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Data Quality Assessment of Ungated Flow

Cytometry Data in High

Nolwenn Le Meur, Anthony Rossini, Maura Gasparetto, Clay Smith, Ryan R.

Brinkman, and Robert Gentleman

Abstract

Background: The recent development of semi-automated techniques for stain-

ing and analyzing flow cytometry samples has presented new challenges. Quality

control and quality assessment are critical when developing new high throughput

technologies and their associated information services. Our experience suggests

that significant bottlenecks remain in the development of high throughput flow cy-

tometry methods for data analysis and display. Especially, data quality control and

quality assessment are crucial steps in processing and analyzing high throughput

flow cytometry data.

Methods: We propose a variety of graphical exploratory data analytic tools for

exploring ungated flow cytometry data. We have implemented a number of spe-

cialized functions and methods in the Bioconductor package rflowcyt. We demon-

strate the use of these approaches by investigating two independent sets of high

throughput flow cytometry data.

Results: We found that graphical representations can reveal substantial non-biological

differences in samples. Empirical Cumulative Distribution Function and summary

scatterplots were especially useful in the rapid identification of problems not iden-

tified by manual review.

Conclusions: Graphical exploratory data analytic tools are quick and useful means

of assessing data quality. We propose that the described visualizations should be

used as quality assessment tools and where possible, be used for quality control.
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Abstract

Background The recent development of semi-automated techniques for staining and analyzing

flow cytometry samples has presented new challenges. Quality control and quality assessment

are critical when developing new high throughput technologies and their associated information

services. Our experience suggests that significant bottlenecks remain in the development of high

throughput flow cytometry methods for data analysis and display. Especially, data quality con-

trol and quality assessment are crucial steps in processing and analyzing high throughput flow

cytometry data.

Methods We propose a variety of graphical exploratory data analytic tools for exploring un-

gated flow cytometry data. We have implemented a number of specialized functions and methods

in the Bioconductor package rflowcyt. We demonstrate the use of these approaches by investi-

gating two independent sets of high throughput flow cytometry data.

Results We found that graphical representations can reveal substantial non-biological differ-

ences in samples. Empirical Cumulative Distribution Function and summary scatterplots were

especially useful in the rapid identification of problems not identified by manual review.

Conclusions Graphical exploratory data analytic tools are quick and useful means of assessing

data quality. We propose that the described visualizations should be used as quality assessment

tools and where possible, be used for quality control.

Keywords flow cytometry, high throughput, quality assessment, visualization, exploratory data

analysis, statistics, software
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Introduction

Traditionally, flow cytometry (FCM) has been a tube-based technique limited to small-scale lab-

oratory and clinical studies. High throughput methods for FCM have recently been developed

for drug discovery and advanced research methods (1–4). As an example, flow cytometry high

content screening (FC-HCS) can process up to a thousand samples daily at a single workstation,

and the results have been equivalent or superior to traditional manual multiparameter staining and

analysis techniques. The amount of information generated by high throughput technologies such

as FC-HCS need to be transformed into executive summaries which are brief enough for creative

studies by a human researcher (5). Quality control and quality assessment are crucial steps in the

development and use of new high throughput technologies and their associated information services

(5–7). Quality control in clinical cell analysis by FCM has been considered (8, 9). As an example,

Edwards et al. (9) proposed some quality scores for monitoring the quality of immunophenotyping

process (e.g., blood acquisition, cell preparation, lymphocyte staining). They showed that a low

degree of temporal parameter variation exits within individual whereas significant variations can

exist between donors with respect to the parameter monitored. However little has been done with

high throughput FCM. For example, quality control of FCM experiments should include the as-

sessment of instrument parameters that affect the accuracy and precision of data. In that respect,

Gratama et al. (10) have proposed some guidelines such as monitoring the fluorescence measure-

ments by computing calibration plots for each fluorescent parameter. However such procedures are

not yet systematically applied and data quality assessment is often needed to overcome a lack of

data quality control. The aim of data quality assessment is to detect whether any measurements

of any samples are substantially different from the others, in ways that were not likely to be bi-

ologically motivated. The rationale is that such samples should be identified, investigated, and

potentially removed from any downstream analyses. Quality control, on the other hand, measures

such quantities during the assaying procedure and can alert the user to problems at a time where

they can be corrected.
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Data quality assessment in high throughput FCM experiment is complicated by the volume of

data involved and by the many processing steps required to produce those data. Each instrument

manufacturer has created software to drive the data acquisition process of the cytometer (e.g.,

CellQuest Pro by BD Biosciences, Summit by DakoCytomation or Expo32 by Beckman Coulter).

These tools are primarily designed for their proprietary instrument interface and offer few, or no,

data quality assessment functions. Third party analysis and management tools, such as FlowJo

(Tree Star, Inc.), WinList (Verity Software House) or FCSExpress (Denovo Software) provide re-

searchers with more capable “off-line” analysis tools but remain limited in term of data quality

assessment.

We propose a number of one- and two-dimensional graphical methods for exploring the data in

the hope that they would be of some use to the investigators. The basis of our approach is that,

given a cell line, or a single sample, divided in several aliquots, the distribution of the same physi-

cal or chemical characteristics (e.g., side light scatter -SSC- or forward light scatter -FSC-) should

be similar between aliquots. To test this hypothesis, we made use of graphical exploratory data

analysis (EDA). Five distinct visualization methods were implemented to explore the distributions

and densities of ungated FCM data: Empirical Cumulative Distribution Function (ECDF) plots,

histograms, boxplots and two types of bivariate plots. These different graphical methods should

provide investigators with different views of the data. ECDF plots have been widely used in the

analysis of microarray data where they help to detect defective print tips, or plates of reagents that

have not been well handled (11). These plots can quickly reveal differences in the distributions, but

are not particularly useful for understanding the shape of a distribution. Histograms help to visu-

alize the shape of the distribution and can reveal structure, such as the mode. Boxplots summarize

the location of the distribution and can reveal asymmetry but are mainly applicable to unimodal

distributions. Boxplots are also commonly used in the processing of microarray data where they

help to identify hybridization artifacts and assess the need for between-array normalization to deal
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with scale differences among different arrays (11). Finally, we use bivariate plots representation in

two different ways. In fact in some cases, when comparing two samples, we found two-dimensional

displays more informative, i.e., two-dimensional summaries can show differences in samples, while

the one-dimensional summaries, mentioned above, are similar. One common use of bivariate plots

in FCM experiments is to display the joint distribution of two continuous variables as dot plots

(e.g., FSC versus SSC). However the analysis of such dot plots might be a challenge as the high

density of plotted data points (an average of ten thousand data points per sample) might form a

blot and the frequency of the observations might not be easily appreciated. To overcome this issue

we propose to use contour plots where contour lines might be interpreted as the frequency of obser-

vations with respect to the x-y plane. The second use of bivariate plots, for high throughput FCM

data, is to render per well summary statistics for a particular plate in the format of a scatterplot.

In this view each point represents a single well and the x and y values are chosen to be various

summary statistics.

We illustrate the need and usefulness of those visualization tools to assess FCM data quality

through examination of two FC-HCS datasets. Our results demonstrate that the application of

these graphical analysis methods to ungated FCM data provides a systematic and efficient method

of data quality assessment, preventing time-consuming gating and further analysis of unreliable

samples. Although the methods we propose are primarily aimed at the discovery of data quality

problems, they may detect differences that are biologically motivated. Hence, we discourage the

automatic removal of aberrant samples and emphasize the need to check whether such underlying

biological causes are present.
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Materials and Methods

The basis of our methodology is to compare different samples, aliquots, or variables where few, if

any differences, should be observed. We propose to use visualization methods where it is easy to

detect departures from this anticipated behavior.

Flow Cytometry High Content Screening (FC-HCS)

The details of the FC-HCS technique have been published by Gasparetto et al. (2). In FC-HCS,

all procedures have been miniaturized so that small numbers of cells can be stained in 96-well

plates with fluorescently conjugated antibodies using robotic fluid handlers. Fluorescence acti-

vated cell sorter (FACS) analysis has been automated using a robotic device termed a Multiwell

Auto-Sampler (MAS, Becton Dickinson Corp.) that allows sample acquisition from 96-well plates.

FCM data acquisition was performed using MPM Flow (Becton Dickinson Corp.). FSC and SSC

parameters were recorded in linear mode and fluorescent intensities were recorded in four decade log.

Graft versus Host Disease (GvHD) dataset

The FC-HCS technique was used to identify biomarkers that would predict the development of

GvHD; one of the most significant clinical problems in the field of allogeneic blood and marrow

transplantation. The GvHD dataset is a collection of weekly peripheral blood samples obtained

from 31 patients following allogeneic blood and marrow transplant. Samples were taken at vari-

ous time points before and after transplantation. On average, there were 14 (±3) time points per

patient, collected approximately every 10 days (±14). Samples were collected from 0 to 16 days

(average 6 ±4 days) before the transplantation and until 49 to 400 days (average 125 ±81 days)

after transplantation. Twenty-three different cluster of differentiation (CD) were targeted to assess

immune cell lineages and functional states. At each time point, every patient blood sample was di-
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vided into eight to ten aliquots. Each aliquot was labeled with four different fluorescent probes and

the fluorescent intensity of each biomarker was determined for at least ten thousand cells per sample.

Rituximab dataset

The Rituximab dataset is based on a FC-HCS screening of a 2000 compound chemical library

to identify agents that would enhance the anti-lymphoma activity of the therapeutic monoclonal

antibody Rituximab (2).

Daudi cells (derived from Human Burkitt Lymphoma) were placed in 96-well plates with 10 µM

BrDU. Samples were incubated for 12h and then two duplicate plates were prepared, one with com-

pound alone and one with 10µg/ml Rituximab. After incubation cells were harvested and stained

with anti-BrDU and 7-ADD. Cells were delivered directly from 96-well plates to a FACSCalibur

using a Microtiter Well Plate Device (BD Biosciences).

Graphical methods

We present five distinct visualization methods for exploring the densities of ungated FCM data: (i)

ECDF plots, (ii) histograms, (iii) boxplots, (iv) scatterplots of summary statistics and (v) contour

plots.

(i) ECDF plot shows the proportion of the observed data less than each x value, as a function of

x. ECDF plots were grouped by 96-well plate, time points and/or stains but can be grouped

by any other important variables.

(ii) A unity normalized histogram provides an estimate of the probability that a cell measurement

will fall into a particular channel. If one empirically measures values of a continuous random

variable repeatedly and produces a histogram depicting relative frequencies of output ranges,
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then this histogram will resemble the random variable’s probability density (assuming that

the variable is sampled sufficiently often and the output ranges are sufficiently narrow).

(iii) A boxplot, also known as a box-and-whisker diagram, is a one dimension reduction of a

distribution. The central box of the plot extends from the first (25%) to the third quartile

(75%), with the median (50%) represented as a horizontal bar. Vertical lines (also called

whiskers) extend to 1.5 times the inter-quartile range, i.e., the box width from both ends of

the box (12).

(iv) Scatterplots of descriptive statistics were used to summarize the distribution of one or two

parameters of the different samples stored in the same 96-well plate. The dots in the resulting

scatterplot can be colored according to their position in the 96-well plate (row or column

number). Either one descriptive statistic can be used to compare two different variables (e.g.,

FSC versus SSC) or two descriptive statistics computed on the same variable, can be plotted.

Some proposed descriptive statistics are:

• mean: the arithmetic or average of a set of values, or distribution;

• median: the number such that at most half the population have values less than the

median and at most half have values greater than the median;

• mode: the value obtained by the largest number of observations in a distribution. The

mode is not necessarily unique, since the same maximum frequency may be attained at

different values;

• interquartile range (IQR): the difference between the third and first quartile of the dis-

tribution, 75% and 25% respectively. It is a measures of statistical dispersion.

The scatterplot function is implemented so that one can plot any of those statistical summary

against each other for a better exploration of the data.

(v) Contour plots can be used to compare values obtained per cell, on two variables. Since the
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number of data points is often very large we recommend using hexagonal binning or smoothing

techniques such as contour plots to enhance visual perception. Contour plots can be used

in combination with shaded colors which correspond to a range of values. They are often a

better way than dot plots or three-dimensional surface plots in the sense that it is easier to

estimate the population frequency from them.

Algorithms

The EDA tools and plotting functions were implemented in R (13). They are freely available as part

of the rflowcyt package, which is part of the Bioconductor project, an open source and open develop-

ment software project, for the analysis and comprehension of genomic data (http://www.bioconductor.org).

In addition to the described EDA tools, rflowcyt can import data from the FCS 2.0 and 3.0 files. It

provides a preliminary and programmatic interface for gating, computing post gating, distributional

tests for two-sample comparisons and offers standard and novel visualizations for FCM data.

Statistical Methodology

The non-parametric Kolmogorov-Smirnoff test (14) was used to evaluate the difference in the me-

dians of the FSC or SSC parameters between samples store in different columns of a 96-well plate.

For each well the median value of the FSC and SSC parameters were calculated. The median values

were then grouped by columns and pairwise comparisons were done between columns or between

one column and the rest of the plate. The analysis was performed using the KS.test function

implemented in the rflowcyt package.

The Grubbs’ test (15) was used to test for two outliers on opposite tails of a sample. It is based

on the calculation of the ratio of the sample range to the sample standard deviation. For each

aliquots of each blood sample, taken over 6 time points before (-8 days) and after the graft (0, 5,

27, 39, 46 days), we calculated the median value of the FSC parameters and looked for outliers.

This analysis was performed using the R package outliers available at http://www.r-project.org.
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Results

One-dimensional summaries

In the GvHD dataset, given that at each time point one blood sample was divided in several aliquots,

the FSC distribution should be similar for every aliquot from the same sample. If the distribution of

one aliquot deviates from the others it should be identified and the corresponding aliquot should be

further investigated and potentially removed from any downstream analyses if no biological reasons

for the observed behavior can be ascertained. Other patterns, such as grouping of some aliquots,

would also warrant further investigation. ECDF plots were used to compare the distributions of

the FSC parameter for the different aliquots of each patient, for each time point (Fig. 1). The

different plots overlap except for one curve. In the example shown, at 46 days after transplantation,

one aliquot is substantially different from the others. It presents only a few cells with forward light

scatter in the interval [0, 200] whereas in the other aliquots cells have a larger amount of cells in

that same interval. A Grubbs’ statistical test was also performed to test for outlying values. The

median values of the FSC parameter were calculated for each aliquot and the test was used to

detect whether the lowest and highest medians were outliers. The test identified the first aliquot

of Day 46 as an outlying value (p-value<2.2−16) which supports the effect we observed in Figure 1.

However the result also points out aliquots 3 and 4 at Day 39 which don’t appear to be problematic

in Figure 1. This suggests that caution should be exercised with respect to such statistical test as

it is for normal univariate distribution and our data highly deviate from normality. Nevertheless,

the observed effect in Figure 1 seems to be a quality issue, likely a mislabeling of that particular

aliquot, and it should probably be removed from further analysis.

Likewise, we examined the intensity distributions of the CD molecules targeted by the phycoery-

thrin (PE) fluorochrome for one patient across time points (Fig. 2). Changes in the subpopulations,

over time, will generally be reflected by changes in the observed ECDF plots. We believe that this

is observed for CD45, CD8beta and CD2. In cases where the graft had no effect we expect to see
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no changes in the ECDF over time, e.g., CD20, TCRgamma-delta, CD25 and CD122. CD134 is

unusual, with a single very aberrant ECDF. The plot suggests very few low intensity observations

(since it is low and flat up to an intensity of approximately 600), the other values are all below 600.

This could be biological, but it is also potentially an experimental artifact. Indeed its similarity to

the CD45 ECDFs, suggests a staining error, but clearly there are many other possible explanations.

In this comparison we expected to observe either some clear differences between time points,

indicating that the patient phenotype was evolving after the graft, or no difference, indicating that

the graft had no significant effect. We observed that the data varied for the first three stains while

the other five presented similar distributions. However the targeted CD134 looks peculiar at 19

days after the graft as the ECDF curve clearly deviates from the other time points. Once again

this suggests an experimental bias as the curve looks similar to those from the first panel, implying

a possible staining error.

Although ECDF plots reveal differences in distributions (Fig. 1), they are not good for visualizing

the shape or multimodality of a distribution. Unity normalized histograms are more appropriate

to visualize the asymmetry and the multimodal aspects of a distribution. Histogram plots were

then used to compare aliquots from a GvHD patient (Fig. 3) . Each aliquot was labeled to identify

a particular immune cell lineage of interest (e.g., natural killer, leukocyte). Often the same stain

was used in several aliquots which can be used as a basis for comparison. Figure 3 displays the

distributions of the intensities of that particular stain, for one patient at a given time point. In this

case we hypothesized to observe overlapping distributions for all the aliquots. Figure 3 shows in

fact that the majority of the distributions superimpose. However, two aliquots disagree with this

hypothesis. While the majority of the distributions are tri-modal (the first mode representing dead

cells), one aliquot is clearly bimodal. Upon further investigation it was determined that this aliquot

was not properly stained. The second unusual distribution presents a shift to the left suggesting

that a lower concentration of antibodies was dispensed into the well during the staining procedure
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leading to a decrease in the intensity of fluorescence.

Finally, another commonly used one-dimensional summary, to assess the quality of data, is the

boxplot representation. In the GvHD dataset, some samples were divided in 10 aliquots and scat-

tered between two plates. Figure 4 displays side-by-side boxplots of the 10 FSC measurements for

one patient, at one time point. In that case, plate effects are noticeable by examining the height

of the boxplots. The FSC distributions look different in the second plate for the days at the time

and after the graft. The spread of the FSC measurements is notably larger after the graft. This

phenomenon may be due to stickiness of the cells, which happens in some samples after freeze-thaw

procedures.

All three visualization approaches give different views and each presents different properties of

the distribution of the data. In fact, any graphical visualizations is good at presenting a few of

the many different aspects of a dataset. Table 1 summarizes the properties and limitations of the

proposed methods. Visualizing those different graphics together allows us to better investigate the

structure of the data, to search for artifacts and potentially their source. As an example, Figure

5 presents three different one-dimensional views of a subset of the GvHD data. The ECDF plot

reveals only subtle differences in the lower hand of the distributions (Fig. 5A). The density plot

clearly shows that the data are bimodal (Fig. 5B). For example, the two population are asym-

metric, but have equivalent spread. The boxplot representation facilitates the comparison between

samples as they are horizontally aligned (Fig. 5C), however, we again note that the presence of

multimodality is completely obscured in these plots. We observe that the relative location of the

distributions and the shape are different for the first four samples (wells) compare to the four last.

Moreover the distribution of the data is more asymmetric in those last four wells as the median of

the samples seems to be closer to the upper quartile. Figure 5B shows that these effects are largely

due to a higher content in cells at the left mode for these four aliquots.
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Two-dimensional summaries

While one dimensional summaries are useful, they do not tell the whole story. For example, some

samples will be normal with respect to either FSC or SSC, but will be unusual with respect to the

joint distribution. In the case of FC-HCS, one possible two-dimensional view is a scatterplot of

summary statistics such as the median, the mean, the mode or the IQR. The median is a resistant

measure of the middle of the distribution, but other statistical summaries could be more appropriate

as the median may be affected by changes in measurements at the low end of the spectrum (e.g.,

the number of dead cells or other debris). The mean is often the most efficient estimate of the

center of a distribution but can be adversely affected by a few outlying values. The mode (or major

mode) is not often used but it is often more resistant to the spread of the distribution (i.e. long tails

and outliers) and its location is resistant to changes in mixtures of populations of cells, as seen in

Figure 5B. The mode is not necessarily unique as high frequency can be attained at different values,

which in the case of FCM data usually correspond to different populations of cells. Therefore, for

examining ungated data the mode might be a better choice than the mean or the median. IQR is a

reasonable summary of spread, but one could use others, such as the standard deviation or median

absolute deviation about the median.

Using scatterplots of descriptive statistics, we attempted to identify experimental artifacts in the

Rituximab dataset (2). In this experiment, every sample originated from a cell line and were stored

in 96-well plates with different compounds. If the compounds have no effect on the population of

cells the FSC versus SSC distribution for each aliquot should be similar. We chose the median

value for each of the FSC and SSC measurements as our summary statistics ( but other summaries

can be used) and we looked for plate specific effects, such as edge effects. Visually identifying plate

specific effect can be achieved using different color for each column (row), or using one color for

edge wells and a different one for the interior wells. Then, in the plot, clustering of observations by
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color is suggestive of a problem. In Figure 6 the data points from the 11th column cluster at the top.

The same representation using the major mode as the summary statistic is slightly more variable

than when using the median (data not shown) but also detects the column effect. We examined if

there was a difference between the medians (or modes) of the 11th column and the rest of the plate

using a Kolmogorov-Smirnov test. For the FSC channel the p-value, for testing both the median

and the mode were larger than α = 0.05. However for the SSC parameter, there is evidence of a

difference between the median of the 11th column and the medians of the rest of the plate with a

p-value=0.02. This plate specific effect might be due to non-random compound dispersion to this

particular plate; in fact compounds included on this plate were specifically selected to effect cell

cycle.

In that same Figure 6, we can also observed that while the majority of the samples fall in a

single group, samples A07 and E11 are far from the others. To further investigate those particular

aliquots, we make used of the two-dimensional contour plot method. Two-dimensional contour

plots of FSC versus SSC parameters were plotted for nine wells of the questionable plate, the two

outlier samples and seven randomly selected samples (Fig. 7). The figure shows that samples A07

and E11 have wider contour lines than the others. Sample A07 even shows two modes whereas

the others tend to be unimodal. In this case, the underlying cause was biological and not due to

quality issues. Samples A07 and E11 were identified as biological variants of interest in the analysis

performed by Gasparetto et al. (2).

Discussion & Conclusion

In this paper we have concentrated on one- and two-dimensional views to summarize ungated FCM

data. Table 1 summarizes their different properties and limitations. We believe these plots are an

intuitive and good first approach for quality assessment of high throughput FCM data. We also

understand that some of the samples identified by our proposed procedures will be anomalous for
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biological reasons, as in Figure 6. However the main thrust of this paper is the identification of

problems in data quality. Any points identified are worth studying further, and some determination

as to whether the sample presents data quality issues or rather presents real biological significance,

should be made.

When assessing the quality of any high throughput FCM experiment, one-dimensional sum-

maries should come first. They allow us to display several samples together in one graphic, fa-

cilitating comparisons between groups. For example, Figure 1 presents ECDF plots of 8 FSC

measurements at 12 different time points, for one patient. Any sample unusual in any one of these

plots should be further investigated. We also demonstrated that boxplots can help identify plate

specific biases (Fig. 4). The spacings between the different parts of the box can help indicate

variance, skew and identify outliers. However, we note that in the context of ungated FCM data

the use of summary statistics (summary scatterplots or boxplots) might be problematic, since such

data are often mixtures of populations and thus give rise to multimodal distributions as revealed

by the density plots (Fig 3). In such cases the interpretation of most summary statistics is prob-

lematic and most will change depending on the mixture present, even when each sub-population

is unchanged and conversely they may change little even when the corresponding sub-populations

change substantially. Further research into developing good summary statistics for such data is

needed.

While analyzing samples stored in 96-well plates, one should look for row, column, plate effects

etc (Fig.6 and Fig.7). On one hand, samples that are divided in aliquots should be compared for

any and all sensible comparisons, e.g., ECDF plots of FSC values across all replicates in Figure 1.

On the other hand, two-dimensional scatterplots should be used for comparisons across samples, as

shown in the scatterplot of summary statistics in Figure 6. Two or higher dimensional summaries

are usually more complex to visualize but they can reveal unusual samples that are not anomalous

in either one-dimensional projection (the same is true for higher dimensions). Contour plots or

other enhanced high density scatterplots could be used to further investigate a particular sample,
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as seen in Figure 7. However, they typically require separate plots for each sample and thus are

more difficult to use and interpret.

In conclusion, artifacts from sample preparation, handling, variations in instrument parame-

ters or other factors may confound experimental measurements and lead to erroneous conclusions.

Methods designed to detect problematic samples are an important, yet difficult, application. The

role of EDA and quality assessment is to provide knowledge that the data are as anticipated. We

found that coupling graphical representations together provides a useful approach for assessing the

quality of the data in high throughput experiments, as each plot highlights different characteristics

of the data (Fig. 5 and Tab. 1) and can reveal substantial non-biological differences in samples.

Such screening tools are particularly valuable for high throughput technologies as they allow rapid

evaluation of a large number of samples. We thus propose that the described visualizations should

be used as quality assessment tools and used as quality control procedures where possible. It is

likely that some summaries can be developed and specialized to particular situations and settings

using interactive visualization tools like GGobi (16), which have an elegant interface with R via the

Rggobi package.
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Figure 1: ECDF plots of the FSC values for the aliquots (A1-A8) from one patient at different time

points (GvHD experiment). Each panel corresponds to a particular time point, in days before or

after transplantation. In each panel, each curve represents one of the 8 aliquots obtained from the

blood sample of one particular patient. At day 46 after graft, the ECDF for aliquot A1 deviates

from the others; it should be investigated further.
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Figure 2: ECDF plots of the intensities of the phycoerythrin (PE) parameter for the stains from one

patient, across time (GvHD experiment). Each panel corresponds to one particular CD molecule

(attached to a specific subpopulation of cells) targeted by the PE fluorochrome. Inside a panel,

each curve represents a different time point, in days before and after transplantation. The ECDF

for CD134 at 19 days dramatically deviates from the rest, suggesting a staining error.
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Figure 3: Unity normalized histogram plots of the intensities of one CD molecule targeted in

several aliquots of one particular sample to identify different immune cell lineages of interest (GvHD

experiment). Each curve represents one particular aliquot of a sample at a particular time point.

The curves are multimodal. The first mode represents dead cells. The other modes correspond to

different populations of cells.
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Figure 4: Boxplots of the FSC parameter for the 10 aliquots obtained from one patient (GvHD

experiment). Each boxplot displays the three quartiles of the distribution. The whiskers extend

to 1.5 times the inter-quartile range. The central box of the plot extends from the first (25%) to

the third (75%) quartile and encompasses the median (50%) of the data. Boxplots are colored

according to the plate location of the aliquot (grey: plate#1; white:plate#2) .
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Figure 5: Different ways of viewing the 8 aliquots (A1-A8) of the same sample (GvHD experiment).

Each curve or boxplot represents one particular aliquot of a sample taken at one time point. (A)

The ECDF plot of the FSC values reveals subtle differences at the lower hand of the distributions;

(B) The density plot of the FSC intensities presents the multimodal aspect of the distributions; (C)

The boxplots of the FSC intensities show their asymmetries and their differences in location.
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Figure 6: Scatterplot of the median intensity values of the FSC versus SSC parameters for each

well of a 96-well plate (Rituximab experiment). The dots representing the median intensities of the

samples are colored according to their column position in the plate.
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Figure 7: Contour plots of the FSC versus SSC parameters for 9 wells of a 96-well plate (Rituximab

experiment). The title of each panel correspond to the well position in the plate. A07 and E11 are

the two previously described outlier wells while the other seven were randomly selected. The color

scale goes from light to dark according to the density of cells per well, from low to high respectively.
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