected the
distinct colours and using the same colours it reproduced that image. The output
window from the model is shown in Figure 15. The program code for this model is
given in Appendix B.

9. Conclusions

Operation of the ANN model is the simulation of the human brain, and they fall
under the knowledge domain of AI. The popularity of ANN models were increased
in the early 1990s, and many studies have been done since. The basic ANN model
has three main layers, and the main process is performed in the middle layer known
as the hidden layer. The output of the ANN model is very much dependent on the
characteristics and function it carries under the hidden layer. Among the
feedforward and feedback networks, the latter one propagates the error unless it
became minimum for more effective results. The ANN models can perform super-
vised learning as well as unsupervised learning depending upon the task. The DL
algorithms are very much popular among researchers because of effective outputs
with large data. CNN and RNN are the two renown deep networks, and they have
been used for various applications. Output accuracy of the ANN models is very
much dependent on the number of hidden layers and the number of epochs.

In this era of automation, the AI plays an important role, and most of the daily
use applications are based on the architecture of ANN models. This ANN technol-
ogy, combined with other advanced and AI knowledge areas, is making life easier in
almost every domain. This evolution of DNN models has led to the creation of
Sophia the Robot (Hanson Robotics); the journey is on-going.
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Appendix A

Program code for supervised CNN model is given below:

Step#1 Opening Python

Python was opened, and conda environment was selected.

Step#2 Installing and Import Necessary Data Sources

from keras.preprocessing.image import ImageDataGenerator

from keras.models import Sequential

from keras.layers import Conv2D, MaxPooling2D

from keras.layers import Activation, Dropout, Flatten, Dense

from keras import backend as K

from keras.preprocessing import image

import tensorflow as tf

import numpy as np

Step#3 CNN Convolutional Network Model

#Input Layer

model = Sequential()

# Convolutional Layer 1

model.add(Conv2D(64 (3, 3), input_shape = (150, 150, 3), activation = 'relu'))

model.add(MaxPooling2D(pool_size = (2, 2)))

# Convolutional Layer 2

model.add(Conv2D(64, (3, 3), activation = 'relu'))

model.add(MaxPooling2D(pool_size = (2, 2)))

The convolutional network helps to extract features from the image and digit 64
means to extract 64 features.

model.add(Flatten())

# Hidden Layer 1

model.add(Dense(units = 64, activation = 'relu'))

# Hidden Layer 2

model.add(Dense(units = 32, activation = 'relu'))

64 and 32 represents the number of neurons in these layers.

# Output Layer

model.add(Dense(units = 1, activation = 'sigmoid'))

# Compiling the CNN

model.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy'])
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Sigmoid represents the activation function of this model.

Step#4 Fitting CNN to the Images (Training and Validation)

train_datagen = ImageDataGenerator(rescale = 1./255,

shear_range = 0.2,

zoom_range = 0.2,

horizontal_flip = True)

test_datagen = ImageDataGenerator(rescale = 1./255)

training_set = train_datagen.flow_from_directory('Data/Train',

target_size = (150, 150),

batch_size = 12,

class_mode = 'binary')

test_set = test_datagen.flow_from_directory('Data/Validation',

target_size = (150, 150),

batch_size = 8,

class_mode = 'binary')

model.fit_generator(training_set,

steps_per_epoch = 10,

epochs = 4,

validation_data = test_set,

validation_steps = 10)

directories are for the path to the training folder and validation folder

Step#5 Running the ANN Model

test_image = image.load_img('Data/Apple.JPG', target_size = (150, 150))

test_image = image.img_to_array(test_image)

test_image = np.expand_dims(test_image, axis = 0)

result = model.predict(test_image)

training_set.class_indices

if result[0][0] == 1:

prediction = 'Orange'

else:

prediction = 'Apple'

print (prediction)

Appendix B

Program code for unsupervised SOM model is given below:

Step#1 Opening Python

Python was opened, and conda environment was selected.

Step#2 Installing and Import Necessary Data Sources

from minisom import MiniSom

import numpy as np

import matplotlib.pyplot as plt
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Step#3 Importing Image

img = plt.imread('HouseTest2.jpg')

Image path is to be given here.

Step#4 SOM Model

# Reshaping the pixels matrix

pixels = np.reshape(img, (img.shape[0]*img.shape[1], 3)) / 255.

# SOM initialization

som = MiniSom(2, 3, 3, sigma=1.,

learning_rate=0.2, neighborhood_function='bubble')

# Setting Weights

som.random_weights_init(pixels)

starting_weights = som.get_weights().copy()

som.train_random(pixels, 100, verbose=True)

100 is the number of training iteration

# Quantization

qnt = som.quantization(pixels)

# Compilation

clustered = np.zeros(img.shape)

for i, q in enumerate(qnt):

clustered[np.unravel_index(i, dims=(img.shape[0], img.shape[1]))] = q

print('done.')

Step#5 Running and Plotting of ANN Model

plt.figure(figsize=(7, 7))

plt.subplot(221)

plt.title('Original')

plt.imshow(img)

plt.subplot(222)

plt.title('Result')

plt.imshow(clustered)

plt.subplot(223)

plt.title('Initial Colors')

plt.imshow(starting_weights)

plt.subplot(224)

plt.title('Learnt Colors')

plt.imshow(som.get_weights())

plt.tight_layout()

plt.show()
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