
Data Reuse Analysis Technique for Software-Controlled Memory Hierarchies*

Ilya Issenin1, Erik Brockmeyer2, Miguel Miranda2, Nikil Dutt1

1University of California, Irvine, CA 92697
{isse,dutt}@ics.uci.edu

2IMEC, B-3001 Leuven, Belgium
{miranda,brockmey}@imec.be

Abstract

In multimedia and other streaming applications a
significant portion of energy is spent on data transfers.
Exploiting data reuse opportunities in the application, we
can reduce this energy by making copies of frequently used
data in a small local memory and replacing speed and
power inefficient transfers from main off-chip memory by
more efficient local data transfers. In this paper we present
an automated approach for analyzing these opportunities in
a program that allows modification of the program to use
custom scratch pad memory configurations comprising a
hierarchical set of buffers for local storage of frequently
reused data. Using our approach we are able to reduce
energy consumption of the memory subsystem when using a
scratch pad memory by a factor of two on average
compared to a cache of the same size.

1. Introduction*

Exploiting data reuse opportunities in loop dominant
applications is essential for energy efficient memory
hierarchies. The traditional approach for solving the data
reuse problem employs the use of hardware controlled
caches. While this has been proposed for general-purpose
architectures, a hardware only implementation has several
drawbacks. A hardware controller approach adds additional
power and area cost [2]. Due to the lack of knowledge of
future accesses, the placement of data in the cache is not
optimal, which leads to higher miss rates. Besides this, it is
not possible to achieve effective data prefetch (which helps
to hide access latency) since not all of the programs expose
sufficient spatial locality in the data accesses. For real time
applications it is often unacceptable to use caches because
of their unpredictable latency [8].

A proposed alternative to hardware caches is a ‘software
controlled cache’. For this, the decisions on when to
allocate reused data to intermediate buffers (stored in
scratch pad memory) are done after analyzing the algorithm
at compile time. The code for copying the data from main

*
 This work was partially supported by NSF grants CCR-0203813 and

CCR-0205712.

memory to buffers (using the processor or a DMA
controller) is added to the original program and the
modified program is compiled using conventional compilers.
In this scheme, the size of the buffers required to partially
or completely eliminate repeated accesses to main memory
determines the optimal memory hierarchy.

In this paper we present an approach for performing data
reuse analysis, suggesting several memory configurations
for exploiting reuse that adapts the program to the selected
memory configuration. Specifically, our approach creates a
customized scratch pad memory that employs a hierarchical
buffer organization, and also inserts the appropriate code in
the source to perform the necessary transfers to and from
this customized scratchpad organization. We show the
efficiency of our approach on several multimedia and
streaming benchmark kernels, generating a factor of two
reduction in memory energy consumption.

The rest of the paper is organized as follows. Section 2
presents related work. Section 3 describes our approach for
data reuse analysis. Section 4 evaluates the benefits and
overheads of the proposed approach. Section 5 concludes
the paper.

2. Related work

Many papers have addressed the problem of data reuse in
caches by improving locality of accesses, primarily by
means of loop transformations (e.g. [1][12]). However, we
do not address this problem since we assume that all
possible loop transformations for improving locality are
already performed before applying the technique presented
in this paper.

In [13] an approach has been proposed to use a scratch
pad memory to store scalars and some of the arrays of the
application. The partitioning of data between the scratch
pad and the cache is done at compile time and is fixed
during the execution of the program. This leads to the non-
optimal use of the scratch pad memory since during the
execution of the program different parts of arrays may be
reused. The same drawback has the approach presented in
[15], where most frequently used data structures and basic
blocks are statically placed in the scratch pad memory.

At IMEC a methodology for data transfer and storage
exploration (DTSE) has been developed which includes

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’04)

1530-1591/04 $20.00 © 2004 IEEE

data reuse optimization step [5]. Up to now this step has not
been fully formalized. In [17] an attempt has been made to
explore tradeoffs between scratch pad memory size and
power, assuming an optimal dynamic (run-time) placement
of data in scratch pad memory. However, no technique was
presented for implementing such optimal placement. In [18]
the analysis technique has been presented. However, it has
been limited to two nested loops and one array reference
inside.

for i=0 to 10
 for j=0 to 10
 for k=0 to 3
 val = f(val)
 val +=
 A[50i+3j+k]

int buf[34]
for i=0 to 10
 for m=0 to 33
 buf[m]=A[50i+m]
 for j=0 to 10
 for k=0 to 3
 val = f(val)
 val += buf[3j+k]

int buf[1]
for i=0 to 10
buf[0]=A[50i]
for j=0 to 10
for k=0 to 3
if (k==3) buf[0]=A[50i+3j+3]
val = f(val)
val += (k%3==0)?

 buf[0]:A[50i+3j+k]

(a) Original
program

(b) Output file
obtained with
technique [7]

(c) Output file obtained
using our technique

Figure 1. Comparison of several approaches for
exploiting data reuse

In [7][8] the problem of dynamic placement of data in
scratch pad memory is also addressed. The solution relies
on performing loop transformations first to simplify the
reuse pattern. However, if loop reordering is not possible
(e.g. due to dependencies) and the reused areas are not
continuous, the memory requirements for scratch pad in
their approach may significantly exceed the amount of
actually reused data, hence leading to suboptimal results.
Moreover, partial update of the buffer while keeping the
data that will be reused in the future is not possible.

Our approach allows detecting and transforming a
program to store reused parts of arrays in buffers that are
located in scratch pad memory. Decisions about which parts
to store are made during the compile time, but data
placement is made dynamically in the sense that the
contents of buffers are updated at run time by replacing the
data that is not going to be reused anymore by the new data.
Our technique handles any loop structure with any number
of array references inside as long as the index expressions
are affine functions of the loop iterators. Data reuse
opportunities are detected and exploited both between
different references as well as for the same reference
between different iterations of outer loops. Furthermore, our
approach generates a hierarchical set of scratch pad buffers,
any of which can be selected later to be actually used in the
transformed program. Our transformations do not change
loop or array references order.

To show the difference in results between our and the
above mentioned approaches we apply those to the example
depicted in Figure 1. The technique proposed in [13]
allocates the whole array A to the scratch pad memory. The
code of the program is not changed and the scratch pad
memory required is 534 data elements. If we use the
approach proposed in [7], the code that can be generated is

shown in Figure 1b. The buffer size is 34 data elements, and
only 10 of them are used more than once. The code
obtained using our technique is shown in Figure 1c. In our
approach, the number of accesses to the scratch pad is two
times less compared to [7], while the number of accesses to
the main memory stays the same. Moreover, the size of
required scratch pad memory is 34 times less in our case.

3. Our Data Reuse Detection and Code
Transformation approach

In our approach we identify arrays that are most heavily
used with compile time analyzable access patterns, and
exclude them from servicing by data cache. Instead, all
array elements that are reused are kept in scratch pad
memory and all the others are fetched from main memory
directly (bypass).

The algorithm for reuse analysis uses a description of
loop structure and array references as an input. The output
of our algorithm is a hierarchical set of buffers, any of
which can be placed in the scratch pad memory, and the
input code transformed to include the appropriate data
transfers. The problem of design space exploration
(selecting which of the buffers should be used) is not in the
scope of this paper and has been addressed previously in [3];
the focus of this paper is on the automation of reuse
detection required to generate the exploration space of the
custom memory configurations.

Our algorithm performs analysis of data reuse pattern on
each nested loop level. Data reuse is detected between
different array references as well as between the different
iterations of the outer loops for the same array reference. If
data reuse is detected, a buffer size is determined to hold the
reused data. Performing those operations at each nested
loop level results in a hierarchical set of buffers.

Figure 2 gives an outline of our algorithm. First, in Step
1 we select a part of the program that may be beneficial to
optimize and extract its loop structure surrounding array
access. This step is performed manually by the designer.
Then we build a reuse tree, which resembles the loop
structure of the code. Figure 3a,b shows an example of
input code and corresponding reuse tree. Each reuse node in
the reuse tree represents a buffer that will be used to hold
reused data. Such a reuse tree represents the hierarchical
structure of the buffers.

In some cases, the reuse tree does not exactly follow the
loop structure of the program. For example, in Figure 4, a
program and corresponding reuse tree is presented. Since
index expressions of the references have different
coefficients affecting iterator x, there is little reuse
opportunities and it is not efficient to allocate the same
reuse buffer for both of them. Therefore the reuse node,
corresponding to loop x, must be duplicated.

In general, the property that should be enforced in a
reuse tree is that for each reuse node N all descendant
reference nodes should have the same coefficients of the
iterators declared in the node N and all its ancestors.

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’04)

1530-1591/04 $20.00 © 2004 IEEE

Input: description of loops and array references
Output: memory configuration and transformed program
1: Select part of the program to be optimized
2: Extract loop and array reference information for those pieces of
code
3: For each array do
 3-1: Build reuse tree
 3-2: For each reuse node (current node) of reuse
 tree do

3-2-1: Classify iterators into three groups:
fixed, moving and filling iterators

 3-2-2: Create low cover and full cover sets
 3-2-3: Transform sets to 2M-dimensional space
 3-2-4: Divide transformed sets into cells and
 assign distance numbers to them
 3-2-5: Find grid and basic pieces
 3-2-6: Determine the size of the buffers
 required for the current loop level
4: Perform design space exploration and select which of the buffers
should be implemented
5: Transform the program to include selected buffers and simplify it

Figure 2. Outline of the algorithm for detecting
reuse and transforming the program to use a
scratch pad memory

Figure 3. Creating reuse tree

Figure 4. An example of reuse tree with split
node

After obtaining reuse tree we try to determine which data
is reused at each loop level (in each reuse node). For each
reuse node L (let’s call it a current node) of the reuse tree
we perform the following operations.

In step 3-2-1 we classify all loop iterators that are
descendants or ancestors of L and L itself into three groups:
fixed iterators, moving iterators and filling iterators. We
call filling iterators all loop iterators defined in reuse nodes
that are descendants of L. All the iterators defined in nodes
from current to root node are split into two groups: moving

iterators (from node L to some node K) and fixed iterators.
To determine node K , iterators should be added one by one
to a set M of moving iterators as long as the following
property remains true:

∀(N,C) ∈M, coef(C) > coef(N):
(upper_bound(N)-lower_bound(N) + 1)*coef(N) ≤ coef(C) ∪

coef(C) mod coef(N) = 0,

where upper_bound(N), lower_bound(N) are bounds of
the loop of iterator N; coef(N) is the coefficient of iterator N
in index expression; mod is the modulo operation.

In other words, all moving iterators should have
coefficients that evenly divide each other and for any two
iterators the greatest coefficient should not be less than the
value on which the loop with iterator with lesser coefficient
can change the value of the index expression.

This classification for loop iterators is essential in our
approach. It allows easy determination of the repeating
addresses in the address footprint of the accessed array
elements between iterations of moving iterators when the
fixed iterators do not change their values and the filling
iterators are iterating over their complete loop bounds. This
allows to keep the data reused efficiently during iteration
over moving iterators, which will be explained later.

For the code shown in Figure 3a and for the current
iterator x, iterators dx and dy are filling iterators, x and y are
moving iterators, and k is a fixed iterator.

In the following steps we introduce the concept of a
cover set. A cover set is a set of the one-dimensional values
of array index expressions when the fixed iterators are set to
their first value; filling iterators are iterating within the
corresponding loop bounds; and the moving iterators are
iterating within specified bounds. Index expressions are
taken from reference nodes that are descendants of the
current reuse node in the reuse tree.

In the next step 3-2-2, both a low cover set LC and a full
cover set FC are calculated. A low cover set is a cover set
when moving iterators are set to their first value. A full
cover set is a cover set when the moving iterators are
iterating within the corresponding loop bounds.

We illustrate our algorithm using the code shown in
Figure 3a. Assuming that x is the current iterator, the low
cover set is:

LC = [V]:{∃dx,dy: ((0 ≤ dy ≤ 4 ∩ 0 ≤ dx ≤ 9 ∩ v=100dy+dx) ∪
(0 ≤ dy ≤ 14 ∩ 0 ≤ dx ≤ 4 ∩ V=100dy+dx+1000))}

Next, in Step 3-2-3 we transform the cover sets of one-
dimensional points to the transformed cover sets of 2M-
dimensional points, where M is the number of moving
iterators. This is needed to obtain smaller buffers with
simpler address calculations in the transformed program. It
is done by applying the following relation R to the cover
sets:

R = [V] → [V1..VM, dV1..dVM]:
{0 ≤ dV1 ≤ dV1max ∩ .. ∩ 0 ≤ dVM ≤ dVMmax ∩

0 ≤ V1 ≤ V1max ∩ .. ∩ 0 ≤ VM ≤ VMmax ∩
V = coef(V1)/step1*(step1*V1+dV1) + .. +

 coef(VM) /stepM*(stepM*VM+dVM) + min(V)},

for k = 0 to 9
 for y = 0 to 4
 for x = 0 to 4
 for dy = 0 to 4
 for dx = 0 to 9
 A [100*(10y+dy)+
 (10x+dx)+20k]
 for dy = 0 to 14
 for dx = 0 to 4
 A [100*(10y+dy+10)
 +(10x+dx)+20k]

(a) Original program

Root node

Reuse node
for k=0 to 9

Reuse node
for y=0 to 4

Reuse node
for x=0 to 4

Reuse node
for dy=0 to 4

Reuse node
for dy=0 to 14

Reuse node
for dx=0 to 9

Reuse node
for dx=0 to 4

Reference
node

A[1000y+
100dy+10x+

dx+20k]

Reference
node

A[1000y+
100dy+10x+

dx+20k+1000

(b) Reuse tree

 for x = 0 to 9
 A[5x]
 A[6x]

(a) Original program

Root node

Reference
node
A[5x]

Reference
node
A[6x]

(b) Reuse tree

Reuse node
for x=0 to 9

Reuse node
for x=0 to 9

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’04)

1530-1591/04 $20.00 © 2004 IEEE

Figure 5. Finding buffers configuration

where V1..VM is a new M-dimensional element of the set;
min(V) – value of the minimal element in input set of one-
dimensional elements; coef(VK) – coefficient of Kth moving
iterator in index expression. Constants dV1max .. dVMmax,
V1max .. VMmax and step1 .. stepM should be selected so that
any input element V could be represented by some output
element (V1..VM) only in one way. More than one possible
choice may exist for those constants. They affect both the
complexity of the address calculations in the transformed
code as well as the buffer sizes.

To illustrate selection of the constants, let’s look at the
index expression from our example: index =
1000y+100dy+10x+dx+k. It can be rewritten as index =
100(10y + dy) + (10x+dx) + k. The relation for this example
is

R = [V] → [V1,V2, dV1,dV2]:{0 ≤ dV1 ≤ 9 ∩ 0 ≤ dV2 ≤ 9 ∩
0 ≤ V1 ≤ ∞ ∩ 0 ≤ V2 ≤ 9 ∩

V = 100*(10V1+dV1) + 1*(10V2+dV2) + 0}.

To transform the low and full cover sets we apply the
relation R to the sets. The transformed sets for the example
are depicted in Figure 5a and Figure 5c.

Next, in Step 3-2-4 we divide the transformed full cover
set into M-dimensional rectangular cells. In each cell the
values of V1..VM are constant. All cells that intersect with
the rectangular hull of a full cover set are numbered

sequentially starting from 0. We call those numbers
distance numbers (Figure 5a,b).

In Step 3-2-5 we determine the grid and the basic pieces.
Grid and basic pieces are sets of M-dimensional points. To
find grid pieces, we intersect the transformed low cover set
with the rectangular cells obtained earlier. In other words,
for each value of V1..VM, we obtain a set (which is called a
grid piece) G(R(low cover set)), where

G = [V1..VM, dV1..dVM] → [ddV1..ddVM]:
{ddV1= dV1 ∩ .. ∩ ddVM= dVM ∩
V1..VM are set to given values}

Grid pieces may overlap with each other. However, it is
possible to represent every grid piece as a union of non-
overlapping basic pieces. The set of basic pieces is common
and different combinations of its elements are used to
represent all grid pieces. Figure 5d shows the grid and basic
pieces for the example discussed above.

Finally in Step 3-2-6 we determine the size of the buffers
required for the current level of the memory hierarchy. It is
done by analyzing the basic pieces. Each basic piece
represents an opportunity for a buffer. If a basic piece
belongs to only one grid piece, there is no data reuse and no
buffer is necessary. If a basic piece is a part of two or more
different grid pieces, a buffer can be introduced. The size of
the buffer is computed by multiplying the basic piece size
(number of elements in the basic piece) by the maximum
difference in distance numbers of the grid pieces that
contain the basic piece.

To further illustrate how the buffer size and
configuration are determined, consider a fragment of our
example as shown in Figure 5d, where only the basic piece
BP1 is reused. The size of the BP1 is 25 (5*5). The grid
pieces containing BP1 are GP1, GP2 and GP3 with distance
numbers 0, 5 and 10. The maximum difference in distance
numbers is 10. Hence, the size of the buffer needed to hold
all reused data is 25*10=250.

Sometimes it is beneficial to have a smaller buffer and to
select some of the other distances instead of maximum
distance. In our case, we can also select the distance
difference to be 5 with a buffer size of 125. This buffer can

0

5

10

10X+dX

10Y+dY

dX

dY

grid
piece
GP1

GP2

GP3

dX

dY

basic
piece
BP1

BP2

BP3

GP1 = BP1∪ BP2

GP2 = BP1∪ BP3

GP3 = BP1

(d) Grid and basic pieces

(b) Division into rectangular cells
and assignment of distance numbers

10Y+dY

10X+dX

distance
numbers

(a) Transformed full cover sets for
each array reference

10 20 30 40 50

10

20

30

40

50

60

70

0 10X+dX

10Y+dY rectangular hull

transformed full
cover set for the
first array
reference

transformed full
cover set for the
second array
reference

(c) Transformed low cover
 sets for each array reference

10Y+dY

10X+dX

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

25 26 27 28 29

30 31 32 33 34

0 1 2 3 4

5 6 7 8 9
10

20

30

40

50

60

70

10 20 30 40 50 0

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

25 26 27 28 29

30 31 32 33 34

0 1 2 3 4

5 6 7 8 9
10

20

30

40

50

60

70

10 20 30 40 50 0

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’04)

1530-1591/04 $20.00 © 2004 IEEE

hold data that is reused between grid pieces GP1 and GP2 (or
GP2 and GP3) that increases the number of accesses to main
memory but decreases the cost of scratch pad memory.

After obtaining all information about buffers that can be
used at each loop level, in step 4 we perform design space
exploration and select the buffers that should be
implemented.

Finally, in Step 5, we transform the program to include
selected buffers holding reused data. Each array reference is
replaced by some conditional statements that determine
where the data should be read from and whether it should be
copied to the buffer. This simple scheme does not allow to
use DMA or burst transfer mode while accessing the main
memory though.

As an alternative approach, the buffer can be filled with
data every iteration of fixed iterators and parts of the buffer
can be updated in the beginning of iteration of the loops
with moving iterators. This allows the use of a DMA
controller.

After obtaining the transformed program it is necessary
simplify it to reduce computation overhead due to the need
of addressing scratch pad memory. Even though
conventional compilers do perform some optimizations that
help in this case, other optimizations (e.g. address
optimizations [6], etc) should be applied due to special
structure of the code.

4. Experimental results

One of the goals of our experiments is to compare our
customized scratch pad memory against a cache based
memory subsystem for their ability to exploit temporal
locality of the data accesses in a number of multimedia and
streaming applications. We also study the overheads
incurred in using a customized scratch pad memory.

We have created a tool that implements the described
technique. It uses a polyhedral model for representing sets
used in the algorithm [9][19]. The running time of the tool
is in order of seconds for the benchmarks we used.

We have used a Pentium 4, Sun UltraSparcIII, PA-8500
(HP) workstations for profiling purposes. The SimpleScalar
simulator [4] has been used for obtaining the number of
misses for cache. We have used the CACTI model [14] for
energy estimation of both the cache and scratch pad
memories and also for the 128Kb off-chip memory all at
130nm technology.

For the benchmarks we have used kernels extracted from
a H.263 video encoder [11], QSDPCM encoder [16], and
the Laplace algorithm performing edge enhancements in
images. By running our tool we have obtained reuse trees
with all possible buffer configurations. For each of the
benchmarks, we have selected several buffer configurations.
Each of them consists of one buffer. The tool has provided
us with the code versions that implement necessary data
transfers between the scratch pad buffers and the main
memory for the selected buffers. All transfers in the code
are performed by the processor without the use of DMA

support.

4.1. Effect on the memory subsystem

In this section we have examined the effect when using a
scratch pad memory on the reduction of traffic to main
memory as well as on the energy spent in the memory
subsystem. The comparison of the scratch pad based
memory architecture has been made against a system
having a direct mapped data cache of the same size. The
goal is to evaluate the energy efficiency of our software
steered data replacement approach compared to that one
implemented by a hardware cache controller i.e. with the
LRU replacement policy. The sizes of the scratch pad
memory and the cache have been selected to be the closest
values that are powers of two while being greater or equal
than the buffer size required in the scratch pad configuration.
The cache line size has been selected to be the minimal
allowed by the simulator [4] (8 bytes, which is 2 data
elements in all benchmarks). In this way, we compare solely
how well is the temporal locality of the data exploited
without considering spatial locality issues. These issues are
largely orthogonal and can be optimized by data layout
transformations [10] which fall outside the scope of this
paper.

The energy savings when using scratch pad in
comparison with cache are coming from two sources.

 First, a scratch pad memory consumes less energy than a
cache of the same size per one access (about two times less
for direct mapped cache [14]).

But especially also the more optimal data replacement
decisions for the scratch pad memory when compared to
that ones made according to the LRU policy of the cache
controller result in less accesses to the main memory for all
cases except the first one (see Table 1) which uses only one
data reuse buffer out of two required for full data reuse. In
our experiments we have used a relatively small off-chip
memory and have not accounted for the energy dissipation
in the off-chip buses due to limitations of the used energy
model [14]. It is clear that the memory system energy
savings improves if we account for buses energy or use
larger main memory (for all cases except the first one).

As we can see from Table 1, the scratch pad based
memory subsystem consumes 40% to 60% less energy than
the system with a cache of the same size.

We have also compared the effectiveness of our
technique with the approaches proposed in [13] and [7] for
the QSDPCM benchmark. Using [13], it requires 100 times
bigger scratch pad memory but eliminates all accesses to
main memory. However, it consumes 4.5 times more energy
in the memory subsystem than the energy obtained with our
approach. By using [7] and implementing a buffer at the
same level as we have done for our reported results, it
requires 10 times bigger buffer. The amount of accesses to
the main memory is also about 10 times greater than in our
approach mainly due to the loading of unused data. This
even exceeds the number of accesses in the original

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’04)

1530-1591/04 $20.00 © 2004 IEEE

program, giving negative energy savings in comparison
with the original program.

4.2. Control code overhead estimation

Adding buffers for keeping frequently used data implies
the addition of code that determines if the current fetch
should be performed from the buffer or main memory and it
calculates the position of requested data in the buffer. This
adds time and energy overhead. In this section we estimate
the amount of additional cycles needed to perform the
described calculations and transfers and increase in the code
size.

To estimate the overhead, the original and transformed
programs have been run on a number of workstations. Since
on a workstation a data cache is large enough to hold the
whole data set, we can ignore the influence of the cache
configuration for these platforms.

The code size overhead (expressed as the ratio in the
number of assembly lines) has been measured using gcc
compiler for the Sun workstation. The results are shown in
Table 1. On average the increase in the number of cycles is
about 1.6. The increase in the code size is about a factor of
two. However, when compared to the size of the whole
application, the overhead in the code size is much smaller
and is not likely to cause significant increase in instruction
cache miss rate and consequently increase in energy
consumption in the instruction memory hierarchy.

5. Conclusion

In this paper we present a technique for data reuse
analysis of data transfer dominated programs. The results of
our analysis are vital for the design of a software-controlled
memory hierarchy implemented as a customized scratchpad
memory organized as hierarchical set of buffers. Our
approach considers the data reuse opportunities both
between different references as well as for the same
reference between different iterations of the outer loop. We
have demonstrated about a factor of two reduction in
memory subsystem energy when applying our approach
when compared to a cache based implementation, and we
outperform previously reported scratchpad approaches.

References
[1] D. F. Bacon, S. L. Graham et al. Compiler Transformations for High-

Performance Computing. ACM Computing Surv., 26(4), 1994.
[2] R. Banakar, S. Steinke et al. Scratchpad Memory: Design Alternative

for Cache On-chip Memory in Embedded Systems. CODES, 2002.
[3] E. Brockmeyer, M. Miranda, F. Catthoor, and H. Corporaal. Layer

Assignment Techniques for Low Energy in Multi-Layered Memory
Organisations. DATE, Germany, 2003.

[4] D. Burger and T. M. Austin. The SimpleScalar tool set, version 2.0. In
Technical Report 1342, University of Wisconsin-Madison, CS
Department, June 1997.

[5] J. Diguet, S. Wuytack, F. Catthoor, and H. De Man. Formalized
Methodology for Data Reuse Exploration in Hierarchical Memory
Mappings. In Proceedings of the IEEE International Symposium on
Low Power Design, pages 30-35, Monterey, CA, August 1997.

[6] C. Ghez, M. Miranda, A. Vandecappelle, F. Catthoor, D. Verkest.
Systematic high-level address code transformations for piece-wise
linear indexing: illustration on a medical imaging algorithm.
Workshop on Signal Processing Systems, Lafayette LA, Oct. 2000.

[7] M. Kandemir and A. Choudhary. Compiler-Directed Scratch Pad
Memory Hierarchy Design and Management. DAC, New Orleans,
Louisiana, June 2002.

[8] M. Kandemir, J. Ramanujam, M. J. Irwin, N. Vijaykrishnan, I.
Kadayif, and A. Parikh. Dynamic Management of Scratch-Pad
Memory Space. In Proc. the 38th Design Automation Conference, Las
Vegas, NV, June 2001.

[9] W. Kelly, V. Maslov, W. Pugh, E. Rosser, T. Shipeisman, and D.
Wonnacott. The Omega Library interface guide. Tech. Report CS-TR-
3445, CS Dept., Univ. of Maryland, College Park, March 1995.

[10] C. Kulkarni, M. Miranda, C. Ghez, F. Catthoor, H. De Man. Cache
Conscious Data Layout Organization For Embedded Multimedia
Applications. DATE, Germany, March 2001.

[11] K. Lillevold et al., Telenor R&D, H.263 test model simulation
software. Dec. 1995.

[12] K. McKinley, S. Carr, and C.-W. Tseng. Improving Data Locality
with Loop Transformations. ACM Trans. on Programming
Languages and Systems, 18(4), July 1996.

[13] P. R. Panda, N. D. Dutt, and A. Nicolau. Efficient Utilization of
Scratch-Pad Memory in Embedded Processor Applications. DATE,
Paris, March 1997.

[14] P. Shivakumar, N. Jouppi. CACTI 3.0: An Integrated Cache Timing,
Power, and Area Model. WRL Technical Report 2001/2, Aug. 2001.

[15] S. Steinke, L. Wehmeyer, B. Lee, and P. Marwedel. Assigning
Program and Data Objects to Scratchpad for Energy Reduction.
DATE, Paris, France, March 2002.

[16] P. Stobach. A new technique in scene adaptive coding. In Proc. Of
EUSIPCO, Grenoble, 1988.

[17] T. Van Achteren, F. Catthoor, R. Lauwereins, G. Deconinck. Search
Space Definition and Exploration for Nonuniform Data Reuse
Opportunities in Data-Dominant Applications. ACM Trans. on
Design Automation of Electronic Systems, Vol. 8, No. 1, Jan. 2003.

[18] T. Van Achteren, F. Catthoor, R. Lauwereins, and G. Deconinck.
Data Reuse Exploration Techniques for Loop-Dominated
Applications. In IEEE/ACM Design Automation and Test
Conference, Paris, France, 2002.

[19] D. K. Wilde. A Library for Doing Polyhedral Operations. Technical
Report 785, IRISA Rennes, France, 1993.

Table 1. Experiment results

The number of accesses to
the main memory

Increase in the
execution time

(without the effect of
main memory latency)Benchmark

and size of the
buffer when using

scratch pad memory
Reduction in
 comparison

with a system
without the cache

Reduction in
 comparison

 with a system
with the cache of

the same size

Scratch pad
memory

size

Memory
subsystem

energy
reduction in
comparison

with a system
with the cache of

the same size P
en

tiu
m

 4

S
un

U

ltr
aS

pa
rc

III

P
A

-8
50

0
(H

P
)

C
od

e
si

ze
 in

cr
ea

se

H.263 with a buffer 36K 80% -9% 64K 41% 1.40 1.85 1.40 3.2
H.263 with a buffer 6K 58% 54% 8K 50% 1.87 2.33 1.59 2.4
QSDPCM with a buffer 1K 89% 13% 1K 49% 1.28 1.12 1.77 1.78
Laplace with a buffer 4K 89% 65% 4K 58% 1.29 1.39 1.36 1.85
Laplace with a buffer 2.5K 89% 65% 4K 58% 1.68 1.54 2.21 1.68

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’04)

1530-1591/04 $20.00 © 2004 IEEE

