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ABSTRACT

As the use of RNA-seq has popularized, there is an in-
creasing consciousness of the importance of experi-
mental design, bias removal, accurate quantification
and control of false positives for proper data analy-
sis. We introduce the NOISeq R-package for quality
control and analysis of count data. We show how
the available diagnostic tools can be used to mon-
itor quality issues, make pre-processing decisions
and improve analysis. We demonstrate that the non-
parametric NOISeqBIO efficiently controls false dis-
coveries in experiments with biological replication
and outperforms state-of-the-art methods. NOISeq is
a comprehensive resource that meets current needs
for robust data-aware analysis of RNA-seq differen-
tial expression.

INTRODUCTION

RNA-seq has rapidly become the technology of choice
for high-throughput gene expression analysis. RNA-seq re-
lies on cDNA sequencing as a way to determine the se-
quence characteristics of transcripts and to estimate the
gene expression level. High-throughput sequencing makes
the study of transcriptomes readily approachable, including
alternative splicing, the discovery of novel splice junctions,
the delimitation of UTR boundaries or the identi�cation
of antisense or extra-exonic expression (1,2). Additionally,
RNA-seq technology can be applied either with the support
of genome annotation to facilitate transcript identi�cation
or without a reference genome, making it a powerful tool
for de novo transcriptome characterization. This versatility
makes RNA-seq a potent and increasingly used technology
for the global study of transcriptomes.

One of the most wide-spread applications of RNA-seq
is the transcript quanti�cation and the differential gene ex-
pression analysis (3,4). It has been claimed that RNA-seq
has a number of advantages over its predecessors (arrays),
such as a wider dynamic range of measurements (5), the
capacity to detect transcripts with low expression level (3)
and the ability to identify differences in isoform or allele
expression (6,7). RNA-seq was initially described as highly
reproducible, and it was claimed to provide more ‘direct’
and reliable gene expression measurements (3), but it is
now generally accepted that it also has limitations which
make it far from perfect. Although the high reproducibility
of the technology reduces the need of technical replication
(3,4), the precision at the low expression level is still lim-
ited (4,8) and, nonetheless, suf�cient biological replicates
are needed to adequately infer properties about the popu-
lation (9,10). Therefore, the number of replicates and the
sequencing depth at which one should sample remain im-
portant considerations when designing an RNA-seq exper-
iment (11). Neither planning the RNA-seq experiment nor
processing the data is straightforward. RNA-seq datamight
be biased because of the inaccuracies introduced at differ-
ent stages of the protocol, from RNA isolation to library
construction, or in the actual sequencing process (2). Tech-
nology biases, such as the transcript length (12), GC con-
tent (13), PCR artifacts, uneven transcript read coverage,
contamination by off-target transcripts, or large differences
in transcript distributions (14), are factors that interfere in
the linear relationship between transcript abundance and
the number of mapped reads at a gene locus. Normaliza-
tion is therefore a substantial step in RNA-seq data pro-
cessing and so differentmethods are available for addressing
RNA-seq normalization based on different initial assump-
tions (13,15–17).

Finally, most existing methods for differential expression
(DE) analysis make assumptions about the probability dis-
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tribution of the data and only accept raw counts as in-
put (18,19), but these assumptions might not be ful�lled
or count data could have been transformed (e.g. to correct
batch effects) or normalized. Moreover, it has been shown
that control of the False Discovery Rate (FDR) is inade-
quate in most cases (20).
All these factors impact DE calls and the biological con-

clusions extracted from RNA-seq experiments (21). It is
therefore absolutely necessary that RNA-seq data analy-
sis follows a thorough procedure to evaluate data quality,
detect biases and correct them when possible. Several ap-
proaches have been presented that address these issues (2,9)
and attractive tools have been designed that deal with some
of them (10,22,23). However, none of the existing solutions
provide a comprehensive resource that supports RNA-seq
procedures through the whole process of sequencing plan-
ning, quality control (QC) and DE analysis. With this pur-
pose inmind, we developed theNOISeqRpackage, which is
publicly available at the Bioconductor repository (24). The
NOISeq R package integrates very useful tools for guiding
users when planning sequencing experiments to quantify
gene expression, assessing the quality of the expression data
obtained, choosing appropriate normalization or �ltering
methods according to the biases detected, performing DE
analysis and visualizing the results, among other functional-
ities. The package also includes two robust non-parametric
approaches for DE analysis: NOISeq and NOISeqBIO.
NOISeq (25) was published as a methodology to handle
RNA-seq data with technical replicates or no replications.
The method has been used in several studies (26–34) and
benchmarked against the most popular DE methods with
good results (20,35–37). In this work, we introduce NOISe-
qBIO method for biological replicates, which implements
an empirical Bayes approach that improves the handling of
biological variability speci�c to each gene, and is very suc-
cessful in controlling the high FDR in experiments with bi-
ological replicates. Although parametric methods are said
to have more power than non-parametric approaches, they
may lead to unreliable results if the distributional assump-
tions do not hold. Consequently, the development of non-
parametric DE tools for RNA-seq has increased in the last
years and some examples are SAMseq (38), NPEBseq (36)
or LFCseq (39), among others. The strategies followed by
these methods are quite different. While SAMseq uses the
rank of the expression values in aWilcoxon statistic, NPEB-
seq applies an empirical Bayesian approach where the test
statistic is based on expression fold-change, and LFCseq
is inspired in the NOISeq method but uses only the fold-
change as the test statistic instead of considering both the
fold-change and the difference in expression.
This paper describes the QC andDE analysis pipeline im-

plemented in the NOISeq package. We also present the sta-
tistical formulation of the new NOISeqBIO and compare
this approach to popular RNA-seq DE methods (edgeR
(18), DESeq2 (19) and SAMseq (38)) using both real and
simulated datasets to demonstrate the ef�ciency of the
method to control false calls in a wide variety of analysis
scenarios.

MATERIALS AND METHODS

The NOISeq package

The NOISeq R package is a comprehensive resource for
the analysis of RNA-seq data, which can be divided into
three blocks: (i) count data QC, (ii) �ltering of low-count
features, normalization and batch effect correction and (iii)
DE analysis (Figure 1). Within each block, the package of-
fers both visualization plots and processing functions that
help to perform a comprehensive diagnosis and analysis of
count datasets. The package includes an option for easily
generating a QC report pdf �le containing all the plots de-
scribed in this section (see NOISeq package in Bioconduc-
tor for an example).

Diagnostic and visualization plots. In the NOISeq package
there are a total of 14 different analytical plots available to
evaluate the quality of the data and the results of the DE
analysis. Table 1 summarizes these graphical resources and
indicates the type of plot and its main application.More de-
tails are given in the Results section and the Supplementary
Material.

Low-count �ltering. The estimation of gene expression is
less reliable for low-count genes, which therefore represent
a source of noise that negatively affects sensitivity and speci-
�city in most DE analysis methods (20), hence the removal
of low-count genes before further analysis is undertaken is
recommended (40). We propose three different methods to
�lter out the low-count features which are implemented in
the NOISeq package: counts per million (CPM), propor-
tion test and Wilcoxon test. In contrast to other commonly
used methods for low-count �ltering, all these NOISeq
methods take the experimental design into account and ap-
ply the �ltering criterion to every experimental condition in
the dataset, removing features that are below the threshold
in all conditions. In the CPM method, given a low expres-
sion threshold cpm, in CPM, features with an average CPM
per condition below this threshold in all experimental con-
ditions are removed. It is also possible to set a cutoff for the
coef�cient of variation per condition to eliminate features
with inconsistent expression values. For the proportion test,
H0: p = p0 is tested against H1: p > p0 for each feature and
condition, where p is the feature-relative expression, and p0
= cpm/106. Features with a P-value >� in all conditions
are �ltered out. The Wilcoxon test is a similar procedure
but it tests H0: m = 0 versus H1: m > 0 (m being the me-
dian expression per condition). No CPM threshold needs
to be set in this case, but it should be applied when at least
�ve replicates per condition are available. A more detailed
description of these �ltering methods, together with a com-
parative evaluation of their performance, can be found in
the Supplementary Material.

Normalization. The NOISeq package includes three com-
monly used normalization methods: RPKM (4), Upper
Quartile (15) and TMM (14). However, since NOISeq ac-
cepts previously normalized data, any other normalization
procedure that the user requires can be applied.

Batch effect correction. The Principal Component Anal-
ysis (PCA) function in the NOISeq package allows for ex-
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Figure 1. Outline of the NOISeq package functionalities. Black arrows highlight that some QC plots are used to make data processing decisions. Terms in
color and between quotation marks refer to arguments of the NOISeq package functions.

Table 1. Graphical tools included in the NOISeq package

Type of plot R function Application

Biotype detection dat(...,type=‘biodetection’);
explo.plot(...,plottype=‘persample’)

Percentage of genes detected per biotype from
their total representation in the genome in a given
sample or condition

Biotype comparison dat(...,type=‘biodetection’);
explo.plot(...,plottype=‘comparison’)

Biotype detection comparison for two samples or
conditions

Biotype expression range dat(...,type=‘countsbio’);
explo.plot(...,plottype=‘boxplot’)

Range of expression levels within each biotype in a
given sample or condition

Saturation dat(...,type=‘saturation’); explo.plot(...) Number of detected genes at the given sequencing
depth and at simulated higher and lower depths,
and number of newly detected genes per million
additional reads

Dynamic range of expression dat(..., type=‘countsbio’);
explo.plot(...,plottype=‘boxplot’)

CPM distribution for all the samples in the
experiment

Sensitivity dat(..., type=‘countsbio’);
explo.plot(...,plottype=‘barplot’)

Percentage of genes with more than 0, 1, 2, 5 or 10
CPM per sample, and in any of the samples

Feature length dat(..., type=‘lengthbias’); explo.plot(...) Gene expression as a function of length
GC content dat(..., type=‘GCbias’); explo.plot(...) Gene expression as a function of GC content
RNA composition dat(..., type=‘cd’); explo.plot(...) Comparison of RNA composition (count

distribution) in all samples
PCA plot dat(..., type=‘PCA’); explo.plot(...) Principal Component Analysis plot for either

samples or genes
Expression DE.plot(...,graphic=‘expr’) Mean expression values for both conditions where

DEGs are highlighted
(M,D) DE.plot(...,graphic=‘MD’) (M,D) values from the comparison of both

conditions where DEGs are highlighted
Manhattan DE.plot(...,graphic=‘chrom’) Expression across chromosomal positions where

up and down DEGs are highlighted
DEG distribution DE.plot(...,graphic=‘distr’) Distribution of DEGs per biotype and

chromosome

ploring datasets and detecting possible batch effects. When
a batch effect is present in the data, the package offers
the possibility of removing it by applying an adaptation of
ARSyN method (41) to RNA-seq data. Furthermore, this
function can even remove systematic noise from unknown
sources from the data when the batch information is not

available. See NOISeq Bioconductor user’s guide for a more
detailed description.

DE. Two distribution-free DE methods are implemented
in the package: NOISeq and NOISeqBIO. The NOISeq
method (25) was developed to deal with datasets with only
technical, or even no replicates. The next section introduces

 at U
n
iv

ersity
 o

f A
lican

te (S
p
ain

) o
n
 D

ecem
b
er 1

, 2
0
1
5

h
ttp

://n
ar.o

x
fo

rd
jo

u
rn

als.o
rg

/
D

o
w

n
lo

ad
ed

 fro
m

 

http://nar.oxfordjournals.org/


e140 Nucleic Acids Research, 2015, Vol. 43, No. 21 PAGE 4 OF 15

NOISeqBIO, a novel approach which adapts the NOISeq
method to handle biological variability.

NOISeqBIO

NOISeqBIO combines the non-parametric framework of
NOISeq with an empirical Bayes approach inspired by the
work of Efron et al. (42). This method assumes that genes
can be classi�ed into two different populations: genes with
invariant expression between two experimental conditions
and genes whose expression changes between conditions. In
NOISeqBIO, a statistic Z is de�ned to evaluate this change
in expression and the probability distribution of Z can be
described as a mixture of two distributions: one for genes
changing between conditions and the other for invariant
genes. Thus, themixture distribution f can be written as: f(z)
= p0f0(z) + p1f1(z), where p0 is the probability of a gene hav-
ing the same expression level in both conditions, i.e. the ratio
of non-differentially expressed genes (non-DEGs), and p1
= 1 − p0 is the probability of a gene being differentially ex-
pressed between conditions, i.e. theDEG ratio. f0 and f1 are,
respectively, the densities of Z for non-DEGs and DEGs. If
one of either distribution can be estimated, the probability
of a gene belonging to one of the two groups can be calcu-
lated. The algorithm consists of the following three steps:

(i) Computing DE statistic Z
The DE statistics used in NOISeq, the log-ratio of av-
erage expression values for the two conditions (Ms =
log2(x̄1/x̄2)) and the difference (Ds = x̄1 − x̄2) are also
used in NOISeqBIO. As in NOISeq, the 0’s in expres-
sion data are replaced by a small value higher than 0 to
avoid indeterminations when computing the statistics. In
NOISeqBIO, M and D are corrected by the biological
variability:

M∗
s =

Ms

a0 + σ̂M
and D∗

s =
Ds

a0 + σ̂D
, where σ̂M and σ̂D are

the standard errors of Ms and Ds, respectively, and are
computed as follows:
σ̂ 2
M = Var (log2(x̄1/x̄2)) = Var (log2(x̄1) − log2(x̄2)) =
Var (log2(x̄1)) + Var (log2(x̄2)), assuming that x̄1
and x̄2 are independent. We used the delta method
(i.e. a Taylor series approximation) to estimate

Var (log2(X)) ≈

(

1

E(X)log(2)

)2

Var (X). For each con-

dition i, we estimated E(x̄i ) = x̄i and Var (x̄i ) = S2i /ni .

Hence, σ̂ 2
M ≈

1

x̄21 log(2)
2

S21
n1

+
1

x̄22 log(2)
2

S22
n2

.

σ̂ 2
D = Var (x̄1 − x̄2) =

S21
n1

+
S22
n2

a0 is computed as a given percentile of all the values in
σ̂M or, respectively, as in (42), where the authors suggest
taking the 90th percentile. Finally, several combinations
ofM* andD* statistics were tested to de�ne the Z statis-

tic (results not shown), and Z=
M∗ + D∗

2
was selected

as the best one.
(ii) Estimating null scores Z0

LetXi be the gene expression matrix for each experimen-
tal condition i (i = 1, 2) of dimensions G × Ni, where G
is the number of genes and Ni is the number of biologi-
cal replicates in condition i. We assume that matrices Xi

have been previously normalized and that non-expressed
genes have been removed according to the �ltering crite-
ria de�ned by the user (see low-count �ltering section for
some proposals on low-count �ltering).
To estimate the Z-scores of genes with no change be-
tween conditions (Z0), we permute the labels of samples
between X1 and X2 r times, and compute Z statistic as
above. A matrix with r columns and G rows is obtained
and Z0 is generated by pooling all its values.
When fewer than �ve replicates are available per condi-
tion, this null distribution is poor as the number of pos-
sible permutations is low. In these cases we borrow in-
formation from across similar genes. Genes are grouped
according to their expression values across replicates by
k-means clustering. For each cluster k, we consider the
expression values of all the gk genes in the cluster as ob-
servations within the corresponding condition and then
shuf�e this submatrix r × gk times. For each permuta-
tion, we calculate Z0. When gk ≥ 1000, the cluster is sub-
divided again into subclusters.

(iii) Obtaining the probability of DE
Given a gene with a score z, the posterior probability of
DE p1(z) can be derived from the Bayes rule as: p1(z) =
p1 f1(z)

f (z)
= 1 − p0

f0(z)

f (z)

A Kernel Density Estimator with a Gaussian kernel is
used to approximate f(z) and f0(z). For p0, we take an up-
per bound, as previously suggested (42) to avoid negative
p1 values: p0 ≤ min Z{f(Z)/f0(Z)}.

According to (42), the FDR de�ned by Benjamini and
Hochberg is closely connected to the a posteriori probabil-
ity p0(z) = 1 − p1(z) that we are calculating. Hence, p1(z)
= 1 − FDR and so 1 − p1(z) can be used as an adjusted
P-value. Note that this is an important difference with re-
gard to NOISeq method, which was designed for technical
replication and therefore the DE probability returned by
NOISeq could not be considered to be equivalent to a P-
value.

Data

Experimental data. Three experimentalRNA-seq datasets
were used to illustrate the use of the NOISeq diagnostic
plots while the performance of the methodology was eval-
uated in the last two. The count data matrices for the three
of them are available from NOISeq website (http://bioinfo.
cipf.es/noiseq/doku.php).

ENCODE dataset. RNA-seq data from human B-cells
(CD20 + cell line) and monocytes (CD14 + cell line) were
obtained by Cold Spring Harbor Laboratory for the EN-
CODE project (43). Two different RNA extracting pro-
tocols were applied: the PolyA+ extraction method (Pap)
and PolyA- selection procedure (Pam). Sequencing was per-
formed with an Illumina GAIIx platform. The read �les
were downloaded from ENCODE website (see Section 1
in Supplementary Material) and mapped to the reference
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genome downloaded from UCSC (hg19 GRCh37) (44) us-
ing TopHat v2.0.8 (45). Gene expression was quanti�ed us-
ing the HTSeq Python package version 0.5.3p3 (46) and an
in-house script to take multihits into account by equitably
dividing each read mapping to different genes among all of
them.

Fusarium oxysporum dataset. Fusarium oxysporum
f.sp.lycopersici race 2 isolate 4287 was used in this experi-
ment. Freshly obtained microconidia were germinated for
16 h at 28oC in minimal medium (MM) (47) with 25 mM
sodium glutamate and 20 mM HEPES buffer, at pH 7.4.
The mixture was then moved to 37oC for 4 h, and then
transferred to fresh MM or to heparinized human whole
blood (Dunn Labortechnik GmbH) for 30 min at 37oC.
Mycelia were recovered, �ash frozen and used for RNA
extraction as previously described (48). The poly(A) RNA
fraction was enriched using the MicroPoly(A)Purist kit
(Ambion, Darmstadt, Germany) and fragment libraries
were prepared using the SOLiD Total RNA-Seq Kit
(Ambion). Approximately 700 million library beads were
loaded onto one full slide and sequenced to a level of 50
bases using the Applied Biosystems SOLiD 4 system with
SOLiDMM50 chemistry.We obtained two biological repli-
cates for both blood (wt B 30 37) and MM (wt M 30 37)
conditions and mapped them onto the reference genome
from the Ensembl Fungi database (49) (release 14) using
Lifescope software. CLC Bio tools were used to quantify
the gene expression.

Human prostate cancer dataset. This RNA-seq dataset
was directly obtained from the Sequence Read Archive
(SRA) repository (ERP000550). In this study Ren et al.
sequenced samples of tumoral and healthy prostate which
came from Chinese patients (50). There were 11 biolog-
ical replicates for tumoral prostate (T) and 12 replicates
for healthy prostate (N). The sequencing was done with
an Illumina HiSeqTM 2000 and the reads were mapped
to the reference human genome downloaded from Ensembl
(49) (release 68) using TopHat 1.4.1 (51). Gene expression
was quanti�ed using the HTSeq Python package, version
0.5.3p3 (46).

Simulated data. To better evaluate the performance of
NOISeqBIO we designed a simulation algorithm for syn-
thetic datasets that mimics the sample structure and values
of real data, while controlling the level of noise and themag-
nitude of gene expression changes (see Supplementary Ma-
terial for a detailed description). Using this algorithm we
generated 10 different datasets for each of the following pa-
rameter combinations:

� Dataset size: The data were simulated from the F. oxyspo-
rum and Prostate Cancer experimental samples after re-
moving those genes with 0 counts in all samples. Hence,
the resulting simulated data contained either 16 235 genes
if simulated from F. oxysporum samples or 41 365 if sim-
ulated from Prostate Cancer samples.

� Noise: We considered no noise (0) and 20% noise (0.2), as
described in the simulation algorithm.

� Replicates:We simulated data with a low number of repli-
cations (two or three replicates), and data with a larger
number of replicates: 5 or 10.

� DEG: The proportion of DEGs was set to 5% or 10%.

In addition, we estimated the biological variability from
several experimental datasets and de�ned two scenarios:
high and low biological variability. We obtained a total of
320 simulated datasets for each one of the scenarios. The
resulting simulated fold-change between the average expres-
sion of both conditions after normalizing data varied from
1.3 to 1400 with a median value of 40.

Data analysis. To assess the performance of NOISeqBIO
(2.6.0) on the datasets described above, we compared it to
the most widely used DE methods for RNA-seq: edgeR
3.4.2 (18) and DESeq2 1.2.10 (19). These two parametric
methods assume the data follow a negative binomial distri-
bution. While edgeR performs an exact test in the case of
pair-wise comparisons, DESeq2 applies a Wald test on the
estimated coef�cients of a generalized linear model. Both
methods also differ in the way they estimate variability.
Since NOISeqBIO is a non-parametric method, we also in-
cluded a non-parametric method in the comparison: SAM-
seq (38), which has been reported to perform well (20).
SAMseq (from R package samr 2.0) uses a Wilcoxon rank
statistic with resampling to account for the different se-
quencing depths and to estimate the FDR. Data were �l-
tered using the CPMmethod included in the NOISeq pack-
age in order to reduce noise. The CPMvalue per sample was
set to one in order to be conservative and not exclude too
many genes. Normalization factors were computed within
each DE method. The TMM method (14) was used for
NOISeqBIO and edgeR. For DESeq and SAMseq, their
own normalization procedure was applied.
The R code used in this work to simulate RNA-seq

data, compute DE and analyze DE results for all the meth-
ods is available fromNOISeq website (http://bioinfo.cipf.es/
noiseq/doku.php).

RESULTS

QC of gene expression data

RNA extraction, library preparation and sequencing pro-
tocols affect the characteristics of the RNA-seq sample and
can introduce different types of errors. The diagnostic plots
in NOISeq package help to detect these biases and are fo-
cused on three different aspects of the data: the composition
of RNA biotypes, the detection of transcripts and quanti�-
cation of gene expression, and the sequencing biases.

Biotype distribution. RNA-seq experiments may follow
different RNA puri�cation protocols to select speci�c tar-
get RNA species (i.e. long mRNAs or microRNAs) or dif-
ferent library preparations (e.g. stranded or non-stranded).
These experimental procedures may result in RNA-seq data
having a non-uniform RNA composition that may not be
directly comparable (25). This can be relevant, for exam-
ple, when trying to combine data from different sources or
when the technical variability of speci�c protocols is high.
TheNOISeq package contains diagnostic plots that analyze
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the count distribution across RNA biotypes. The ‘Biotype
detection’ and ‘Biotype comparison’ plots show the distri-
bution of mapped reads among different RNA biotypes, in-
dicating the proportion of genes detected for each biotype
from their total annotated representation in the genome
(Figures 2A, B, Supplementary Figures S1, S2, S3A and B,
and Supplementary Section 2.1.3). The ‘Biotype expression
range’ boxplots show the range of expression levels in CPM
reads within each biotype (Figures 2C, D, Supplementary
Figure S3C and D). Different biotype distributions across
samples may indicate contamination, a technical problem
or expected differences among samples.
To illustrate the utility of these diagnostic plots we used

them to compare RNA-seq samples generated with differ-
ent puri�cation protocols (ENCODE data). By looking at
the ‘Biotype comparison’ plots for Pap and Pam protocols,
some differences are readily evident: the Pap protocol iden-
ti�es a signi�cantly higher relative proportion of protein-
coding genes (>60%) than the Pam protocol (≈55%), as
shown in Supplementary Section 2.1.3. As a consequence,
the second protocol provides a relatively higher level of
other RNA species such as pseudogenes, lincRNA or an-
tisense transcripts (Figure 2B, and Supplementary Figures
S1, S2, S3B). Differences in the relative percentages of bio-
types detected also impact the quanti�cation of the different
RNA species, as revealed by the ‘Biotype expression range’
plots (Figure 2C, D, Supplementary Figures S3C and D).
The Pap protocol results in a wider dynamic range of ex-
pression for protein-coding genes than the Pam protocol.
However, the two Mt rRNAs detected accumulate a huge
number of reads when using Pam protocol (around 267 000
and 64 000 CPM, respectively) when compared to the Pap
protocol (around 1, 100 and 230 CPM, respectively). These
differences in the transcript quanti�cation may affect the
DE analysis. To prove this, we used NOISeq to select DEGs
between B-cell and monocyte cell lines for each experimen-
tal protocol. In total, 15 346 and 14 357 DEGs were called
in data obtained with the Pap or Pam procedures, respec-
tively. Only 8929 genes (around 60%) were common to both
extractionmethods (Supplementary Figure S4), and the dif-
ferencesmostly affected protein-coding genes, pseudogenes,
antisense and lincRNAs,whichwere themost abundant and
differentially enriched biotypes between the Pap and Pam
protocols (Supplementary Figure S5). These results high-
light the importance of the RNA sample composition in
RNA-seq analysis and show how the biotype break-down
plots included in the NOISeq package can be used to re-
veal these characteristics in the data. The actions required
after detecting an abnormality in these QC plots depend on
the magnitude of the detected problem and on the goal of
the study. Options range from removal of outlier samples,
restricting analysis to well-quanti�ed biotypes, or choos-
ing the most adequate library preparation procedure. Un-
less studying biotypes differences is a goal, we recommend
using samples with homogeneous biotype distributions.

Sequencing depth and quanti�cation of expression. A key
issuewhen analyzingRNA-seq data is to determinewhether
the available sequencing depth provides suf�cient coverage
of expressed transcripts and accurate gene expression quan-
ti�cation. It is generally accepted that genes detected by

only a few reads are not reliably quanti�ed and should be
removed before further statistical analysis. Some of the QC
plots in the NOISeq package are speci�cally targeted at an-
swering these questions. We use the Prostate Cancer dataset
to illustrate their utility. The ‘Saturation’ plot (Figure 3A, B,
and Supplementary Figure S6) indicates the number of de-
tected genes (left axis) at the given sequencing depth (solid
dot), and also at simulated higher and lower numbers of
reads. The bars (right axis) show the new discovery rate
(NDR), i.e., the number of newly detected genes per mil-
lion additional reads (25). If more reads do not lead to a
higher number of new detections, then saturation is consid-
ered to have been reached and any additional sequencing
will mostly improve the quanti�cation of the previously de-
tected genes. In the Prostate Cancer data we observed that
around 50% of the annotated genes are found at the nom-
inal sequencing depth of between 20 and 25 million reads
(Supplementary Figure S6). The ‘Saturation’ plot estimates
that in this range of total reads, around 250 additional genes
are detected per additional million reads. This implies that
increasing the sequencing depth by 10 million reads will in-
crease transcriptome coverage by 10%. However, analyzing
this information for each biotype (Figure 3A and B) shows
more relevant results. For protein-coding genes, the NDR
was 40, so the improvement in feature detection for 10 mil-
lion additional reads is estimated at around 2%. In contrast,
the NDR for lncRNAs stayed at 35 which translates into an
estimated 25% more lncRNAs at a 10 million sequencing
depth increase. Depending on the goal and scienti�c ques-
tions of the study, decisions on the need for additional reads
may change. If only protein-coding genes are to be analyzed
in the study, sequencing depthmight be suf�cient, while this
might not be the case if the target are also lncRNAs.
The ‘Dynamic range of expression’ plot (Figure 3C) com-

pares the distribution of read CPM for all the samples in
the experiment and is useful for identifying differences in
count distributions within the dataset. In the Prostate Can-
cer data, we observed that the distribution of expression lev-
els for detected genes varies considerably among samples,
and suggests that a normalization approach that corrects
for these differences would be needed to make the samples
comparable. This plot could also be used to reject samples
with odd expression level distributions. For example, one
could consider removing sampleN 10 from the analysis for
having too lowmedian expression levels. The analysis of ex-
pression quanti�cation is complemented by the ‘Sensitivity’
plot (Figure 3D), which displays the number of genes with
more than 0, 1, 2, 5 or 10 CPMs for each sample (bars) or
in any of the samples (horizontal lines). This plot re�ects
the total fraction low-expression genes represent within the
total number of transcripts. In the Prostate Cancer exam-
ple, less than 35% of the genes have more than one CPM
in any of the samples. Therefore it provides a graphical rep-
resentation that helps the user to make decisions on what
CPM threshold should be used, as it shows the percentage
of features that would be removed at different CPM values.
To illustrate how low-count diagnosis and �ltering af-

fects DE analysis, we used one of the �ltering options pro-
vided by NOISeq package: the CPM method (see Materi-
als and Methods and Supplementary Section 4). We chose
a CPM threshold of one to remove low-count genes, and
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A B

C D

Figure 2. Biotype distribution. Data: Monocytes (CD14-positive cells from human leukapheresis production) from ENCODE project. (A) shows the per-
centage of genes in the genome detected (with at least 1 read) in our sample per biotype. Red and blue bars correspond to the two samples compared as
indicate in legend of (B). Black line indicates the abundance of each biotype within the genome. (B) displays the abundance of each biotype within the
genes detected in each of the two samples. (C, D) Expression values (Y axis) are given in CPM of sequencing reads. Numbers in the upper part of the plot
are the number of genes per biotype that are represented in each boxplot.

computed the DEGs using NOISeqBIO and edgeR (18).
Figure 4 shows the results of this �ltering approach. A total
of 42 366 low-count genes were removed after applying the
CPM threshold, of which 292 and 887 had been detected as
differentially expressed by NOISeqBIO and edgeR, respec-
tively. In turn, removing these low-count genes resulted in
683 (NOISeqBIO) and 1195 (edgeR) newly detected genes

which belonged to a higher expression range. These results
highlight the impact of low-count �ltering in RNA-seq DE
analysis and how the NOISeq package resources can be
used to easily address this task.

Sequencing biases. Finally, when sequencing artifacts are
present in the data, the quanti�cation of gene expression
could be biased and lead to the wrong biological conclu-
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A B

C D

Figure 3. Sequencing depth and expression quanti�cation. Data: Prostate cancer. (A,B) show the number of detected genes (Y left axis) and the new
detections per each million of additional reads sequenced (Y right axis) at increasing sequencing depths for two different samples and for ‘protein-coding’
genes and ‘lincRNAs’, respectively. (C) shows the distribution of expression values in CPM for each sample considering genes with more than 0 counts in
any of the samples. (D) summarizes the proportion of genes with more than 0, 1, 2, 5 or 10 CPM in each sample (bars) or in any of the samples (horizontal
lines).

sions. Proper and timely detection of these biases is needed
to choose an appropriate normalization procedure that cor-
rects data errors and improves downstream statistical anal-
yses. NOISeq implements diagnostic plots for three of the
most frequently cited sequencing biases in RNA-seq data,
namely ‘feature length’ (12), ‘GC content’ (13) and ‘RNA
composition’ (14). To describe them we used the F. oxyspo-
rum dataset.
The ‘feature length’ and ‘GC content’ plots (Figure 5A–

D) display gene expression as a function of length or GC
content, taking bins of 200 genes. To assess the relationship

between the length or GC content and the average gene ex-
pression, a cubic spline regression model was �tted (red and
blue line for length and GC content plots, respectively). A
model P-value lower than the signi�cance level (e.g. 0.05)
and R2 higher than 70% is considered to indicate a signif-
icant length or GC content effect on the expression level.
Both types of bias were evident in the F. oxysporum data
(Figure 5A and C). The ‘RNA composition’ plot (Figure
5E and F) indicates if signi�cant differences in the RNA
sample composition are present. In these plots, M values
are computed between each sample s and a reference sam-
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Figure 4. (M,D) plots for DEGs from NOISeqBIO (left plot) and edgeR (right plot) on Prostate Cancer data. X axis represents M= log2(x̄healty/x̄tumoral)
values, while the absolute value of D = x̄healty − x̄tumoral is depicted on the Y axis. Red dots correspond to DEGs which were only obtained when no �lter
was applied (CPM method). Black dots correspond to genes removed by the �ltering method. Green and purple dots correspond to the DEGs obtained
with NOISeqBIO and edge R methods, respectively, only when the low-count �lter was applied.

ple r (which can be arbitrarily chosen) as M = log2(xs/xr),
where xs are the counts in sample s. If no bias is present, the
median ofM values for each comparison is expected to be 0
(14). Deviations from this value indicate that the expression
levels for a fraction of genes in one sample tend to be higher
than in the others, and therefore that the data violate the as-
sumption of uniform global RNAdistributions which is fre-
quently made in genome-wide gene expression experiments.
Figure 5E shows a deviation from 0 in the M medians for
the F. oxysporum data. Con�dence intervals for theM me-
dian (Supplementary Section 2.3.1) are also computed and
showed that this deviationwas statistically signi�cant in this
case. These diagnostic plots give clues about the speci�c nor-
malization procedures that are required for removing the
observed biases. Table in Section 3 of SupplementaryMate-
rial displays some of the normalization methods or R pack-
ages available for correcting each bias. Figure 5B, D and
F show the three diagnostic plots after applying different
types of normalization procedures designed to target each
speci�c bias: RPKM (4) (included in the NOISeq package),
‘full’ within-sample normalization in the EDASeq package
(13) and TMM (14) which is also included in the NOISeq
package. We can see that, in all three cases, the biased pat-
tern was signi�cantly decreased after normalization.

DE

In this section we evaluate the performance of NOISeqBIO
with the Prostate Cancer andF. oxysporum studies, that rep-
resent analysis scenarios with different replication levels, bi-
ological variability, and number of genes. We compare our
method to the widely used edgeR (18) and DESeq2 (19),
and also to the non-parametric SAMseq approach (38).

Results on experimental datasets. We computed DE in the
experimental data, taking an adjusted P-value cutoff of
0.05, or equivalently, a probability cutoff of 0.95 forNOISe-
qBIO. Results are summarized in Figure 6 and Supple-

mentary Figures S10–S13. In both datasets, we observed
a signi�cant difference in the percentage of DEGs called
by NOISeqBIO in comparison to the edgeR and DESeq2
parametric approaches, and the non-parametric SAMseq
method, which gave the highest rate of DEGs. NOISeqBIO
found more DEGs (31.5%) than the parametric approaches
(around 25%) in the F. oxysporum dataset, which has a com-
paratively low coef�cient of variance and replicate num-
ber (Figure 6). The opposite result was obtained with the
more variable Prostate Cancer dataset, where NOISeqBIO
called 3% DEGs and edgeR and DESeq2 called around
7% DEGs. When analyzing the Prostate Cancer expres-
sion plots (Supplementary Figure S11) we noticed that the
DEGs selected by NOISeqBIO had larger expression fold-
changes than those selected by the parametric methods,
while our method was comparably more sensitive to nar-
rower expression changes in the F. oxysporum dataset (Sup-
plementary Figure S10). In both cases SAMseq gave more
permissive fold-change thresholds. Gene ranking was simi-
lar between edgeR, DESeq2 and NOISeqBIO, with Spear-
man’s correlation coef�cient for FDR values between 0.95
and 0.98 (Supplementary Figures S12 and S13) indicat-
ing, that regardless of the signi�cance thresholds, all meth-
ods similarly captured DE. A functional enrichment anal-
ysis was performed by comparing the DEG called by each
method to the rest of the genome using GOseq (21). Inter-
estingly, enrichment results were equivalent acrossmethods,
suggesting no major biological differences in the DEG sets
detected by the tested algorithms (not shown).
We hypothesize that this different behavior in gene selec-

tion was due to the way the methods handle variability and
replication: while the parametric methods tend to render
more signi�cant calls in highly replicated but variable data,
NOISeqBIO more strongly penalizes values with a high co-
ef�cient of variation. On the contrary, when data variabil-
ity is lower, NOISeqBIO might be more effective in calling
DEGs. To verify this hypothesis and to further character-
ize the performance of NOISeqBIO, we compared the DE
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A B

C D

E F

Figure 5. Sequencing biases. Data: F. oxysporum. (A,B) show the in�uence of the gene length on the gene expression before and after RPKMnormalization.
Each dot represents a bin of 200 genes and the red line was �tted with a spline regression model. (C, D) are analogous but for studying the in�uence of GC
content on expression, before and after EDAseq normalization. (E, F) display the distribution of the log-ratio between each sample and the sample taken
as reference (before and after TMM normalization), in order to check if the RNA composition differ among samples.
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Figure 6. Characteristics of the F. oxysporum (FO) and Prostate Cancer (HS) datasets showing the number of replicates, number of genes, variability and
percentage of DEGs called by each DE method.

methods on synthetic datasets where we mimicked the data
structure of both experiments and introduced controlled
levels of expression changes and noise.

Results on simulated datasets. Synthetic datasets were
created using the simulation algorithm (described in the
Supplementary Material) considering different numbers of
genes, numbers of replicates per condition, levels of tech-
nical noise and proportions of DEGs. We also simulated
two different biological variability scenarios: high (similar
to the Prostate Cancer data) and low (similar to the F. oxys-
porum data) biological variability. A total of 320 datasets
were obtained for each scenario according to different com-
binations of the simulation parameters. The method per-
formance was evaluated on a �xed adjusted P-value cutoff
(0.05), by looking at sensitivity (the proportion of true DE
calls out of the total number of DEGs), the FDR (i.e. pro-
portion of false DE calls out of the total number of DE
calls) and the Matthews’ Correlation Coef�cient, a com-
bined measure of all of the potential classi�cation errors
(also known as phi coef�cient). Figures 7 and 8, Supplemen-
tary Figures S14 and S15 show the results of the simulation
study for the high and low biological variability scenarios,
respectively, as a function of the number of replicates, ag-
gregating all technical noise, DEG proportions and gene-
number scenarios. The signi�cance of the differences be-
tweenmethods was estimated by anANOVAmodel with re-
peated measures. Supplementary Figures S16 and S17 also
show the percentage of DE calls for each method.
NOISeqBIO clearly outperformed the other non-

parametric method SAMseq, which had serious problems
both in obtaining good sensitivity at low replication
numbers and in controlling the FDR when the number of
replicates was high. These differences might be due to the
very different strategies adopted by these two approaches:
while SAMseq is based on permutations (which might
break down with few replicates), NOISeqBIO uses the
joint distribution of all genes in the dataset to estimate
the null distribution and therefore may better capture the
variability of the data needed to call signi�cant changes.
Even more interesting results were obtained when com-

paring NOISeqBIO to the parametric methods. Sensitiv-
ity was shown to be high (90–100%) and relatively con-
stant across all analysis scenarios and methods, although
the two parametric approaches showed to have more sta-
tistical power, with the exception of the 10-replicate con-
dition. Note here that the data were simulated using the
Negative Binomial distribution, which is the probability
distribution assumed by edgeR and DESeq2, so a better
performance is expected for these two methods. In con-
trast, the FDR results signi�cantly varied: at a low bio-

logical variability and replication level (two replicates), the
median FDR was above the nominal 0.05 cutoff for all
the methods, but the actual FDR values �uctuated con-
siderably depending on the scenario. In these conditions
DESeq2 had a signi�cantly higher false positive rate while
NOISeqBIO and edgeR showed comparable results (Fig-
ure 8 and Supplementary Figure S15). However, when bio-
logical variability was high (Figure 7 and Supplementary
Figure S14) or when the number of replicates increased,
the parametric approaches tended to call too many false
positives, and only NOISeqBIO provided signi�cantly bet-
ter FDR control, and remained stable even through multi-
ple simulated scenarios (Figures 7 and 8). These results are
similar to those observed for the original NOISeq method
when applied to technical replicates (25) and corroborate
the results obtained with the real data: the high percentage
DEGs called in the F. oxysporum dataset might re�ect its
low variability but also include false discoveries that might
bemore pronounced with theNOISeqBIO algorithm, while
the lower DEG number provided by NOISeqBIO with the
Prostate Cancer dataset might re�ect the better FDR con-
trol of our method when used for high-variability data.
Similar performance patterns were observed when out-

liers were introduced in the simulations. NOISeqBIOmain-
tained or improved the FDR respect to other methods in 3,
5 or 10 sample datasets, while the FDR was higher at two
samples (Supplementary Figure S18). Finally, we tested the
performance of the methods when no DEGs are present in
the data (Supplementary Figure S19), and found that, in
general, all the methods obtain a False Positive Rate (FPR)
below the signi�cance level of 5%.

DISCUSSION AND CONCLUSION

Although RNA-seq has become the technology of choice
for genome-wide transcriptome pro�ling, there is growing
awareness of the need to thoroughly examine the quality
parameters imposed on both the raw and processed data
to detect and eventually remove potential technology bi-
ases. Not surprisingly, recent results from the SEQC con-
sortium onRNA-seqQC (52) highlighted quanti�cation er-
rors introduced by library preparation, GC content, gene
coverage and read duplication as the key factors that affect
the reproducibility of RNA-seq data across sites and tech-
nologies, and suggested that extensive QC should be a fun-
damental part of any RNA-seq analysis pipeline. Here we
present theNOISeq package as an extensive resource for ex-
ploratory analysis, pre-processing andDE analysis of count
data, which complements existing software tools for QC
on raw (FastQC http://www.bioinformatics.babraham.ac.
uk/projects/fastqc) and mapped (RSeQC (53), RNA-SeQC
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Figure 7. Trade-off between FDR and sensitivity for each DEmethod at a signi�cance level of 5% in the high-variability scenario (320 simulations). Please
note that for SAMseq there are results below the axis limits that are not displayed for the sake of clarity.

(54), Qualimap (55) or RNASeqGUI (23)) RNA-seq data.
NOISeq provides a wide array of diagnostic and visualiza-
tion plots which are relevant for understanding the char-
acteristics of the data, biotype composition, technology bi-
ases and DE; moreover, it also contains tools to process the
data accordingly, for example, by normalizing away biases
or removing low-count genes. Some of these plots were ad-
vanced at the publication of the NOISeq method. In this
work we extend QC diagnostic tools, show how to use these
pre-processing resources and what their impact might be on
downstream analysis.
In addition, the package also includes a statistical frame-

work for RNA-seq DE analysis based on creating an em-
pirical distribution, rather than relying on parametric as-
sumptions, to assess differences in gene expression between
conditions. We have shown that this approach works well
in both NOISeq (for technical replicates) (25) and NOISe-
qBIO (for biological replicates, as described in this work)
across different data scenarios and signi�cantly reduces the
false call problems which still remain present when using
parametric methods. The main differences between NOISe-

qBIO and our previous methodNOISeq are that (i) NOISe-
qBIO corrects the statistics for the biological variability spe-
ci�c of each gene, while NOISeq considered a global vari-
ability because it was conceived for technical replicates; and
(ii) NOISeqBIO returns a DE probability that is equivalent
to FDR adjusted P-values, but it is not comparable to the
DE probability given by NOISeq.
Lastly, and importantly, one particularly interesting re-

sult from this study was obtained from the synthetic
datasets that were simulated for different numbers of repli-
cates. Our data suggest that duplicates might be insuf�cient
to provide accurate RNA-seq DE results when using state-
of-the art methodologies, including our own. The relevance
of suf�cient replication has also been brought to attention in
recent work that evaluated experimental design considera-
tions (20,56,57), a conclusion that was echoed by the SEQC
project (58). We anticipate that, as awareness of RNA-seq
experimental design issues increases and the technology be-
comes more affordable, experiments with higher replication
levels will proliferate and therefore DE methods which ef�-
ciently deal with the FDR, while maintaining good sensitiv-
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Figure 8. Trade-off between FDR and sensitivity for each DEmethod at a signi�cance level of 5% in the LOW variability scenario (320 simulations). Please
note that for SAMseq there are results below the axis limits that are not displayed for the sake of clarity.

ity, will increasingly be required. In this sense, NOISeqBIO
perfectly �ts these requirements. More sophisticated exper-
imental designs than pair-wise comparisons are becoming
available for RNA-seq data, and edgeR, DESeq2 or SAM-
seq can deal with this type of designs. However, it is still very
common and necessary in these kind of studies the com-
parison of two groups, and NOISeqBIO provides an ef�-
cient solution. Moreover, our method has the advantage of
being non-parametric, meaning that no distributional as-
sumptions have to be made and no model validation is nec-
essary. Therefore, it can be applied even when the data have
been transformed in order to correct strong biases or batch
effects, where parametric assumptions would not hold any-
more.
Thus, taken together we believe that the NOISeq R pack-

age offers a suitable pipeline for RNA-seq robust analysis
from expression quanti�cation data to DE.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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