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Abstract 

In multimedia and other streaming applications a 
significant portion of energy is spent on data transfers. 
Exploiting data reuse opportunities in the application, we 
can reduce this energy by making copies of frequently used 
data in a small local memory and replacing speed and 
power inefficient transfers from main off-chip memory by 
more efficient local data transfers. In this paper we present 
an automated approach for analyzing these opportunities in 
a program that allows modification of the program to use 
custom scratch pad memory configurations comprising a 
hierarchical set of buffers for local storage of frequently 
reused data. Using our approach we are able to reduce 
energy consumption of the memory subsystem when using a 
scratch pad memory by a factor of two on average 
compared to a cache of the same size. 

1. Introduction*

Exploiting data reuse opportunities in loop dominant 
applications is essential for energy efficient memory 
hierarchies. The traditional approach for solving the data 
reuse problem employs the use of hardware controlled 
caches. While this has been proposed for general-purpose 
architectures, a hardware only implementation has several 
drawbacks. A hardware controller approach adds additional 
power and area cost [2]. Due to the lack of knowledge of 
future accesses, the placement of data in the cache is not 
optimal, which leads to higher miss rates. Besides this, it is 
not possible to achieve effective data prefetch (which helps 
to hide access latency) since not all of the programs expose 
sufficient spatial locality in the data accesses. For real time 
applications it is often unacceptable to use caches because 
of their unpredictable latency [8]. 

A proposed alternative to hardware caches is a ‘software 
controlled cache’. For this, the decisions on when to 
allocate reused data to intermediate buffers (stored in 
scratch pad memory) are done after analyzing the algorithm 
at compile time. The code for copying the data from main 
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memory to buffers (using the processor or a DMA 
controller) is added to the original program and the 
modified program is compiled using conventional compilers. 
In this scheme, the size of the buffers required to partially 
or completely eliminate repeated accesses to main memory 
determines the optimal memory hierarchy. 

In this paper we present an approach for performing data 
reuse analysis, suggesting several memory configurations 
for exploiting reuse that adapts the program to the selected 
memory configuration. Specifically, our approach creates a 
customized scratch pad memory that employs a hierarchical 
buffer organization, and also inserts the appropriate code in 
the source to perform the necessary transfers to and from 
this customized scratchpad organization. We show the 
efficiency of our approach on several multimedia and 
streaming benchmark kernels, generating a factor of two 
reduction in memory energy consumption. 

The rest of the paper is organized as follows. Section 2 
presents related work. Section 3 describes our approach for 
data reuse analysis. Section 4 evaluates the benefits and 
overheads of the proposed approach. Section 5 concludes 
the paper. 

2. Related work 

Many papers have addressed the problem of data reuse in 
caches by improving locality of accesses, primarily by 
means of loop transformations (e.g. [1][12]). However, we 
do not address this problem since we assume that all 
possible loop transformations for improving locality are 
already performed before applying the technique presented 
in this paper.  

In [13] an approach has been proposed to use a scratch 
pad memory to store scalars and some of the arrays of the 
application. The partitioning of data between the scratch 
pad and the cache is done at compile time and is fixed 
during the execution of the program. This leads to the non-
optimal use of the scratch pad memory since during the 
execution of the program different parts of arrays may be 
reused. The same drawback has the approach presented in 
[15], where most frequently used data structures and basic 
blocks are statically placed in the scratch pad memory. 

At IMEC a methodology for data transfer and storage 
exploration (DTSE) has been developed which includes 
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data reuse optimization step [5]. Up to now this step has not 
been fully formalized. In [17] an attempt has been made to 
explore tradeoffs between scratch pad memory size and 
power, assuming an optimal dynamic (run-time) placement 
of data in scratch pad memory. However, no technique was 
presented for implementing such optimal placement. In [18] 
the analysis technique has been presented. However, it has 
been limited to two nested loops and one array reference 
inside. 

for i=0 to 10 
  for j=0 to 10 
    for k=0 to 3 
      val = f(val) 
      val +=  
         A[50i+3j+k]

int buf[34] 
for i=0 to 10 
  for m=0 to 33 
    buf[m]=A[50i+m]
  for j=0 to 10 
    for k=0 to 3 
      val = f(val) 
      val += buf[3j+k]

int buf[1] 
for i=0 to 10 
buf[0]=A[50i] 
for j=0 to 10 
for k=0 to 3 
if (k==3) buf[0]=A[50i+3j+3]
val = f(val) 
val += (k%3==0)?

                buf[0]:A[50i+3j+k]

(a) Original 
program

(b) Output file 
obtained with 
technique [7] 

(c) Output file obtained 
using our technique 

Figure 1. Comparison of several approaches for 
exploiting data reuse 

In [7][8] the problem of dynamic placement of data in 
scratch pad memory is also addressed. The solution relies 
on performing loop transformations first to simplify the 
reuse pattern. However, if loop reordering is not possible 
(e.g. due to dependencies) and the reused areas are not 
continuous, the memory requirements for scratch pad in 
their approach may significantly exceed the amount of 
actually reused data, hence leading to suboptimal results. 
Moreover, partial update of the buffer while keeping the 
data that will be reused in the future is not possible. 

Our approach allows detecting and transforming a 
program to store reused parts of arrays in buffers that are 
located in scratch pad memory. Decisions about which parts 
to store are made during the compile time, but data 
placement is made dynamically in the sense that the 
contents of buffers are updated at run time by replacing the 
data that is not going to be reused anymore by the new data. 
Our technique handles any loop structure with any number 
of array references inside as long as the index expressions 
are affine functions of the loop iterators. Data reuse 
opportunities are detected and exploited both between 
different references as well as for the same reference 
between different iterations of outer loops. Furthermore, our 
approach generates a hierarchical set of scratch pad buffers, 
any of which can be selected later to be actually used in the 
transformed program. Our transformations do not change 
loop or array references order.  

To show the difference in results between our and the 
above mentioned approaches we apply those to the example 
depicted in Figure 1. The technique proposed in [13] 
allocates the whole array A to the scratch pad memory. The 
code of the program is not changed and the scratch pad 
memory required is 534 data elements. If we use the 
approach proposed in [7], the code that can be generated is 

shown in Figure 1b. The buffer size is 34 data elements, and 
only 10 of them are used more than once. The code 
obtained using our technique is shown in Figure 1c. In our 
approach, the number of accesses to the scratch pad is two 
times less compared to [7], while the number of accesses to 
the main memory stays the same. Moreover, the size of 
required scratch pad memory is 34 times less in our case. 

3. Our Data Reuse Detection and Code 
Transformation approach 

In our approach we identify arrays that are most heavily 
used with compile time analyzable access patterns, and 
exclude them from servicing by data cache. Instead, all 
array elements that are reused are kept in scratch pad 
memory and all the others are fetched from main memory 
directly (bypass).  

The algorithm for reuse analysis uses a description of 
loop structure and array references as an input. The output 
of our algorithm is a hierarchical set of buffers, any of 
which can be placed in the scratch pad memory, and the 
input code transformed to include the appropriate data 
transfers. The problem of design space exploration 
(selecting which of the buffers should be used) is not in the 
scope of this paper and has been addressed previously in [3]; 
the focus of this paper is on the automation of reuse 
detection required to generate the exploration space of the 
custom memory configurations. 

Our algorithm performs analysis of data reuse pattern on 
each nested loop level. Data reuse is detected between 
different array references as well as between the different 
iterations of the outer loops for the same array reference. If 
data reuse is detected, a buffer size is determined to hold the 
reused data. Performing those operations at each nested 
loop level results in a hierarchical set of buffers. 

Figure 2 gives an outline of our algorithm. First, in Step 
1 we select a part of the program that may be beneficial to 
optimize and extract its loop structure surrounding array 
access. This step is performed manually by the designer. 
Then we build a reuse tree, which resembles the loop 
structure of the code. Figure 3a,b shows an example of 
input code and corresponding reuse tree. Each reuse node in 
the reuse tree represents a buffer that will be used to hold 
reused data. Such a reuse tree represents the hierarchical 
structure of the buffers.  

In some cases, the reuse tree does not exactly follow the 
loop structure of the program. For example, in Figure 4, a 
program and corresponding reuse tree is presented. Since 
index expressions of the references have different 
coefficients affecting iterator x, there is little reuse 
opportunities and it is not efficient to allocate the same 
reuse buffer for both of them. Therefore the reuse node, 
corresponding to loop x, must be duplicated.  

In general, the property that should be enforced in a 
reuse tree is that for each reuse node N all descendant 
reference nodes should have the same coefficients of the 
iterators declared in the node N and all its ancestors. 
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Input: description of loops and array references 
Output: memory configuration and transformed program 
1: Select part of the program to be optimized 
2: Extract loop and array reference information for those pieces of 
code 
3: For each array do
 3-1: Build reuse tree
 3-2: For each reuse node (current node) of reuse 
  tree do

3-2-1: Classify iterators into three groups:  
fixed, moving and filling iterators

  3-2-2: Create low cover and full cover sets
  3-2-3: Transform sets to 2M-dimensional space 
  3-2-4: Divide transformed sets into cells and 
    assign distance numbers to them 
  3-2-5: Find grid and basic pieces 
  3-2-6: Determine the size of the buffers 
   required for the current loop level 
4: Perform design space exploration and select which of the buffers 
should be implemented 
5: Transform the program to include selected buffers and simplify it 

Figure 2. Outline of the algorithm for detecting 
reuse and transforming the program to use a 
scratch pad memory 

Figure 3. Creating reuse tree 

Figure 4. An example of reuse tree with split 
node 

After obtaining reuse tree we try to determine which data 
is reused at each loop level (in each reuse node). For each 
reuse node L (let’s call it a current node) of the reuse tree 
we perform the following operations. 

In step 3-2-1 we classify all loop iterators that are 
descendants or ancestors of L and L itself into three groups: 
fixed iterators, moving iterators and filling iterators. We 
call filling iterators all loop iterators defined in reuse nodes 
that are descendants of L. All the iterators defined in nodes 
from current to root node are split into two groups: moving 

iterators (from node L to some node K) and fixed iterators. 
To determine node K , iterators should be added one by one 
to a set M of moving iterators as long as the following 
property remains true: 

∀(N,C) ∈M, coef(C) > coef(N):  
(upper_bound(N)-lower_bound(N) + 1)*coef(N) ≤ coef(C) ∪

coef(C) mod coef(N) = 0, 

where upper_bound(N), lower_bound(N) are bounds of 
the loop of iterator N; coef(N) is the coefficient of iterator N
in index expression; mod is the modulo operation. 

In other words, all moving iterators should have 
coefficients that evenly divide each other and for any two 
iterators the greatest coefficient should not be less than the 
value on which the loop with iterator with lesser coefficient 
can change the value of the index expression. 

This classification for loop iterators is essential in our 
approach. It allows easy determination of the repeating 
addresses in the address footprint of the accessed array 
elements  between iterations of moving iterators when the 
fixed iterators do not change their values and the filling 
iterators are iterating over their complete loop bounds. This 
allows to keep the data reused efficiently during iteration 
over moving iterators, which will be explained later. 

For the code shown in Figure 3a and for the current 
iterator x, iterators dx and dy are filling iterators, x and y are 
moving iterators, and k is a fixed iterator. 

In the following steps we introduce the concept of a 
cover set. A cover set is a set of the one-dimensional values 
of array index expressions when the fixed iterators are set to 
their first value; filling iterators are iterating within the 
corresponding loop bounds; and the moving iterators are 
iterating within specified bounds. Index expressions are 
taken from reference nodes that are descendants of the 
current reuse node in the reuse tree. 

In the next step 3-2-2, both a low cover set LC and a full 
cover set FC are calculated. A low cover set is a cover set 
when moving iterators are set to their first value. A full 
cover set is a cover set when the moving iterators are 
iterating within the corresponding loop bounds. 

We illustrate our algorithm using the code shown in 
Figure 3a. Assuming that x is the current iterator, the low 
cover set is: 

LC = [V]:{∃dx,dy: ((0 ≤ dy ≤ 4 ∩ 0 ≤ dx ≤ 9 ∩ v=100dy+dx) ∪
(0 ≤ dy ≤ 14 ∩ 0 ≤ dx ≤ 4 ∩ V=100dy+dx+1000))} 

Next, in Step 3-2-3 we transform the cover sets of one-
dimensional points to the transformed cover sets of 2M-
dimensional points, where M is the number of moving 
iterators. This is needed to obtain smaller buffers with 
simpler address calculations in the transformed program. It 
is done by applying the following relation R to the cover 
sets:

R = [V] → [V1..VM, dV1..dVM]: 
{0 ≤ dV1 ≤ dV1max ∩ .. ∩ 0 ≤ dVM ≤ dVMmax ∩

0 ≤ V1 ≤ V1max ∩ .. ∩ 0 ≤ VM ≤ VMmax ∩
V = coef(V1)/step1*( step1*V1+dV1) + .. + 

 coef(VM) /stepM*( stepM*VM+dVM) + min(V)}, 

for k = 0 to 9 
  for y = 0 to 4 
    for x = 0 to 4 
      for dy =  0 to 4 
        for dx = 0 to 9 
          A [100*(10y+dy)+ 
              (10x+dx)+20k] 
      for dy =  0 to 14 
        for dx = 0 to 4 
          A [100*(10y+dy+10) 
            +(10x+dx)+20k] 

(a) Original program  

Root node

Reuse node
for k=0 to  9

Reuse node
for y=0 to 4

Reuse node
for x=0 to 4

Reuse node
for dy=0 to 4

Reuse node
for dy=0 to  14

Reuse node
for dx=0 to 9

Reuse node
for dx=0 to 4

Reference 
node 

A[1000y+ 
100dy+10x+

dx+20k]

Reference 
node 

A[1000y+ 
100dy+10x+

dx+20k+1000

(b) Reuse tree

     for x = 0 to 9 
       A[5x] 
       A[6x] 

(a) Original program

Root node

Reference 
node 
A[5x]

Reference 
node
A[6x]

(b) Reuse tree

Reuse node
for x=0 to 9

Reuse node
for x=0 to 9

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’04) 

1530-1591/04 $20.00 © 2004 IEEE 



Figure 5. Finding buffers configuration 

where V1..VM is a new M-dimensional element of the set; 
min(V) – value of the minimal element in input set of one-
dimensional elements; coef(VK) – coefficient of Kth moving 
iterator in index expression. Constants dV1max .. dVMmax,
V1max .. VMmax and step1 .. stepM should be selected so that 
any input element V could be represented by some output 
element (V1..VM) only in one way. More than one possible 
choice may exist for those constants. They affect both the 
complexity of the address calculations in the transformed 
code as well as the buffer sizes. 

To illustrate selection of the constants, let’s look at the 
index expression from our example: index = 
1000y+100dy+10x+dx+k. It can be rewritten as index = 
100(10y + dy) + (10x+dx) + k. The relation for this example 
is

R = [V] → [V1,V2, dV1,dV2]:{0 ≤ dV1 ≤ 9 ∩ 0 ≤ dV2 ≤ 9 ∩
0 ≤ V1 ≤ ∞ ∩ 0 ≤ V2 ≤ 9 ∩

V = 100*(10V1+dV1) + 1*(10V2+dV2) + 0}. 

To transform the low and full cover sets we apply the 
relation R to the sets. The transformed sets for the example 
are depicted in Figure 5a and Figure 5c. 

Next, in Step 3-2-4 we divide the transformed full cover 
set into M-dimensional rectangular cells. In each cell the 
values of V1..VM are constant. All cells that intersect with 
the rectangular hull of a full cover set are numbered 

sequentially starting from 0. We call those numbers 
distance numbers (Figure 5a,b). 

In Step 3-2-5 we determine the grid and the basic pieces.
Grid and basic pieces are sets of M-dimensional points. To 
find grid pieces, we intersect the transformed low cover set 
with the rectangular cells obtained earlier. In other words, 
for each value of V1..VM, we obtain a set (which is called a 
grid piece) G(R(low cover set)), where 

G = [V1..VM, dV1..dVM] → [ddV1..ddVM]:
{ddV1= dV1 ∩ .. ∩ ddVM= dVM ∩
V1..VM are set to given values} 

Grid pieces may overlap with each other. However, it is 
possible to represent every grid piece as a union of non-
overlapping basic pieces. The set of basic pieces is common 
and different combinations of its elements are used to 
represent all grid pieces. Figure 5d shows the grid and basic 
pieces for the example discussed above. 

Finally in Step 3-2-6 we determine the size of the buffers 
required for the current level of the memory hierarchy. It is 
done by analyzing the basic pieces. Each basic piece 
represents an opportunity for a buffer. If a basic piece 
belongs to only one grid piece, there is no data reuse and no 
buffer is necessary. If a basic piece is a part of two or more 
different grid pieces, a buffer can be introduced. The size of 
the buffer is computed by multiplying the basic piece size 
(number of elements in the basic piece) by the maximum 
difference in distance numbers of the grid pieces that 
contain the basic piece.  

To further illustrate how the buffer size and 
configuration are determined, consider a fragment of our 
example as shown in Figure 5d, where only the basic piece 
BP1 is reused. The size of the BP1 is 25 (5*5). The grid 
pieces containing BP1 are GP1, GP2 and GP3 with distance 
numbers 0, 5 and 10. The maximum difference in distance 
numbers is 10. Hence, the size of the buffer needed to hold 
all reused data is 25*10=250. 

Sometimes it is beneficial to have a smaller buffer and to 
select some of the other distances instead of maximum 
distance. In our case, we can also select the distance 
difference to be 5 with a buffer size of 125. This buffer can 

0

5

10

10X+dX 

10Y+dY

dX

dY 

grid 
piece 
GP1

GP2

GP3

dX

dY 

basic 
piece 
BP1

BP2

BP3

GP1 = BP1∪ BP2

GP2 = BP1∪ BP3

GP3 = BP1

(d) Grid and basic pieces 

(b) Division into rectangular cells 
and assignment of distance numbers

10Y+dY 

10X+dX 

distance 
numbers 

(a) Transformed full cover sets for 
each array reference 
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   sets for each array reference
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hold data that is reused between grid pieces GP1 and GP2 (or 
GP2 and GP3) that increases the number of accesses to main 
memory but decreases the cost of scratch pad memory. 

After obtaining all information about buffers that can be 
used at each loop level, in step 4 we perform design space 
exploration and select the buffers that should be 
implemented. 

Finally, in Step 5, we transform the program to include 
selected buffers holding reused data. Each array reference is 
replaced by some conditional statements that determine 
where the data should be read from and whether it should be 
copied to the buffer. This simple scheme does not allow to 
use DMA or burst transfer mode while accessing the main 
memory though.  

As an alternative approach, the buffer can be filled with 
data every iteration of fixed iterators and parts of the buffer 
can be updated in the beginning of iteration of the loops 
with moving iterators. This allows the use of a DMA 
controller. 

After obtaining the transformed program it is necessary 
simplify it to reduce computation overhead due to the need 
of addressing scratch pad memory. Even though 
conventional compilers do perform some optimizations that 
help in this case, other optimizations (e.g. address 
optimizations [6], etc) should be applied due to special 
structure of the code.  

4. Experimental results 

One of the goals of our experiments is to compare our 
customized scratch pad memory against a cache based 
memory subsystem for their ability to exploit temporal 
locality of the data accesses in a number of multimedia and 
streaming applications. We also study the overheads 
incurred in using a customized scratch pad memory. 

We have created a tool that implements the described 
technique. It uses a polyhedral model for representing sets 
used in the algorithm [9][19]. The running time of the tool 
is in order of seconds for the benchmarks we used. 

We have used a Pentium 4, Sun UltraSparcIII, PA-8500 
(HP) workstations for profiling purposes. The SimpleScalar 
simulator [4] has been used for obtaining the number of 
misses for cache. We have used the CACTI model [14] for 
energy estimation of both the cache and scratch pad 
memories and also for the 128Kb off-chip memory all at 
130nm technology.  

For the benchmarks we have used kernels extracted from 
a H.263 video encoder [11], QSDPCM encoder [16], and 
the Laplace algorithm performing edge enhancements in 
images. By running our tool we have obtained reuse trees 
with all possible buffer configurations. For each of the 
benchmarks, we have selected several buffer configurations.  
Each of them consists of one buffer. The tool has provided 
us with the code versions that implement necessary data 
transfers between the scratch pad buffers and the main 
memory for the selected buffers. All transfers in the code 
are performed by the processor without the use of DMA 

support. 

4.1. Effect on the memory subsystem 

In this section we have examined the effect when using a 
scratch pad memory on the reduction of traffic to main 
memory as well as on the energy spent in the memory 
subsystem. The comparison of the scratch pad based 
memory architecture has been made against a system 
having a direct mapped data cache of the same size. The 
goal is to evaluate the energy efficiency of our software 
steered data replacement approach compared to that one 
implemented by a hardware cache controller i.e. with the 
LRU replacement policy. The sizes of the scratch pad 
memory and the cache have been selected to be the closest 
values that are powers of two while being greater or equal 
than the buffer size required in the scratch pad configuration. 
The cache line size has been selected to be the minimal 
allowed by the simulator [4] (8 bytes, which is 2 data 
elements in all benchmarks). In this way, we compare solely 
how well is the temporal locality of the data exploited 
without considering spatial locality issues. These issues are 
largely orthogonal and can be optimized by data layout 
transformations [10] which fall outside the scope of this 
paper.

The energy savings when using scratch pad in 
comparison with cache are coming from two sources. 

 First, a scratch pad memory consumes less energy than a 
cache of the same size per one access (about two times less 
for direct mapped cache [14]).  

But especially also the more optimal data replacement 
decisions for the scratch pad memory when compared to 
that ones made according to the LRU policy of the cache 
controller result in less accesses to the main memory for all 
cases except the first one (see Table 1) which uses only one 
data reuse buffer out of two required for full data reuse. In 
our experiments we have used a relatively small off-chip 
memory and have not accounted for the energy dissipation 
in the off-chip buses due to limitations of the used energy 
model [14]. It is clear that the memory system energy 
savings improves if we account for buses energy or use 
larger main memory (for all cases except the first one).  

As we can see from Table 1, the scratch pad based 
memory subsystem consumes 40% to 60% less energy than 
the system with a cache of the same size. 

We have also compared the effectiveness of our 
technique with the approaches proposed in [13] and [7] for 
the QSDPCM benchmark. Using [13], it requires 100 times 
bigger scratch pad memory but eliminates all accesses to 
main memory. However, it consumes 4.5 times more energy 
in the memory subsystem than the energy obtained with our 
approach. By using [7] and implementing a buffer at the 
same level as we have done for our reported results, it 
requires 10 times bigger buffer. The amount of accesses to 
the main memory is also about 10 times greater than in our 
approach mainly due to the loading of unused data. This 
even exceeds the number of accesses in the original 
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program, giving negative energy savings in comparison 
with the original program. 

4.2.  Control code overhead estimation 

Adding buffers for keeping frequently used data implies 
the addition of code that determines if the current fetch 
should be performed from the buffer or main memory and it 
calculates the position of requested data in the buffer. This 
adds time and energy overhead. In this section we estimate 
the amount of additional cycles needed to perform the 
described calculations and transfers and increase in the code 
size. 

To estimate the overhead, the original and transformed 
programs have been run on a number of workstations. Since 
on a workstation a data cache is large enough to hold the 
whole data set, we can ignore the influence of the cache 
configuration for these platforms.  

The code size overhead (expressed as the ratio in the 
number of assembly lines) has been measured using gcc 
compiler for the Sun workstation. The results are shown in 
Table 1. On average the increase in the number of cycles is 
about 1.6. The increase in the code size is about a factor of 
two. However, when compared to the size of the whole 
application, the overhead in the code size is much smaller 
and is not likely to cause significant increase in instruction 
cache miss rate and consequently increase in energy 
consumption in the instruction memory hierarchy. 

5. Conclusion

In this paper we present a technique for data reuse 
analysis of data transfer dominated programs. The results of 
our analysis are vital for the design of a software-controlled 
memory hierarchy implemented as a customized scratchpad 
memory organized as hierarchical set of buffers. Our 
approach considers the data reuse opportunities both 
between different references as well as for the same 
reference between different iterations of the outer loop. We 
have demonstrated about a factor of two reduction in 
memory subsystem energy when applying our approach 
when compared to a cache based implementation, and we 
outperform previously reported scratchpad approaches. 
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H.263 with a buffer 36K 80% -9% 64K 41% 1.40 1.85 1.40 3.2
H.263 with a buffer 6K 58% 54% 8K 50% 1.87 2.33 1.59 2.4
QSDPCM with a buffer 1K 89% 13% 1K 49% 1.28 1.12 1.77 1.78
Laplace with a buffer 4K 89% 65% 4K 58% 1.29 1.39 1.36 1.85
Laplace with a buffer 2.5K 89% 65% 4K 58% 1.68 1.54 2.21 1.68

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’04) 

1530-1591/04 $20.00 © 2004 IEEE 


