
Data Profiling with Metanome

Thorsten Papenbrock_ Tanja BergmannF Moritz FinkeF

Jakob ZwienerF Felix Naumann_

Hasso-Plattner-Institut, Prof.-Dr.-Helmert-Str. 2-3, 14482 Potsdam, Germany
F firstname.lastname@student.hpi.de _firstname.lastname@hpi.de

ABSTRACT
Data profiling is the discipline of discovering metadata about given
datasets. The metadata itself serve a variety of use cases, such
as data integration, data cleansing, or query optimization. Due
to the importance of data profiling in practice, many tools have
emerged that support data scientists and IT professionals in this
task. These tools provide good support for profiling statistics that
are easy to compute, but they are usually lacking automatic and
efficient discovery of complex statistics, such as inclusion depen-
dencies, unique column combinations, or functional dependencies.

We present Metanome, an extensible profiling platform that in-
corporates many state-of-the-art profiling algorithms. While Meta-
nome is able to calculate simple profiling statistics in relational
data, its focus lies on the automatic discovery of complex metadata.
Metanome’s goal is to provide novel profiling algorithms from re-
search, perform comparative evaluations, and to support developers
in building and testing new algorithms. In addition, Metanome is
able to rank profiling results according to various metrics and to
visualize the, at times, large metadata sets.

1. DATA PROFILING
Data scientists and IT professionals are often confronted with

datasets about which only little is known. To work with these
datasets and to gain information from them, we must analyze their
records for metadata: At first, we usually inspect the schema for
its number of columns and the column labels. Then, we count
the number of rows and measure the size of the data in terms of
megabyte. We also take manageable samples of records to get an
impression on the dataset’s values and to understand what the data
is about. All such profiling can be done with a standard text editor.

More complex tasks, however, require more demanding meta-
data: If we, for instance, aim to load a dataset from a file into a
database, we require the columns’ data types. To optimize aggre-
gation queries, we need statistical metadata, such as the minimum,
maximum, average, and median of all columns. We might, fur-
thermore, want to compress or re-encode the data and must, hence,
check the columns for their values’ entropy, lengths, and filling
degree. Computing all these metadata requires special profiling

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 41st International Conference on
Very Large Data Bases, August 31st - September 4th 2015, Kohala Coast,
Hawaii.
Proceedings of the VLDB Endowment, Vol. 8, No. 12
Copyright 2015 VLDB Endowment 2150-8097/15/08.

Figure 1: User interface of the Metanome profiling platform show-
ing a result set of inclusion dependencies.

methods, but still the computation needs only a single pass over all
records and is, hence, easy to achieve. This is why most current
data profiling tools provide good support for such metadata.

In practice, however, many data management tasks require meta-
data that is much harder to discover: To define key columns, for
instance, we need to find unique column combinations that serve
as key candidates. If a dataset comprises multiple relations, we
might want to discover foreign keys and, hence, inclusion depen-
dencies as their prerequisite. In order to efficiently store the data,
we perform schema normalization that builds upon the discovery
of functional dependencies. An IT professional can, furthermore,
optimize the sortation of records in a dataset using order dependen-
cies. The list of important metadata continues, but tool support for
their discovery is sparse, as research is still ongoing in these areas.

For this reason, we present with Metanome1 an open profiling
platform that integrates many state-of-the-art metadata discovery
algorithms. Metanome serves two important use cases: On the one
hand, the Metanome tool is built for database administrators and IT
professionals that require efficient metadata discovery algorithms
in any kind of data profiling project; on the other hand, the Meta-
nome framework is designed to support developers and researchers
in building, testing, and publishing new algorithms. In both cases,
the interpretation of profiling results plays a major role. Therefore,
Metanome provides several result management techniques, such as
metadata ranking and visualization. Figure 1 shows Metanome’s
user interface and its basic result listing.

In this demo paper, we first introduce the Metanome platform
by explaining its architecture, the modularization of algorithms, the
user interaction, and the result handling (Section 2). Then, we show

1www.metanome.de

1860



Figure 2: Architecture of the Metanome profiling platform.

how data profiling with Metanome works from the user perspec-
tive and we describe how Metanome supports the development of
new algorithms (Section 3). After the description of our profiling
system, we discuss what our demonstration will offer to attendees
(Section 4).

2. THE DATA PROFILING PLATFORM
In this section, we discuss the architecture of Metanome. The

Metanome project is an open source project available on GitHub2.
A nightly build and more detailed documentation for developers
can be found on the same page. The development of Metanome
has the following design goals:
Simplicity. Metanome should be easy to setup and use, i.e., a user
should be able to simply download and start the tool, add data, and
begin profiling it.
Extensibility. New algorithms and datasets should be easily add-
able to the system without needing to change the system itself.
Standardization. All common tasks, such as tooling, input pars-
ing, or result handling, should be integrated into the Metanome
framework allowing the algorithms to focus on their specific so-
lution strategies.
Flexibility. Metanome should make as few restrictions to the algo-
rithms as possible in order to enable all algorithmic ideas.

In the following, we describe how these goals influenced Meta-
nome’s architecture, the framework’s tasks, and the modularization
of profiling algorithms.

2.1 Architecture
Metanome is a web-application that builds upon a classical three-

tier architecture. Figure 2 illustrates this architecture: The data tier
comprises the Metanome store, the input sources, and the profiling
algorithms; the logic tier appears as backend component; and the
presentation tier is represented by the frontend component. The
division into server (data and logic tier) and client (presentation
tier) components is an important design decision for a profiling
platform, because data profiling is usually done from an IT pro-
fessional’s workstation on a remote server that holds the data and
the necessary compute resources. Hence, the client can steer the
profiling and analysis processes while the server performs the ex-
pensive profiling. For small profiling tasks, however, Metanome
can also run as a desktop application. We now discuss the three
tiers in more detail:
2https://github.com/HPI-Information-Systems/Metanome

Data tier. The Metanome store is a light-weight HSQLDB that
stores operational metadata for the tool, such as configuration pa-
rameters, links to external resources, and statistics about previous
profiling runs. The database is shipped with the Metanome tool and
does not need to be installed separately. The data tier further com-
prises the input sources, which can be files or databases, and the
profiling algorithms, which are precompiled jar-files. Both sources
and algorithms are managed dynamically, meaning that they can be
added or removed at runtime.
Logic tier. The backend executes the algorithms and manages
the results. It provides methods for several common tasks to
the algorithms. Input parsing, output processing, and algorithm
parametrization are, in this way, standardized. This makes the pro-
filing algorithms easier to develop, evaluate, and compare.
Presentation tier. The frontend provides a graphical web-interface
to the user. This interface allows the user to add/remove input
sources and profiling algorithms, configure and start profiling pro-
cesses, and list and visualize profiling results. It also provides ac-
cess to previous profiling runs and their results so that a user can
review all metadata grouped by their dataset. The frontend builds
upon the Google Web Toolkit (GWT) and communicates over a
RESTful API with the backend component.

Metanome is shipped with its own jetty web-server so that it runs
out of the box, requiring only a JRE 1.7 or higher to be installed.
No further software is required by Metanome itself, but the tool can
read data from an existing database or run algorithms that utilize
external frameworks, such as MATLAB.

2.2 Profiling Framework
Metanome acts as a framework for different kinds of profiling al-

gorithms. Because most of the algorithms perform the same com-
mon tasks, Metanome provides standardized functionality for them.
In the following, we discuss the four most important tasks and the
provided functionality:
Input Parsing. The first task of the Metanome framework is to
build an abstraction around input sources, because specific data for-
mats, such as separator characters in CSV-files, are irrelevant for
the profiling algorithms. Hence, algorithms can choose between
four standardized types of inputs:

Relational. The algorithm accepts any kind of relational input.
The input source can be a file or a table in a database. The input is
read sequentially while Metanome performs the parsing of records
depending on the actual source.

File. The algorithm accepts raw files as input. It can, then, de-
cide to either read and parse the content itself or, if the content is
relational, to use Metanome functionality for the parsing. In this
way, a Metanome algorithm can read non-relational formats, such
as JSON, RDF, or XML.

Table. The algorithm accepts database tables as input. The ad-
vantage of only accepting database tables is that the algorithm is
able to use database functionality when reading the tables. For in-
stance, the tables can be read sorted or filtered by some criterion.

Database. The algorithm accepts an entire database as input.
It must, then, select the tables itself, but it is also able to access
metadata tables containing schema and data type information that
can be used in the profiling process. To do so, Metanome must
provide the type of database, e.g., DB2, MySQL, or Oracle, to the
algorithm as well, because the name and location of metadata tables
is vendor-specific.
Output Processing. Metanome’s second task is to standardize the
output formats depending on the type of metadata that the algo-
rithm discovers. This is important, because Metanome can process

1861



and automatically analyze the results if it knows their type. To build
a graphical visualization of an inclusion dependency graph, for in-
stance, Metanome must know that the output contains inclusion de-
pendencies and it must distinguish their dependent and referenced
attributes. The most important types of metadata supported cur-
rently are unique column combinations (UCCs), inclusion depen-
dencies (INDs), functional dependencies (FDs), order dependen-
cies (ODs), and basic statistics. The metadata type “basic statis-
tics” is designed for simple types of metadata, such as minimum,
maximum, average, or median that do not require individual output
formats; it also captures those types of metadata that have not been
implemented in Metanome, yet.
Parametrization Handling. Besides input and output standardiza-
tion, Metanome also defines the parametrization of algorithms. For
this purpose, the profiling algorithms need to expose their configu-
ration variables. The variables can then be set by the user. In this
way, an algorithm could ask for a maximum number of results or a
search strategy option.
Temporary Data Management. Sometimes, algorithms must
write intermediate results or operational data to disk, for instance if
memory capacity is low. For these cases, Metanome provides dedi-
cated temp-files. An algorithm can store its temporary data in such
files, while Metanome places them on disk and cleans them when
the algorithm has finished.

2.3 Profiling Algorithms
To run within Metanome, a profiling algorithm needs to imple-

ment a set of light-weight interfaces: The first interface defines
the algorithm’s output type and the second interface its input type
as described in Section 2.2. Choosing one output and one input
type is mandatory. A holistic profiling algorithm, i.e., an algorithm
that discovers multiple types of metadata, might choose more than
one output type. Further interfaces can optionally be added to re-
quest certain types of parameters or temp files. For instance, an
algorithm could request a regular expression for input filtering us-
ing the String-parameter interface. The algorithm can also define
the number of parameters. So an inclusion dependency algorithm
would require multiple relations in order to discover foreign key
candidates between them.

Apart from the interface, the profiling algorithms work fully au-
tonomously, i.e., they are treated as foreign code modules that man-
age themselves, providing maximum flexibility for their design. So
an algorithm is able to, for instance, use distributed systems like
MapReduce, machine learning frameworks like Weka, or subrou-
tines in other programming languages without needing to change
the Metanome framework. This freedom is also a risk for Meta-
nome, because foreign code can produce memory leaks if it crashes
or is terminated. Therefore, algorithms are executed in separate
processes with their own address spaces. Apart from memory pro-
tection, this also allows Metanome to limit the memory consump-
tion of profiling runs. Of course, Metanome cannot protect itself
against intentionally harmful algorithms, but the profiling platform
is designed for a trustworthy research community. Metanome al-
ready provides algorithms for the discovery of:

• UCCs: Ducc [4]

• INDs: Mind [7], Spider [2], Binder [10]

• FDs: Tane [5], Fun [8], Fd Mine [12], Dfd [1], Dep-
Miner [6], FastFDs [11], Fdep [3]
(see [9] for an experimental evaluation of these algorithms)

• ODs: Order [in progress]

3. PROFILING WITH METANOME
We examine Metanome from two user perspectives: an IT pro-

fessional, who uses Metanome as a profiling tool on his data, and a
scientist, who develops a new profiling algorithm using Metanome
as a framework.

3.1 Metadata Discovery
Given an individual dependency candidate, it is easy to validate

it on some dataset. The challenge of data profiling is to discover
all dependencies, i.e., to answer requests such as “Show me all de-
pendencies of type X that hold in a given dataset.” Metanome is
designed for exactly such requests. Therefore, an IT professional
needs to specify at least a dataset and the type of dependency that
should be discovered to start a profiling run.

Usually, IT professionals bring their own data – for the demo we
will provide various exemplary datasets in file or database format.
To profile the data, a user must register a new dataset with the data
source’s format, e.g., the separator, quote and escape characters
on file sources or the URL, username and password for database
sources. Afterwards, the new dataset appears in Metanome’s list of
profilable datasets. A set of profiling algorithms is already provided
in Metanome by default. With the algorithm, the IT professional
chooses the type(s) of metadata that are to be discovered.

Starting a profiling run is easy: Select an algorithm, choose a
data source and, if needed, set some algorithm-specific parameters.
During execution, Metanome measures the algorithm’s runtime and
reports on its progress if its implementation supports progress mea-
surement. In case an execution lasts too long, users can safely can-
cel it. On termination, the results are listed in the frontend. As
profiling results can be numerous, Metanome uses pagination and
loads only a subset into the frontend. The list of results can then be
browsed, ranked, and visualized to find interesting dependencies.

Figure 3 shows an exemplary visualization of inclusion depen-
dencies. The bubble chart on the left indicates inclusion depen-
dency clusters, i.e., sets of tables that are connected via INDs.
These connections indicate possible foreign-key relationships and,
hence, possible join paths. Clicking one cluster in the left chart
opens its graph representation on the right side. Each node repre-
sents a table, and each edge one (or more) inclusion dependencies.
This visualization not only allows the user to find topic-wise related
tables but also shows how to link their information.

Figure 3: Visualization of inclusion dependency clusters (left) and
the table join graph of one cluster (right).

3.2 Algorithm Development
To offer state-of-the-art profiling algorithms in Metanome, it

must be easy for developers to integrate their work. As discussed
in Section 2.3, an algorithm must specify its input type, the type

1862



of metadata that it calculates, and the parameter it needs via inter-
faces. The easiest way to develop a new algorithm is to use the
template algorithm provided on Metanome’s GitHub page and ex-
tend it3. In order to get the Metanome interfaces that connect the
algorithm with the frameworks standardized I/O, UI, and runtime
features, we recommend using Apache Maven; all Metanome com-
ponents are available as Maven dependencies.

During development, Metanome supports developers by provid-
ing standard components for common tasks. But Metanome also
supports the testing and evaluation of new algorithms, because a
developer can easily compare the results and runtimes of her solu-
tion to previous algorithms using the same execution environment.
It is also much easier for her to validate the algorithms result using
Metanome’s result management features.

4. SYSTEM DEMONSTRATION
In the Metanome demonstration, attendees can profile different

datasets from the UCI machine learning repository4, the Web Data
Commons project5, and others using at least 14 state-of-the-art pro-
filing algorithms. The demonstration focuses on the most popu-
lar profiling tasks, namely inclusion dependencies, functional de-
pendencies, unique column combinations, and order dependencies.
The attendees can compare the different runtimes and discover the
limits of current profiling techniques. This shows IT professionals
for what kind of data they can use automated profiling methods and
researchers where novel solutions are still needed.

The demo will show that already small datasets can harbor large
amounts of metadata. To interpret these metadata, we introduce
various result management techniques: When a profiling run has
finished, the user is first provided with a list of profiling results.
This list can be scrolled, filtered, and sorted by different criteria,
such as lexicographical order, length, or coverage. Besides the list-
based result analysis feature, attendees of our demonstration can
experiment with different visualization techniques: Via collapsible
prefix-trees or zoom-able sunburst diagrams (see Figure 4), for in-
stance, users can interactively explore different result sets of unique
column combinations in order to identify keys.

Figure 4: Sunburst visualization of a result set of FDs.

In the demo, we also show how new algorithms and new datasets
can be added into the Metanome platform. Attendees can interact
with Metanome using its Web frontend in order to lead their own

3Since Metanome’s inception, over 100 new and known algorithms
have been developed as course-work, through master’s theses, and
by researchers. Only the best are included in the distribution.
4http://archive.ics.uci.edu/ml
5http://webdatacommons.org/

profiling processes. While experimenting with our result manage-
ment techniques, users learn for what practical tasks, e.g., primary
key discovery, metadata can be used. Our goal is to show how easy
the profiling of complex metadata can be and what profiling tech-
niques are currently available. We also aim to get researches in-
volved in this topic showing where future work is still needed, i.e.,
research on more efficient profiling algorithms and, due to the large
metadata result sets, research on result management techniques.

Acknowledgements
We thank Carl Ambroselli, Claudia Exeler, Tommy Neubert,
Daniel Roeder, Marie Schäffer, Alexander Spivak, and Fabian
Tschirschnitz for their various contributions to Metanome.

5. REFERENCES
[1] Z. Abedjan, P. Schulze, and F. Naumann. DFD: Efficient

functional dependency discovery. In Proceedings of the
International Conference on Information and Knowledge
Management (CIKM), pages 949–958, 2014.

[2] J. Bauckmann, U. Leser, and F. Naumann. Efficiently
computing inclusion dependencies for schema discovery. In
ICDE Workshops, page 2, 2006.

[3] P. A. Flach and I. Savnik. Database dependency discovery: a
machine learning approach. AI Communications,
12(3):139–160, 1999.

[4] A. Heise, J.-A. Quiané-Ruiz, Z. Abedjan, A. Jentzsch, and
F. Naumann. Scalable discovery of unique column
combinations. Proceedings of the VLDB Endowment,
7(4):301–312, 2013.

[5] Y. Huhtala, J. Kärkkäinen, P. Porkka, and H. Toivonen.
TANE: An efficient algorithm for discovering functional and
approximate dependencies. The Computer Journal,
42(2):100–111, 1999.

[6] S. Lopes, J.-M. Petit, and L. Lakhal. Efficient discovery of
functional dependencies and Armstrong relations. In
Proceedings of the International Conference on Extending
Database Technology (EDBT), pages 350–364, 2000.

[7] F. D. Marchi, S. Lopes, and J.-M. Petit. Unary and n-ary
inclusion dependency discovery in relational databases.
Journal of Intelligent Information Systems (JIIS),
32(1):53–73, 2009.

[8] N. Novelli and R. Cicchetti. FUN: An efficient algorithm for
mining functional and embedded dependencies. In
Proceedings of the International Conference on Database
Theory (ICDT), pages 189–203, 2001.

[9] T. Papenbrock, J. Ehrlich, J. Marten, T. Neubert, J.-P.
Rudolph, M. Schönberg, J. Zwiener, and F. Naumann.
Functional dependency discovery: An experimental
evaluation of seven algorithms. Proceedings of the VLDB
Endowment, 8(10), 2015.

[10] T. Papenbrock, S. Kruse, J.-A. Quiané-Ruiz, and
F. Naumann. Divide & conquer-based inclusion dependency
discovery. Proceedings of the VLDB Endowment,
8(7):774–785, 2015.

[11] C. Wyss, C. Giannella, and E. Robertson. FastFDs: A
heuristic-driven, depth-first algorithm for mining functional
dependencies from relation instances. In Proceedings of the
International Conference of Data Warehousing and
Knowledge Discovery (DaWaK), pages 101–110, 2001.

[12] H. Yao and H. J. Hamilton. Mining functional dependencies
from data. Data Mining and Knowledge Discovery,
16(2):197–219, 2008.

1863


