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Abstract With the development of new technologies,
particularly Internet of Things (IoT), there has been
an increase in the deployment of low-cost air quality
monitoring systems. Compared to traditional robust
monitoring stations, these systems provide real-time
information with higher spatio-temporal resolution.
These systems use inexpensive and low-cost sensors,
with lower accuracy as compared to robust systems.
This fact has raised some concern regarding the qual-
ity of the data gathered by the IoT systems, which may
compromise the performance of the environmental
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models. Considering the relevance of the data quality
in this scenario, this paper presents a study of the data
quality associated with IoT-based air quality monitor-
ing systems. Following a systematic mapping method,
and based on existing guidelines to assess data qual-
ity in these systems, we have identified the main
Data Quality (DQ) dimensions and the corresponding
DQ enhancement techniques. After analyzing more
than 70 papers, we found that the most common DQ
dimensions targeted by the different works are accu-
racy and precision, which are enhanced by the use of
different calibration techniques. Based on our find-
ings, we present a discussion on the challenges that
must be addressed in order to improve data quality in
IoT-based air quality monitoring systems.

Keywords Air quality · Data quality ·
Low-cost sensors · Internet of Things · Data quality
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1 Introduction

The need to monitor air quality variables has increased
in the last decade, due to the high levels of pollutants
that affect human health, especially in large urban
areas World Health Organization Regional Office for
Europe (2017). This fact has led to the development
of different types of monitoring systems, which are
considered a cornerstone in the implementation of
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strategies to mitigate pollution. The goal of these sys-
tems is to monitor air quality variables, in order to
provide authorities and citizens with important infor-
mation about the current level of gases and particles
in different areas of the city. This information can be
used to take decisions aimed at preventing the nega-
tive impact of these pollutants on human health. With
the aim of utilizing the monitoring data to assess, pre-
dict and reduce the pollutant levels, the environmental
agencies have developed regulations that include key
aspects, such as data quality objectives and indica-
tors that must be accomplished (UNION et al., 2008;
EPA, 2017).

Traditionally, air quality monitoring systems con-
sist of a set of expensive robust stations that require
on-site calibration and maintenance. Due to the high
cost, the number of monitoring stations is usually
low, leading to a low spatial resolution of the data
(Röösli et al., 2000; Lin et al., 2020b). In the past few
years, however, the development of the monitoring
systems has come hand in hand with the development
of new technological paradigms such as the Internet of
Things (IoT), thus allowing the deployment of a larger
number of air quality monitoring systems (Múnera
et al., 2021). IoT is a paradigm of systems that allows
connectivity and information exchange between het-
erogeneous objects (uniquely identifiable), in order
to capture and process information ubiquitously for
decision-making and action on a given context (Atzori
et al., 2017). Hence, IoT-based air quality monitoring
systems use low-cost sensors, thus enabling the mas-
sive development of sensor systems with lower asso-
ciated costs, and allowing permanent and real-time
access to the gathered data.

The data generated by IoT systems, however, has
been considered unreliable for two main reasons. On
one side, they utilize low-cost sensors, which lack
the accuracy and precision of the robust stations.
The second reason stems from the fact that these
systems are exposed to many endangering factors,
since their applications usually involve wide deploy-
ments and open platforms (Karkouch et al., 2016;
Liu et al., 2019). These conditions have led to a
significant concern regarding the data reliability and
trustworthiness of the IoT-based monitoring systems.
Particularly, in the context of air-quality monitoring,
several researchers argue that the use of low-cost sen-

sors is generating unreliable data (Kumar et al., 2015;
Castell et al., 2017; Manikonda et al., 2016). This sit-
uation poses a new challenge in the context of smart
cities and IoT: it is necessary to assess and improve
the quality of the data obtained through the IoT sys-
tems, in order to establish their reliability and provide
useful information to decision makers.

The study of Data Quality (DQ) emerged from the
field of information systems, where large amount of
data are needed to be stored in databases and managed
by such information systems. Authors in Wang (1996)
proposed a set of dimensions that were more important
for data consumers in this field. Because of the impor-
tance of data, this concept has been adopted by other
applications and fields. Specifically, in the context of
IoT systems, the analysis of DQ has become relevant
in order to guarantee the reliability of the data to the
decision makers. Authors Liu et al. (2019) and Kark-
ouch et al. (2016) have both conducted a systematic
literature review and a state-of-the-art review of DQ in
IoT, and have discussed how DQ has been addressed
in IoT applications. They have also identified the chal-
lenges and most prominent research sub-fields of DQ
in IoT, which include the most commonly used dimen-
sions, endangering factors, and enhancing methods.

DQ analysis in the field of air quality monitoring
systems is a fairly new topic, since massive low-cost
systems have become popular in the past few years.
Even though there are specific definitions for the DQ
expected out of these systems, provided by the EPA
(2017) and the EU (UNION et al., 2008), the studies
on this topic are limited to the dimensions addressed
by the deployed solutions, and do not consider the
relationship between the DQ dimension and the indi-
cator suggested by the standardization entities. In this
context, this study aims at providing an overview of
how DQ has been addressed in the implementation
of IoT-based air quality monitoring systems. More-
over, the goal is also to find the relationship between
the Data Quality Indicators (DQI) and Data Qual-
ity Objectives (DQO) defined by EPA, and the DQ
dimensions traditionally used. Our contributions are
hence summarized as follows.

• We review and analyze the existing guidelines for
assessing DQ in air quality monitoring systems
for proposing a mapping between the DQ indi-
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cators (from guidelines) and the DQ dimensions
(from DQ field).

• We analyze the main DQ enhancement techniques
and identify how these techniques affected the DQ
dimensions.

• We develop a systematic mapping study to deter-
mine the state of the evaluation of DQ in IoT-
based air quality monitoring systems. We use
our proposed mapping between DQI, enhance-
ment techniques and DQ dimensions to answer
the research questions that guide our systematic
mapping study.

• We highlight some challenges that must be
addressed in order to improve data quality in
IoT-based air quality monitoring systems.

The document is organized as follows. Section 2
describes data quality principles. Section 3 presents
data quality in the context of air quality, where a
description of data quality indicators and objectives is
discussed. Section 4 highlights the most common DQ
enhancement techniques used in IoT-based air qual-
ity monitoring systems. Section 5 shows the steps
for the systematic review process. Section 6 describes
the results found in the systematic mapping study.
Finally, Sections 7 and 8 present the discussion and
conclusions, respectively.

2 Data Quality Principles

It is common to find a definition of DQ from the con-
sumer’s point of view, where this trend is based on
the treatment of data as a product. In Wang (1996),
it is defined as “data that are fit for use by data con-
sumers”; similar definitions are found in Karkouch
et al. (2016) and Liu et al. (2019). According to Kark-
ouch et al. (2016), the data consumer requires data to
fulfill certain criteria that are essential for the tasks at
hand. Being data a product, DQ is a multi-faceted con-
cept since users have different expectations out of it.
Thus, the DQ analysis has been divided into dimen-
sions, where each dimension stands for an attribute
that is important to the data consumer, or the applica-
tion. After studying the term DQ in the field of IoT, we
have identified several dimensions that can be relevant
to the analysis of DQ.

Tables 1, 2, 3, 4, 5, and 6 present the most rele-
vant DQ dimensions as well as their definitions and
proposed evaluation metrics. In these tables, the first
column is dimension name, and the second column
includes a short definition of the dimension, which is
a result of the review of several sources. It can be evi-
denced how a dimension can take several names, but
it will have the same definition over different sources.
Finally, the third column shows a formula or metric to

Table 1 DQ dimensions related to data values

Dimension Definition Metric

Accuracy “The degree to which data has attributes that cor-
rectly represent the true value of the intended
attribute of a concept or event in a specific context
of us” (Liu et al., 2019; ISO 25000 Portal, 2019).

α = |vm − v|
v

, DQaccu = max (0, 1 − α),

where vm is the measured value, and v is the value
accepted as true.

Precision “The Precision is degree to which further mea-
surements of the same phenomenon in a close
time instant provides the same or similar results”
(Sicari et al., 2018). It can be represented as the
standard deviation of the measurement.

DQprec = 1 −
√∑n

i=1 (vm−v̄m)2

n−1

v̄m

, where v̄m is the

mean of the measurement over n observations.
The coefficient of variation is used to obtain a
relative value.

Confidence “The statistical error ε such that [v − ε, v + ε]
contains the real value with a confidence probabil-
ity of p” (Klein & Lehner, 2009; Karkouch et al.,
2016). It represents the statistical measurement
error due to random environmental interference
such as vibrations or shocks.

ε = z · σ√
n

, n ≥ 30, DQconf = 1 − ε

v̄m

, where

z is the statistical value of the Z-distribution for a
given confidence interval, while σ is the standard
deviation of the population. Dividing by the mean
give the relative margin of error.
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Table 2 DQ dimensions related to the amount of data

Dimension Definition Metric

Completeness “The degree to which subject data associated with an entity
has values for all expected attributes and related entity
instances in a specific context of use” (Liu et al., 2019; ISO
25000 Portal, 2019). “The extent to which all expected data
is provided by IoT services.”

DQcomp = #ValidCollectedValues

#ExpectedValues

Data volume “The number of raw data items (values) available for use
to compute a result data item (in a stream query or sub-
query)” (Karkouch et al., 2016). We can define it as the
number of collected values retrieved at a time instant t .

DQdvol = #CollectedValues(t)

Redundancy Data redundancy or repeated data is accounted as the
amount of data items that have the same timestamp. This
might be caused by abnormal network transmission that
makes data to be transmitted or received multiple times
(Guo & Liu, 2015).

DQdupl = 1 − #RepeatedTimestamps

#CollectedValues

evaluate each DQ dimension (DQdimension value), and
each of them has been adapted such that every value is
in the range between 0 and 1 (0 for low quality and 1
for high quality).

These dimensions can be classified according to
different categories. Table 1 shows the dimensions
related to the specific value of the data (and its error).
These dimensions include as follows: Precision, Accu-
racy, and Confidence. A second category of DQ

dimensions is presented in Table 2, where the amount
of data is considered. This category includes the
Data volume, Completeness, and Redundancy dimen-
sions. The third category gathers the time-related DQ
dimensions as presented in Table 3. This category
includes the Timeliness and Accessibility dimensions.
Table 4 shows the dimensions that take into consid-
eration the relationship among the data, such as Con-
cordance, Artificiality, and Interpretability. Finally,

Table 3 Time-related DQ dimensions

Dimension Definition Metric

Timeliness “The degree to which data has attributes that Currency = time − Timestamp(vm),

are of the right age in a specific context of use” DQtime = max

(
0,

Currency

Volatility

)
As proposed in

(Liu et al., 2019; ISO 25000 Portal, 2019). Batini et al. (2009), the timeliness can be calculated

“The extent to which an observation for the object in terms of the currency and volatility, the latter

is updated at a desired time of interest” and it is defined as the time during which data remain valid.

related to terms like currentness, currency, volatility,

latency, freshness, data rate, delay, frequency,

or promptness.

Accessibility Different from utility, Karkouch et al. (2016) In Batini et al. (2009) it is calculated based

define ease of access as the availability and on the time it takes to provide a result for

easiness of retrieving data, while the accessibility a query: DQacce = max

(
0,

DelivTime − ReqTime

DeadTime − ReqTime

)

is regarded as a category of the DQ dimensions, where ReqTime is the request time of the query,

and defined as “how accessible data are for DelivTime is the respons time, and DeadTime

data consumers.” is the deadline time.
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Table 4 DQ dimensions relation between data and context

Dimension Definition Calculation

Concordance “The degree to which data has attributes that are free
from contradiction and are coherent with other data in
a specific context of use” (Liu et al., 2019). It is related
to concepts like consistency.

We propose to calculate concordance as the abso-
lute value of the Pearson’s correlation coefficient
between variables x0 and xi : DQconc = |ρx0xi

|

Interpretability The interpretability tells whether data is clear in mean-
ing and format (Karkouch et al., 2016), it can be
improved by using annotations. According to Batini
and Scannapieca (2006), it concerns to the documen-
tation and metadata that are available to correctly
interpret the meaning and properties of data sources.

DQinte =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1, dataset is annotated,

there is metadata

or there is documentation.

0, otherwise.

Artificiality Data artificiality is proposed by Kuemper et al. (2018)
and it determines whether data originates directly from
a hardware sensor or whether data is estimated after
the application of techniques such as interpolation,
aggregation, and fusion.

DQarti =
{

1, real sensor data.

0, artificial data.

Table 5 DQ Dimensions related to the system

Dimension Definition Calculation

Utility “The degree to which data can be accessed in a spe-
cific context of use” (Liu et al., 2019), which is related
to the data accessibility dimension. To calculate the
utility, it is necessary to keep track of user’s or appli-
cation’s interactions with data in the form of queries or
visualizations.

DQutil =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1, if data was accessed at

least once or it is

provided in push mode.

0, otherwise.

Trust “The probability by which data are suitable to be
included in a specific process providing value” (Sicari
et al., 2016), it is associated with source reputation and
reliability. The source reputation is the sum of two fac-
tors, the content reputation and the owner reputation,
where the former depends on the number of times the
source fails to provide a good answer, while the latter
depends on the history of the organization that owns
the data, e.g., a node can be given a reputation based
on the quality of its provided data.

Our proposal to compute the trustworthiness depends
on two variables. The first is the source reputation
(given by the user or the IoT system) and takes two val-
ues {0, 1}, where 0 is bad reputation of the source and 1
is a good reputation of it. The second variable is based
on the correctness, i.e., the validity of data provided by
the source. μ is a weight that can be adjusted to give
more importance to the reputation or to the validity.

DQtrus = μ · Reputation + (1 − μ)

·
∑n

i=1 DQvali(i)

n
(1)

Access security Authors in Karkouch et al. (2016) define it as to secure
data to protect its privacy and confidentiality. In Sicari
et al. (2018) and Sicari et al. (2016) it is found to be
also related to authentication and integrity. In essence,
data (specially sensitive data) should remain confiden-
tial and private from its generation at the source to its
storage in a database. Data authentication is related to
data integrity and source authentication, where the IoT
system can (and should) verify the origin of the data
and confirm its integrity.

If mechanisms to preserve access security exists, these
attributes can be evaluated as 1, or 0 otherwise. An
example is the use of cryptographic protocols such
as Transport Layer Security (TLS). Another approach,
proposed by Sicari et al. (2016) to evaluate access
security is based on identifying attacks and counter-
measures for these attacks.
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Table 6 DQ dimensions relation between data and context

DQ dimension Definition Calculation

Validity In Li et al. (2012), validity is defined as a met-
ric to evaluate the correctness of an observation. It
can be seen as a set of rules or constraints that data
should comply to be correct. Authors in Kuemper et al.
(2018) define plausibility as whether a received data
source information makes sense regarding the prob-
abilistic knowledge about what it is measuring. The
following can be validity rules related to the cor-
rectness of the data: (V R1) data is within allowed
range, (V R2) data consistency is greater than 90%,
(V R3) data accuracy is greater than 90%, (V R4) data
precision is greater than 60%.

As proposed by Li et al. (2012), the validity can
be calculated as a series of and operations over the
rules, where m is the number of rules. DQvali =∧m

i=1
V Ri(o)

Table 5 presents the last category, which considers the
dimensions that are related to the system, specifically
Utility, Trust, and Access security.

As stated earlier, the relevance of each dimension
depends on the specific application of the system and
on how the data is going to be utilized. In that sense,
a unique DQ value has not been defined in order
to decide whether a data should be used. The valid-
ity dimension, however, aims at providing the system
with the flexibility to define which dimensions are
relevant to the DQ of the specific context (see Table 6).

3 Data Quality in the Context of Air Quality
Estimation

In the context of air quality monitoring systems, The
European Parliament And The Council has established
Data Quality Objectives and Data Quality Indicators
in the DIRECTIVE 2008/50/EC (UNION et al., 2008)
guideline, while the Environmental Protection Agency
(EPA) in the USA proposed the Quality Assurance
Handbook for Air Pollution Measurement Systems
(EPA, 2017) guideline. These documents define Data
Quality Objectives (DQO) as the level of accepted
threshold of the Data Quality Indicator (DQI), i.e.,
attributes of data quality. A close examination of these
guidelines can lead to identify and match some of
these indicators to the DQ dimensions previously dis-
cussed. We present below each DQI and its relation
with the DQ dimensions.

• Uncertainty: According to JCGM (2008), it is
“a parameter associated with the result of a mea-

surement that characterizes the dispersion of the
values that could be reasonably attributed to the
measurand.” The authors also state that uncer-
tainty is a generic term used to describe the sum
of all sources of error associated with an envi-
ronmental data operation. Uncertainty has two
components, namely population uncertainty and
measurement uncertainty. The former is related to
the representativeness of the sample, while the lat-
ter is related to the precision, bias, and detection
limit (EPA, 2017).
Regarding the DQO for particulate matter pollu-
tants, the maximum allowed uncertainty for fixed
measurements (i.e., robust monitoring stations)
is 25%, while for indicative measurements (e.g.,
low-cost sensors measurements) is 50% (UNION
et al., 2008). Based on this definition, this indica-
tor is related to accuracy and confidence dimen-
sions.

• Minimum data capture: It has a limit of 90%,
which means that the maximum number of miss-
ing values within one measurement period is 10%
of the expected values (UNION et al., 2008). This
indicator is related to completeness dimension.

• Minimum time coverage: This indicator for mea-
surements of pollutants such as particulate matter
(PM10/PM2.5) has a limit of 14% (1-day mea-
surement per week at random, evenly distributed
over the year, which would result on roughly 52
1-day measurements per year, or 8 weeks evenly
distributed over the year, which would result
on roughly 56 1-day measurements per year)
(UNION et al., 2008). This indicator is related to
timeliness and completeness dimensions.

Water Air Soil Pollut (2023) 234:248248 Page 6 of 23



• Minimum number of sampling points: This
indicator is defined in UNION et al. (2008) for
fixed measurements, and it depends on the pop-
ulation of the specific area. For instance, a zone
such as the Aburra Valley in Antioquia-Colombia,
with about 4 million inhabitants in 2020 (Proan-
tioquia et al., 2020), requires a minimum number
of sampling points of 11. This indicator is related
to data volume dimension.

• Precision: It represents the random component
of error and is a measure of agreement among
repeated measurements of the same property,
under identical or very similar conditions (EPA,
2017). It is usually estimated as a derivation of
the standard deviation. This indicator is part of
the uncertainty components and matches the pre-
cision DQ dimension.

• Bias: This indicator is a component of the uncer-
tainty and represents the systematic distortion of
a measurement process that causes error in one
direction. It is determined by the estimation of
positive and negative deviation from the true value
(EPA, 2017). This definition matches the accuracy
DQ dimension.

• Detection limit: It is the minimum concentration
of a pollutant that can be distinguished from zero
(absence of the pollutant) by a single measure-
ment at a stated level of probability (EPA, 2017).
This indicator can be sorted within the validity
DQ dimension.

• Accuracy: It is defined as data quality indica-
tor in EPA (2017) as “measure of the overall
agreement of a measurement to a known value
and includes a combination of random error (pre-
cision) and systematic error (bias) components
of both sampling and analytical operations.” The
guide recommends to use bias and precision when
possible, otherwise, use accuracy as the mea-
surement uncertainty. This indicator matches the
dimension of the same name.

• Representativeness: In handbook (EPA, 2017), it
is defined as a measurement of the population com-
ponent of uncertainty and refers to “the degree
to which data accurately and precisely represents the
frequency distribution of a specific variable in the
population”. According to the guide, it does not
matter how precise or unbiased the measurement

values are, whether a site is unrepresentative
of the population that is presumed to represent.
Representativeness depends on factors such as
the amount of sampling points (network size),
frequency of sampling, and sampling sched-
ule. Thus, this indicator can match timeliness
and data volume DQ dimensions, as well as
the “minimum number of sampling points” and
“minimum time coverage”, which are discussed in
the guide (UNION et al., 2008).

• Comparability: In the EPA handbook (EPA,
2017), this indicator is defined as “a measure of
the confidence with which one dataset or method
can be compared to another, considering the units
of measurement and applicability to standard sta-
tistical techniques”. For example, if there are two
datasets retrieved from monitoring stations and
low-costs sensors, it is expected that both of them
are comparable. This indicator can match the
concordance DQ dimension.

• Completeness: This indicator (from EPA (2017))
directly matches definition of the data complete-
ness DQ dimension as the ratio of obtained valid
data to the expected data. EPA requires 75% data
to be complete.

4 DQ Enhancement Techniques

This section describes the most used data quality enhance-
ment techniques in IoT-based air quality monitoring
systems. We found four main categories, namely Data
calibration, Data Interpolation, Data aggregation/fusion,
and Outlier Detection as described to follow.

4.1 Data Calibration

Low-cost sensor calibration is essential due to col-
lected data can be affected by noise and abnormalities.
However, sensor manufacturers do not often provide
direct means of sensor calibration, since it is not
intended for low measurements, and is under specific
humidity and temperature settings (Hasenfratz et al.,
2012). Moreover, a calibrated sensor can suffer of
sensor drift due to it can last several years after deploy-
ment (Barcelo-Ordinas et al., 2018). Hence, auto-
matic or additional calibration is a needed in order to
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overcome the mentioned limitations. Common cali-
bration approaches for low-cost air quality sensors are
done in laboratory with artificial pollutants, as well as
in field, where the sensors are located close to fixed
reliable stations. Field calibration has the disadvantage
of dependency on weather conditions. Therefore, dif-
ferent reference measurements with several weather
conditions (e.g., temperature and humidity settings)
are needed for a more accurate calibration process
(Hasenfratz et al., 2012).

Existing works have proposed new approaches
based on traditional calibration. A node-to-node cali-
bration approach was proposed in Kizel et al. (2018).
It consists in calibrating only one sensor in a chain, by
using reference measurements. Then, the rest of sen-
sors are calibrated sequentially one against the other.
This approach is suitable for distributed sensor net-
works. Other work uses Simple Linear Regression
(SLR), Multi Linear Regression (MLR), and Artificial
Neural Network (ANN) for calibration (Okafor et al.,
2020). One feature (i.e., measurements from one sen-
sor) is used in a SLR model, where each sensor is
calibrated individually to adjust the bias. On the other
hand, MLR and ANN models use all available features
and a subset of features found by an Exhaustive Fea-
ture Selection method. Another approach is to place
the sensor to be calibrated and the reference sensor in
a hardboard box as in Rajasegarar et al. (2014b). The
authors performed cubic polynomial fit with minimum
error. A similar procedure was performed in Carratu
et al. (2020), where a particle generator was used, and
the sensors were previously synchronized. The authors
also used the cubic polynomial fitting for each sensor.

4.2 Data Interpolation

Data interpolation can be understood as the process
to generate new data with the aim to improve spatial
or temporal resolution of a variable under supervi-
sion. Air-quality monitoring at local scale requires
spatio-temporal integration to interpolate data. Urban
environments can have large variations at small scale,
where traditional interpolation methods fail to obtain
reliable data. A solution is the use of high-density
networks, by using low-cost sensors in order to
monitor variable data at local scale (Alavi-Shoshtari
et al., 2013). Low-cost sensors offer finer resolu-

tion of spatio-temporal data, which can complement
existing air-quality monitoring stations. However, in
order to address data quality from low-cost sen-
sors, several interpolation methods have been pro-
posed. Spatial interpolation is a common method
used to predict spatio-temporal distributions in out-
doors. Spatial interpolation relates air-quality mea-
surements to their locations in order to predict point-
wise data. It increases data availability across space
and time. Existing spatial interpolation algorithms
include nearest neighbor, spatial averaging, inverse
distance weighting, and Kriging. The most used is the
Kriging method, which produces best linear unbiased
estimation of air-quality data (Li et al., 2018).

4.3 Data Agregation/Fusion

Data generated by several low-cost sensors can have
uncertainties since various sensors have different tech-
nical performance. Data from only one sensor cannot
satisfy the needs in terms of resolution and accuracy.
Hence, accurate measurements can be obtained when
data from different sensors (i.e., a multisensor system)
is fused (Lin et al., 2020a). Data fusion was defined by
Joint Directors of Laboratories in 1991 as “a the pro-
cess of dealing with the association, correlation, and
combination of data and information from single and
multiple sources to achieve refined position and iden-
tity estimates, and complete and timely assessments
of situations and threats as well as their significance”
(White, 1991).

Data fusion systems have the advantage of expand-
ing coverage in terms of space and time, as well as
to improve performance, and spatial-temporal reso-
lution (Lin et al., 2020a). Calibration errors can be
reduced by considering measurements from several
sensors and multivariate regression. It helps reduc-
ing uncertainty of calibration parameters (Barcelo-
Ordinas et al., 2018). Existing works have proposed
data fusion methods. For example, a data-fusion
framework based on Optimum Linear Data Fusion
theory (based on the least squares method) and Krig-
ing method (to estimate the spatial-temporal data)
was proposed in Lin et al. (2020a). Another approach
merge sensor data with environmental factors in a
calibration equation by using linear regression and
artificial neural networks (Okafor et al., 2020).
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4.4 Outlier Detection

Outliers refer to those data points that are far from the
expected pattern in the data, and cannot be explained
by a model. They are not consistent in space and
time with the remaining set of observations (Jain and
Shah, 2017), and must be distinguished from noise
and missing values (Chung & Kim, 2020). Outliers
are also known as anomalies, and can be caused by
interference and sensors malfunction. Increasing IoT
applications has imposed the need to develop accurate
outlier detection methods since there is an increase
in the collected data. In addition, several IoT appli-
cations use low-cost sensors, which are more prone
to outliers with a high variability. Hence, it has been
reported that low-cost sensor data suffers of low accu-
racy and precision, as well as low correlation with the
reference (Fang & Bate, 2017b). Removing outliers
from datasets at preprocessing stages improves the
performance of machine learning algorithms (Chung
& Kim, 2020). Several approaches have addressed
outlier detection by using threshold values, where if a
data point is greater than that value, it is considered
an outlier. However, the threshold selection is an issue
since it can be very subjective (Chen et al., 2018).

Several solutions for outlier detection have been stud-
ied such as density-based, distance-based, and neural
network-based methods (Huang et al., 2020b).

4.5 Relation Between DQ Enhancement Techniques
and Dimensions

Figure 1 depicts the relationship between air quality
indicators, data quality dimensions, and data quality
enhancing techniques. This mapping helps to iden-
tify which air-quality sensor data attributes are related
to the IoT data quality ones, as well as which tech-
niques are commonly used to improve those attributes.
For example, the accuracy can be improved by sensor
calibration, data interpolation, outlier detection, and
data fusion techniques. As evidenced, not all dimen-
sions have a mapping on the indicators side, and not
all dimensions can be improved by the DQ enhancing
techniques explored in the literature. A description of
how the enhancement techniques are related to the DQ
dimensions is explained as follows.

Data calibration involves correcting the taken mea-
surements to improve the accuracy of the variable.
Thus, the accuracy dimension is directly affected as
the calibration process seeks to improve this dimen-

Fig. 1 Mapping air quality
DQ indicators, DQ
dimensions, and DQ
enhancing techniques,
where C is the calibration, I
is the interpolation, O is the
outlier detection, and F is
the data fusion/aggregation
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sion. When an air quality monitoring system imple-
ments a calibration process, it enhances the confidence
of the system, thus affecting the confidence dimen-
sion. If the calibration process takes into account
the variability of the measurement, the precision
dimension is also improved. On the other hand, if
the calibration process involves an additional refer-
ence measurement (e.g., robust calibrated sensors,
particle generators), the concordance dimension is
affected since the sensor, which is being calibrated,
is compared to a reference for applying a correction
mechanism.

Data interpolation creates new data points in order
to fill spatial or temporal gaps, by improving the com-
pleteness of the original samples as well as the volume
of captured data. Normally, interpolated data is cre-
ated using mathematical or machine learning models,
thus increasing the artificiality. Interpolated data is
usually compared with at least one reference in order
to estimate the error, and hence the accuracy dimen-
sion is altered. Precision dimension is affected if a
computation of variability or standard deviation of
the interpolated data is evaluated. Data interpolation
is also related to the confidence dimension if confi-
dence intervals are calculated and the interpolated data
is within them. When a computation of correlation
between interpolated data and near (spatial or tempo-
ral) real data is performed, the concordance dimension
is considered.

Data aggregation/fusion techniques are related to
several data quality dimensions. Accuracy of mea-
surements is improved when data with poor quality
are fused or aggregated with good quality data. The
fused or aggregated data can have a different variabil-
ity from the sources depending on the used technique,
thus affecting the precision and increasing data arti-
ficiality. Completeness dimension is altered if new
data is included in the fused or aggregated process.
Also, new data contributes to data volume dimension,
where incomplete datasets can be merged in order
to obtain a more complete fused dataset. Moreover,
the redundancy dimension is changed if the aggrega-
tion technique uses redundant data and the confidence
dimension is affected if an error is estimated with
a specific confidence interval. Additionally, concor-
dance dimension is modified if the techniques include
the correlation of multiple measurements. Finally, the

validity dimension is altered if fused or aggregated
data is contrasted with ground true data.

As outlier detection techniques aim to identify data
that is not consistent with other observations, it can
reduce the error and variability of data, by improving its
accuracy, precision, and confidence, while increasing its
reliability. Furthermore, if outlier detection involves
removal of anomaly data, it will impact directly on the
completeness of the dataset and will also reduce its
volume. Detecting whether anomalous data are related
to errors or important events can also be achieved by
using concordance metrics; hence, this dimension is
related to the technique. Having these DQ concepts in
mind, we present below the design and the results of
the systematic mapping proposed in this work.

5 Systematic Mapping Method

A systematic mapping study is a well organized, and
a frequently used methodology to synthesize the state
of the art around a particular research area. This
type of studies looks for the “big picture” of some
particular research topic, showing the branches and
challenges associated with it James et al. (2016). This
approach has been mainly used in software engineer-
ing; however, its application in the IoT field has been
modest.

In this document, a systematic mapping study
is developed based on the guidelines proposed by
Petersen et al. (2008). Some steps were established to
identify and analyze the studies about Data Quality on
IoT-based air quality monitoring systems. We define
the following steps for developing the systematic map-
ping study:

1. Research questions: In this step, the research
questions are defined. These questions are
expected to be solved when the systematic map-
ping process is completed.

2. Search strategy: This step defines the method-
ology of the research, starting by defining the
“search chain” which will be applied to relevant
academic databases.

3. Selection criteria: Inclusion and exclusion crite-
ria are defined in this step. These criteria are used
to filter the studies found in previous step.

Water Air Soil Pollut (2023) 234:248248 Page 10 of 23



4. Data extraction: Once the Search Strategy and
Selection Criteria are applied, relevant informa-
tion about the Research Questions is extracted
from the selected articles.

5. Analysis: In this step, we analyze the results
obtained for drawing conclusion about the map-
ping study.

5.1 Research Questions

We develop this study to identify the state-of-the-art
on how data quality is applied in IoT-based air quality
monitoring systems. Hence, we define five research
questions (RQs) which help us to guide the review of
the literature in this field.

• RQ#1: Which are the most relevant DQ dimen-
sions related to IoT-based air quality monitoring
systems?

• RQ#2: What are the most used strategies to miti-
gate data quality problems in IoT-based air quality
monitoring systems?

• RQ#3: What are the system’s features that
threaten data quality in IoT-based air quality mon-
itoring systems?

• RQ#4: How is data quality estimated for IoT-
based air quality monitoring systems?

• RQ#5: How is degradation of data quality identi-
fied in IoT-based air quality monitoring systems?

5.2 Search Strategy

The research questions are used to identify the four
main keywords in our search: “Air Quality,” “Monitor-
ing,” “Data Quality,” and “Internet of Things.” Then,
we assemble the search query including new terms
from variations of these keywords. Table 7 presents
the search query, for each main keyword we define a
corresponding query that contains all the variants. We
used the AND logical operator to connect the resulting
keyword groups.

Table 8 Included and excluded publications

Item Number of publications

Initial search 162

Snowballing +40

Total papers found 202

Applying selection criteria -131

Total papers selected 71

According to the analysis developed in Chen et al.
(2010), we select five of the most relevant academic
databases: IEEE, Web of science, Scopus, ACM, and
Science Direct. We performed the search in March
2022 using the query described in Table 7 in the
title, abstract, and keywords of the published works.
We found a total of 162 publications, after removing
duplicates.

We also developed a snowballing process from the
review articles found in the initial search. The idea is
to look for potential papers to include in our study by
reviewing the references of these review articles. We
identified 40 papers in this snowballing process.

5.3 Selection Criteria

For this study, we define one inclusion criterion and
four exclusion criteria. The inclusion criterion defined
for this study is “the study includes publications that
propose, compare or implement methods to measure
or analyze the quality of data gathered by IoT systems
in the context of air pollution.”

The exclusion criteria for this mapping study are
the following: (1) The study excludes papers that
do not propose, compare, or implement methods to
measure or analyze the quality of data gathered by
IoT systems in the context of air pollution. (2) The
study excludes papers that are not written in proper
English language. (3) The study excludes papers that
are duplicated or are a previous version of a more

Table 7 Search query used
in the mapping study Main keyword Query

“Air quality” “air quality” OR “air pollut*” OR “atmospheric pollution”

“Monitoring” monitoring OR detecti* OR sensing

“Data quality” “data quality” OR “anomaly detection” OR “data anomaly”

“Internet of Things” “internet of things” OR “IoT” OR “sensor networks”
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complete study about the same research. (4) The study
excludes papers such as systematic reviews, mapping
studies, editorials, prefaces, article summaries, inter-
views, news, correspondence, discussions, comments,
readers letters, tutorial summaries, panel discussions,
opinion articles, poster sessions, classes, abstracts, and
presentations.

We apply the inclusion/exclusion criteria to the
papers retrieved in the previous step, by ensuring that
each paper is analyzed by all members of the team.
We develop meetings to resolve the conflicts arisen
from the application of these criteria. The Rayyan web
application is used for managing this process (Ouzzani
et al., 2016). As a result of this step, 71 papers were
selected (see Table 8).

5.4 Data Extraction

In this step, we deeply review the selected papers with
the aim to extract relevant information for answering
the research questions. As in Petersen et al. (2015),
we divide the selected papers into five sets of 14–15
papers. Each team member extracts information from
the papers in her/his set and then reviews the extrac-
tion of another team member. Following this process,
we ensure that each paper is review by two team mem-
bers. Then, a weekly meeting is carried out to resolve
any conflict and reach a common agreement.

6 Results

This section presents the results of the mapping study
developed to answer the research questions stated
above. Before discussing the main results, we present

a general overview of the papers under scope. The
analysis of the main topics are presented around three
aspects such as DQ dimensions and enhancement
techniques, endangering factors, and DQ estimation
and degradation.

One of the first highlighting points is that the
analysis of data quality in the context of IoT-based
air quality monitoring systems is a topic with ris-
ing interest in the research community, especially in
the last 7 years, with an average number of near 9
papers per year, as shown in Fig. 2. Even though,
there are some early approaches, such as by Harkat
et al. (2006), the interest in DQ can be linked to the
development and deployment of low-cost monitoring
systems.

Figure 3 illustrates the venues in which the ana-
lyzed works were published. Most of the papers
(57.7%) were published in high quality journals (Q1
or Q2 according to the Scimago ranking). Almost a
third of the papers analyzed in this study (31%) were
published in conferences. Figure 4 shows the deploy-
ment location of the AQ monitoring systems for which
DQ is analyzed. These systems have been deployed in
16 different countries, being USA (with 10 AQ sys-
tems), China and Taiwan (with 7 systems each one),
and Switzerland (with 4 systems) the countries with
more number of deployments reported.

Figure 5 presents some details regarding the IoT-
based AQ systems. Most of the systems are specifi-
cally created for outdoor monitoring (53 out 71), while
5 works are created for indoor scenarios, and 7 for
both indoor and outdoor. We also analyzed the porta-
bility of these systems finding 44 implementations in
fixed locations, 12 mobile system, and 4 works that
can be used in both fixed and mobile.

Fig. 2 Histogram of paper
publications in the context
of data quality in IoT-based
air quality monitoring
systems per year
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Fig. 3 Venue of the
publication

57.7%
31%

8.5%
2.8%

Q1 Journal
Conference
Q2 Journal
Book Chapter

Regarding the variables of interest in the AQ moni-
toring system, Fig. 6 presents a histogram of the envi-
ronmental variables identified in our study. The PM2.5
variable is the most frequently analyzed followed by
the ozone (O3) and the nitrogen oxides (NOx). This
result is in agreement with the expectations, since low-
cost PM and gas sensors are more prone to low-quality
measurements as mentioned before.

6.1 DQ Dimensions and Enhancement Techniques

This section aims at providing answer to research
questions RQ#1 and RQ#2. Regarding RQ#1, “Which
are the most relevant DQ dimensions related to IoT-
based air quality monitoring systems?,” most of the
works analyzed usually do not refer directly to DQ
dimensions, as defined in Section 2 We consider this
lack of use of technical DQ concepts in IoT systems is
caused by the disconnection between the IoT field and
the Data Quality theory.

We identify the DQ dimension used in IoT systems
by looking for the DQ enhancement techniques imple-
mented in those systems, thus answering the RQ#2.
Figure 7 presents the DQ enhancement techniques

implemented in the analyzed works. Calibration (C) is
the most used technique being implemented in about
50% of the works. Most of them implement calibra-
tion techniques on-site and at run-time as depicted
in Fig. 8. Data interpolation (I) and outlier detection
(O) are also frequently used in air-quality monitor-
ing systems, being implemented in 18 works each.
Finally, data aggregation and fusion are less frequently
implemented, found in only four works.

According to the discussion we develop in
Section 4.5, the calibration technique is directly
related to the accuracy, confidence, precision, and
concordance dimensions. Furthermore, the data inter-
polation is related to the completeness, artificial-
ity, accuracy, precision, confidence, and concordance
dimensions. Outlier detection is associated to the fol-
lowing dimensions, accuracy, precision, confidence,
completeness, and concordance. Finally, the data
aggregation and fusion techniques are linked to the
accuracy, precision, artificiality, completeness, data
volume, data redundancy, confidence, concordance,
and validity dimensions.

Figure 9 presents the percentage of relative impor-
tance of DQ dimensions in IoT-based air quality

Fig. 4 Location of the
deployment
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Fig. 5 System type
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Fig. 6 Measured air-quality variables

Fig. 7 DQ enhancement
technique used in AQ
monitoring systems (C,
calibration; I, data
interpolation; O, outlier
detection; F, data
aggregation/fusion)
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Fig. 8 Calibration time and
site
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monitoring systems. We define a score for represent-
ing the relative importance of a dimension, which
varies from 0 to 100, where 0 means the dimension
is not important, and 100 means the dimension is
very important. This score is computed as the percent-
age of appearances of each dimension with respect
to the total number of times an enhancement tech-
nique is implemented. According to this score, the
Precision, Confidence, Concordance, and Accuracy
dimensions, with a score of 100, are been considered
the most important DQ dimensions for the IoT-based
air quality monitoring systems. Then, Completeness
and Artificiality dimensions have a lower importance,
obtaining scores of 52 and 29. Finally, the least impor-
tant dimensions are Validity, Data Volume, and Data
Redundancy, with a score of 6.3 each one.

6.2 Endangering Factors

IoT-based air quality monitoring systems have been
gaining popularity and are being included in a lot of
new applications. Features like portability, small size,
lightweight, low-cost, and first-hand data generation
have motivated the creation of enthusiastic projects
related to this topic. For this reasons, the trend shows
that this approach will continue growing in the next
decade. Figure 10 shows that most of the reviewed
works (85.9%) are using low-cost sensors.

New technological approaches around air quality
measurement have brought new challenges related to
the degree of trust of these systems. IoT-based air
quality monitoring is somehow contrary to classic,
expensive, robust and certified air quality monitor-

Fig. 9 Relative importance
of DQ dimension in
IoT-based air quality
monitoring systems

Data redundancy

Data volume

Validity

Artificiality

Completeness

Accuracy

Concordance

Confidence

Precision

0 25 50 75 100
Percentage of Relative Importance

D
im

en
si

on
s

Water Air Soil Pollut (2023) 234:248 Page 15 of 23 248



85.9%

8.5%
5.6%

Yes
No
N/A

Fig. 10 Low-cost sensor usage

ing stations, which have been used as normative to
determine the risks associated with air quality in
overpopulated places around the world.

Moreover, some weaknesses are related to low-
cost stations and their application to large-scale air
quality monitoring. In particular, DQ can be seri-
ously compromised in low-cost approaches, due to
some degree of data degradation mentioned in the
RQ#3. Among the weaknesses of low-cost sensors, we
could identify: method of measurement, sensor aging,
lack of redundancy, limited lifetime, and data error in
storing/communication. The details of each identified
weakness are given below.

• Method of measurement. Most of low-cost
portable AQ sensors are related to PM2.5/PM10
and gas concentration (Budde & Riedel, 2018;
Lin et al., 2018) measurements. In less proportion,
other kind of gas sensors are used in IoT air-
quality monitoring applications (Fig. 10). These
sensors implement a widely used technique called
“laser detection.” In this technique, a flow of air is
pumped by a fan into a chamber. The chamber has
a laser light which generates shadows on a light
detector when a particle is present. Constant air
flow is essential to have an accurate reading. An
embedded computer attached to the sensor esti-
mates the PM value based on the light detector.
Problems associated with this method include as
follows: miss-computations in the detector, low or
high air flow speed in the chamber, high or low
environmental temperatures, and high humidity in

the air around the sensor (Liu et al., 2017; Penza,
2020).

• Sensor aging. A high concentration of dirt and
dust degrades the sensor response, generating data
that can be far from the reality (Liu et al., 2017;
Manikonda et al., 2016). Periodical maintenance
has to be applied in order to avoid this issue.
Regarding outdoor sensors, they suffer from case
degradation. A lot of malfunctions in such sen-
sors are related to electronic damage due to water
leaking inside the sensor hardware. The sensor’s
precision decreases along time, environmental
factors as humidity and temperature can seriously
degrade the data. A periodical calibration strategy
must be applied to improve this issue.

• Lack of redundancy. Redundancy is an easy way
to determine when a particular sensor is show-
ing malfunctions. In IoT AQ monitoring systems,
sensor redundancy comprises including two or
more sensors for comparing the deviation of their
readings. Moreover, some applications can show
serious problems applying redundancy of nodes
due to their size and battery restrictions. Another
kind of redundancy can be achieved by analyzing
spatio-temporal data from near sensors (Feinberg
et al., 2019; Li et al., 2018; Lin et al., 2020a).
This technique is a computational demanding task
that usually has to be applied in a gateway node
and, again, can be hard to accomplish in some
scenarios.

• Limited lifetime. Battery powered systems are
widely used in low-cost electronic solutions, and
AQ measurement system is not an exception. The
typical AQ device includes a PM sensor, an on
board computer, and communication and storage
interfaces. With all these components demanding
power from the battery. In a poorly planed AQ IoT
solution, the battery lifetime can be very short due
to system inefficiency (Penza, 2020). Power man-
agement design techniques as low power commu-
nications, extensive use of low power modes in
the processors, time/event driven software appli-
cations development, among others, have to be
applied in order to extend the lifetime of the
batteries (Kendrick et al., 2019).

• Data error in storing/communication. It is com-
mon in electronic systems to have errors in com-
munication and storage processes. Those errors
can be caused by the electromagnetic noise in
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the environment, battery degradation, PCB mal-
functions, exceeding of memory capacity, among
others (Budde and Riedel, 2018; Kaivonen &
Ngai, 2020). A sloppy software implementation
can be a source of errors. Those malfunctions are
usually hard to find in the design process, even
for an experienced engineer. A well-planned set
of tests has to be applied to the hardware and soft-
ware in order to minimize the probability of these
malfunctions (Kendrick et al., 2019).

6.3 Data Quality Estimation and Degradation

For answering RQ#4 (How is DQ estimated?) and
RQ#5 (How is degradation DQ estimated?), we con-
clude from our review that DQ is estimated based on
its dimensions, which, at the same time, allows to see
whether there is any degradation. For example, in AQ
monitoring systems, a degradation can be identified
when an indicator is not within the limits given by the
Data Quality Objectives (DQOs), and it is common to
find that authors define what indicators are important
to them and their own thresholds. According to inter-
national guidelines (EPA, 2017; UNION et al. 2008),
the quality of data in air quality monitoring systems
should be estimated based on the Data Quality Indi-
cators (DQI), as we reviewed in Section 4 However,
most of the studies focus only on the accuracy, preci-
sion, concordance, and confidence of data, as shown
in Fig. 9.

For the evaluation of DQI related to the aforemen-
tioned dimensions, it is necessary to have a reference
measure. In the studies included in our review, we
found a wide variety of references (see Fig. 11). The
reference measure more frequently used are city-scale
stations, since these stations are devices that are often
calibrated and can provide a reliable measure. Other
references for calibration in laboratory have been
found, such as using calibrated sensors or calibration
chambers. For on-site calibration, using neighboring
sensors as reference is a convenient option. Finally,
we identified other methods like using historical data
from public available datasets, and the use of the mea-
surements of a NASA aircraft which collected AQ
measurements in the regions of interest (Duvall et al.,
2016).

Even though, other DQ dimensions and indicators
are barely mentioned and estimated, authors clearly
define the need of using low-cost sensors to increase

the spatial and temporal resolutions of the system,
which implies enhancing DQ indicators such as the
representativeness, the minimum data capture, the
minimum time coverage, and the minimum number of
sampling points. It means that, besides the accuracy of
data, authors are indirectly affecting the degradation
of other indicators that impact on the overall applica-
tion’s DQ. The treatment of DQ by several authors is
not stick to any concepts or definitions, for instance,
terms like DQ estimation and DQ degradation are not
separated and there is not a clear distinction about
when DQ started to degrade, but just calculated, and
sometimes compared to thresholds within the same
process.

6.4 Citations

The following works were included in this system-
atic mapping study: Xie et al. (2019), Tang (2016),
Saukh et al. (2015), Ma et al. (2020), Okafor et al.
(2020), Huang et al. (2020a), Kim et al. (2018), Kizel
et al. (2018), Fang and Bate (2017b), Alavi-Shoshtari
et al. (2013), Bart et al. (2014), Harkat et al. (2006),
Heimann et al. (2015), De Vito et al. (2008), Castell
et al. (2017), Duvall et al. (2016), Hasenfratz et al.
(2012), Alvarado et al. (2015), Moltchanov et al.
(2015), Kelly et al. (2017), Rajasegarar et al. (2014b),
Piedrahita et al. (2014), Sun et al. (2016), Talam-
pas and Low (2012), Weissert et al. (2017), Mead
et al. (2013), Chen et al. (2018), Nguyen et al. (2019),
Yuan et al. (2016), Jain and Shah (2017), Chung
and Kim (2020), Lee et al. (2019), Alavi-Shoshtari
et al. (2018), Barcelo-Ordinas et al. (2018), Lin et al.
(2018), van Zoest et al. (2019), Wang et al. (2015),
Jiao et al. (2016), Mueller et al. (2017), Kendrick
et al. (2019), Rai et al. (2017), Feinberg et al. (2019),
Rajasegarar et al. (2014a), Fang and Bate (2017a),
Wang et al. (2020), Hao et al. (2015), Benabbas et al.
(2019), Fu et al. (2017), Kotsev et al. (2016), Mark-
ert et al. (2016), Kaivonen and Ngai (2020), Harrou
et al. (2018), Maag et al. (2017), Wang et al. (2017),
Li et al. (2018), Qin et al. (2020), Lin et al. (2020a),
Orlowski et al. (2019), Carratu et al. (2020), Buel-
vas et al. (2021), Chu et al. (2020), Connolly et al.
(2022), Cui et al. (2021), Hofman et al. (2020), Hof-
man et al. (2022), Li et al. (2022), Lin et al. (2022),
Marathe et al. (2021), Qiao et al. (2021), Rezapour and
Tzeng (2021), Rivera-Munoz et al. (2021), Rollo and
Po (2021), and Van Zoest et al. (2021).
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Fig. 11 Distribution of
articles that compare
low-cost sensors
measurements to a reference
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7 Discussion

An increasing interest in analyzing the DQ topic
is depicted in Fig. 2, which can be interpreted as
the result of the number of low-cost IoT systems
deployed for AQ monitoring (see Fig. 10). However,
it was found in the reviewed papers that not many
authors make an explicit mention of the DQ dimen-
sions addressed in their work. What they do is to
mention terms derived from “Data Quality,” where
DQ information is diffuse. We believe that the main
reason for this phenomenon is the language of data
quality, which has not been used in a proper formal
way inside the IoT and air-quality monitoring appli-
cations yet. This is considered a serious issue to con-
front AQ measurement under the DQ definitions here
presented.

Accuracy was the most DQ indicator mentioned by
different authors to measure “quality” inside AQ sys-
tems. Nevertheless, the introduction of other indica-
tors will provide a more reliable and realistic approach
inside the IoT AQ measurement. The minimum DQ
dimensions and indicators that should be provided
by a low-cost AQ system is a challenge that has to
be established by different actors such as environ-
mental agencies, enthusiastic developers, and tech-
nological industries around the world. We consider
that environmental agencies have shown resistance
in the implementation of portable and low-cost AQ
supervision systems due to factors such as method of
measurement, sensor aging, lack of redundancy, lim-

ited lifetime, and data error in storing/communication.
Although these problems are serious and unresolved,
low-cost AQ supervision will not be taken into account
as a real alternative to determine the AQ in large-scale
applications. On the other hand, low-cost sensors in
the context of AQ applications have being growing as
an alternative to empower citizens around the world.
This tendency offers a lot of challenges and opportu-
nities, which remarks the importance of an adequate
DQ definitions in those applications.

Using DQI or DQ dimensions as a way to evaluate
the status of an air-quality monitoring system can be
a proper approach, since it will consider the attributes
that are really important for the users within a context.
This approach can provide a complete view of the sys-
tem’s DQ status, and also allow to check on specific
degraded features that can be improved by using DQ
enhancing techniques (see Fig. 1). Also, by identifying
the endangering factors, it can be targeted improve-
ments on the system’s infrastructure to mitigate their
impact on the overall DQ of the system.

Therefore, this work found that dimensions or indi-
cators are not mentioned explicitly by the authors due
to the lack of proper usage of DQ dimensions and
indicators definitions, as well as the fact that most of
the authors do not stick to guidelines, which standard-
ize topics like the air-quality monitoring. In order to
mitigate this issue, as a future work, we propose the
development of a tool that can be used to identify and
sort the dimensions and indicators for IoT-based AQ
monitoring systems.
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8 Conclusion and Future Work

In this paper, we studied the data quality analysis on
IoT-based air quality monitoring systems. First, we
identified a general overview of data-quality dimen-
sions within an IoT context. Then, data quality indica-
tors and objectives in air-quality monitoring systems
are reported, according to the guidelines by regulatory
entities. Also, we propose a mapping from indicators
to dimensions to determine the relation between these
concepts. In order to establish the state of data quality
in IoT-based AQ systems, we developed a systematic
mapping study about this field. The results showed
an increasing number of studies that take into account
terms related to DQ within IoT-based air quality mon-
itoring systems in the last few years; however, there
is a lack of DQ terminology adoption and a rigorous
application of DQ metrics. For instance, we had to
identify the most relevant DQ dimensions related to
IoT-based air quality system indirectly by analyzing
the used enhancement techniques. To this end, we cre-
ated a mapping between the enhancement techniques
and the DQ dimensions.

In general, we found authors do not use the termi-
nology of the DQ field. We suppose this is due to two
different factors. First, there is an absence of regula-
tions that take into account indicative measurements
(like low-cost sensor measurements) in the evalua-
tion of air quality. Second, authors ignore the existing
guidelines because they are not required to follow
them. The primary objectives of their research are to
evaluate technological alternatives or data processing
techniques.

It is understandable why low-cost sensor measure-
ments are not fully considered by agencies in charge
of environmental monitoring, because of their data is
prone to have more errors than a robust station. How-
ever, to avoid such distrust on low-cost sensors, an air
quality monitoring system can be implemented to be
DQ-aware and also to include techniques to improve
the quality of its data. In addition, many low-cost sen-
sors can complement few robust stations to improve
the resolution of the system, using the robust sta-
tions directly as references or sources of data to build
reference models that help to improve DQ in low-
cost air pollution sensors, for example, to be used in
calibration processes.
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