
Data Replication Strategies in Grid Environments
�

Houda Lamehamedi, Boleslaw Szymanski, and Zujun Shentu
Department of Computer Science
Rensselaer Polytechnic Institute

Troy, NY 12180
lamehh, szymansk, shentu@cs.rpi.edu

Ewa Deelman
Information Sciences Institute

University of Southern California
Los Angeles, CA 90292

deelman@isi.edu

Abstract

Data Grids provide geographically distributed resources
for large-scale data-intensive applications that generate
large data sets. However, ensuring efficient and fast access
to such huge and widely distributed data is hindered by the
high latencies of the Internet. To address these problems
we introduce a set of replication management services and
protocols that offer high data availability, low bandwidth
consumption, increased fault tolerance, and improved scal-
ability of the overall system. Replication decisions are made
based on a cost model that evaluates data access costs and
performance gains of creating each replica. The estimation
of costs and gains is based on factors such as run-time ac-
cumulated read/write statistics, response time, bandwidth,
and replica size. To address scalability, replicas are or-
ganized in a combination of hierarchical and flat topolo-
gies that represent propagation graphs that minimize inter-
replica communication costs. To evaluate our model we use
the network simulator NS. Our results prove that replication
improves the performance of the data access on Data Grids,
and that the gain increases with the size of the datasets used.

1. Introduction

The term grid computing refers to the emerging com-
putational and networking infrastructure that is designed to
provide pervasive and reliable access to data and computa-
tional resources over wide area network, across organiza-
tional domains.

A Data Grid connects a collection of hundreds of geo-
graphically distributed computers and storage resources lo-
cated in different parts of the world to facilitate sharing of

�

This work was partially supported by the NSF Grant KDI-
9873138.The content of this paper does not necessarily reflect the posi-
tion or policy of the U.S. Government—no official endorsement should be
inferred or implied.

data and resources [2, 6, 20]. The size of the data that needs
to be accessed on the Data Grid is on the order of Terabytes
today and is soon expected to reach Petabytes. Ensuring ef-
ficient access to such huge and widely distributed data is a
serious challenge to network and Grid designers. The ma-
jor barrier to supporting fast data access in a Grid are the
high latencies of Wide Area Networks (WANs) and the In-
ternet, which impact the scalability and fault tolerance of
the total Grid system. In this paper we investigate the use
of replication on the Data Grid to improve its ability to ac-
cess data efficiently. Experience from distributed system
design shows that replication promotes high data availabil-
ity, low bandwidth consumption, increased fault tolerance,
and improved scalability [3, 21, 24, 15, 16]. We introduce
high level replica protocols on top of a scalable replica man-
agement system combined with dynamic data distribution
adapting to changing user needs. We use a runtime system
to evaluate the access cost and performance gains of repli-
cation before moving or copying any data.

The performance of replication-based systems depends
on a variety of factors, such as data placement and the pro-
tocol used to maintain consistency among object replicas.
Our replication cost model is formulated as an optimization
problem that minimizes the sum of the access costs to data
in a Grid and the replica maintenance costs such as update
propagation and cost of storage used by replicas.

To address the scalability, we replicate data in two al-
ternative topologies: a ring and a fat-tree, which can also
be organized on top of each other. The replica distribution
topology is chosen according to the application’s design and
sharing patterns. To evaluate our model we use the network
simulator NS [12] to generate different network topologies,
and we use different dataset sizes to study the impact of
replication on the data access cost on the overall grid. The
paper is organized as follows. Section 2 gives an overview
of previous work on grid replication. In Section 3, we in-
troduce our replication topologies and algorithms. Section
4 describes the simulation framework and the results. Fi-
nally, we present brief conclusions and future directions in

Bolek
Text Box
Proc. 5th International Conference on Algorithms and Architecture for Parallel Processing, ICA3PP'2002, Bejing, China, October 2002, IEEE Computer Society Press, Los Alamitos, CA, 2002, pp. 378-383

Section 5.

2. Replication in Data Grids

Globus is a community-based, open-architecture, open-
source set of services and software libraries that support
Grids and Grid applications [1, 2]. The Globus Toolkit [5]
provides middleware services for grid computing environ-
ments. There are four main components of Globus: the Grid
Security Infrastructure, the Globus Resource Management
architecture, the Globus Information Management, and the
Data Management architecture. This latter component pro-
vides the fundamental Data Grid tools [2]: a universal data
transfer protocol for grid computing environments called
GridFTP and the Replica Management infrastructure which
includes the Replica Catalog and the Replica Management
services for managing multiple copies of shared data sets.
The Replica Catalog allows users to register files as logical
collections. It also provides mappings from logical names
of files and collections to the storage system locations of
one or more replicas of these objects. The management ser-
vice however, does not implement the full replica manage-
ment functionality and it does not enforce any replication
semantics. The system only provides the users with tools to
replicate data at different locations under user-specific defi-
nitions without enforcing the user’s assertions [2].

In this paper we introduce a new set of higher level ser-
vices and protocols that provide full dynamic replication
functionality on top of a highly scalable replica distribu-
tion topology. These higher-level tools can use basic replica
management services implemented in Globus to automat-
ically create new replicas at desirable locations or select
among replicas based on network or storage system perfor-
mance.

3. Replica Management Services Design

Replication has been studied extensively and different
distributed replica management strategies have been pro-
posed in the literature [22, 4, 17, 8, 7, 11, 18, 13]. In the
context of data grid technology, replication is mostly used
to reduce access latency and bandwidth consumption. In
our approach, replication is also used to balance the load
of data requests within the system both on the network and
host levels, and to improve reliability. Given the size of
the data stored on data grids, the placement of data replicas
and the selection of consistency algorithms are crucial to
the success of replication. Based on access cost and repli-
cation gains, the replica management system decides when
to create a replica and where to place it. These decisions
are made based on a cost model that evaluates the mainte-
nance cost and access performance gains of creating each

replica. The estimates of costs and gains are based on many
factors, such as run-time accumulated read/write statistics,
the chosen consistency algorithm, run-time measured net-
work latency, response time, bandwidth, and replica size.
These parameters are changing during the program execu-
tion, so they need to be measured at runtime and fed to an
optimization procedure that minimizes data access costs by
dynamically changing the replicas number and placement.
In the following subsections we outline the design of the
replication management system, and present our replication
algorithm.

3.1. Replica Distribution Topologies

To ensure scalability, we use both hierarchical and flat
propagation graphs spanning the overall set of replicas to
overlay replicas on the data grid and minimize inter-replica
communication costs. For the hierarchical topology, we in-
troduce a modified fat-tree structure with redundant inter-
connections connecting its nodes; closer the node is to the
root, more interconnections it has. The fat-tree was orig-
inally introduced by Leiserson [10] to improve the perfor-
mance of interconnection networks in parallel computing
systems. For the flat topology we use the ring topology.

The hierarchical distribution is well suited for multi-tier
applications, while the ring topology suits best the multi-
ple server or peer replica applications. In the peer-to-peer
model, any replica can synchronize with any other replica,
and any update can be applied at any accessible replica. The
peer model has been implemented in many systems such
as Locus [14], Bayou [23], Ficus [7], Roam [17], and Ru-
mor [8]. In the hierarchical model, the replicas are placed
at different levels, and communicate with each other in
a client-server like scheme. This model has been imple-
mented in many replication systems such as Coda [19]. To
further exploit the properties of both topologies, we use a
hybrid topology in which both the ring and fat-tree replica
organizations can be combined into multi level hierarchies.
In such a topology, the replica servers communicate with
each other through a ring spanning graph, while the client
replicas communicate with the servers and other replicas
through the fat-tree connection graph. This approach im-
proves both the data availability and the reliability of the
ring topology and allows for a scalable expansion of the
hierarchical distribution. Both the ring and fat-tree connec-
tion graphs represent virtual connections between the grid
nodes that hold replicas of the same object. Depending on
the topology, each node is aware of its neighbors or direct
ancestors and children. Figure 1 shows a graph representing
a hybrid three level replica topology and connection graph.

Multi Server Replicas using Peer−to−peer Algs.

Data transfer paths

Storage

Scale
Capacity

Figure 1. Hybrid Replica Connection Graph.

3.2. Replica Placement Algorithm

Each entity in the data grid maintains a replica set, which
is initially empty. Replicas are created at nodes that receive
high number of requests. Each node in the replica set main-
tains an index list of all entities that it contains, plus a list
of the locations of these entities that it is aware of. In the
hierarchical topology, each node maintains a list of its par-
ents and children locations, while in the flat topology, each
replica keeps a list of the locations of its neighbors. The in-
dex list entries contain file information such as size, name,
type, and other attributes. Such index lists are called local
replica indices. The replica set root(s) maintain(s) a list of
all replica locations. This index list is called a global replica
index. Used within a replica cataloging service, these in-
dices identify the closest replica to a given site. A request
is then transparently serviced by the nearest replica. This
is especially important in the grid environment since the
replica set changes dynamically as new replicas are being
added and old ones deleted at runtime.

A replica is removed from a site when the user chooses
to do so or when the system deletes it. The latter happens if
the data is not used anymore locally, or if no requests have
been made to access it remotely from other sites after a cer-
tain amount of time or when space is needed for more fre-
quently used data. The runtime system is then responsible
for updating the replica connection graph and making the
necessary changes to replica indices. The connection graph
should then be reorganized while maintaining its topology.
In the Data Grid environment updates to single files hap-
pen very infrequently. Most modifications take a form of
additions of files to a collection of files. In such scenar-
ios not all replicas need to be aware of the updates. For
that purpose, we intend to use optimistic replication to han-

dle updates on the grid. Such an approach allows any ma-
chine storing a replica to perform an update locally. Hence,
it minimizes the bandwidth and connectivity requirements
for performing updates, and takes advantage of the replica
connection topology to scale over distributed networks. It
has also been shown to scale well in distributed environ-
ments [7, 8, 17, 18, 9, 25].

3.3. Runtime System

The replica management service includes a runtime com-
ponent that dynamically evaluates the application and user’s
needs and accordingly adapts the replicas distribution. The
runtime system monitors the users behavior and the network
status, collecting accumulated read/write statistics and mea-
suring response time, bandwidth, and replica size. The ac-
cess cost of the replication scheme is calculated based on
these parameters using an optimization procedure that is
based on the following mathematical model.

Each node � in the overall system and a data object
�

are
associated with a nonnegative read rate ����� � and a nonnega-
tive write rate � ��� � . If 	 is the write cost for a given object�

and
 is the read cost for the same object, then 	��
���� �
is the ratio of the write cost for each node. If there are no
replicas for object

�
in the system then the total data transfer

cost for this object at node � is:
������� ��� ����������� ��������� ��� �"! � �$#&% � � !('��)��*,+�! (1)

where + is the node containing the object
�
, '��)��*,+�! is the

cost of sending a unit of data along the path from � to + , so'��-��*.+�!/��0��132&4 '65 � ' �,7 �)��*,+�! .
Let 8 represent the set of all nodes in the system,
9� be

the replica set of object
�
, and � �)��*.
9�:! denote the replica of

object
�

closest to node � . Let ; � be the partition of nodes
that would be serviced by � for future access requests to ob-
ject

�
, assuming that � is added to
9� . Let �=<��� � represent the

total read rate of all nodes at partition ; � , and �><��� � represent
the total write rate of the partition.

The incremental cost of data transfer needed for plac-
ing a replica at � can be expressed in terms of the change
in cost of traffic generated by the read/write requests
?	 � �-
 � *,�@!A�CBD� <��� � �E� � �)� < F � � BG� <��� � ! , and the size of
data:
������� � �-8A*.
 � *.�H!I�J
?	 � ��
 � *,�@! � �$#6% � � !,'��-��* � �)��*.
 � !.! (2)

Indeed, adding � to
9� decreases the read cost of each
node in ; � by � �$#&% � � !('��)��* � �-��*K
L�"!,! and increases the write
cost of each node in the 8MBN; � by � �:#&% � � !('��)��* � �)��*.
O��!.! , but
it does not change other costs. Thus the total data transfer
cost for object

�
with a replica set
9� is given by:P ����� �-8Q*K
L�$!R� ������� �-8Q*.+�!S� T��UWV>X(Y>Z F3[

������� � �-8Q*K
L�.*,�@!
(3)

Given the structure of the data grid and the associated
read/write patterns for object

�
, we only need to consider

the problem of minimizing the following cost:
P ������� �-8Q*K
 � !R� T��UWV>X:Y>Z F3[

������� � �-8Q*K
 � *,�@! (4)

The above formula expresses the data transfer cost for ob-
ject

�
improved thanks to the placement of a set of replicas
L��B � +�� . Using access cost statistics, the runtime system

compares the replications gains to replication costs (update
cost) and informs the replica management service whether
to place a replica on node � or not.

4. Simulation Framework and Results

Essentially, the simulated events represent read and write
requests, although the presented results were obtained with
simulation of only read requests. The simulation generates
random background traffic in the network and the stream
of requests for the grid data. In the future, agents will be
placed in specific network nodes to monitor the read/write
frequencies, network bandwidth and other variables to eval-
uate the replica placement policy. These agents will gather
network statistics and help to optimally place file replicas.
The current simulation is described in the next section.

4.1. Simulation Framework

To evaluate our model we are using NS [12], the network
simulator which enables us to generate different network
topologies. However, to be able to simulate the specifics
of the replication in the grid, we introduced a separate grid
simulator on top of NS. This additional simulator extends
the original semantics of a node object in NS. Each node in
the grid is able to specify its storage capacity, organization
of its local data files, the relative processor performance,
and maintain a list of its neighbors and peer replica nodes.
We are using three different node models: data server nodes
(storage site), user nodes, and cache or intermediate nodes.
The cache nodes represent nodes in the grid hierarchy that
have higher storage capacities than user nodes, but smaller
than that of a storage site. These nodes may contain parts
of the data stored at the main storage sites. Placing data in
the intermediate nodes makes it closer and more accessible
to some users. The user nodes represent the network nodes
where the access requests are generated. The network inter-
face model is specified in the link object that is provided in
NS. The link object is used to model the physical intercon-
nections in the simulated network, such as link bandwidth
and latency. Figure 2 shows the simulation model used in
our experiments.

To collect statistics data like access frequencies and stor-
ing patterns, we are attaching to each node a monitoring

Intermediate Node

User Nodes

Storage Site

Forwarded access request

Data transfer:to cache or local replica

Access request: read/write

Data transfer to local replica

Data transfer to local replica

NS Simulation Grid Environment

Figure 2. Simulation Model

agent that is responsible for computing the number of data
requests generated at each node, as well as the number of
requests received from other nodes. The data collected is
then evaluated by the replica placement protocol using the
cost function. Currently, we are placing replicas ourselves,
creating three different scenarios to measure the data access
costs with the number of replicas varying from none to a
few to many.

Packets representing grid user requests as well as the
start and the end of grid data transmission in NS transfer
control of the simulation to the grid node simulator. The
latter simulates the replication decision at each node and
generates new NS traffic (sending requests from the user or
cache nodes or sending the requested data down the path to
the replica site or the user). This separation of the network
simulation strata, the grid node and replication enables us to
use the existing package, NS, and add only the grid specific
elements to the simulation. The NS simulator allowed us
to compare the performances of three different replication
scenarios. In the future, it will be used to select the optimal
replica placement policy.

4.2. Simulation Experiments and Results

In the absence of real trace data, we are simulating a
two-tier Data Grid topology using eight different file sizes
ranging from 100MB to 1GB. Initially only one replica per
dataset exists in the system. Users are mapped evenly across
sites and submit a number of sequential data access requests
(only read requests are used). Requests are processed se-
quentially and each user accesses only one file. However,
collectively, users utilize some files more than others.

The grid topology consists of a 15 nodes binary
tree shown in Figure 3, in which users reside at leaf
nodes. The connectivity bandwidths of user nodes to the
higher level nodes is of 10MB/sec, whereas the band-
width of intermediate-to-intermediate and intermediate-to-
root nodes is 100MB/sec. To simulate a real world grid en-
vironment, background traffic is introduced by using extra

�����
�����
�����
�����

���
���
���
���

���
���
���
��� �����

�����
�����
�����

	�	�	
	�	�	

�
�

�
�

���
���
���
���

��
�
������
���

������
���
������
���

���
���
���
��� Main Storage Site

Intermediate Nodes

Client Nodes

Figure 3. Simulated Grid Topology

nodes in the simulation that generate random traffic in the
grid. We ran a total of 30 simulations using three different
scenarios. In the first scenario there are no replicas. In the
second scenario replicas are placed at the second level of the
tree, i.e. the first intermediate nodes. In the third scenario
replicas are placed at the lower level intermediate nodes,
hence located closer to the users. We use response time as
our performance metric as it represents both the data trans-
fer costs and gains in different replica placement scenarios.
Figure 4 shows a graph representing the average response
time per file size for the three different scenarios.

Figure 4. Simulation Results: Access Time in
Different Scenarios

The results show that better performance is achieved
when replicas are placed closer to the users. The gains are
more considerable for larger file sizes for which replication
offers about 12% improvement. We expect that in the real
Data Grid environments these gains will be even more con-
siderable as dataset sizes are expected to reach Terabytes.

5. Conclusions and Future Work

We have addressed the problem of replication in Data
Grid environments by investigating the use of a new set of
highly decentralized dynamic replication services that can
be used to improve data access time, reliability, data avail-
ability, bandwidth consumption, fault tolerance, and scala-
bility of the overall system. We have also used a cost func-
tion that dynamically evaluates the replica placement policy
by comparing the replica maintenance costs and data access
gains of creating a replica at any given location.

Our results show that using replication improves the data
access performance of the overall system as measured by
the response time (scenario 1 versus scenarios 2 and 3)
and that the placement of replicas matters as well (scenario
2 versus scenario 3). With the introduction of additional
traffic on the grid, we created an environment in which
the connection network is not solely dedicated to the grid
data transfer. This additional traffic uses part of the band-
width and introduces extra delays. Our results also show
that performance gains increase with the size of data used.
As dataset sizes in Data Grid environments are reported to
reach the Terabyte scale, we expect that a larger scale use
or our model will yield better performance results.

These results are very promising, but they are based on
synthetic workloads and simplified grid scenarios. In future
work, we will investigate more realistic scenarios, and real
user access patterns. We will also consider the effect of dif-
ferent replica consistency algorithms on the overall perfor-
mance of the Grid. We are also interested in exploring dif-
ferent adaptive replication algorithms that select replication
algorithms dynamically depending on current conditions.

References

[1] W. Allcock, I. Foster, V. Nefedova, A. Chervenak, E.
Deelman, C. Kesselman, J. Lee, A. Sim, A. Shoshani,
B. Drach, D. Williams. ”High-Performance Remote
Access to Climate Simulation Data: A Challenge
Problem for Data Grid Technologies.” Proceedings of
SC 2001, Denver, CO, November 2001.

[2] W. Allcock, J. Bester, J. Bresnahan, A. Chervenak,
I. Foster, C. Kesselman, S. Meder, V. Nefedova, D.
Quesnel, S. Tuecke, ”Secure, Efficient Data Trans-
port and Replica Management for High-Performance
Data-Intensive Computing,” IEEE Mass Storage Con-
ference, 2001.

[3] W. Allcock, A. Chervenak, I. Foster, C. Kesselman, C.
Salisbury, S. Tuecke, ”The Data Grid: Towards an Ar-
chitecture for the Distributed Management and Anal-
ysis of Large Scientific Datasets,” Journal of Network
and Computer Applications, 23:187-200, 2001.

[4] G. Coulouris, J. Dollimore, T. Kindberg, ”Distributed
Systems, concepts and designs,” third Edition, Addis-
son Wesley, 2001.

[5] I. Foster, C. Kesselman, S. Tuecke. ”The Anatomy of
the Grid: Enabling Scalable Virtual Organizations.”
International J. Supercomputer Applications, 15(3),
2001.

[6] Foster, I. “The Grid: A New Infrastructure for 21st
Century Science”, Physics Today, 54 (2). 2002.

[7] R. Guy, J. Heidmenn, W. Mak, T. Page Jr., G.
Popek, and D. Rothmeier, ”Implementation of the Fi-
cus Replicated File system,” Proceedings of the sum-
mer Usenix Conference, 1990.

[8] R. Guy, P. Reiher, D. Ratner, M. Gunter, W. Ma, and
G. Popek, ”Rumor: Mobile Data Access Through Op-
timistic Peer-to-Peer Replication,” Workshop on Mo-
bile Data Access, November 1998.

[9] D. Hagimont, D. Louvegnies, ”Javanaise: Distributed
Shared Objects for Internet Cooperative Applica-
tions,” IFTP International Conference on Distributed
Systems, Platforms, and Open Distributed Processing
Middleware98, the Lake District, England, 1998.

[10] C. H. Leiserson, ”Fat-Trees: Universal Networks for
Hardware-Efficient Supercomputing,” IEEE Transac-
tions on Computers, vol. C-34, no. 10, pp. 892-901,
October 1985.

[11] N. Narasimhan, ”Transparent Fault Tolerance For Java
Remote Method Invocation,” Ph.D Dissertation, De-
partment of Electrical and Computer Engineering,
University of California, Santa Barbara, June 2001.

[12] NS network simulator. http://www-
mash.cs.berkeley.edu/ns.

[13] T. Page, R. Guy, J. Heidemann, D. Ratner, P. Reiher,
A. Goel, G. Kuenning, and G. Popek, ”Perspectives on
Optimistically Replicated, Peer-To-Peer Filing,” Soft-
ware - Practice and Experience, Dec. 1997.

[14] G. Popek, B. Walker, J. Chow, D. Edwards, C. Kline,
G. Rudisin, and G. Thiel, ”Locus: A Network Trans-
parent High Reliability Distributed System,” Proceed-
ings of the Eighth Symposium on Operating Systems
Principles, pp 169-177 ACM, December 1981.

[15] K. Ranganathan and I. Foster, ”Identifying Dynamic
Replication Strategies For a High performance Data
Grid,” Proceedings of the International Grid Comput-
ing Workshop, Denver, November 2001.

[16] K. Ranganathan and I. Foster, ”Design and Evalua-
tion of Replication Strategies for a High Performance
Data Grid,” International Conference on Computing in
High Energy and Nuclear Physics, Beijing, September
2001.

[17] D. H. Ratner, ”Roam: A Scalable Replication System
for Mobile and Disconnected Computing,” PhDThe-
sis, University of California, Los Angeles, Los Ange-
les CA, January 1998.

[18] Y. Saito and H. Levy, ”Optimistic Replication for
Internet Data Services”, In Proc. of the 14th Intl.
Conf.on Distributed Computing, p. 297-314, October
2000.

[19] M. Satyanarayanan, J. Kister, P. Kumar, M. Okasaki,
E. Siegel, and D. Steere, ”Coda: A Highly Available
File System for a Distributed Workstation Environ-
ment,” IEEE Transactions on Computers, 39(4):447-
459, April 1990.

[20] Stevens, R., Woodward, P., DeFanti, T. and Catlett, C.,
“From the I-WAY to the National Technology Grid”,
Communications of the ACM, 40 (11). 50-61. 1997.

[21] H. Stockinger, A. Samar, B. Allcock, I. Foster, K.
Holtman, B. Tierney , ”File and Object Replication
in Data Grids,” Proceedings of the Tenth International
Symposium on High Performance Distributed Com-
puting (HPDC-10), IEEE Press, August 2001.

[22] A. S. Tanenbaum and M. van Steen, ”Distributed Sys-
tems, Principles and Paradigms,” first edition, Prentice
Hall, 2002.

[23] D. Terry, M. Theimer, K. Peterson, A. Demers, M.
Spreitzer, and C. Hausen, ”Managing Update Con-
flicts in Bayou, a Weakly Connected Replicated Stor-
age System,” Proceedings of the fifteenth Symposium
on Operating systems Principles, pp 49-70 ACM, Oc-
tober 1983.

[24] S. Vazhkudai, S. Tuecke, I. Foster, ”Replica Selec-
tion in the Globus Data Grid,” Proceedings of the First
IEEE/ACM International Conference on Cluster Com-
puting and the Grid (CCGRID 2001), pp. 106-113,
IEEE Computer Society Press, May 2001.

[25] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, G.
Alonso, ”Understanding Replication in Databases and
Distributed Systems,” Proceedings of the 20th Inter-
national Conference on Distributed Computing Sys-
tems (ICDCS’2000).

