
J. Parallel Distrib. Comput. 66 (2006) 931–946
www.elsevier.com/locate/jpdc

Data redistribution and remote method invocation for coupled components

Felipe Bertranda,∗, Randall Bramleya, David E. Bernholdtb, James A. Kohlb, Alan Sussmanc,
Jay W. Larsond, Kostadin B. Damevskie

aComputer Science Department, Indiana University, USA
bComputer Science and Mathematics Division, Oak Ridge National Laboratory, TN, USA

cUMIACS and Department of Computer Science, University of Maryland, MI, USA
dMathematics and Computer Science Division, Argonne National Laboratory, IL, USA

eScientific Computing and Imaging Institute, University of Utah, UT, USA

Received 23 May 2005; received in revised form 30 September 2005; accepted 1 December 2005
Available online 3 May 2006

Abstract

With the increasing availability of high-performance massively parallel computer systems, the prevalence of sophisticated scientific simulation
has grown rapidly. The complexity of the scientific models being simulated has also evolved, leading to a variety of coupled multi-physics
simulation codes. Such cooperating parallel programs require fundamentally new interaction capabilities, to efficiently exchange parallel data
structures and collectively invoke methods across programs. So-called “M×N” research, as part of the common component architecture (CCA)
effort, addresses these special and challenging needs, to provide generalized interfaces and tools that support flexible parallel data redistribution
and parallel remote method invocation. Using this technology, distinct simulation codes with disparate distributed data decompositions can
work together to achieve greater scientific discoveries.
© 2006 Elsevier Inc. All rights reserved.

Keywords: Common component architecture; Model coupling; Parallel data redistribution; Parallel remote method invocation

1. Introduction

Scientific computing is adopting more sophisticated scien-
tific models that combine multiple physical models into a sin-
gle advanced simulation experiment. For example, by applying
several live simulation programs as dynamic boundary con-
ditions, in place of the more traditional static boundary ap-
proaches, new results of a higher fidelity are possible. Projects
now using this approach include biological cell modeling, cli-
mate modeling, space weather, fluid-structure coupling, and
fusion energy simulation. Yet such coupled simulation mod-
els introduce a whole suite of complications, especially when
each individual model can have a different temporal scale,
spatial mesh organization, and/or distributed data decomposi-
tion. Individual simulation models are also often developed

∗ Corresponding author.
E-mail addresses: febertra@indiana.edu (F. Bertrand),

bramley@indiana.edu (R. Bramley), bernholdtde@ornl.gov (D.E. Bernholdt),
kohlja@ornl.gov (J.A. Kohl), als@cs.umd.edu (A. Sussman),
larson@mcs.anl.gov (J.W. Larson), damevski@cs.utah.edu (K.B. Damevski).

0743-7315/$ - see front matter © 2006 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2005.12.009

independently by different research teams, leading to challeng-
ing software integration obstacles. Combining multiple models
also leads to major problems in application modeling and ap-
plied mathematics.

High-performance computing introduces an additional com-
plication when the individual models are parallel programs: the
“M×N” problem (pronounced “M by N”). In the M×N prob-
lem, two parallel simulation programs must cooperate and ex-
change data. However, one simulation executes on a set of “M”
processes and the other executes on a potentially distinct set of
“N” processes, so for a data object to be shared between the two
simulations a mapping between corresponding data elements
must be made, and software infrastructure must provide for the
scheduling, synchronization and transfer of data elements de-
fined by the mapping. This arrangement is illustrated in Fig. 1,
where M = 8 and N = 27, and multiple processes on the N
side must export data values for each single process on the M
side. The set of operations required for such data manipulation
is referred to as “parallel data redistribution” because the data
is effectively translated from one distributed data decomposi-
tion into another.

http://www.elsevier.com/locate/jpdc
mailto:febertra@indiana.edu
mailto:bramley@indiana.edu
mailto:bernholdtde@ornl.gov
mailto:kohlja@ornl.gov
mailto:als@cs.umd.edu
mailto:larson@mcs.anl.gov
mailto:damevski@cs.utah.edu


932 F. Bertrand et al. / J. Parallel Distrib. Comput. 66 (2006) 931–946

Fig. 1. The “M × N” problem.

Most of the literature in parallel computing about data re-
distribution deals with balancing work loads when shifting
from one computational phase to another on the same set of
processes. Examples include reassigning regions in an adap-
tive mesh refinement algorithm or a fluids-structures interac-
tion simulation. In distributed computing, “data redistribution”
refers to how a distributed data object from one set of processes
is assigned to a new set of processes. This reassignment may
try to achieve load balance on the receiving set of processes,
but the essential problem is how to specify and define which re-
ceiving process(es) gets data from which sending process(es).

Such complications have made scientific simulation software
increasingly unmanageable, prompting a variety of software de-
velopment techniques to handle the complexity of integrating
software modules, tools and libraries. One solution for man-
aging this software complexity is an evolution of the object-
oriented programming concept, known as component-based
software engineering (CBSE) [46]. This methodology has been
successful in the business software domain (e.g. CORBA [41],
DCOM [39] and Enterprise JavaBeans [45]), and is migrating
into the scientific domain in projects such as the Common Com-
ponent Architecture (CCA) [2]. The CCA extends the concepts
of components, ports and frameworks to high-performance sci-
entific computing in parallel and distributed environments.

As part of the open CCA Forum [10] and the Center for Com-
ponent Technology for Terascale Simulation Software [11]
(part of the Scientific Discovery through Advanced Computing
(SciDAC) program [48]), the M×N problem has been explored
as a key enabling technology for component-based scientific
simulation software. An M × N Working Group, in coopera-
tion with a Scientific Data Components Working Group and
the Terascale Simulation Tools and Technology [21] SciDAC
Center, have been developing interfaces and technology that
alleviate the burden on the scientific applications programmer
in trying to assemble large coupled simulation applications. The
work has emphasized the fundamental infrastructure required
for two basic sets of capabilities, namely parallel data redistri-
bution and collective method execution.

Using a generic description of each component’s parallel
data, a variety of data exchange operations can be applied to
transparently couple parallel data objects configured at run time.

Beyond parallel data exchange or redistribution capabilities,
there is also the need for concatenating component “filters,”
e.g. for spatial and temporal interpolation or unit conversions.
Such capabilities form the basis for a general, extensible M×N
toolkit to encompass the full range of generalized model cou-
pling technology. Generalizing the existing set of numerical
interpolation and filtering schemes is a major undertaking and
apart from some preliminary experiments is beyond the scope
of our current work, which concentrates on parallel component
interactions that can be solved by computer science middle-
ware.

A related problem is when parallel components invoke meth-
ods on each other, referred to as parallel remote method invo-
cation (PRMI). Although the term RMI originated in the Java
community, here it refers to the general problem of interacting
parallel object-oriented components. No well-defined widely
accepted semantics exist yet for the possible wide range of types
of parallel invocations. Methods could be invoked between se-
rial or parallel callers and callees, and used to perform either
coordinated parallel operations or to independently update lo-
cal state in parallel. Such invocations could require data argu-
ments or return results in either serial or parallel (decomposed
or replicated) data arrangements.

Prototype M × N component and framework solutions have
been developed to explore the desired capabilities. The re-
mainder of this paper describes these solutions in more detail.
Section 2 provides basic background on CBSE and component
concepts, especially in the context of parallel and distributed
environments. This overview includes a generalized view of
parallel data structures and their underlying distributed data
decompositions, as well as a review of the semantics and is-
sues relating to PRMI. Section 3 lists some desired features
of M × N systems. Then, Section 4 presents a survey of
component-based M × N solutions that have been generated in
conjunction with the CCA effort. Section 5 describes related
work in M × N/coupling research. Finally, Sections 6 looks
toward future work in this area and Section 7 concludes.

2. Overview

2.1. Definitions and overview

Within the CCA Forum, a component is a software unit which
may be instantiated as part of a running process, or on a set of
multiple processes, e.g., as an MPI job. It is therefore possible
to have one component running as multiple processes, as well
as have multiple components all running within one process.
Partitioning a job into parallel processes typically implements
domain or data decomposition, while partitioning a task into
components implements a functional or computational phase
decomposition. In any case, the decomposition into compo-
nents is independent of any decomposition into parallel pro-
cesses, and within the CCA a component can span multiple
MPI-like parallel processes. The problems introduced by paral-
lel components are particularly difficult when the problem has
other forms of functional decomposition, sometimes based on
accessing distributed or specialized data resources.



F. Bertrand et al. / J. Parallel Distrib. Comput. 66 (2006) 931–946 933

Communication between CCA components is through ports
which employ a uses/provides design pattern. A provides port
is a public interface that a component implements, that can be
referenced and used by other components. A uses port is a con-
nection end point that can be attached to a provides port of the
same type. Once connected, the uses port becomes a reference
to the provides port and the component can make method in-
vocations on it. Interfaces in the CCA are specified with the
Scientific Interface Definition Language (SIDL). SIDL is ob-
ject oriented, designed with an emphasis on scientific comput-
ing [32].

In parallel computing a communication schedule is a se-
quence of message passing required to correctly move data
among a set of cooperating processes. A communication
schedule is typically the most difficult design issue in parallel
programming and requires complex bookkeeping about data
ownership by processes and the correct ordering of sends and
receives to keep local copies up to date, and to avoid deadlock.
Some parallel programming environments provide sophisti-
cated aid in relieving users of this burdensome problem, and
in some sense the M × N problem is the component version of
the communication schedule problem.

Framework is the term used in the CCA to describe the exe-
cution environment of a component-based application. It is use-
ful to distinguish direct-connected frameworks and distributed
frameworks, although to an application user there is no dif-
ference in the interfaces. In direct-connected frameworks, all
components in one process live in the same address space and
a port invocation then looks like a refined form of library call
(see left side of Fig. 2). A set of identical component instances
across a given direct-connected framework is called a cohort
and constitutes a parallel component. In Fig. 2 a cohort would
be the circles in the same column. All external interactions be-
tween this parallel component and the rest of the components
occur through port connections, whereas all internal interac-
tions among the cohort occur out-of-band from the CCA frame-
work (e.g. using MPI).

In contrast, components in a distributed framework each run
in different sets of processes which may be distributed across
multiple machines. In this case, port invocations become a re-
fined form of remote method invocation (RMI), using a network
communication library or other form of inter-process commu-
nication such as shared memory. The right side of Fig. 2 shows
how 3 components are interconnected in a distributed frame-
work. Ideally, a framework would provide both direct and dis-
tributed connection mechanisms.

All inter-component communication in distributed frame-
works is M × N. On the other hand, in the direct-connection
case there is no M × N because the components are co-located
in the same processes. However, M×N communication can still
happen between parallel programs running in separate direct-
connected framework instances. In this case the standard ap-
proach is to let programs communicate through intermediate
M × N components that are instantiated co-located on both
sides of a connection. The M × N components provide a ba-
sic API for parallel data transfer and redistribution between
two parallel components (or for self connections, such as for

Parallel Application Parallel Application

Direct-Connected
framework

Distributed 
framework

Component 1

Component 2

Component 3

Intra-Component
Communication

Port Interface
(Inter-Component
Communication)

A process

Fig. 2. Direct-connected and distributed frameworks.

Parallel Application

Parallel Application

Paired MxN Components

MxN 
Out-of-band

Communication
MxN

MxN

MxN

MxN

MxN

MxN

MxN

Fig. 3. M × N component.

transpose operations). The pair of M × N component instances
for a given connection must communicate with each other using
an internal mechanism that is out-of-band as far as the CCA
specification is concerned. This scenario is shown in Fig. 3.
One such implementation of an M×N component is described
in Section 4.1.

In a purely distributed case, this M × N component can-
not be co-located with both sides of the connection. There-
fore, it is not possible to use an M × N component to mediate
the communication like it is done in the inter-framework case



934 F. Bertrand et al. / J. Parallel Distrib. Comput. 66 (2006) 931–946

described above. Now the M×N communication must be han-
dled by the framework as part of the port abstraction. Ports
in distributed frameworks are based on the RMI paradigm, so
that idea must be expanded to handle calls between pairs of
parallel components. The framework must define all the seman-
tics of this parallel RMI interaction, including various synchro-
nization issues and the transfer of method arguments and the
resulting return value(s). Two implementations of distributed
frameworks that support parallel components and some basic
PRMI capabilities are presented in Sections 4.2 and 4.3.

2.2. Parallel data representation and redistribution

When a data structure is distributed across the processes in
a parallel environment, many different layouts are possible for
the data. The data transfer and redistribution associated with
an M × N or PRMI interaction requires representation of the
data layout on both sides of the transaction in a uniform way
that is understood by each component and the entity (usually
another component or framework) that makes the transfer. The
tools described in this paper take two primary approaches to
representing the parallel decomposition of arrays.

2.2.1. Linearization
Meta-Chaos [43,17], a coupling library developed at the Uni-

versity of Maryland, introduced the concept of linearization.
In this method, the elements of the source array are mapped
to a linear, one-dimensional arrangement, which constitutes an
abstract intermediate representation. The mapping between the
source and target templates is therefore implicit and indirect.
The application has complete control over the mapping to and
from this linear representation.

Linearization is also used in the MPI-IO M × N device de-
veloped at Indiana University [6] and in the M × N facil-
ity in Argonne National Laboratory’s model coupling toolkit
(MCT) [34,24]. In the IU M×N system, each process on the re-
ceiver side broadcasts to the senders which chunks of data it re-
quires, referencing them to the linearization. At the expense of
this small communication overhead, no communication sched-
ule is required. In the MCT M×N device, the root processes in
each M×N cohort exchange their respective domain decompo-
sition descriptors, broadcasting to their respective cohorts the
remote descriptor. Each processor then computes its communi-
cation schedule for the parallel data transfer. These schedules
are exposed to the user, and can be kept for future transfers,
thus allowing amortization of this overhead.

Linearization simplifies the task of matching a variety of
data structures, from multidimensional arrays to trees or graphs.
However, the application must often know about how the sender
linearized the data to make sense of the de-linearized data at
the receiver’s end. This typically involves implicit knowledge
of the data structure on the sender’s side, or the explicit transfer
of information about the sender’s linearization scheme to the
receiver.

2.2.2. Distributed array descriptor
The dominance of arrays in scientific computing calls for

a special level of support for distributed array (DA) data

structures. In component-based applications, one issue that
must be addressed is how components using different DA rep-
resentations/packages can inter-operate (even without data re-
distribution issues). In this context, there are questions of both
functionality and efficiency or performance. Presently available
DA packages offer wide variations in the level of functionality
they support. Some provide full-fledged DA objects with a rich
set of operations, while others offer little more than a uniform
way of organizing the distributed data and leave most or all of
the operations to the user, or to separate libraries. An interop-
erable DA model with significant functionality would require
significant additional code for some DA packages to conform,
while an easier-to-support low functionality model might not
provide users with enough utility to be worth adopting. From
the efficiency standpoint, the principle question is what level
of interoperability can be achieved without having to perform
expensive copies of data between different DA packages?

The “best” answers to these questions depends significantly
on the types of codes wanting to exchange DAs. If codes are
being newly written, the simplest approach might be to design
a full-functionality DA interface based on an existing package
and use it in all codes wishing to interoperate. However if
the target codes are already using disparate DA packages, it is
generally not feasible to rewrite them to a new DA package.
On the assumption that this latter situation will dominate the
CCA user base initially, we have chosen to begin with a simple,
bottom-up approach to DA interoperability. We have developed
a distributed array descriptor (DAD) [4] that provides global
data distribution information and provides access to the local
storage of each process’s part of the DA; the DAD provides no
array operations.

A DAD could be created to describe an existing DA in one
package, and then passed to a component using a different
DA package. On the receiving side, the DAD provides enough
info that the array could be “adopted” by the receiving DA
package (i.e. creating a DA in the receiver’s representation that
references the local memory locations specified in the DAD) if
possible, or the data in the array could be accessed directly and
operated on. Though there are obvious limitations and concerns
associated with this approach, it is a pragmatic way to facilitate
the exchange of DA data in the near- to medium-term which
will work with most DA packages and representations. The
DAD could also be used as the basis for a more sophisticated
DA infrastructure, including a higher functionality common DA
interface and interconversion adapters. A higher-level approach
will become more desirable and more practical for users as
component software becomes more widespread.

The general model and much of the specific terminology used
in the CCA’s DAD interface is largely patterned after the high
performance fortran (HPF) [23,28] DA model. Both DAD and
HPF distinguish between array templates and the actual arrays
that hold the data. Templates can be thought of as virtual arrays
that specify the logical distribution of the array across the pro-
cesses. Any number of actual arrays can be aligned, or mapped,
to a given template, simplifying computation and reuse of
communication schedules and other forms of pre-planning for
data movement operations. The mapping of actual arrays onto



F. Bertrand et al. / J. Parallel Distrib. Comput. 66 (2006) 931–946 935

Distribution

AxisDistribution GenBlock Irregular Patch

Collapsed BlockCyclic

Block

SeparableGenBlock

Fig. 4. The distributed array descriptor Distribution class hierarchy.

templates is flexible in the HPF model, allowing the expression
of complex relationships in the distributions of multiple actual
arrays. Thus far in the DAD, the primary focus has been on
representing the various distributions before addressing align-
ment.

The DAD takes an object-oriented approach to the specifi-
cation of the data distribution of a DA. Fundamentally, DAD
distributions are of two kinds: those which can be decomposed
into individual distributions for each axis of the multidimen-
sional array, and those which cannot. The Distribution
class hierarchy is depicted in Fig. 4 and explained below.

The supported distributions include:

• Collapsed: All elements of the axis belong to a single
process.

• BlockCyclic: The elements are divided into regular
blocks and distributed cyclically across all processes the
axis. If blocks are sized so that each process receives exactly
one block, this is often referred to simply as a block distri-
bution, and the other extreme of one element per block is
commonly known as a cyclic distribution. Intermediate sized
blocks result in more than one block assigned per process.

• Block: A special case of BlockCyclic to simplify the
common case of simple block distributions.

• SeparableGenBlock: A variant of the block distribution
introduced by the Global Array [40] package that allows one
block per process, but the blocks can be of different sizes.
This class is capable of describing many irregular distribu-
tions, but since the descriptions are per-axis, it cannot de-
scribe completely arbitrary distributions.

• GenBlock: The tree-based generalized block distribution
provided by InterComm [36,37], in which axes are recur-
sively subdivided. This representation is more general than
the SeparableGenBlock because it is not just a Carte-
sian product of irregularly-sized blocks on the individual
axes. However it does not offer enough flexibility to repre-
sent completely arbitrary distributions.

• Irregular: Essentially the Implicit distribution type
used in HPF that provides complete flexibility in how the

data is distributed at the cost of one index element per data el-
ement, and potentially expensive queries into the descriptor.
The DAD currently supports only one-dimensional distribu-
tions of this type, primarily because we have not yet iden-
tified applications which need higher-dimensionality repre-
sentations of this type.

• Patch: Decomposes the array into multidimensional rect-
angular patches of arbitrary size. As with Irregular,
this representation provides complete flexibility at a cost
(in storage and query performance) which is interme-
diate between Irregular and the more specialized
AxisDistribution classes.

The flexibility of the DAD allows for compact descriptions of
many types of distributions. Using the most compact descriptor
appropriate for a given distribution usually allows a DA package
to provide better performance than is possible for a completely
general, structureless linearization, such as the DAD’s implicit
distribution type. However there may be interoperability issues
where certain DA packages cannot support all representations
(particularly the most flexible ones). If it is not possible to
change to a different DA package, the only possibility in such
situations would involve copying the DA, redistributing the data
into a supported distribution.

2.3. Data redistribution persistence

Often, two components in a coupled simulation must both
access a DA over a long period of time using different distri-
butions. The contents of the array can change, so a persistent
mechanism for keeping the two local copies identical is re-
quired. In this context, we say that the two objects are coupled.
This coupling can be asymmetrical, for example when one copy
(the receiver’s or synchronized copy), is actually a sampling of
the larger, remote, copy. On the other hand, sometimes the data
only need be transferred once.

The API of the CCA M × N component (Section 4.1) im-
plements both one-time and persistent communication primi-
tives. The PRMI model (Section 2.4), however, only supports



936 F. Bertrand et al. / J. Parallel Distrib. Comput. 66 (2006) 931–946

one-time communication because of the limitations of the RMI
paradigm.

2.4. Parallel remote method invocation semantics in CCA

Supporting PRMI is a problem unique to the CCA. Com-
mercial component systems support only serial RMI, having
no need for the added complications of massive parallelism
and the SPMD model for a component. The CCA program-
ming model requires new semantics, policies, and conventions
for invoking parallel methods and appropriately communicat-
ing function arguments and results. Synchronization is also a
fundamental concern with PRMI, to ensure consistent invoca-
tion ordering and the coordination of parallel data arguments,
and to avoid deadlocks and other failure modes.

Parallel remote ports are the CCA communication mecha-
nism for distributed parallel components. Parallel remote ports
differ from regular CCA ports in that they connect parallel
components that are deployed in a distributed fashion over the
network. Challenges in defining PRMI semantics include:

• Delivery of arguments. How are the method arguments from
the M processes on the calling (client) side delivered to the
N processes on the providing (server) side? If M is not equal
to N, then which of the N providing processes services the
invocation for a given set of the M invokers?

• Process participation. The framework must define a policy
and implement a mechanism that allows components to make
collective method calls. Seemingly independent method calls
that each of a set of parallel processes make at some point
in the execution of a component, must be grouped together
and presented as a single effective invocation to the compo-
nent(s) providing the port implementation. This grouping is
primarily a logical one, and does not imply serialization of
the invocation. For such a collective invocation to happen
there must be a way for the calling component to tell the
framework which processes are participating in a given port
invocation.

• Concurrency issues. In a distributed framework the compo-
nents run independently and for efficiency this concurrency
should not be unnecessarily inhibited by CCA requirements.
For that reason, the calling component cannot arbitrarily
block until the providing component returns with the result
of the call. This portion of the standard RMI model must be
revised.

• Parallel consistency. Several other, low-level details of PRMI
must be addressed by the framework. These details relate
to the potential need for enforcing synchronization between
the processes that participate in a collective call, and dealing
with invocation order guarantees [26].

2.4.1. Argument passing in PRMI
In the CCA model, parallel port methods can define two kind

of arguments: simple and parallel.
Simple arguments are the remote version of the regular argu-

ments of a local library call; they are arguments local to each
process. Even though the formal arguments are the same for all
the processes participating in a call, the actual values of those

arguments may be allowed to vary from process to process de-
pending on the specific semantics of the PRMI model.

Parallel arguments represent data arrays or structures that are
decomposed among a set of parallel component processes. Such
parallel argument values must be gathered and transferred, and
possibly redistributed according to the corresponding M × N
layout (given some policy for handling cases where a one-to-
one mapping between processes does not exist). The specific
actions are strongly tied to the number of processes in the source
and destination components, as well as some semantic knowl-
edge of the given method being invoked, namely the expected
form, if any, of the decomposed input data.

In the process of transferring a parallel argument, the frame-
work must know the layout of the data at both the calling and
the callee sides. The application must convey this information
to the framework prior to the actual transfer of data. This is not
a problem on the calling side, because the application specifies
this information inside the parallel data arrays object, or maybe
in a separate layout object such as a DAD that is passed as an
extra argument to the port method.

On the callee side, however, the application does not have
the opportunity to set the layout prior to the call. Prior to a call,
the component is blocked waiting for remote port invocations.

Supporting complex data distribution layouts requires a way
for the provides component to tell the framework how the data
has to be delivered before the transfer of data. Two solutions are
being explored in the CCA Forum. One allows the component
to specify the layout using a special framework service before
the call is received (for example from inside another method,
or during initialization routines). The second does not transfer
the parallel data in advance. Instead, a reference to the parallel
argument is passed to the application, which can later set the
layout and trigger the reception.

2.4.2. Concurrency in PRMI
Current direct-connect frameworks generally have a single

thread of execution, even though that thread may take the form
of an SPMD parallel program. In other words, only one compo-
nent is active at any logical point in the program. In distributed
frameworks simultaneous execution of components is possible
and is generally desirable to increase concurrency. The problem
is that the port system in distributed frameworks is RMI-based
and the calling component will block until the called compo-
nent has finished servicing the call. To overcome this difficulty,
CCA has introduced the notion of one-way methods (adopted
from CORBA [41]). In one-way methods the calling component
continues execution immediately, without waiting for the re-
mote invocation to complete. One-way methods must not have
any return value, including arguments with the out attribute.

Concurrency involving more than two components can create
race conditions, deadlocks, and other problems if the proper
measures are not taken.

One scenario in which race conditions can develop is when
two components are trying to make an invocation on a third
component concurrently. If the calls are served by the pro-
cesses as soon as the requests arrive, the order in which the
calls are served may vary from process to process. This may



F. Bertrand et al. / J. Parallel Distrib. Comput. 66 (2006) 931–946 937

Proc.1 Proc.2

t1

t2

t3

t4

Proc.1 Proc.2 Proc.1 Proc.2

Calling Comp 1 Calling Comp 2Callee Comp

Collective
call 1

Collective
call 2

Fig. 5. Avoiding race conditions in PRMI. Components 1 and 2 are making concurrent PRMI calls to the central component. Process 1 of component 1 reaches
the invocation point first, but the call is not initiated in the target component until process 2 reaches the invocation point too. Therefore the call arriving from
component 2 is served first, and the order of invocation in both processes of the callee component is the same. To simplify this figure, the transmission delays
have been removed.

cause incorrect messages and even deadlock if there is internal
communication between the processes serving the call. There-
fore the framework must ensure that the order of invocation at
the destination component is the same in all processes, even
when the requests from the calling components arrive intermin-
gled. One way to guarantee this (see Fig. 5) is for the frame-
work to hold the delivery of the call until all the requests from
one component arrive. Unfortunately this imposes a synchro-
nization point in the sender.

2.4.3. PRMI as an extension of RMI
We have identified two distinct approaches to PRMI. These

approaches derive the semantics of PRMI from two other well
known paradigms. The first one, PRMIRMI, derives the seman-
tics of PRMI from the RPC/RMI serial paradigm. The sec-
ond one, PRMISPMD, derives the semantics from the SPMD,
non-distributed, model of collective calls. Whereas PRMIRMI
adds parallelism to the distributed model of RPC/RMI, the
PRMISPMD approach adds distribution to the already-parallel
model of SPMD.

PRMIRMI preserves the character and properties of the se-
rial RPC/RMI on which it is based. In particular, in PRMIRMI
there is a single conceptual call delivered to the callee compo-
nent. Both the calling and the callee components participating
in a port call do so as whole, indivisible, entities. PRMIRMI
provides opaqueness (or rather, encapsulation) regarding the re-
mote component: details such as the number of processes that
one component has remain hidden to the other side. In this
model, a call generated by a single-process component is indis-
tinguishable from a call generated by a ten-process component.

In PRMIRMI, each simple formal argument is required to
have the same actual value across the cohort of processes. Like-
wise, all the processes of the provides component must return
the same actual value. This policy settles the M × N problem
for simple arguments because regardless of the number of pro-
cesses, the value assigned to any given argument or return value
is the same.

In this model, the problem of process participation is solved
by requiring that all the processes in a component participate in
every call. This is a rigid approach, but it is simple and avoids
certain deadlock situations that can happen with other models.

2.4.4. PRMI as an extension of SPMD
PRMISPMD is an attempt to translate the SPMD style of par-

allel programming to CCA parallel ports. Exact SPMD seman-
tics cannot be exactly replicated in part because of the issues of
the handling of parallel arguments, the required synchroniza-
tion for deadlock avoidance and the M × N cardinality mis-
match. In addition to these, other constraints are inherent to the
remote nature of PRMI, such as the inability to pass arguments
by reference, and the possibility of network failures.

PRMISPMD is based on process pairing. This means that
each calling process is paired with a remote, callee process and
communicates directly with it. For example, simple arguments
are passed directly between paired processes, so they are not
required to have the same actual value across the cohort.

Note that process pairing maintains SPMD semantics for
cases in which M �N . When N > M , however, it won’t be
possible to pair some of the calling processes. The framework
defines the default behavior for those situation.

In contrast with the previous model, in PRMISPMD the calling
component decides which processes participate in a collective
PRMI call. This flexibility introduces a complication because
the framework must provide a way for the user to define the
group of processes that are involved in a call.

In a direct-connected framework (or in a simple SPMD
program) the application developer can establish process par-
ticipation through many means. For example, the caller com-
ponent can communicate the set of participating instances to
the callee component by passing an MPI communicator group
or some other parallel runtime system object. This information
could easily be sent as one of the functional arguments to the
method invocation. The framework itself need not be aware of
these details because it does not need to know which processes



938 F. Bertrand et al. / J. Parallel Distrib. Comput. 66 (2006) 931–946

Proc.1 Proc.2 Proc.3

t1

t2

t3

t4

t5 Collective
call 1

Collective
call 2

Fig. 6. The synchronization problem: If the PRMI call is delivered as soon
as one process reaches the calling point, the remote component will block at
t1 waiting for data from processes 2 and 3, and will not accept the second
collective call at t2 and t3. The remote component will be blocked indefinitely
because processes 2 and 3 will never reach t4 and t5 to complete the first
call. The solution is to delay PRMI delivery until all processes are ready.

participate in any call. It is the application’s task to use the
communicator group (or equivalent object) to link together
the seemingly independent method calls and interpret them
as a single collective invocation. This strategy is the standard
procedure for collective calls in SPMD programming.

In distributed frameworks the framework must know which
processes in the calling component are participating in the
collective call because it must mediate some communication
between those processes to redistribute the parallel data and
deliver the arguments. Also, process participation on the caller
and callee sides must be dealt with distinctly because the pro-
cesses involved are different, and each side is unaware of the
configuration on the other side.

One possible approach to communicate to the framework,
the participation group is presented in the distributed CCA ar-
chitecture (DCA) [5]. In DCA the application programmer can
decide process participation on the calling side via an MPI
communicator group that is passed as the last argument of the
method (this argument is mandatory in all port methods). This
solution is more flexible in defining process participation, but is
tied to using an MPI-based framework. Regardless, any parallel
remote invocation must somehow include sufficient information
to identify the participating tasks at the caller and callee sides.
For transparency and interoperability, it would be beneficial to
include this information generically in each port’s method in-
terface specification in some way, for example through the use
of descriptors analogous to the DAD.

A problem with allowing participation groups in PRMISPMD
is that a barrier synchronization is required to ensure that the
order of invocation is preserved when different but intersect-
ing sets of processes make consecutive port calls. Fig. 6 shows
how a deadlock can occur unless barrier synchronization is per-
formed. This situation is very similar to the race condition pre-
viously described, but it involves only two components. Again,

the solution to this problem is to delay the delivery of remote
invocations until all participating processes have reached the
calling point by inserting a barrier before the delivery. In other
invocation schemes where all processes must participate, the
barrier is not required because all calls are delivered in or-
der to the remote component (note that the problem shown in
Fig. 6 disappears if process 1 participates in the second call).

In line with SPMD semantics, unpaired processes in the
callee side are idle for the duration of the call. Sometimes this
is undesired, because it may leave some computational nodes
underused. Therefore, the PRMISPMD framework must provide
a service to incorporate these processes into the computation.
One scenario in which this requirement is evident is one in
which a small one-process “driver” component makes an in-
vocation to a large, parallel component. Unpaired process that
are used in this way are part of the computation but not part of
the PRMI call, except possibly for the reception and sending
of parallel arguments.

3. Characteristics of M × N systems

Before describing particular M × N implementations in de-
tail, a list of characteristics will help in understanding relative
strengths and weaknesses. Features which have been valued in
at least one M × N context or another include

• Language interoperability between components. The lan-
guages C, C++, and Fortran are particularly needed in HPC
scientific computing, and scripting interfaces like Python,
Perl, and Matlab are also valued.

• Support of component concurrency. This means the imple-
mentation does not assume or rely upon models like alter-
nating execution of components to assure correctness or in-
tegrity of the data.

• Complete generality in the values of M and N. So it should
not be required that M and N are commensurate, or that
M < N , etc.

• Scalability for large values of M and N. This implies that
communications between the components is not serialized
through a single data management process, and that the cre-
ation of communication schedules is not serialized.

• Generic mechanisms for description of data distributions. For
dense arrays of values a DAD serves this purpose.

• Distributed components running at different locations. This
is the distinction between a direct-connected or distributed
framework.

• Asynchronous, non-blocking transfers of data between com-
ponents to allow overlapping of computation and communi-
cations.

• Well-defined semantics for a broad range of possible PRMIs
between components.

• No direct dependency on using a particular parallel run-time
system like MPI or PVM.

The last item refers to the underlying run-time system and not
necessarily the API presented to an end user. Some M × N
systems have taken the view that presenting a user with a
familiar interface like MPI for carrying out inter-component



F. Bertrand et al. / J. Parallel Distrib. Comput. 66 (2006) 931–946 939

Project Parallel Data Language PRMI Prod.

Level

DCA MPI-based arrays C Yes No

InterComm Dense arrays C/Fortran No Yes

MCT Dense/sparse arrays, grids Fortran No Yes

MxN Comp. SIDL Babel No Yes

SciRun SIDL C Yes Yes

Fig. 7. M × N projects and features. Some CCA frameworks use Babel [35]
for language interoperability, which provides SIDL bindings for C, C++ and
FORTRAN.

parallel communications is more desirable than requiring learn-
ing a completely new API (Fig. 7).

Another potential feature is direct support for numerical
conversions needed for model coupling, such as interpolation.
However, this paper deals only with the computer science sys-
tems issues of the M × N problem because the numerical ones
are often application dependent.

4. Implementations

M × N research within the CCA has ranged from gen-
eralized specifications of semantics to implementations of
practical component frameworks. Specifications and imple-
mentations are likely to evolve as more applications use M×N
technologies. Much of this research started from existing par-
tial solutions, and currently no single framework supports the
full desired range of M × N capabilities. Rather than trying to
create a single framework with all of the capabilities, current
work looks to bridge frameworks so that users can access more
specialized features as needed.

Given the diversity of the parallel data layouts at the source
and destination sides of an M × N transfer, generating an
efficient communication schedule to move the various data el-
ements to their correct destinations is difficult. Several tools
have developed technology to address this issue, including CU-
MULVS [30,20,29,31], PAWS [26,3], Meta-Chaos [17,43], and
MCT [34,24]. These systems all provide ways to describe the
subsets of data that are to be collected and moved to a particu-
lar destination process. This is often done by distilling a given
data decomposition on a per dimension basis into subregions
or sub-sampled patches. While this approach is typically both
practical and efficient for most common cases, it can require
some complex data transformations in the worst case. This pa-
per deals with only the most fundamental of data exchange
and redistribution operations and does not address the numer-
ical capabilities of true model coupling, including spatial and
temporal interpolation, energy or flux conservation, data reduc-
tions, mesh mediation, and units conversion. These arduous,
and typically application-specific tasks are beyond the scope of
this initial M × N work.

4.1. M × N parallel data redistribution components

A preliminary M × N CCA component specification for
direct-connect frameworks was developed using two distinct

existing software tools to define and generalize parallel data
redistribution—CUMULVS and PAWS. These tools have com-
plementary models of parallel data sharing and coupling. PAWS
is built on a “point-to-point” model of parallel data coupling,
with matching “send” and “receive” methods on corresponding
sides of a data connection. CUMULVS is designed for interac-
tive visualization and computational steering, so provides pro-
tocols for persistent parallel data channels with periodic trans-
fers, using a variety of synchronization options. A generalized
M×N specification has been developed within CCA that covers
both of these connection models with a single unified interface.

The CCA M×N interface has methods that define key oper-
ations in parallel data exchange. Parallel components can reg-
ister their parallel data fields by providing a handle to a DAD
object (see Section 2.2). The DAD interface provides run-time
access to information regarding the layout, allocation and data
decomposition of a given distributed data field. The M×N reg-
istration process allows a component to express the required
DAD information for any dense rectangular array decomposi-
tion, and also indicates which access modes for M×N transfers
with that data field are allowed (read, write or read/write). Par-
allel communication schedules can then be defined and applied
to define M×N connections using a variety of synchronization
options. M × N connections can provide either one-shot trans-
fers or persistent periodic transfers that recur automatically, as
defined when the connection is created.

For a given M×N transfer operation, each independent pair-
wise communication for the overall transfer is initiated when
a single instance of the parallel source cohort (1 of M) in-
vokes the dataReady() method, indicating that the state of
its local portion of the data is consistent and “ready” for the
transfer. A matching dataReady() call at the corresponding
destination cohort process (1 of N) completes the given pair-
wise communication. When all such messages have been ex-
changed, according to the associated communication schedule,
then the transfer is considered complete. By breaking down the
overall M × N transfer into these independent asynchronous
point-to-point transfers, no additional synchronization barriers
are required on either side of the transfer. This feature allows
efficient implementations for a variety of situations.

M × N connections can be initiated by either the source or
destination components, or by a third party controller. There-
fore, neither side of an M×N connection need be fully aware, if
at all, of the nature of any such connections. This situation ex-
pedites the incorporation of existing parallel legacy codes into
the component environment. Decisions about the connectivity
of parallel data objects can be made dynamically at run-time,
as no fundamental changes to the source or destination com-
ponent codes are strictly necessary.

Several challenges remain to achieve a reliable and efficient
M × N implementation. A variety of parallel data layouts must
be recognized to decode the location of specific data elements
in both the source and destination processes. Initial prototypes
have focused on the dense data decompositions supported by
the DAD interface (see Section 2.2), including “explicit ar-
ray patch” decompositions for more arbitrary or optimized
meshing schemes. To support more complex data structure



940 F. Bertrand et al. / J. Parallel Distrib. Comput. 66 (2006) 931–946

decompositions, a “particle-based” container solution is also
under development.

4.2. SciRun2

One way of creating a distributed framework that supports
parallel components is by utilizing the code generation pro-
cess of the interface definition language (IDL) compiler. The
IDL compiler can be used to perform the necessary data ma-
nipulations and provide consistent behavior for parallel com-
ponent method invocations. This is the method that is used in
SCIRun2 [52], and has been leveraged before for similar prob-
lems [27]. Both PRMI and parallel data redistribution primi-
tives are defined in an extension to the SIDL language [32],
the Scientific IDL extension developed as part of the CCA
project.

In the SCIRun2 SIDL extension, the methods of a parallel
component can be specified to be independent (one-to-one) or
collective (all-to-all) with respect to RMI. Collective calls are
used in cases where the parallel component’s processes inter-
operate to solve a problem collaboratively. Collective calls are
capable of supporting differing numbers of processes on the
uses and provides side of the call by creating ghost invoca-
tions and/or return values. The user of a collective method must
guarantee that all participating caller processes make the invo-
cation. The system guarantees that all callee processes receive
the call, and that all callers will receive a return value.

To accomplish this functionality, argument and return value
data is assumed to be the same across the processes of a com-
ponent (the component developer must ensure this). The con-
straint can be relaxed by using a parallel data redistribution
mechanism, as described below. Independent invocations are
provided for normal serial function call semantics. For each of
these invocation types, the SIDL compiler generates the glue
code that provides the appropriate behavior. This mechanism
works regardless of the different numbers of processes with
which each component may be instantiated. If the needs of
a component change at run-time and the choice of processes
participating in a call needs to be modified, then a sub-setting
mechanism is engaged to allow greater flexibility.

To enable parallel data redistribution, a DA type was added
to the SIDL language. Instances of the DA type can be defined
as parameters of a method. At run-time, the instances are set
by participating processes to the desired/available part of the
global array. The data redistribution is automatically performed
when the method invocation is made. The data redistribution
mechanism described here is very similar to the one provided
by PAWS [3]. For more information on this approach see [14].

Newer version of SCIRun2 seamlessly propagate the M × N
infrastructure through the framework to the user in order to en-
able greater usability of the benefits added by parallel compo-
nents. The user can enable parallel “slave” frameworks that rep-
resent resources (e.g. clusters, supercomputers) at the disposal
of a “master” SCIRun2 framework. Through the SCIRun2 GUI,
a user can instantiate, connect, and execute parallel components
on a “slave” framework. The M × N infrastructure described
is used to enable the communication of these components as
needed by the application.

4.3. DCA: A distributed CCA framework

The DCA is a prototype of a parallel and distributed CCA-
compliant framework, based on MPI. The DCA uses MPI [38]
constructions such as communicator groups and data types to
solve the challenges of a distributed framework, concentrating
on the M × N problems of data redistribution, process partici-
pation, and PRMI.

PRMI in the DCA is a natural extension of the semantics of
collective calls of the SPMD model of parallel programming.
Under these semantics, processes in the calling component
communicate one-to-one with processes on the callee compo-
nent. Simple arguments are transferred independently between
the pairs of coupled processes. In line with collective semantics,
the framework does not require that simple arguments have the
same actual value in all the participating processes. The appli-
cation may choose to enforce this policy at a higher level in a
case-by-case basis.

If, due to an M × N situation, a process in the calling com-
ponent cannot be paired with a remote peer, the process’ par-
ticipation is restricted to the sending and receiving of parallel
arguments, which are subject to data redistribution and are not
transferred one-to-one. On the other hand, if a process in the
callee component is not paired, it can still be activated (through
a special framework service) and used for computational work,
and can too send and receive parallel arguments. Unpaired pro-
cesses on either side do not send or receive simple arguments.
In summary, when all the calling processes can be paired (for
example, when M<N), a PRMI call in the DCA is similar to a
local, collective call in a SPMD environment.

DCA supports distribution of one-dimensional parallel ar-
guments, according to layouts similar to those of HPF. By
allowing the use of MPI data-types, data can be arranged in
non-contiguous buffers, which is useful in situations such as
sampling. Parallel arguments are identified in the SIDL file with
the special keyword parallel.

In the DCA, parallel arguments are not transferred automat-
ically during the method invocation. Instead, a reference to the
parallel object is passed to the recipient. Using this reference,
the receiving component is able to specify the desired parallel
layout before the transfer is started. In addition, the compo-
nent can then start the reception in a non-blocking manner, to
overlap communications and computation. The same principle
applies for both in and out parallel arguments.

Component concurrency is achieved in two ways. First, all
CCA Go ports 1 are called at startup time, so all compo-
nents that provide a Go port will be started concurrently. Sec-
ond, components can execute concurrently by using one-way
methods. Because out parallel arguments are handled with
references and are not required to be immediately available,
one-way methods in the DCA can have out parallel argu-
ments. An early version of the DCA is more fully described
in [5].

1 Go ports are special CCA ports which are recognized by frameworks as
a way to start a CCA application running. They are the component equivalent
of the main() function in a C program.



F. Bertrand et al. / J. Parallel Distrib. Comput. 66 (2006) 931–946 941

4.4. InterComm

InterComm [36,37] is a framework for coupling dis-
tributed memory parallel programs, which correspond to CCA
components, and is mainly targeted at coupled physical simula-
tions. Such programs include those that directly use a low-level
message-passing library, such as MPI. To date, InterComm
has focused primarily on providing efficient communication
in the presence of complex data distributions for multidimen-
sional array data structures. InterComm is a descendant of
Meta-Chaos [17,43], but adds significant new functionality
and provides much better performance. InterComm uses its
own DAD, and the CCA Data Group is in the process of com-
pletely defining the capabilities and interfaces of its DAD, as
described in Section 2.2.2. In InterComm array distributions
are classified into two types: those in which entire blocks of an
array are assigned to processes, block distributions, and those
in which individual elements are assigned independently to a
particular process, irregular or explicit distributions. For block
distributions, the data structure required to describe the distri-
bution is relatively small, so can be replicated on each of the
processes participating in the inter-program communication.
For explicit distributions, there is a one-to-one correspondence
between the elements of the array and the number of entries in
the data descriptor, therefore, the descriptor itself is rather large
and must be partitioned across the participating processes.
InterComm provides primitives for specifying these types of
distributions and has optimized the creation of reusable com-
munication schedules for moving regions of both types from
one array to another using point-to-point communication calls.
A linearization is the method by which InterComm defines
an implicit mapping between the source and destination of
the transfer distributed by another library or over an unequal
number of processes. This linearization is a one dimensional
intermediate representation, the order of which is dependent on
the order of the regions specified for the transfer. InterComm
currently supports components written in multiple languages,
including C, C++, Fortran77 and Fortran90.

In addition to providing runtime support for determining
what data is to be moved between simulations, InterComm also
provides support for decisions that must be made on when data
is to be transferred [51]. Instead of requiring each program
to contain logic to determine when a data transfer should oc-
cur using the communication schedules described above, pro-
grams only express potential data transfers with import and ex-
port calls, thereby freeing each program (component) developer
from having to know in advance the communication patterns
of its potential partners. The actual data transfers take place
based on coordination rules determined by a third party respon-
sible for orchestrating the entire coupled simulation, consisting
of two or more components. The key idea for the coordina-
tion specification is the use of timestamps to determine when
a data transfer will occur, via various types of matching cri-
teria. In addition to the flexibility enabled by a separate coor-
dination specification that makes it relatively easy to add new
components and replace components with others having similar
functionality, separation of control issues from data transfers

enables InterComm to often hide the cost of data transfers be-
hind other program activities.

4.5. The model coupling toolkit

Model coupling [8,16,7,49,53,47,9,1] frequently also re-
quires M × N coupling because of the wide variance in
workload by the individual models. Message-passing parallel
models in mutual interaction impose a larger challenge known
as the parallel coupling problem [33]. The parallel coupling
problem comprises both architectural challenges (e.g., se-
quential vs. concurrent coupling), and parallel data processing
challenges in the form of distributed mesh and field data de-
scription, parallel data transfer (the M × N problem), and data
transformation (e.g., intermesh interpolation). As an example,
the MCT [34,33,24] is a software package that extends MPI to
ease implementation of parallel coupling between MPI-based
parallel applications. Currently MCT is being employed to
couple the atmosphere, ocean, sea ice, and land modules in the
community climate system model [13,22], and to implement
the coupling API for the Weather Research and Forecasting
Model [44,50]. Because the form of model coupling used in
climate and weather modeling is well-advanced, MCT inter-
nally implements M × N capabilities at a higher level than the
other CCA projects. For example, distributed array descriptors
are implemented for both physical mesh and field data, and
MCT automatically provides the array data transfers as well as
numerical interpolation and communication scheduling with a
simpler and higher-level interface in Fortran90.

MCT provides objects and services needed to construct
application-specific solutions to the parallel coupling prob-
lem. These facilities fall into three broad categories—data
description, data transfer, and data transformation.

MCT’s description of distributed data exchanged between
models includes a physical mesh descriptor, a field data storage
class, and a domain decomposition descriptor. Each of these
classes works off of MCT’s linearization approach to describ-
ing both field and mesh data. The data object for describing
physical grids capable of supporting grids of arbitrary dimen-
sion and unstructured grids, and is capable of supporting mask-
ing of grid elements (e.g., land/ocean mask). The field data ob-
ject is a standard intermediate representation into which model
data is copied for transfer and transformation, and is similar to
a Trilinos multivector. The decomposition descriptor employs
a combination of the linearization and explicit approaches de-
scribed in Sections 2.2.1 and 2.2.2.

MCT’s M × N system comprises a singleton lightweight
registry class and two types of communication schedule ob-
jects. The model registry defines the MPI processes on which
each model’s cohort resides, and a process ID look-up table
that obviates the need for inter-communicators between distinct
processor pools. Communications schedule objects exist to co-
ordinate one-way M × N transfers and two-way M × N ex-
changes. These schedules are computed by each model by
calling and MCT routine and providing an integer ID for the
remote model, and its local domain decomposition descriptor.
Blocking and non-blocking library routines are available to ac-
complish the M × N transfer operations.



942 F. Bertrand et al. / J. Parallel Distrib. Comput. 66 (2006) 931–946

Data transformation operations supported by MCT include
intermesh interpolation, time averaging and accumulation, spa-
tial integration and averaging to diagnose and enforce conser-
vation of intermodel fluxes, and merging of data from multiple
source models. MCT provides three classes and a variety of
library routines to support these operations.

Intermesh interpolation in MCT is supported as a sparse
matrix-vector multiply, which is an immediate corollary to
MCT’s linearization approach to model data. Two classes are
provided to support this type of linear transformation. One class
stores in COO format the non-zero matrix elements for the
transformation and the other encapsulates all the computation
and communication information needed to perform the simul-
taneous parallel linear transformation of multiple fields in a
cache-friendly fashion. Conservation of fluxes is of importance
in many coupled models and MCT provides spatial integral and
averaging facilities that include paired integrals and averages
for use in conservation of global flux integrals in intermesh in-
terpolation.

Often, models that interact will have differing timesteps, or
may be coupled at a frequency of multiple timesteps, creating
a need for time integration of data. Averaging of state data and
accumulation of fluxes form a popular approach to implement-
ing data coupling in climate models, due to the separation of
timescales between the ocean and other components of the cli-
mate system. MCT provides a class for storing running aver-
ages and integrals over an accumulation period, and a library
routine that performs the accumulation.

In some coupled models, one subsystem may have and in-
terface with the rest of the system that will require data from
multiple models at some of the locations on its interface. For
example, the atmosphere in a coupled climate model’s inter-
face with the Earth’s surface will in places require as input a
blend of land, ocean, and sea ice data. MCT provides a vari-
ety of library routines for merging data from multiple source
models for use by a particular model.

MCT supports both sequential and concurrent couplings
(and combinations thereof), and can support coupling of
components running as multiple executable images if the
implementation of MPI used supports this feature. MCT is
implemented in Fortran90. The MCT programming model is
scientific-programmer-friendly, consisting of F90 module use
to declare MCT-type variables and invocation of MCT rou-
tines to create couplings [42,33,13]. Work is in progress to
employ the Babel language interoperability tool to create MCT
bindings for other programming languages.

5. Related work

The Data Reorganization Interface Standard (DRI-1.0) [15]
is the result of a DARPA-sponsored effort targeted at the mili-
tary signal and image processing community. DRI datasets are
arrays of up to three dimensions (support for higher dimensions
is optional). Block and block-cyclic partitions are supported,
and local memory layouts are distinguished from the data
distribution. The data types specified in the DRI standard in-
clude float, double, complex, double complex, integer, short,

unsigned short, long, unsigned long, char, unsigned char, and
byte. Reorganization operations in DRI are collective, and are
handled at a low level. The user provides send and receive
buffers and repeatedly calling DRI get/put operations until the
operation is complete. The specification is language indepen-
dent, but a C binding is included. Relative to the work dis-
cussed in this paper, the DRI can be thought of as a specialized
and low-level DAD and M × N component.

XChangem×n [1] is a middleware infrastructure for coupling
components in distributed applications. XChangem×n uses the
publish/subscribe paradigm to link interacting components, and
deal specifically with dynamic behaviors, such as dynamic ar-
rivals and departures of components and the transformation of
data “in-flight” to match end point requirements.

Another tool for model coupling is the distributed data
broker (DDB) [16], which is a general purpose tool from
UC Berkeley for coupling multiple parallel models that ex-
change large volumes of data. The DDB provides a mechanism
for coupling codes with different grid resolutions and data
representations.

Roccom [25] is an object-oriented software framework for
high performance parallel rocket simulation. Roccom enables
coupling of multiple physics modules, each of which models
various parts of the overall problem to build a comprehensive
simulation system. A physics module builds distributed objects
(data and functions) called windows and registers them in Roc-
com so that other modules can share them with the permission
of the owner module.

One commercial effort is MpCCI [19]. MpCCI provides sup-
port for running coupled simulation components within a single
MPI environment, and also provides methods for mapping be-
tween grids in different components. However, the system re-
quires substantial changes to individual model codes, although
direct support for a limited set of commercial multiphysics
codes is provided. Earlier versions of MpCCI required running
in a single MPI environment, but more recent versions relax
the single MPI environment constraint, employing a coupling
server similar to the MCT flux coupler component.

6. Future research plans

As the technology for M × N and PRMI evolves beyond its
fundamental data exchange capabilities and execution seman-
tics, a complete spectrum of additional parallel model coupling
functions is required to address the parallel coupling problem
identified in Section 4.5. Such features include proper han-
dling or hooks for: application discovery and matchmaking,
enforcing parallel data dependencies, orchestration of coupling
communications, interpolation in time and space, data trans-
lation and units conversion, and parallel process model opti-
mization. Without integration of these crucial functions into the
user’s scientific simulation environment, it will be impractical
to fully realize the potential of multiphysics coupled models for
production-scale scientific discovery. This integrated collection
of capabilities, for assembling and executing coupled scientific
codes, is referred to as “Parallel Coupling Infrastructure,” or
PCI.



F. Bertrand et al. / J. Parallel Distrib. Comput. 66 (2006) 931–946 943

Development of PCI technology will require the incorpora-
tion of a diverse set of new and existing software tools that
must work together seamlessly toward constructing and coordi-
nating coupled simulation models. For example, several global
meta-data registration tools exist for discovery in certain exe-
cution environments, e.g. the MDS repository for Globus [12].
These services can be applied for PCI application discovery,
yet the specific meta-data associated with proper rendezvous
and matchmaking must be carefully designed and populated.
In addition, some mechanism must be designed for specify-
ing the high-level data dependencies within a coupled model
composition. An overall coupling service must coordinate the
handshaking and synchronization of various model codes, to
instigate connections and then orchestrate their cooperative
symbiotic execution. This service might maintain efficient exe-
cution by dynamically adjusting communication schedules and
possibly performing load balancing adjustments.

With respect to interpolation, which is applied to match up
disparate data meshes and reconcile wide ranges of simulated
time scales, there are a variety of domain-specific algorithms
and techniques. Many schemes are available for spatial inter-
polation, to migrate data values from one spatial grid to an-
other while conserving energy and fluxes. Similarly, efficient
approaches to temporal interpolation attempt to optimize model
algorithms to help match simulated execution times across time
scales [18]. A number of curve-matching techniques can also be
applied to extrapolate intermediate values within a time frame
gap. Exacerbating the high level of complexity associated with
these various spatial and temporal interpolation schemes is the
fact that scientists are often religious about the choice of scheme
for their particular domain. As such, the prudent approach for
PCI is not to reinvent any interpolation schemes but rather pro-
vide generalized “hooks” for wrapping up the available algo-
rithms.

Related to interpolation, though somewhat simpler, is the
important task of units conversion, wherein specific data val-
ues are translated into the proper units to verify meaningful
numerical results when incorporated into another model. The
implementation for these translations are often simple linear
functions that can be applied on a per element basis.

A subtle yet critical aspect of PCI is the optimization of the
overall parallel process model. Many simulation codes can be
organized as distinct collections of SPMD (“single program
multiple data”) process groups, however more complex coupled
simulations might often be assembled in more flexible MPMD
(“multiple program multiple data”) arrangements. Such MPMD
process organizations allow a single set of computing resources
to be shared among different sub-models. This can occur over
time, as different phases of execution trade back and forth,
keeping the data to be coupled readily available in the memory
of the shared processors. Or, a single larger processor alloca-
tion can be split into several subgroups, each one executing a
distinct physics model. Determining the proper arrangement,
or combinations thereof, requires a global understanding of the
relative iteration timings and the changing data dependencies
among the set of coupled models. If new coupled performance
methodologies are designed, then either composition time or

run time optimizations can be made to streamline the overall
execution.

An evolutionary design path must be constructed to allow
new and existing codes to incorporate progressively sophisti-
cated mechanisms for model coupling. In its simplest form,
different models can perform “I/O Driven” coupling by the
mere exchange of data files, allowing unmodified execution
flow within a given model. More elaborate schemes might al-
low a coordinated swapping of key memory regions, such as
with time-shared MPMD codes. The most efficient and flexible
form of coupling involves live parallel communication, where
explicit messages are scheduled to transfer specific data ele-
ments from source to destination processor. By encapsulating
these variations within a single PCI interface specification, it
will be possible to incrementally develop the coupling capabil-
ities for a given multiphysics simulation.

While this technology relates closely to recent studies and
advances in “Scientific Workflow” and software experiment
management, the needs and challenges of PCI surpass those for
basic workflow. In a PCI environment, there are many dynamic
relationships that exist or are created amongst the individual
parallel codes at run time. A generalized PCI solution will avoid
static hard-coding of the interdependencies between coupled
models, allowing more flexibility in choosing precisely when
and how parallel simulations will attach and share their data.
This late binding of models preserves the “anonymity” of each
individual model, enabling coupling with a variety of known
and unforeseen physics models that might share the same
internal data semantics. Then, rather than blindly relying on
simple metrics for the scheduling of data coupling communica-
tions, PCI must perform cross-model data dependency analysis
to ensure that complicated or cascading interdependencies are
correctly maintained among all executing models. The missing
piece in traditional workflow systems is a lack of accounting
for this entanglement of decomposition information with data
in the parallel data models. By building the new PCI capa-
bilities on top of M × N and PRMI technology, these issues
can be properly encapsulated and automated in the resulting
development/execution environment.

7. Summary

Exchanging elements among disparate parallel or distributed
data structures is merely the beginning of true technology for
parallel model coupling and transparent data sharing. Depend-
ing on the nature of the actual data structures involved, sig-
nificant data translations could be needed beyond the simple
M × N mapping of data elements. If the source and destination
data use different meshes or spatial coordinate representations,
or are computed in different units or at different time frames,
then several additional data translation and conversion compo-
nents will be required to fully transform and share semantically
comparable parallel data.

A wealth of interpolation and sampling schemes are avail-
able for translating data among desired spatial or temporal for-
mats. Historically, such schemes carry with them an almost
religious stigma, and there is much debate among scientists



944 F. Bertrand et al. / J. Parallel Distrib. Comput. 66 (2006) 931–946

on the merits of one scheme over another. We hope to extend
our collection of interface specifications to include appropri-
ate hooks for supporting various generic data transformations
and conversions. Given sufficient flexibility in the arguments
for these interfaces, a wide range of implementations can be
built to cover common interpolation or conversion algorithms.
Because of the wide variety of space and time discretizations
used in scientific computing, there will always be a need to
allow user created inter-component data modifications.

To utilize the resulting sequence of data transformations and
data redistributions, a pipeline of components can be assembled.
An important pragmatic issue that arises with such pipelining
is how efficiently redistribution functions compose with one
another. Techniques must be explored to operate on data in
place and avoid unnecessary data copies. Super-component so-
lutions could also be explored for some common cases by com-
bining several successive redistribution and translation compo-
nents into a single optimized component. This will require a
uniform way of describing data distributions, such as the DAD
for arrays, and with more difficulty, a uniform way of describ-
ing transformations.

In the near term, the primary research goal of this effort
will be to develop higher-level operations on top of these fun-
damental M × N data transfer functions. The complexity of
the current port interfaces alludes to the low-level “assembly-
language” nature of our current understanding of this technol-
ogy. More user-friendly simplifications will be developed for
the most common operations, to make this technology more
readily available and practical for everyday usage.

M×N technology is only now starting to emerge as an impor-
tant tool for composing parallel components and even complete
applications into larger cross-disciplinary simulations. M × N
connections are needed for more than just computations: dy-
namically inserting data from large sensor arrays into a running
computation (such as weather modeling) or accessing data in
parallel from distributed scientific databases will mean connect-
ing non-computational components with computational ones.
The basic issues of the meaning of PRMI, efficient redistribu-
tion of data, and shielding users from the complexities of par-
allel codes interacting at run-time are the same.

Acknowledgments

This work is supported by National Science Foundation
Grants CDA-0116050 and EIA-0202048, and by the U.S.
Department of Energy’s Scientific Discovery through the Ad-
vanced Computing (SciDAC) initiative, through the Center for
Component Technology for Terascale Simulation Software,
of which Argonne, Lawrence Livermore, Los Alamos, Oak
Ridge, Pacific Northwest, and Sandia National Laboratories,
Indiana University, and the University of Utah are members.

Research at Oak Ridge National Laboratory is supported
by the Mathematics, Information and Computational Sciences
Office, Office of Advanced Scientific Computing Research,
U.S. Department of Energy, under contract No. DE-AC05-
00OR22725 with UT-Battelle, LLC.

References

[1] H. Abbasi, M. Wolf, K. Schwan, G. Eisenhauer, A. Hilton, XChange:
coupling parallel applications in a dynamic environment, in: IEEE
International Conference on Cluster Computing, 2004.

[2] R. Armstrong, D. Gannon, A. Geist, K. Keahey, S. Kohn, L. McInnes, S.
Parker, B. Smolinski, Toward a common component architecture for high-
performance scientific computing, in: Proceedings of the Eighth IEEE
International Symposium on High Performance Distributed Computing,
1998.

[3] P. Beckman, P. Fasel, W. Humphrey, S. Mniszewski, Efficient coupling of
parallel applications using PAWS, in: Proceedings of the Seventh IEEE
International Symposium on High Performance Distributed Computation,
1998.

[4] D.E. Bernholdt, CCA distributed array descriptor (DAD), 〈http://
www.cca-forum.org/∼data-wg/dist-array/〉.

[5] F. Bertrand, R. Bramley, DCA: a distributed CCA framework based on
MPI, in: Proceedings of HIPS 2004, Ninth International Workshop on
High-Level Parallel Programming Models and Supportive Environments,
IEEE Press, Santa Fe, NM, 2004.

[6] F. Bertrand, Y. Yuan, K. Chiu, R. Bramley, An approach to parallel
M × N communication, in: Proceedings of the Los Alamos Computer
Science Institute (LACSI) Symposium, Santa Fe, NM, 2003.

[7] T. Bettge, A. Craig, R. James, V. Wayland, G. Strand, The DOE
parallel climate model PCM: the computational highway and backroads,
in: V.N. Alexandrov, J.J. Dongarra, C.J.K. Tan (Eds.), Proceedings of
the International Conference on Computational Science (ICCS) 2001,
Lecture Notes in Computer Science, vol. 2073, Springer, Berlin, 2001,
pp. 148–156.

[8] F.O. Bryan, B.G. Kauffman, W.G. Large, P.R. Gent, The ncar csm flux
coupler, NCAR Technical Note 424, NCAR, Boulder, CO, 1996.

[9] California Institute of Technology, Center for simulation of dynamic
response of materials homepage, 〈http://www.cacr.caltech.edu/ASAP/〉,
2003.

[10] CCA Forum, CCA Forum homepage, 〈http://www.cca-forum.org/〉, 2004.
[11] Center for Component Technology for Terascale Simulation Software

(CCTTSS), CCTTSS SciDAC Center web page, 〈http://www.cca-forum.
org/ccttss/〉, 2004.

[12] B. Clifford, Globus monitoring and discovery, in: Proceedings of
GlobusWORLD 2005, Boston, MA, 2005.

[13] A.P. Craig, B. Kaufmann, R. Jacob, T. Bettge, J. Larson, E. Ong, C.
Ding, H. He, cpl6: the new extensible high-performance parallel coupler
for the community climate system model, Internat. J. High Perf. Comput.
Appl. 19 (2005) 309–328.

[14] K. Damevski, Parallel RMI and M-by-N data redistribution using an
IDL compiler, Master’s Thesis, The University of Utah, May 2003.

[15] Data Reorganization (DRI) Forum, Document for the data reorganization
interface (dri-1.0) standard, 〈http://www.data-re.org/〉, September 25,
2002.

[16] L.A. Drummond, J. Demmel, C.R. Mechoso, H. Robinson, K. Sklower,
J.A. Spahr, A data broker for distributed computing environments, in:
Proceedings of the International Conference on Computational Science,
2001, pp. 31–40.

[17] G. Edjlali, A. Sussman, J. Saltz, Interoperability of data-parallel
runtime libraries, in: International Parallel Processing Symposium, IEEE
Computer Society Press, Geneva, Switzerland, 1997.

[18] W.R. Elwasif, D.B. Batchelor, D.E. Bernholdt, L.A. Berry, E.F.
D’Azevedo, W.A. Houlberg, E.F. Jaeger, J.A. Kohl, S. Li, Coupled fusion
simulation using the common component architecture, in: Computational
Science—ICCS 2005 Fifth International Conference, Proceedings, Part
I, Lecture Notes in Computer Science, vol. 3514, Springer, Atlanta,
Georgia, USA, 2005, pp. 372–379.

[19] Fraunhofer Institute for Algorithms and Scientific Computing
(SCAI), MpCCI: multidisciplinary simulations through code coupling,
〈http://www.scai.fraunhofer.de/mpcci.html〉, 2005.

[20] G.A. Geist, J.A. Kohl, P.M. Papadopoulos, CUMULVS: providing fault
tolerance, visualization and steering of parallel applications, Internat. J.
High Perf. Comput. Appl. 11 (3) (1997) 224–236.

http://www.cca-forum.org/data-wg/dist-array/
http://www.cca-forum.org/data-wg/dist-array/
http://www.cacr.caltech.edu/ASAP/
http://www.cca-forum.org/
http://www.cca-forum.org/ccttss/
http://www.cca-forum.org/ccttss/
http://www.data-re.org/
http://www.scai.fraunhofer.de/mpcci.html


F. Bertrand et al. / J. Parallel Distrib. Comput. 66 (2006) 931–946 945

[21] J. Glimm, D. Brown, L. Freitag, Terascale Simulation Tools and
Technologies (TSTT) Center, 〈http://www.tstt-scidac.org/〉, 2001.

[22] L. Harper, B. Kauffman, Community climate system model, 〈http://
www.ccsm.ucar.edu/〉, 2004.

[23] High Performance Fortran Forum, High Performance Fortran language
specification, Sci. Programming 2 (1–2) (1993) 1–170.

[24] R. Jacob, J. Larson, E. Ong, M × n communication and parallel
interpolation in ccsm3 using the model coupling tookit, Internat. J. High
Perf. Comput. Appl. 19 (2005) 293–308.

[25] X. Jiao, M. Campbell, M. Heath, Roccom: an object-oriented, data-
centric software integration framework for multiphysics simulations, in:
Proceedings of the 2003 International Conference on Supercomputing,
ACM Press, New York, 2003, pp. 358–368.

[26] K. Keahey, P. Fasel, S. Mniszewski, PAWS: collective interactions and
data transfers, in: Proceedings of the High Performance Distributed
Computing Conference, San Francisco, CA, 2001.

[27] K. Keahey, D. Gannon, PARDIS: a parallel approach to CORBA,
in: Proceedings of the High Performance Distributed Computing
Conference, 1997, pp. 31–39.

[28] C. Koelbel, D. Loveman, R. Schreiber, G. Steele Jr., M. Zosel, The High
Performance Fortran Handbook, MIT Press, Cambridge, MA, 1994.

[29] J.A. Kohl, High performance computers: innovative assistants to science,
ORNL Review, Special Issue on Adv. Comput. 30 (3/4) (1997)
224–236.

[30] J.A. Kohl, G.A. Geist, Monitoring and steering of large-scale distributed
simulations, in: IASTED International Conference on Applied Modeling
and Simulation, Cairns, Queensland, Australia, 1999.

[31] J.A. Kohl, P.M. Papadopoulos, A library for visualization and steering
of distributed simulations using PVM and AVS, in: High Performance
Computing Symposium, Montreal, CA, 1995.

[32] S. Kohn, G. Kumfert, J. Painter, C. Ribbens, Divorcing language
dependencies from a scientific software library, in: Proceedings of the
11th SIAM Conference on Parallel Processing for Scientific Computing,
SIAM, Philadelphia, PA, 2001.

[33] J. Larson, R. Jacob, E. Ong, The model coupling toolkit: a new fortran90
toolkit for building multi-physics parallel coupled models, Internat. J.
High Perf. Comput. Appl. 19 (2005) 277–292.

[34] J.W. Larson, R.L. Jacob, I.T. Foster, J. Guo, The model coupling toolkit,
in: V.N. Alexandrov, J.J. Dongarra, B.A. Juliano, R.S. Renner, C.J.K. Tan
(Eds.), Proceedings of the International Conference on Computational
Science (ICCS) 2001, Lecture Notes in Computer Science, vol. 2073,
Springer, Berlin, 2001, pp. 185–194.

[35] Lawrence Livermore National Laboratory, Babel homepage,
〈http://www.llnl.gov/CASC/components/babel.html〉, 2004.

[36] J. Lee, A. Sussman, Efficient communication between parallel programs
with InterComm, Technical Report CS-TR-4557 and UMIACS-TR-2004-
04, University of Maryland, Department of Computer Science and
UMIACS, January 2004.

[37] J.-Y. Lee, A. Sussman, High performance communication between
parallel programs, in: Proceedings of 2005 Joint Workshop
on High-Performance Grid Computing and High-Level Parallel
Programming Models (HIPS-HPGC 2005), IEEE Computer Society
Press, Silver Spring, MD, 2005appears with the Proceedings of
IPDPS 2005.

[38] Message Passing Interface Forum, MPI: a message-passing interface
standard, Internat. J. Supercomputer Appl. High Perf. Comput. 8 (3/4)
(1994) 159–416.

[39] Microsoft Corporation, Distributed component object model,
〈http://www.microsoft.com/com/tech/dcom.asp〉, 2004.

[40] J. Nieplocha, R.J. Harrison, R.J. Littlefield, Global arrays: a non-uniform-
memory-access programming model for high-performance computers, J.
Supercomputing 10 (2) (1996) 169.

[41] Object Management Group, CORBA component model,
〈http://www.omg.org/technology/documents/formal/components.htm〉,
2002.

[42] E. Ong, J. Larson, R. Jacob, A real application of the model coupling
toolkit, in: C.J.K. Tan, J.J. Dongarra, A.G. Hoekstra, P.M.A. Sloot (Eds.),
Proceedings of the 2002 International Conference on Computational

Science, Lecture Notes in Computer Science, vol. 2330, Springer, Berlin,
2002, pp. 748–757.

[43] M. Ranganathan, A. Acharya, G. Edjlali, A. Sussman, J. Saltz,
Runtime coupling of data-parallel programs, in: Proceedings of
the 1996 International Conference on Supercomputing, Philadelphia,
PA, 1996.

[44] D. Schaffer, Coupling implementation of the wrf i/o api, 〈http://
www-ad.fsl.noaa.gov/ac/schaffer/mct_wrf_io_api.html〉, 2004.

[45] Sun Microsystems, Enterprise JavaBeans downloads and specifications,
〈http://java.sun.com/products/ejb/docs.html〉, 2004.

[46] C. Szyperski, Component Software: Beyond Object-Oriented
Programming, ACM Press, New York, 1999.

[47] G. Toth, I.V. Sokolov, K.J. Kane, T.I. Gombosi, D.L. de Zeeuw, A.J.
Ridley, O. Volberg, K.C. Hansen, W.B. Manchester, I.I. Roussev, Q.F.
Stout, K.G. Powell, Space weather modeling framework: modeling the
Sun-Earth system faster than real time, AGU Fall Meeting Abstracts,
2004, B325+.

[48] U.S. Dept. of Energy, SciDAC Initiative homepage, 〈http://
www.osti.gov/scidac/〉, 2003.

[49] S. Valcke, A. Caubel, R. Vogelsang, D. Declat, Oasis3 ocean atmosphere
sea ice soil user’s guide, Technical Report TR/CMGC/04/68, CERFACS,
Toulouse, France, 2004.

[50] WRF Oversight Board, Weather Research and Forecasting Model,
〈http://www.wrf-model.org/〉, 2000.

[51] J. Wu, A. Sussman, Flexible control of data transfers between parallel
programs, in: Proceedings of the Fifth International Workshop on Grid
Computing—GRID 2004, IEEE Computer Society Press, Silver Spring,
MD, 2004.

[52] K. Zhang, K. Damevski, V. Venkatachalapathy, S. Parker, SCIRun2: a
CCA framework for high performance computing, in: Proceedings of
the Ninth International Workshop on High-Level Parallel Programming
Models and Supportive Environments (HIPS 2004), IEEE Press, Santa
Fe, NM, 2004.

[53] S. Zhou, Coupling earth system models: an ESMF-CCA prototype,
〈http://webserv.gsfc.nasa.gov/ESS/esmf_tasc/〉, 2003.

Felipe Bertrand is a Software Engineer at
Delmos Space, a private Spanish company
operating in aerospace activities. His interests
are scientific computing and high-performance
component systems. He received his Ph.D.
from Indiana University and his master’s degree
in electrical engineering from the Universidad
Politecnica de Madrid.

Randall Bramley completed his B.S. degree in
mathematics and computer science in 1981, a
M.S. in computational mathematics in 1985, and
a Ph.D. in computer science from the University
of Illinois in 1989. He was a senior research
scientist at the Center for Supercomputing
Research and Development at the University
of Illinois until 1992, at which time he joined
the IU Computer Science Department. He is
currently director of the Scientific Computing
Program at IU.

David E. Bernholdt is a Senior R&D Staff Member in the Com-
puter Science and Mathematics Division of Oak Ridge National Lab-
oratory. Prior to joining ORNL, he held positions at the Northeast
Parallel Architectures Center at Syracuse University and a postdoctoral
fellowship at the Pacific Northwest National Laboratory. David received
his Ph.D. in 1993 from the University of Florida. His research focuses on
software environments for high-performance scientific computing.

http://www.tstt-scidac.org/
http://www.ccsm.ucar.edu/
http://www.ccsm.ucar.edu/
http://www.llnl.gov/CASC/components/babel.html
http://www.microsoft.com/com/tech/dcom.asp
http://www.omg.org/technology/documents/formal/components.htm
http://www.ad.fsl.noaa.gov/ac/schaffer/mctwrfioapi.html
http://www.ad.fsl.noaa.gov/ac/schaffer/mctwrfioapi.html
http://www.java.sun.com/products/ejb/docs.html
http://www.osti.gov/scidac/
http://www.osti.gov/scidac/
http://www.wrf-model.org/
http://www.webserv.gsfc.nasa.gov/ESS/esmftasc/


946 F. Bertrand et al. / J. Parallel Distrib. Comput. 66 (2006) 931–946

James Kohl is a Research Scientist at Oak
Ridge National Laboratory in the Computer
Science and Mathematics Division. He received
his Ph.D. in Electrical/Computer Engineering
from University of Iowa (1994), an M.S. in
Electrical Engineering (1989) and a B.S. in
Computer/Electrical Engineering (1988) from
Purdue University. Kohl has been involved
in a number of parallel computing and vi-
sualization projects for scientific simulation,
at ORNL, the IBM T. J. Watson Research
Center (1992), and Argonne National Labo-
ratory (1983-1990). Notable projects include

the Common Component Architecture (CCA) and “M × N” Parallel Data
Redistribution, the CUMULVS system for interactive visualization, coupling,
computational steering and fault tolerance, PVM, MatView and XPVM. Kohl
is a member of the Order of the Engineer, Eta Kappa Nu, Tau Beta Pi and
Mensa International.

Alan Sussman is an Assistant Professor in the
Computer Science Department at the University
of Maryland, College Park. His research inter-
ests include compilers and runtime systems for
parallel computers, high performance database
and I/O systems, coupled multiphysics simula-
tions, and medical informatics. He received his
Ph.D. in computer science from Carnegie Mel-
lon University in 1991 and his B.S.E. in Elec-
trical Engineering and Computer Science from
Princeton University in 1982.

Jay Larson is a software engineer in the
Mathematics and Computer Science division at
Argonne National Laboratory and is a se-
nior fellow in the Computation Institute at
the University of Chicago. He has published
in the fields of nonlinear dynamics, plasma
physics, climate, weather forecasting, and high-
performance computing. In recent years his
work has focused primarily on the development
of high-performance software infrastructure for
the earth system modeling community, most
notably as co-lead developer of the Model Cou-
pling Toolkit. He holds a B.A. in mathematics
and physics from Drake University and a Ph.D.
in plasma physics from the College of William
and Mary in Virginia.

Kostadin Damevski is a Research Assistant at
the Scientific Computing Institute at the Univer-
sity of Utah. He is working towards his Ph.D.
in Computer Science from the School of Com-
puting at the University of Utah. His research
interests include development of software and
tools for high-performance scientific computing.


