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Abstract

In 2004, the Basel Committee on Banking Supervision defined Operational Risk (OR) as the risk

of loss resulting from inadequate or failed internal processes, people and systems or from external

events. After publication of the new capital accord containing this definition, statistical properties of

OR losses have attracted considerable attention in the financial industry since financial institutions

have to quantify their exposures towards OR events. One of the major topics related to loss data

is the non-availability of a sufficient amount of data within the Financial Institutions. This paper

describes a way to circumvent the problem of data availability by proposing a scaling mechanism

that enables an organization to put together data originating from several business units, each one

having its specific characteristics like size and exposure towards operational risk. The same scaling

mechanism can also be used to enable an institution to include external data originating from other

institutions into their own exposure calculations. Using both internal data from different business

units and publicly available data from other (anonymous) institutions, we show that there is a strong

relationship between losses incurred in one business unit respectively institution, and a specific size

driver, in this case gross revenue. We study an appropriate scaling power law as a mechanism that

explains this relationship. Having properly scaled the data from different business units, we also show

how the resulting aggregated data set can be used to calculate the Value-at-OR for each business unit

and present the principles of calculating the value of the OR capital charge according the minimal

capital requirements of the Basel committee1.

Keywords. Operational Risk, Power Law Scaling, Loss Distribution, Value at Operational Risk,

Minimal Capital Requirements.

1The content of this report is largely based on the research executed by H.S. Na, the results of which are extensively

presented and discussed in Master thesis [1].
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1 Introduction

1.1 Operational Risk Modelling and the lack of loss data

In probabilistic terms, OR Modelling is about modelling loss distributions. The loss distribution portrays

loss events which are defined as incidents where damages are suffered. The corresponding losses are the

currency amounts of the suffered damages. Having fitted the loss distributions, the goal is to use them

in order to make inferences about future behavior of losses according to the risk profile of the Bank. For

example, a type of Value at Risk calculation can be applied in order to estimate the capital charge for

OR. A future risk profile is usually estimated using internally experienced loss information of a group of

events (Event Categories). This information may be readily found in the accounts of the Institution or in

a specific repository of losses built for that purpose. The latter is the result of the gathering effort made

by the various Business Lines (BLs) of the Bank.

Generally speaking however, Financial Institutions do not have enough information regarding the OR

losses that occurred under their premises in order to make meaningful forecasting and valid estimations

of the minimum acceptable capital for their own operational risk profile. Therefore, a major issue is

to find out how external losses collected from a group of other Banks can be incorporated into the

internal loss history so that one figure can be set up representing the whole capital due to operational

risk for that particular institution. The problem now resides in the fact that not all institutions have the

same risk profile. For modelling purposes, it is usually (implicitly) assumed that the group of events is

homogeneous enough that one can perform meaningful and reliable statistics with it. In such cases one

could, for example, calculate, from its own loss data, a credible and unbiased sample mean or a standard

deviation, or some other parameter of a hypothesized loss distribution, and one could hypothesize that

this distribution would be a good representative of the behavior of an entire population of losses. In

cases we deal with data pooled from several institutes, the above-mentioned assumption generally does

not hold and consequently, it is not advisable to incorporate external information into the internal risk

profile indiscriminately.

Following the same reasoning used for external data, internal data collected from different BLs might

not be homogeneous either. Each individual internal data comes from a specific BL having its internal

characteristics like size and control profile by the time the event occurred. Therefore, one may e.g. expect

that BLs that are different in size show a greater or lesser aggregated loss per period.

1.2 Scaling of Operational Risk Data

For the above-given reasons, it is not advisable to simply put together data originating from different

Business Lines or different Financial Institutions: it may result in statistical flaws, especially for high

severity-low frequency events [2]. Instead, certain rigorous statistical treatments are required like correc-

tion for ‘truncation above a specific threshold’ [2] or the application of ‘scaling’ [3] of relevant variables in

order to enable comparison of OR data from different Banks and different BLs, and to achieve comparable

standards.

For already quite a long time, physicists have been fascinated by power laws (see, e.g., the references
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in [3]). The main reason for this is related to the property of ‘universality’ which means that for many

physical phenomena close to the so-called ‘critical point’, the scaling laws found hold independently of the

microscopic details of the phenomenon. Related to this, it has been found that different materials may

have the same ‘universal’ values of critical-point exponents. Power laws are also observed in economic

and financial data [4] by, among many others, scientists like Pareto and Mandelbrot [5, 6]. In many cases,

power laws in economics are formulated as probability distributions like the famous Pareto probability

distribution of wealths (W ):

Pr(W ) =
Wµ

0

W 1+µ
, W >> W0. (1)

Here, µ characterizes the decay of the distribution for increasing wealth values W .

In this paper, we are interested in the application of direct scaling of variables according to a power

law in order to enable comparison of OR data from different banks and different BLs. As suggested by

certain researchers [7, 8], suitable scaling variables may be related to bank (BL)-specific factors such as

the size (measured by exposure indicators like gross revenue, transaction volumes, number of employees,

etc.) and the risk control environment, all taken per Line of Business. Their analysis however was limited

to scaling properties of the severity of OR losses. We take these suggestions as a starting point and extend

the analysis: we will analyze the distributions of the aggregate loss and the frequency of OR losses per

unit of time, and of the severity of OR losses per loss event. The analysis starts by presenting a few

theoretical results which can be considered as hypotheses that are assumed to hold. Next we illuminate

the way the simulations are set up and finally, we show and discuss the outcomes of certain simulations

and statistical tests.

The rest of this paper is structured as follows. In section 2, we present (the assumptions underlying)

our modelling approach, discuss some mathematical properties, and introduce a method for calculating

the Value-at-Risk of OR. In section 3, we present the way we organized our experiments and in section

4, we present the outcomes of the simulations. In section 5, we include a short discussion. We finish by

giving some conclusions and presenting an outlook.

2 Scaling Operational Risk Loss Data

2.1 Modelling Approach

Using the so-called ‘Loss Distribution Approach’ [9], frequency and severity distributions of OR loss data

can be combined in order to produce a loss distribution describing the distribution of the aggregate loss

per period [10]. Here, the frequency distribution describes the number of OR loss events per unit of

time and the severity distribution yields the distribution of loss amounts per single OR loss event. By

running a statistical simulation [10, 11], the distribution of the sum of OR losses per unit of time is found

yielding a typical distribution of OR losses as shown in Figure 1. This figure can be used to calculate the

Value-at-Risk for OR capital can be calculated. In case of using an Advanced Measurement Approach

without having taken specific provisional measures against OR losses [12], this capital charge equals the

sum of expected and ‘unexpected’ loss, the latter being the difference between the VAR at a confidence
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Figure 1: A typical distribution of the aggregate loss [10].

level of 99.9% and the expected loss, everything calculated per year: see again Figure 1.

We now continue by discussing the statistical properties of the aggregate loss (stochastic) variable.

A bank is usually divided into various Business Lines (BLs) b, (b = 1, . . . , B), each one of which can,

for modelling purposes, be viewed as an independent financial institution. The stochastic variable Lb

describing the aggregate loss of BL b per time unit, can be thought of as being caused by two components,

namely, the ‘common component’ Rcom and the ‘idiosyncratic component’ ridio
b [8]:

Lb = u(ridio
b , Rcom). (2)

In our approach, the common component Rcom is assumed to be stochastic and refers to the statistical

influence on OR losses caused by general factors such as the macroeconomic, the geopolitical and the

culture environment, the general human nature, and more. The idiosyncratic component ridio
b is assumed

to be deterministic and refers to OR arising from more specific factors such as size and exposure towards

operational risk of BL b. As a consequence of these assumptions, the effect of Rcom on the probability

distribution of Lb is thought to be common to all Lines of Business, while the effect of ridio
b is specific for

that BL. This latter effect we shall try to compensate for.

In order to be able to implement a suitable compensation method, we need to make assumptions

about the precise effect of the idiosyncratic component on the distribution of the stochastic variable Lb.

The first assumption made here is that the total effect of Rcom and ridio
b can be decomposed according

to

Lb = u(ridio
b , Rcom) = g(ridio

b ).h(Rcom), (3)

where ridio
b is an indicator of size of BL b. Below, this indicator will be denoted as sb and will be

represented by the gross income of the particular BL. Next to this, we assume that Lb scales with the

gross income per period for a particular BL according to the following power law:

Lb = g(ridio
b ).h(Rcom) = (sb)λ.h(Rcom), (4)

where λ > 0 is a universal exponent, i.e., a number that is equal for all BLs b. Equation (4) expresses
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that the larger the BL, the larger the loss aggregate suffered. The proportion between the losses of

different BLs is given by the scaling factor (sb)λ. Considering several BL’s B = 1, 2, . . ., we can rewrite

equation (4) as
L1

(s1)λ
=

L2

(s2)λ
= . . . = h(Rcom) = Lst, (5)

showing that h(Rcom) represents the aggregate loss Lst per period of the ‘standard’ BL with size sst = 1.

We observe that equation (4) can compactly be written as

Lb = (sb)λ.Lst, (6)

or, equivalently,

Lb.(sb)−λ = Lst. (7)

So, having available a set of OR loss sample data from several BLs and re-scaling them using (7), i.e.,

multiplying the sample values originating from BL b by (sb)−λ, (b = 1, 2, . . .), we may assume that the

complete set of re-scaled data originates from just one distribution, namely, that of stochastic variable

Lst. Vice versa, according to (6) data corresponding to the distribution of Lb are found by multiplying

all samples (thought to be) emanated from Lst with re-scaling factor (sb)λ.

2.2 Mathematical properties

In this subsection, we discuss several mathematical properties following from the above-given modelling

assumptions.

1. First we observe that equations (6) and (7) describe a transformation from one stochastic variable

to another. Then, if we know the probability density function (pdf) of one, it is not difficult to

calculate the pdf of the other using the ‘change of variable technique’ [13]: let f(lst) be the pdf of

Lst, then the pdf f ′(lb) of Lb is given by

f ′(lb) = f((sb)−λ.lb) |dlst

dlb
| = f((sb)−λ.lb) ∗ (sb)−λ. (8)

A simple example based on a uniform distribution may clarify the meaning of equation (8). Let

f(lst) be uniformly distributed according to

f(lst) =





1 if lst ∈ [0, 1]

0 elsewhere,
(9)

then it follows from equation (8) that f ′(lb) is (also uniformly) distributed conform

f ′(lb) =





(sb)−λ if lb ∈ [0, (sb)λ]

0 elsewhere.
(10)

So if, for example, (sb)λ = 2, then after multiplication of all sample values of Lst by 2, the density

of the uniform distribution is halved and the domain is doubled.

2. Using standard transformation properties of stochastic variables [13], the next scaling formulas are

a direct consequence of the assumptions made in subsection 2.1:

µLb
= (sb)λ.µLst , (11)
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and

σLb
= (sb)λ.σLst

, (12)

so, the scaling of the variable values also holds for their means and standard deviations.

3. Equation (11) can be interpreted as a regression line of data pairs (sb, µLb
) where for each sb, the

value µLb
equals the mathematical expectation of Lb with pdf f ′(lb). A linearized equation can be

obtained by taking the logarithm yielding

ln(µLb
) = λ. ln(sb) + ln(µLst

). (13)

Note that in equation (13), the variable ln(µLb
) is a function of ln(sb) and that both λ and ln(µLst

)

are constant. Equation (13) describes the hypothesis that all data pairs (ln(sb), ln(µLb
)) lie on one

straight line. If for each BL b, a data pair (ln(sb), ln(µLb
)) is available, this hypothesis can be tested

using linear regression.

4. By defining lµ = ln(µLb
), s = ln(sb), and ıµ = ln(µLst

), equation (13) can shortly be written as

lµ = λ.s + ıµ. (14)

Analyzing equation (12) in a similar way as equation (11), we obtain a linearized equation which

can shortly be written as

lσ = λ.s + ıσ. (15)

Having data pairs (ln(sb), ln(σLb
) = (s, lσ)) available, we can test whether the linear equation (15)

indeed holds by again applying regression. Note that we expect to find equal values for λ in

equations (14) and (15).

5. Having found λ, we can re-scale the given data set according to equation (6) or (7). After having

performed an appropriate re-scaling, the data can be considered as samples from the distribution of

the aggregate loss per time unit of one specific BL and, from this, a corresponding OR loss capital

charge can be calculated according the minimal capital requirements as fixed by the Basel commit-

tee. The OR capital charge calculation is based on a standard Value-at-Risk (VAR) estimation as

mentioned in section 2.1.

2.3 Extending the analysis

Sofar, we focussed our presentation on the aggregate loss per unit of time (Lb) but it should be clear

that a similar discussion can be set up on with respect to the frequency and severity of OR losses. In

addition, like has been explained in the introduction, the same scaling techniques can be used in order

to combine internal data with data originating from external sources, i.e., other Banks.

3 Experimental Set-up

In this section we sketch the experiments performed and describe the data sets available.
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3.1 Experiments Performed

In order to verify the above-given considerations concerning the scaling of OR losses, a straightforward

approach would be (1) to collect OR loss data from all BLs/Banks available, (2) to estimate the pdfs

f ′(lb), and (3) to analyze the (statistical) properties of these pdfs in order to test the validity of the given

theoretical framework. In practice, a limited set of OR loss data per BL appeared to be available. So,

due to the small amounts of data available per BL, move 2 of the above-given scheme, that of direct

estimating the full pdfs per BL, could not be made. Therefore, we were forced to limit the statistical

analysis during step 3 to the verification of just some basic properties of the pdfs that are supposed to

hold.

We decided to focus first on the validity of equations (11) and (12). The reason is simple: an important

issue is whether the estimated value of λ in both equations appears to be the same. If so, we would have

found evidence that the two most important parameters of the pdfs scale in the same way. This is

a necessary condition for the validity of the theoretical framework introduced in section 2. The two

estimations of the gradient λ (denoted as λµ and λσ respectively) as well as as the estimations of the

intercept values ıµ and ıσ (denoted as iµ and iσ respectively) are found using linear regression. The

resulting regression lines can be written as

lµ = λµ.s + iµ. (16)

and

lσ = λσ.s + iσ. (17)

In addition, we verified whether the linear relationships as described by equations (16) and (17) do

indeed hold by applying statistical testing. The regression simulation is performed using external data,

internal data as well as a combination of internal and external data. Next, we performed a Value-at-Risk

calculation for the aggregate loss. Having concluded all these investigations, we further performed similar

experiments and analysis related to the frequency and severity of OR loss data.

3.2 Available Data Sets

For the variable of size sb of each Business Line (BL) or Business Unit (BU) b, we use the daily gross

income data of the year 2003 which are summed up to the gross income per week by division with the

number of weeks in a year. The data concerning the aggregate loss, frequency, and severity of OR losses

have been made available by ABN-AMRO.

The internal loss data of the bank are given per Business Unit (like, for example, the BU Brazil and

the BU North America) while the external loss data are given per Business Line (like, for example, the

BL Corporate Finance and the BL Retail Banking), the latter according to the Basel Lines of Business

categorization [11]. For the reason of simplicity we have chosen to use these data directly instead of trying

to transfer the internal bank data per BU into data per BL. For each BL/BU, the OR losses per week

have been calculated. Next, these losses have been put together in a histogram (see figure 2) showing

an approximation of the pdf of the aggregate losses per week for each BL/BU. We observe that there
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Figure 2: Histograms of aggregate losses per week, for each BL and BU.

exist large differences between these histograms caused by different scales and, more importantly, lack of

substantial amounts of data. It was further an easy exercise to calculate, for each BL/BU, the sample

mean and standard deviation of (i) the sum of OR losses per time unit, (ii) the frequency of OR losses

per time unit, and (iii) the severity per OR loss event.

4 Simulation Results

In this section, we present and analyze the outcomes of simulations concerning the relationship between

the aggregate losses across different BLs/BUs and the size of these BLs/BUs according the experimental

setup described in section 3. We also present the results of similar studies for the frequency and the

severity of OR losses.

4.1 Analyzing the aggregate losses per week

4.1.1 Regression lines based on the means of OR losses

We start by showing the linear regression results based on equation (16) using both the internal data

per BU and the external data per BL: see figure 3. The data concern OR losses per week. We observe

that the values of the gradient parameter λµ of the two regression lines are quite close. The overall

impression from this figure is that the regression lines are almost in line with each other supporting the

above-mentioned choices made, including those concerning the data sources used. We also combined the

internal and external data sets into one set and then found the regression line as visualized in Figure 4.

As might be expected, the value of the gradient parameter λµ is between the two values found above and

turns out to be close to one.

We found several numerical results concerning the three linear regressions mentioned above. The

results are presented in Table 1. The first column describes the data source, the second column the

value of the squared correlation coefficient, the third the type of regression parameter (the intercept iµ
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Regression with the means of amounts of OR losses, per BU and BL 
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Figure 3: Regression lines according to equation(16), based on internal BU data and external BL data.

 
Regression with the means of OR losses, combined data 

l µ  = 1.0606  s      - 2.6921 

R 2  = 0.8099 

3.50 

4.00 

4.50 

5.00 

5.50 

6.00 

6.50 

7.00 

7.50 

8.50  9.00  9.50  10.00  10.50  11.00  11.50 

s 

lµ 

Figure 4: Regression lines according to equation(16), based on a combination of the internal BU data

and external BL data.

or gradient λµ), the value of which is given in the fourth column. The standard error of the regression

parameters (expressing how far they are likely to be from their expected value [14]) is given in the fifth,

column. The value of the t-statistic mentioned in the sixth column results from the t-test which is used to

examine whether the regression parameter values are significantly different from zero. The corresponding

P -value mentioned in the seventh column is related to the level of significance α.

For the external data, the interpretation is as follows: since the P -values in the sixth column are

here both less than α = 0.10 means that the value of both regression parameters is significantly different

from zero at a significance level of 99%. The gradient parameter is even significant at a level of 99.95%

because the P -value is (slightly) less than α = 0.0005. These results suggest that there exist a power-law

between the aggregate losses per week and the size & exposure towards OR per week for the external

Bls. We also observe that the idiosyncratic component can explain a big proportion of the variability in
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Data set R2 Parameter Value Standard Error t-statistic P -value

External 0.8914 iµ -2.3695 1.1828 -2.0033 0.0920

λµ 1.0205 0.1455 7.0163 0.0004

Internal 0.5961 iµ -3.6506 3.7060 -0.9851 0.3804

λµ 1.1877 0.4889 2.4294 0.0720

Combined 0.8099 iµ -2.6921 1.1718 -2.2975 0.0404

λµ 1.0606 0.1483 7.1511 0.0000

Table 1: Parameter and statistical values of the regression with the means of the aggregate losses (Fig-

ures 3 and 4).

the aggregate loss per week as we can see from the high value of R2.

For the internal data we observe that the value of R2 = 0.5961 is less convincing. However, we can

still reject the hypothesis that λµ = 0 at a level of 90% since the P -value is smaller than α = 0.10.

These results suggest that there exist a power-law between the aggregate loss per week and the size &

exposure towards OR per week for the internal BUs, although the evidence is not as strong as in the

case of external data. For the combination of internal and external data, we again observe a quite high

value of R2 (0.8099). The P -value of the intercept iµ is smaller than 0.05 and indicates a 95% level of

significance. The gradient λµ = 1.0606 is almost equal to 1 and is significant at a level of significance of

99.99% because its P -value is slightly less than 0.0001.

4.1.2 Regression lines based on the standard deviations of OR losses

Next we show the linear regression results of the standard deviations of OR losses based on equation (17)

using both the internal data per BU and external data per BL: see Figure 5.

We also combined the data again into one set and then found the regression line as visualized in figure 6.

In addition, we found the following statistical results concerning the three linear regressions mentioned

above: see Table 2. We observe that the values of R2 are of similar size but, on average, somewhat smaller

than the values of R2 found in the previous section. For the external data, the P -value of λσ (0.0154) is

less that 0.05 showing a significance level of 95% for the gradient parameter. For the internal data, the

significance level equals 90% (P -value (0.0663) < 0.10). Combining the internal and external data yields

the highest value of R2 (0.6643) and the P -value of the gradient (0.0004) corresponds to a confidence

level of 99.95%. We also do the important observation that, in case of using the combination of internal

and external data, the values of the gradients λµ = 1.0606 and λσ = 1.0167 are both significant and

almost equal. These results again suggest the existence of a power law as hypothesized in section 2.

4.1.3 Constructing the ‘standard distribution’ of the aggregate losses

Assuming the existence of a power law according to equation (4), the data from all different BUs/BLs

can thought having been drawn from the standard distribution of the aggregate losses per week provided
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Regression with the standard deviation of amounts of OR losses, per BU/ BL 
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Figure 5: Regression lines according to equation(17), based on internal BU data and external BL data.

Data set R2 Parameter Value Standard Error t-Statistic P -value

External 0.6519 iσ -2.101 1.9534 -0.1075 0.9179

λσ 0.8052 0.2402 3.3521 0.0154

Internal 0.6109 iσ -5.2625 4.3808 -1.2013 0.2959

λσ 1.4482 0.5779 2.5060 0.0663

Combined 0.6643 iσ -1.9553 1.6482 -1.1864 0.2584

λσ 1.0167 0.2086 4.8732 0.0004

Table 2: Parameter and statistical values of the regression with the standard deviation of the aggregate

losses (Figures 5 and 6).

we apply re-scaling according to equation (7). After having performed these calculations and having

aggregated the data from all BUs and BLs, we found the histogram as shown in Figure 7 which represents

an approximation of the true, continuous distribution of stochastic variable Lst of OR losses taken per

week. We observe that the shape of this histogram resembles the ones described in the literature, an

example of which was shown in Figure 1.

4.1.4 Calculating the Value-at-Operational-Risk of a BU/BL

As mentioned in section 2.1, a straightforward procedure can be followed to calculate the Value-at-Risk

(VAR) of the aggregate losses per week. Using the aggregated data set as described in the previous

section, the aggregate losses per week for the standard BU/BL are first sorted, a visualization of which

is shown in Figure 8. Having all together N sample values and choosing a confidence level α, the VAR

of the aggregate losses of the standard BU/BL is given by the j-th sorted loss where j = α.N . In our

case, this VAR has been calculated for three confidence levels. The resulting values are summarized in
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Figure 6: Regression lines according to equation(17), based on a combination of the internal BU data

and external BL data.

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55

0.
00

00
0

0.
00

00
6

0.
00

01
2

0.
00

01
8

0.
00

02
4

0.
00

03
0

0.
00

03
6

0.
00

04
2

0.
00

04
8

0.
00

05
4

0.
00

06
0

LWEEK,STANDARD

D
en

si
ty



 
Figure 7: Approximation of the pdf of the aggregate losses per week of the standard BU/BL.

Table 3. So for a time horizon of one week, the VAR of the aggregate losses for the standard BU/BL at

Confidence level (α, in %) j VAR (per week, standard BU/BL)

95 705 0.00019

99 735 0.00067

99.9 741 0.00363

Table 3: The Value-at-Operational Risk for the standard BL/BU, for several confidence levels.

confidence level 99.9% equals 0.00363 (for reasons of confidentiality, the precise meaning of this number is

not illuminated here). To find the VAR of the aggregate losses for another BU/BL, we can apply scaling
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Figure 8: The sorted aggregate losses per week for the standard BU/BL, with VAR-values at 95%, 99%,

and 99.9% confidence level.

in a similar way as has been applied in equation( 11) and (12):

V ARLb
= (sb)λ.V ARLst . (18)

So, it is an easy exercise to assess the VAR of the aggregate losses of a given BU/BL for any other time

horizon. Knowing the VAR of a BU/BL per year, we can also easily calculate the so-called OR capital

charge as dictated by the Basel Committee the general procedure of which was sketched in item 5 of

section 2.2. We do not elaborate the details here. Interested readers can found these in Master thesis [1].

4.2 Analyzing the frequency of OR losses

As explained in section 2, an operational risk loss distribution is usually estimated by a compound of

the frequency and severity distributions. It is therefore interesting to investigate whether the power-law

relationship comes from the frequency element, the severity element, or even from both elements. For

this reason, a similar experiment is conducted to the frequency and the severity distributions. We will

start with the frequency element in this section.

4.2.1 Regression lines based on the means of OR losses

The experiments related to the frequency distributions have been executed in precisely the same way as

those related to the aggregate losses described in the previous section (precise details are given in [1]).

We confine ourselves here to presenting the relevant tables containing the numerical values related to the

various regression lines, both for the external data and the internal data, and the combination of the two:

The coefficient iµ of the intercept as well as the coefficient λµ of the gradient are significant at a confidence

level of 99.9%, because their P -values are less than 0.001. These result suggest that there is a power-

law relationship between the frequency of operational loss per week and the size & exposure towards

operational risk per week of the external Lines of Business. The idiosyncratic component can explain a
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Data set R2 Parameter Value Standard Error t-statistic P -value

External 0.8923 iµ -7.5987 1.1529 -6.5907 0.0006

λµ 0.9996 0.1418 7.0507 0.0004

Internal 0.2142 iµ -3.0449 3.1297 -0.9729 0.3857

λµ 0.4311 0.4129 1.0442 0.3553

Combined 0.6912 iµ -5.7064 1.1784 -4.8425 0.0004

λµ 0.7731 0.1492 5.1831 0.0002

Table 4: Parameter and statistical values of the regression with the means of the frequency of OR losses.

big proportion of the variability in the frequency of operational loss per week, as we can conclude from

the high value of R2 (0.8923).

The latter value for the internal data is less impressive (0.2142). In addition, the P -values are too high

for rejecting the null hypotheses that the coefficients are equal to zero. This result suggests that a power-

law relationship between the frequency of operational loss per week and the size & exposure towards

operational risk per week of the internal Business Units is not present. If we combine the internal and

external data, the picture changes completely: R2 = 0.6912 expresses that 69.12% of the frequency of

OR losses is attributable to explaining variable (being the logarithm of indicator of size sb: compare

linearized equation (13)). The values of the coefficients are significant at the 99.95% significance level

because their P -values are less than 0.0005.

Table 4 shows the results of the regression related to the standard deviation of the frequency of OR

losses. The interpretation is straightforward. Roughly spoken, the pattern of results is equal to that of

Data set R2 Parameter Value Standard Error t-statistic P -value

External 0.7770 iσ -4.9689 1.2082 -4.1127 0.0063

λσ 0.6793 0.1486 4.5722 0.0038

Internal 0.1354 iσ -1.0113 1.5330 -0.6597 0.5455

λσ 0.1601 0.2022 0.7916 0.4729

Combined 0.6848 iσ -4.0514 0.9732 -4.6397 0.0006

λσ 0.5643 0.1105 5.1058 0.0003

Table 5: Parameter and statistical values of the regression with the standard deviation of the frequency

of OR losses.

the regression with the mean of the frequency of OR losses. Again, the confidence interval is increasing

when we perform the regression on the combination of internal Business Units and external Lines of

Business. This result suggests that there exists a universal power-law relationship between the frequency

of operational loss per week and the size & exposure towards operational risk per week of the combination

of external Lines of Business & internal Business Units. We further observe that the values of λµ and λσ

are more varying in the tables shown of this section than in those presented in section 4.1.
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4.3 Analyzing the severity of OR losses

Finally we take a short look at the severity distributions of OR losses. Please note the fact that the

severity of operational losses is the financial loss amount of individual events. This means that severity is

measured per individual event and not related to a time interval. Therefore, in this section we study just

the relationship between the severity of operational loss and the size & exposure towards operational risk

of different Lines of Business and Business Units. For the rest, the experiments have (again) been executed

in the same way (once again, much more details can be found in [1]). The two tables summarizing the

quantitative results of the regressions performed are as follows. These results are not convincing at all.

Data set R2 Parameter Value Standard Error t-statistic P -value

External 0.0028 iµ 5.1931 1.5766 3.2938 0.0165

λµ 0.0209 0.1600 0.1306 0.9004

Internal 0.3532 iµ -1.9103 4.7626 -0.4011 0.7088

λµ 0.7566 0.5119 1.4779 0.2135

Combined 01757 iµ 2.5185 1.7300 1.4558 0.1711

λµ 0.2875 0.1798 1.5991 0.1358

Table 6: Parameter and statistical values of the regression with the means of the severity of OR losses.

Data set R2 Parameter Value Standard Error t-statistic P -value

External 0.1095 iσ 3.5082 2.8459 1.2327 0.2638

λσ 0.2480 0.2888 0.8587 0.4235

Internal 0.5898 iσ -8.1924 5.7157 -1.4335 0.2250

λσ 1.4733 0.6143 2.3983 0.0745

Combined 0.3315 iσ -0.3200 2.4954 -0.1282 0.9001

λσ 0.6327 0.2594 2.4395 0.0312

Table 7: Parameter and statistical values of the regression with the standard deviation of the severity of

OR losses.

E.g., the values of R2 are generally very low, the values of λµ and λσ are strongly different, and null

hypotheses can not be rejected with a sufficient level of significance. In short, no power-law relationship

can be concluded between the severity of operational loss and the size & exposure towards operational

risk of the external Lines of Business & internal Business Units, not from the internal data, not from the

external data, and not from the combination of the two data sets.

15



5 Discussion

5.1 Considerations of technical nature

In the previous section we examined the relationship between the aggregate loss, frequency and severity

of OR losses on the one hand and the size & exposure towards operational risk of the external Lines of

Business, of the internal Business Units, and of the combination of external Lines of Business & internal

Business Units on the other hand. The results with respect to the aggregate losses are convincing since

the value of the correlation coefficient appeared to be quite high in all cases, the values of the regression

coefficients appeared to be significant, and the estimated values λµ and λσ are generally quite close. This

result suggests that the mean of the aggregate losses scale in the same way as their standard deviation

and that the average of the estimated values λµ and λσ can be used to represent the value of the universal

scaling parameter λ. It is further remarkable that the estimates of λµ and λσ are very close to 1. This

suggests that the universal power-law relationship can be regarded as a linear one. In other words, the

aggregate loss per week relates almost linearly to the size & exposure towards operational risk per week,

in particular for the combination of external Lines of Business & internal Business Units.

The above-given findings support the believe that there exists a power-law relationship between the

aggregate loss per week and the size & exposure towards operational risk per week. However, although

the mean and standard deviation values of OR losses scale in the same way, it can not be guaranteed that

the full probability density function of operational losses scales in the same way. To conclude this more

general result, additional research is required where regression is applied with all data of the aggregate

losses per week against the idiosyncratic component of every Line of Business and Business Unit.

Since the distribution of the aggregate losses has two underlying components namely the frequency

of OR losses and the severity of OR losses, we also investigated whether a power-law relationship exist

for each of these two components. Our findings with respect to the frequency of OR losses are that both

for the external BLs and for the combination of internal BUs and external BLs a power-law relationship

exists for the scaling of the mean and the scaling of the standard deviation of OR losses, although their

scaling parameters λ are not equal. In other words, no universal scaling parameter has been found.

Our findings with respect to the severity of OR losses show that no power-law relationship according to

equation (4) exists.

5.2 Considerations of OR Management nature

Even allowing for the limited data that was available for use in these experiments, we think that the

results found provide interesting discussion points for the OR Management (ORM) practice. Especially

from a Capital Adequacy perspective, the outcome is encouraging and opens up avenues for further

research. In this section, we shall review the ORM implications of the main findings and suggest areas

for refinement.

The main finding can be summarized as follows:

A clear relation exists between Gross Income of a BU or BLs and the aggregated loss amount per period.
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In a way, this preliminary finding is both helpful and unhelpful for those banks that are now consid-

ering adopting an Advanced Measurement Approach (AMA) for their Capital Adequacy regime under

Basel II. It is helpful, since, if this relation can be further established and hardened, it will give a useful

proxy for the determination or the validation of capital amounts that are computed using the Loss Dis-

tribution Approach. If the relation can be further substantiated, it may go some way to further refine

the alpha for the Basic Indicator Approach and the beta’s for the Standardised Approach [12].

The finding that the outlined relation hold true for the Aggregate loss amounts per period, but not for

Severity per event and to a limited extent for the number of losses per period points to a clear direction

in ORM terms. The lack of a relation between size and severity is a generally accepted rule. In fact,

extreme losses have been incurred by small outfits within banks, while being large by no means exempts a

bank from incurring extreme events. This part of the finding is therefore well within expectation. From a

theoretical point of view, one would expect that the variability of the aggregate amount then, is accounted

for by the frequency information. The fact, however, that the equation holds much stronger for aggregate

amounts than it does for frequency seems to belie this. We believe that the explanation should be sought

in the looseness with which loss recording is done. In technical analysis, we are assuming the losses to

have been accurately recorded. In practice, however, it is well known that in the ORM discipline, debate

over the way in which losses are recorded (is this one event of 10 million, or is it 10 events of 1 million)

can lead to political and fierce debates. In that sense, we trust the aggregate loss amounts per period to

be a far more accurate representation and far more comparable between BUs, BLs and firms than either

frequency or severity data by itself.

This lack of uniform or accurate reporting may also be a stumbling block when analyzing loss data by

event category. The categories are neither mutually exclusive nor are they comprehensive exhaustive. In

fact losses have been known to be re-classified as more information surrounding the loss becomes apparent.

As an example, an external fraud should be re-classified as an Internal fraud when it is discovered that

an insider was involved. This situation also applies to those who would perform causal analysis along

these lines.

In a more complicated way, however, the main finding is also unhelpful, since it may suggest that

ORM needs to concern itself only with Gross Income. This is clearly too simple a message. It is unlikely

that exposure to Operational Risk in Business Units is not related to the quality of their processes,

internal control, complexity, growth rates, market pressure, staff training and the particular culture

in the business. These items are not irrelevant, they are simply harder to measure. Our preliminary

conclusion should therefore more properly read as:

A clear relation exists between Gross Income of a BU or BL and the aggregated loss amount per period,

ceteris paribus, the specific business and environmental control environment.

6 Conclusions and Outlook

In this paper we have shown the results of an investigation of the relationship between the aggregate loss

Lb (incurred in a financial institution/BU b within a certain time period) and an indicator sb of size &
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exposure towards the OR of that financial institution. We have found evidence that the power-law form

described by

Lb = (sb)λ.Lst, (19)

(where λ is a universal constant and Lst represents the aggregate loss of the standard financial institu-

tion/BU) can be used to explain this relationship.

Based on the existence of the power-law relationship, we were able to apply the scaling mechanism

to remove financial institutions’ specific characteristics, so that the external data can be considered to

have the same characteristics as the internal data. Instead of investigating at the aggregate level (view

each bank as a single entity), we have chosen to investigate at the Line of Business level. The choice of

examining on the BLs’ level is particularly based on the information available from the external data.

We can only tell from which Line of Business, but not from which bank, an operational loss comes from.

This information is not given away in the external data. In our data set, the internal loss data of the

bank is given per Business Unit. For the reason of simplicity, we directly used the Business Units of the

bank instead of mapping them into the Basel Lines of Business categorization. We used Gross Income as

the indicator for the size & exposure to operational risk of a Line of Business.

We have also shown how the resulting aggregated data set can be used to (i) scale the data appropri-

ately and (ii) calculate the Value-at-OR for each business unit. In addition, we presented the principles

of calculating the value of the OR capital charge of each BL and BU, all according to the minimal capital

requirements of the Basel committee.

Finally, we have tried to observe whether the power-law relationship - between the aggregate loss

per week and the size & exposure towards operational risk per week of the external BLs, of the internal

BUs, and of the combination of external BLs & internal BUs - comes from the frequency element, the

severity element, or even from both elements. The obtained results suggest that the scaling mechanism

always holds for the aggregate loss data, sometimes holds for the frequency of OR loss data, and never

holds for the severity of OR loss data. In a discussion, we presented some ideas that may explain these

observations.

Extensions to the current study are widely open. Related to the main theme of this paper, we propose

to try the following studies related to the scaling of OR loss data:

• Mapping the BUs of the bank first into the Basel Lines of Business (BLs) and use these BLs as the

internal data of the bank.

• Estimating the value of the universal scaling parameter λ by running the regressions on individual

data (both aggregate loss data, frequency of OR loss data, and severity of OR loss data) instead of

on their mean and standard deviation per BU/BL.

• Studying the development of the universal scaling parameter λ across time.

• Using other time horizons, e.g., monthly instead of weekly.

• Testing the existence of universal power-law relationship by using other loss data than the external

data and the bank’s internal data.
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[9] A. Chapelle, Y. Crama, G. Hübner, and J.-P. Peters, “Measuring and managing operational risk

in the financial sector, an integrated framework,” Tech. Rep., Social Science Reserach Network,

February 2005, http://ssrn.com/abstract=675186.

[10] C. Alexander, Operational Risk Regulation, Analysis and Management, Prentice Hall, 2003.

[11] R. Cole et al., “Working paper on the regulatory treatment of operational risk,” Tech. Rep., Basel

Committee on Banking Supervision, Basel, Switzerland, September 2001.

[12] Basel Committee on Banking Supervision, “International convergence of capital measurement and

capital standards, a revised framework,” Tech. Rep., Bank for International Settlements, Basel,

Switzerland, June 2004.

[13] R.V. Hogg and A.T. Craig, Introduction to Mathematical sStatistics, Macmillan, New York, 1970.

[14] R.D. Hoffman (The Animated Software Company), “Internet glossary of statistical terms,”

http://www.animatedsoftware.com/statglos/sgsderro.htm.

19



Publications in the Report Series Research∗ in Management 
 
ERIM Research Program: “Business Processes, Logistics and Information Systems” 
 
2005 
 
On The Design Of Artificial Stock Markets 
Katalin Boer, Arie De Bruin and Uzay Kaymak 
ERS-2005-001-LIS 
http://hdl.handle.net/1765/1882 
 
Knowledge sharing in an Emerging Network of Practice: The Role of a Knowledge Portal  
Peter van Baalen, Jacqueline Bloemhof-Ruwaard, Eric van Heck 
ERS-2005-003-LIS 
http://hdl.handle.net/1765/1906 
 
A note on the paper Fractional Programming with convex quadratic forms and functions by H.P.Benson 
J.B.G.Frenk 
ERS-2005-004-LIS 
http://hdl.handle.net/1765/1928 
 
A note on the dual of an unconstrained (generalized) geometric programming problem 
J.B.G.Frenk and G.J.Still 
ERS-2005-006-LIS 
http://hdl.handle.net/1765/1927 
 
Privacy Metrics And Boundaries 
L-F Pau 
ERS-2005-013-LIS 
http://hdl.handle.net/1765/1935 
 
Privacy Management Contracts And Economics, Using Service Level Agreements (Sla) 
L-F Pau 
ERS-2005-014-LIS 
http://hdl.handle.net/1765/1938 
 
A Modular Agent-Based Environment for Studying Stock Markets 
Katalin Boer, Uzay Kaymak and Arie de Bruin 
ERS-2005-017-LIS 
http://hdl.handle.net/1765/1929 
 
Lagrangian duality, cone convexlike functions 
J.B.G. Frenk and G. Kassay 
ERS-2005-019-LIS 
http://hdl.handle.net/1765/1931 
 
Operations Research in Passenger Railway Transportation 
Dennis Huisman, Leo G. Kroon, Ramon M. Lentink and Michiel J.C.M. Vromans 
ERS-2005-023-LIS 
http://hdl.handle.net/1765/2012 
 
Agent Technology Supports Inter-Organizational Planning in the Port 
Hans Moonen, Bastiaan van de Rakt, Ian Miller, Jo van Nunen and Jos van Hillegersberg 
ERS-2005-027-LIS 
http://hdl.handle.net/1765/6636 
 
 
 
 



Faculty Retention factors at European Business Schools 
Lars Moratis, Peter van Baalen, Linda Teunter and Paul Verhaegen 
ERS-2005-028-LIS 
http://hdl.handle.net/1765/6559 
 
Determining Number of Zones in a Pick-and-pack Orderpicking System 
Tho Le-Duc and Rene de Koster 
ERS-2005-029-LIS 
http://hdl.handle.net/1765/6555 
 
Integration of Environmental Management and SCM 
Jacqueline Bloemhof and Jo van Nunen 
ERS-2005-030-LIS 
http://hdl.handle.net/1765/6556 
 
On Noncooperative Games and Minimax Theory 
J.B.G. Frenk and G.Kassay 
ERS-2005-036-LIS 
http://hdl.handle.net/1765/6558 
 
Optimal Storage Rack Design for a 3-dimensional Compact AS/RS 
Tho Le-Duc and René B.M. de Koster 
ERS-2005-041-LIS 
http://hdl.handle.net/1765/6730 
 
Strategies for Dealing with Drift During Implementation of ERP Systems 
P.C. van Fenema and P.J. van Baalen 
ERS-2005-043-LIS 
http://hdl.handle.net/1765/6769 
 
Modeling Industrial Lot Sizing Problems: A Review 
Raf Jans and Zeger Degraeve 
ERS-2005-049-LIS 
http://hdl.handle.net/1765/6912 
 
Cyclic Railway Timetabling: a Stochastic Optimization Approach 
Leo G. Kroon, Rommert Dekker and Michiel J.C.M. Vromans 
ERS-2005-051-LIS 
http://hdl.handle.net/1765/6957 
 
Linear Parametric Sensitivity Analysis of the Constraint Coefficient Matrix in Linear Programs 
Rob A. Zuidwijk 
ERS-2005-055-LIS 
http://hdl.handle.net/1765/6991 
 
Diffusion of Mobile Phones in China 
Sunanda Sangwan and Louis-Francois Pau 
ERS-2005-056-LIS 
http://hdl.handle.net/1765/6989 
 
An Elementary Proof of the Fritz-John and Karush-Kuhn-Tucker Conditions in Nonlinear Programming 
S.I. Birbil, J. B. G. Frenk and G. J. Still 
ERS-2005-057-LIS 
http://hdl.handle.net/1765/6992 
 
General model for automated diagnosis of business performance 
Emiel Caron and Hennie Daniels 
ERS-2005-058-LIS 
http://hdl.handle.net/1765/6987 
 
 



Exploring retailers' sensitivity to local sustainability policies 
H.J. Quak and M.B.M. de Koster 
ERS-2005-066-LIS 
http://hdl.handle.net/1765/7057 
 
Setting the holding cost rates in a multi-product system with remanufacturing 
Umut Corbacıoğlu and Erwin A. van der Laan 
ERS-2005-072-LIS 
http://hdl.handle.net/1765/7095 
 
A Dynamic Pricing Model for Coordinated Sales and Operations 
Moritz Fleischmann, Joseph M. Hall and David F. Pyke 
ERS-2005-074-LIS 
http://hdl.handle.net/1765/7124 
 
Optimal Redesign of the Dutch Road Network 
M. Snelder, A.P.M. Wagelmans, J.M. Schrijver, H.J. van Zuylen and L.H. Immers 
ERS-2005-091-LIS 
 
Data Scaling for Operational Risk Modelling 
H.S. Na, L. Couto Miranda, J. van den Berg and M. Leipoldt 
ERS-2005-092-LIS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                 
∗  A complete overview of the ERIM Report Series Research in Management: 

https://ep.eur.nl/handle/1765/1 
 
 ERIM Research Programs: 
 LIS Business Processes, Logistics and Information Systems 
 ORG Organizing for Performance 
 MKT Marketing 
 F&A Finance and Accounting 
 STR Strategy and Entrepreneurship  


