
University of Wollongong

Research Online

University of Wollongong Thesis Collection University of Wollongong Thesis Collections

2013

Data security and integrity in cloud computing
Miao Zhou
University of Wollongong

Research Online is the open access institutional repository for the
University of Wollongong. For further information contact the UOW
Library: research-pubs@uow.edu.au

Recommended Citation
Zhou, Miao, Data security and integrity in cloud computing, Doctor of Philosophy thesis, School of Computer Science and Software
Engineering, University of Wollongong, 2013. http://ro.uow.edu.au/theses/3990

http://ro.uow.edu.au/
http://ro.uow.edu.au/
http://ro.uow.edu.au
http://ro.uow.edu.au/theses
http://ro.uow.edu.au/thesesuow
http://ro.uow.edu.au/
http://ro.uow.edu.au/

Data Security and Integrity in Cloud
Computing

A thesis submitted in fulfillment of the

requirements for the award of the degree

Doctor of Philosophy

from

UNIVERSITY OF WOLLONGONG

by

Miao Zhou

School of Computer Science and Software Engineering

October 2013

c© Copyright 2013

by

Miao Zhou

All Rights Reserved

ii

Dedicated to

My family

iii

Declaration

This is to certify that the work reported in this thesis was done

by the author, unless specified otherwise, and that no part of

it has been submitted in a thesis to any other university or

similar institution.

Miao Zhou
October 26, 2013

iv

Abstract

Cloud computing is a model for enabling convenient, on-demand network access to

a shared pool of configurable computing resources (e.g., network, servers, storage,

applications and services) that can be rapidly provisioned and released with mini-

mal management effort or service provider interaction. During the last a few years,

data security and integrity in cloud computing has emerged as a significantly impor-

tant research area that has attracted increasing attention from both industry and

academia. The virtual environment of cloud computing allows users to access com-

puting power that exceeds what is contained within their own physical worlds. To

enter this virtual environment, cloud users must transfer data throughout the cloud.

Typically, cloud users know neither the exact location of their data nor the other

sources of the data collectively stored with theirs. Consequently, several data secu-

rity and integrity concerns have arisen, including key management, access control,

searchable encryption techniques, remote integrity checks and proof of ownership in

the cloud.

The first aspect of the work presented in this thesis is tree-based key management

in cloud computing. Data encryption before outsourcing to the cloud is a common

way to protect data privacy. Thus, key management is a challenging issue in cloud

computing. It is the ability to correctly assign, monitor and secure keys which

defines the level of operational security provided by any encryption implementation.

The fundamental idea of this work is to design a secure and flexible key management

mechanism for the outsourced data in cloud computing. In this thesis, an innovative

tree-based key management scheme is proposed. The outsourced database remains

private and secure, while some selected data and key nodes are shared with other

parties in the cloud. Flexibility of key management is achieved and the security is

proved in the standard model.

The second aspect of the work presented in this thesis is fine-grained access

control. In order to secure the outsourced data in the cloud, designing efficient

v

and secure access control is a challenging issue. Unlike traditional access control

in which the data users and storage servers are in the same trust domain, access

control techniques are very different in cloud computing, as the cloud servers are

not trusted by most cloud users. The key idea of this work is to attribute sets-based

access control. This thesis points out that any access policy can be defined as a

logical expression formula over different attribute sets. Logical expression indicates

what kind of user is allowed to access the data. A fine-grained and efficient access

control is proposed, based on logical expression.

The third aspect of the work presented in this thesis is efficient searchable encryp-

tion techniques in cloud computing. Because the data is usually encrypted before

being outsourced to the cloud, searching the encrypted data in cloud computing

has recently gained attention and led to the development of efficient searchable en-

cryption techniques. The fundamental idea of this work is to reduce the search cost

on encrypted data. In this thesis, a practical keyword searching mechanism is pro-

posed. The solution is very simple. It enables efficient multi-user keyword searches

and hides the private information in the search queries. The security is proved in

the standard model.

The fourth aspect of the work presented in this thesis is public remote data

integrity checks. As the clients store important data in remote cloud storage without

a local copy, it is important to check the remote data integrity. Design of efficient

remote integrity check protocols without downloading the data is a challenging issue

in cloud computing. The key idea of this work is a public remote integrity check

based on zero-knowledge proof. In this thesis, an innovative public remote integrity

check scheme (PRIC) is proposed. No information of either the verified data or the

homomorphic tags is leaked. In addition, the experiment result shows that PRIC

is efficient, especially when the data size is large or the integrity check is frequent.

The security of PRIC is proved in the random oracle model.

The last aspect of the work presented in this thesis is proof of multiparty own-

ership for encrypted data in the cloud. There are many applications of ownership

sharing by different users and the design of the proof protocols of joint ownership

is a challenging issue. Meanwhile, the design of proof-of-ownership mechanisms for

encrypted data is even more difficult. This is because encryption of the same file by

different users with random keys results in different ciphertexts, and the cloud server

cannot store the same hash root value for ownership verification. In this thesis, a

proof of multiparty ownership solution (PMOW) with encrypted data is proposed.

vi

Every user can prove that he/she holds the plaintext of the encrypted file when the

server stores one ciphertext only. In addition, a PMOW system is constructed. The

security of PMOW is proved in the ideal cipher model.

The major contribution of this thesis is innovative and improved approaches to

secure data in cloud computing. Using these approaches developed, a trustworthy

cloud environment can be achieved.

vii

Acknowledgement

I am most grateful to my supervisor Prof. Yi Mu, for his support and guidance of

this thesis. He has been providing invaluable suggestions and encouragement from

the beginning of my research. This thesis would never been possible without his

help and support.

I would like to thank my co-supervisors Prof. Willy Susilo and Dr. Man Ho Au,

for their continuous guidance in the process of conducting this research. I would

also like to thank Dr. Jun Yan, for his helpful discussions and suggestions during

the research progress.

During my PhD study from July 2009 to present, I also received lots of advice and

support from my colleagues and friends. The non-exhausted list includes: Minjie

Zhang, Guilin Wang, Madeleine Cincotta, Jinguang Han, Fuchun Guo, Nan Li, Wei

Wu, Xinyi Huang, Yong Yu, Yang Wang, Zhenfei Zhang, Bill Tourloupis, Thomas

Plantard, Yafu Ji, Guomin Yang, Rui Zhang, Tsz Hon Yuen and Jiangshan Yu.

I am also grateful to University of Wollongong and Smart Services CRC, for their

scholarships that help me to achieve my goals.

I would like to thank my parents and my husband Hao Gao, for their patience

and love. Without them, this work would never be possible.

viii

Publications

• Miao Zhou, Yi Mu, Willy Susilo, Jun Yan and Liju Dong. Privacy en-

hanced data outsourcing in the cloud. J. Network and Computer Applications,

35(4):1367-1373, 2012.

• Miao Zhou, Yi Mu, Willy Susilo and Jun Yan. Piracy-preserved access control

for cloud computing. In IEEE TrustCom, pages 83-90, 2011.

• Miao Zhou, Yi Mu, Willy Susilo and Man Ho Au. Privacy-enhanced keyword

search in clouds. In IEEE TrustCom, pages 89-94, 2013.

• Miao Zhou, Yi Mu, Willy Susilo and Man Ho Au. Public remote integrity

check for private data. (under review)

• Miao Zhou, Yi Mu, Willy Susilo and Man Ho Au. PMOW: proof of multiparty

ownership for encrypted data in clouds. (under review)

ix

Contents

Abstract v

Acknowledgement viii

Publications ix

1 Introduction 1

1.1 Motivations and Contributions . 2

1.2 Summary of This Thesis . 12

2 Background 14

2.1 Preliminaries . 14

2.1.1 Miscellaneous Notations . 14

2.1.2 Complexity Problems on Zp 15

2.1.3 Bilinear Maps . 16

2.2 Cryptographic Tools . 17

2.2.1 Cryptographic Hash Functions 17

2.2.2 Pseudo-random Functions . 17

2.2.3 Public Key Encryption Scheme 18

2.2.4 Commitment Schemes . 19

2.2.5 Sequences of Games . 19

2.3 Zero-Knowledge Proof-of-Knowledge 20

3 Privacy Enhanced Data Outsourcing in the Cloud 23

3.1 Introduction . 23

3.2 The Model . 26

3.3 Key Derivation Hierarchy . 27

3.4 The Concrete Scheme . 29

x

3.4.1 The Polynomial Function . 30

3.4.2 Key Derivation Tree and Data Encryption 30

3.5 Data Access Procedure . 32

3.5.1 The First Phase . 32

3.5.2 The Second Phase . 33

3.6 Generalization of Key Derivation Hierarchy 34

3.6.1 Multiple Branches . 35

3.6.2 Multiple Sub-keys . 35

3.7 Proof and Analysis . 36

3.7.1 Security Natation . 36

3.7.2 Security Model . 37

3.7.3 Proof of Security . 38

3.8 Conclusion . 39

4 Piracy-Preserved Access Control for Cloud Computing 40

4.1 Introduction . 40

4.2 Design Goal and Main Idea . 44

4.2.1 Design Goal . 44

4.2.2 Main Idea . 44

4.2.3 The Encryption System . 46

4.3 Base Phase . 47

4.3.1 Access Structure and Attribute Sets 47

4.3.2 Definition of Attribute-set Based Encryption 48

4.3.3 Main Construction . 49

4.4 Surface Phase . 50

4.4.1 Server re-encryption Mechanism 50

4.4.2 Main Construction of SRM 51

4.5 Proof and Analysis . 52

4.5.1 Security Notations . 52

4.5.2 Security Model . 52

4.5.3 Proof Of Security . 54

4.6 Conclusion . 57

5 Privacy-Enhanced Keyword Search in Clouds 58

5.1 Introduction . 58

xi

5.2 Model . 62

5.2.1 Syntax . 62

5.2.2 Typical Use of SPEKS . 63

5.2.3 A SPEKS System . 64

5.2.4 Security Requirements . 64

5.3 The Construction and Security Analysis 66

5.3.1 Main Construction . 66

5.3.2 Security Proof . 66

5.4 Performance . 68

5.5 Conclusion . 69

6 Public Remote Integrity Check for Private Data 70

6.1 Introduction . 70

6.2 Framework . 77

6.2.1 Formal Definitions . 78

6.3 The Proposed Scheme . 79

6.3.1 Main Construction . 79

6.3.2 A Brief Explanation of The Proposed Protocol 81

6.3.3 A Public RIC System . 81

6.4 Security Analysis . 81

6.4.1 Data Possession . 83

6.4.2 Public Verification without Disclosing Data 85

6.5 Performance Analysis . 87

6.5.1 Complexity Analysis . 87

6.5.2 Performance Analysis . 89

6.6 Conclusion . 91

7 PMOW: Proof of Multiparty Ownership for Encrypted Data in

Clouds 92

7.1 Introduction . 92

7.2 Technique Preliminaries . 96

7.2.1 Preliminaries . 98

7.2.2 Formal Definitions . 100

7.3 The Proposed Scheme . 101

7.3.1 Cramer and Shoup’s CCA2 encrytion scheme 101

xii

7.3.2 Desai’s CCA2 UFE scheme . 101

7.3.3 Main Construction . 102

7.4 Security Requirement . 104

7.4.1 Joint proof of ownership . 104

7.4.2 Indistinguishability under chosen ciphertext attack 108

7.5 Complexity Analysis . 111

7.5.1 A PMOW System . 111

7.5.2 Complexity Analysis . 111

7.6 Conclusion . 113

8 Conclusions 114

8.1 Summary of The Contributions . 114

8.1.1 Key Management in Cloud Computing 114

8.1.2 Access Control in Cloud Computing 114

8.1.3 Searchable Encryption Techniques in Cloud Computing 115

8.1.4 Remote Integrity Check . 115

8.1.5 Proof of Ownership . 116

8.2 Future Work . 116

Bibliography 117

xiii

List of Tables

6.1 Comparisons between some previous protocols and the proposed scheme.

Here n is the total block number, c is the sampling block number, l is

the length of each block. Communication(1) and Communication(2)

indicate the communication cost on verifier side and client side respec-

tively. To achieve 80-bit security, the schemes [ABC+07, ABC+11,

HZY11] use RSA cryptography where l = 1024 bit, while the schemes

[SW08, WWL+09, WWRL10] and the proposed scheme use elliptic

curve cryptography with |p| = 160bit where the block length l = 160

bit. 72

6.2 The processing time for generating the homomorphic tags on client

side. The length of each data block |mi| is set to be 160 bits. 91

7.1 Comparisons between previous schemes and the proposed scheme. . 94

xiv

List of Figures

3.1 The data outsourcing model. 26

3.2 Key derivation hierarchy. 28

3.3 The first phase. 33

3.4 The second process. 34

3.5 A key derivation tree with multiple branches. 35

3.6 Take n = 3 as an example. 36

3.7 Expanding to M-Branch N-Tuple Hierarchy. 37

4.1 An example for the proposed scenario. 45

4.2 Generate an access matrix. 47

4.3 The state transition diagram of SRM. 51

5.1 Typical use of SPEKS. 63

6.1 The framework of public RIC in cloud storage. 78

6.2 A Public RIC System . 82

6.3 Comparison on computation time cost for verifying the proof on ver-

ifier side, between the proposed scheme and [HZY11]. 89

6.4 Comparison on computation time cost for generating the proof on

server side, between the proposed scheme and [HZY11]. 90

7.1 The framework for proof of multiparty ownership in cloud. 97

7.2 Build the Merkle-Tree. 98

7.3 A PMOW System . 111

xv

Chapter 1

Introduction

There are a number of attempts to define cloud computing in various ways. Among

definitions, the widely accepted one is proposed by [MG09] as follows: ‘cloud com-

puting is a model for enabling convenient, on-demand network access to a shared

pool of configurable computing resources (e.g., network, servers, storage, applica-

tions and services) that can be rapidly provisioned and released with minimal man-

agement effort or service provider interaction’. There are five essential characteristics

of the cloud model [MG09]:

• Rapid elasticity. The computing capabilities can be elastically provisioned and

released. To the cloud users, the capabilities available for provisioning appear

to be unlimited and can be assigned in any quantity at any time.

• Service on demand. The cloud users can use on-demand services such as

server time and network storage, without requiring human interaction with

each service provider.

• Broad network access. The cloud services are always available over the network

and can be accessed by different user platforms.

• Location independence. The cloud provider’s computing resources are pooled

to serve multiple users using a multi-tenant model. It is location independence

that the cloud users have no control or knowledge over the exact location of

the provided resources.

• Measuring service. Cloud resource usage can be monitored, controlled and

reported by the cloud providers.

The above advantages of cloud computing have dramatically changed the IT

scene, as cloud computing offers cost savings and improvements to major opera-

tions. For example, cloud computing offers individuals and companies affordable

1

1.1. Motivations and Contributions 2

storage, professional maintenance and adjustable space. Many large technology

companies (e.g., Amazon, Google, Microsoft) have built huge server centres to offer

cloud computing with virtual applications, various services and business software

with self-service interface so that cloud users can use on-demand resources with

location independence [Erd09].

Such indirect control of the physical infrastructure, however, introduces vulnera-

bilities unknown in previous settings. Since resources are provided over the internet,

the cloud is a single point of access for all the users. The cloud model for delivering

computing power and processing, has raised several security questions. Ensuring se-

curity is more difficult when designing cloud architectures than in non-cloud contexts

[GMCL09, RVR+07, BYV+09]. The security issues in cloud computing include: 1)

data security, 2) identity and access control, 3) key management and 4) virtual ma-

chine security. Among these main security issues in the cloud, data security and

integrity is believed to be the most difficult problem which could limit the use of

cloud computing [RTSS09]. In fact, access control and key management are all issues

involved in data security.

Data security in the cloud refers to data confidentiality, integrity, availabil-

ity and traceability (CIAT), and these requirements pose major problems for cloud

computing. Data confidentiality requires that information be available or disclosed

only to authorized individuals, entities or IT processes. Data integrity ensures that

the data is maintained in its original state and has not been intentionally or ac-

cidentally altered or deleted. Data availability ensures continuous access to data

even in the event of a natural or man-made disaster or events such as fires or power

outages. Data traceability means that the data and communications are genuine in

a transaction and that both parties involved are who they claim to be. Specifically,

to achieve the above requirements of CIAT, the critical security challenges of data

security in the cloud can be mainly outlined as follows: 1) key management, 2)

access control, 3) searchable encryption techniques, 4) remote integrity

check and 5) proof of ownership.

1.1 Motivations and Contributions

This thesis addresses the above critical data security challenges in the cloud. Security

mechanisms are designed to ensure a trustworthy cloud environment.

1.1. Motivations and Contributions 3

Key Management. Data encryption before outsourcing to the cloud is a common

and simple way to protect data privacy. Although the encryption algorithms are

public, information encrypted under these algorithms is secure because the key used

to encrypt the data remains secret. As a result, key management is a critical element

in cloud computing. It is the ability to correctly assign, secure and monitor keys that

defines the level of operational security provided by any encryption implementation.

The classical tree-based hierarchy schemes such as RFC2627 [WHA99]) and the

scheme proposed by Wong et al. [WGL98] have been widely used in group key

management. In RFC2627 [WHA99], the hierarchical tree approach is the rec-

ommended approach to address the multicast key management problem. Many

key management methods of access hierarchies for data outsourcing have been pro-

posed [WLOB09, DdVJ+03, BCdV+09, dVFJ+07a, ABFF09, PL01] based on this

approach. These methods provide some useful solutions to minimize the number

of cryptographic keys which have to be managed and stored. Aiming to provide

secure and efficient access to outsourced data, Wang et al. [WLOB09] proposed

a tree-based cryptographic key management scheme for cloud storage. Their tree-

based key management structure is similar to a traditional one, where a single root

node holds the master key that can be used to derive other node keys. Each node

key can be used to derive the keys of its children in the tree hierarchy. With their

scheme, a data block stored in the cloud can be deleted or updated by a party who

holds either the specific decryption key or a node key corresponding to one of its

parents. If there is an outsourcing server authorized to manage a node (not the root

node) that has several child nodes, then the outsourced party is granted the node

key, which can be used to derive all sub-keys for its child nodes. In other words,

once a parent node in the tree is given, all the child nodes will be known. This is

a common problem which exists in many tree-based key management schemes. Ex-

isting ones such as [WLOB09, DdVF+05, DdVF+07, dVFJ+08, dVFJ+07b, AFB05,

YLZL01, KPT00, NNL01a, LNS03, KLKJ06, SL04, BSS11] can work perfectly, only

if when all legitimate node users are authorized to access all the child nodes under

the specific parent node.

Considering the above problem, an innovative tree-based key management scheme

is proposed. With the proposed key management scheme, the outsourced database

can remain private and secure, while some selected data and key nodes are shared

with other parties. The proposed scheme is also a flexible key management solution

that can be adapted and expanded for different scenarios (e.g., multiple branches

1.1. Motivations and Contributions 4

and multiple sub-keys). The security of the proposed scheme is proved in the stan-

dard model. The proposed tree-based outsourcing key management opens up an

entirely new approach for secure and flexible key management.

Access Control. Unlike the traditional access control in which the data users and

storage servers are in the same trusted domain, access control techniques are very

different in cloud computing because the cloud servers are not seen as trustworthy

by most cloud users, especially large enterprises and organizations. One possible

method to enforce data access control without relying on cloud servers could be to

encrypt data individually and disclose the corresponding decryption keys only to

the privileged users, but that causes high performance costs. A fine-grained access

control which is efficient and secure is important and necessary for cloud computing.

Several advancements have already been proposed [LZC+10, LWG11, CSK11,

BLLS11, ZLS11, Lee12, ZHA+12, WeLD12, ASB+12, YLJ12, SWYW12, GM09,

HYJZ09]. An existing feasible solution to achieve fine-grained access control of

outsourced data in cloud computing is to encrypt the data through certain crypto-

graphic primitives and only disclose the private keys to authorized users. Without

the appropriate decryption keys, unauthorized users including the cloud providers,

cannot decrypt the data. This solution has been widely used (such as [dVFJ+07b,

KRS+03]) and most schemes using it are deployed by introducing a per file groups

for efficiency. However, the complexity of these schemes [BKP09, HCM01, CHR09,

TWZ09, YC10, LYRL10, TS11] is proportional to the system scale and the number

of users. Additionally, this solution lacks scalability and flexibility, especially if the

number of authorized users becomes large.

Vimercati et al. [dVFJ+07b] proposed an access control scheme for securing data

stoppage on untrusted servers based on key derivation methods [AFB05]. In their

scheme, the owner created corresponding public tokens to grant access for a user.

With his secret key, the user was able to derive decryption keys for desired files.

However, the complexity of operations of file creation and user grant/revocation is

also linear to the number of users. Ateniese et al. [AFGH05] proposed a secure

distributed storage scheme based on proxy re-encryption. Specifically, the data

owner encrypted blocks of content with a master public key, which could only be

decrypted by the master private key. The data owner then generated proxy re-

encryption keys by using his master private key and the user’s public key. With the

proxy re-encryption keys, the semi-trusted proxies could convert the ciphertext into

1.1. Motivations and Contributions 5

another ciphertext for a specific user. Thus, they achieved access control. However,

the main problem with this scheme is that user access privilege is not protected from

the proxy.

Recently, ABE has been seen as an ideal technique for achieving flexible, scalable

and fine-grained access control mechanisms in the cloud. Wang et al. [WLW10] pro-

posed a hierarchical attribute-based encryption scheme to achieve fine-grained access

control in cloud storage services by combining hierarchical identity-based encryp-

tion and ciphertext-policy attribute-based encryption (CP-ABE). In their scheme,

they assumed that all attributes in one conjunctive clause were administered by

the same domain master. However it is difficult to implement in practice so that

the same attribute can be administrated by multiple domain masters according to

specific policies. Another difficulty is that their scheme cannot support compound

attributes efficiently and does not support multiple value assignments. Yu et al.

[YWRL10] stretched out a scalable data access control scheme for cloud comput-

ing which combines techniques of key-policy attribute-based encryption (KP-ABE),

proxy re-encryption and lazy re-encryption. In their scheme, the cloud servers were

unable to learn the plaintexts though data re-encryption, however the encryptor in

their scheme is not able to decide who can decrypt the encrypted data and has no

choice but to trust the key issuer. In addition, the cloud servers must learn the

whole user ID list and attribute list in exchange.

To tackle these problems, an encryption system is proposed to achieve practi-

cal, flexible and fine-grained access control on outsourced data. In particular, the

problem of defining and assigning keys to users based on different attribute sets is

concerned. The access policies are hidden as well as user information to the third-

party cloud servers. Through the protocol executions, there is no leakage of users’

privacy. The proposed scheme is partially based on the observation that, in practical

application scenarios, each user can be associated with a set of attributes, which are

meaningful in the access policy and data file context. The access policy can thus

be defined as a logical expression formula over different attribute sets. The logical

expression can indicate what kind of user is allowed to access the data file. As any

access policy can be represented as such a logical expression formula, fine-grained

access control can be achieved.

Searchable Encryption Techniques. As the data is usually encrypted before

being outsourced to cloud servers, how to search the encrypted data in the cloud

1.1. Motivations and Contributions 6

has recently gained attention and led to the development of searchable encryption

techniques. This problem is challenging however, because meeting performance,

system usability and scalability requirements is extremely difficult.

In theory, the classical work of Goldreich et al. [GO96] on oblivious random-

access machines (RAMs) could resolve the problem of doing (private) searches on

remote encrypted data. They enabled a client to store only a constant amount of

data in local storage. Meanwhile, the identities of the remote data files were hidden

when the client accessed them. Oblivious RAM is often cited as a powerful tool,

which can be used, for example, for search on encrypted data or for preventing cache

attack. However, oblivious RAM is also commonly considered to be impractical due

to its overhead. Suppose the client stores n data files in remote storage, then each

data request is replaced by O(log4 n) or O(log3 n) requests. Additionally, O(n · log n)
external memory is required in order to store the n data files.

In an effort to reduce the round complexity associated with oblivious RAMs,

Song et al. [SWP00] presented a solution for searchable encryption. After that, the

question of how to do keyword searches on encrypted data efficiently was raised. In

[SWP00], they achieved searchable encryption by constructing a special two-layered

encryption for each word. Given a trapdoor, the server could strip the outer layer

and assertain whether the inner layer was in the correct form. The limitations

in this construction are as follows. First, it is not compatible with existing file

encryption schemes and a specific encryption method must be used. Second, while

the construction is proven to be a secure encryption scheme, it is not proven to be

a secure searchable encryption scheme. Third, the distribution of the underlying

plaintext is vulnerable to statistical attacks. Their approach may leak the locations

of the keyword in a file. Finally, their searching time is linear in the length of the

document collection.

The above limitations are addressed by Goh [jG03], Chang and Mitzenmacher

[CM05] and also Curtmola et al. [CGKO06], etc. In [jG03], they built an index

of keywords for each file using a Bloom filter with pseudo-random functions used

as hash functions. One inherent problem with this Bloom filter-based approach is

that Bloom filters can induce false positives, which would potentially cause mobile

users to download extra files not containing the keyword. In [CM05], Chang and

Mitzenmacher achieved the notion of security to IND2-CKA for chosen keyword

attack, however their scheme cannot guarantee that the trapdoors do not leak any

1.1. Motivations and Contributions 7

information about the words being queried. In [CGKO06], they proposed a multi-

user construction that is efficient on the server side, however every node in the link

list has to be augmented with information about the file index of the next node.

In a different direction, Boneh, di Crescenzo, Ostvrosky and Persiano [BCOP04]

and Boneh, Kuchilevitz, Ostvrosky and Skeith [BKOI07] studied the problem of

how to search on data encrypted by a public-key cryptosystem. These schemes are

motivated by an encrypted email system. Their constructions, however, have an

overhead in search time that is proportional to the square root of the database size,

which is far less efficient then the best private-key solutions. Boneh et al.’s approach

[BCOP04] is known to be the seminal public key encryption scheme with keyword

search (PEKS). It was observed in [BSNS05] that Boneh et al.’s scheme [BCOP04]

requires a secure channel, which makes it impractical.

To reduce the search cost on encrypted data and design a practical searching

mechanism in cloud computing, an efficient keyword search scheme for cloud com-

puting is proposed. The proposed solution is very simple. It enables efficient multi-

user keyword searches over outsourced data files in the cloud environment, without

leaking any private information about either the data owner or users in the search

query.

Remote Integrity Check. Storing data in remote cloud servers has become com-

mon practice. As clients store their important data in remote cloud servers without

a local copy, it is important to check the remote data integrity (RIC). While it is easy

to check data integrity after completely downloading the data, it is a large waste of

communication bandwidth. Hence, designing efficient remote integrity check proto-

cols without downloading the data is an important security issue in the cloud.

Early verification schemes [BEG+94, BGG95, NR05] concentrated on the prob-

lem of data integrity on a local untrusted memory, i.e., memory checking. The chal-

lenging problem of data integrity verification without explicit knowledge of the full

file was first proposed in broad generality by Blum et al. [BEG+94], who explored

the task of checking the correctness of a memory-management program efficiently.

Naor and Rothblum [NR05] explored the problem of dynamic memory-checking in

a range of settings. Clarke et al. [CSG+05] focused on a trusted party which stores

a small amount of state information, verifying the integrity of arbitrary blocks of

external memory. These early verification schemes are the first to suggest check-

ing data integrity, however they are not applicable for remote data integrity check

1.1. Motivations and Contributions 8

because they require the data to be transmitted in its entirety to the verifier.

The latest verification schemes concentrated on the problems of securing data

integrity at remote servers and securing cloud storage applications. These schemes

can be classified into ‘Proof of retrievability’ (POR) schemes (e.g., [JJ07, BJO09,

DVW09, SW08]) and ‘Provable data possession’ (PDP) schemes (e.g., [ABC+07,

ABC+11, EKPT09]). A POR scheme is a challenge-response protocol. In POR

schemes, a cloud provider demonstrates the file retrievability (i.e., recoverability

without any loss or corruption) to a client. PDP schemes are similar protocols

which only detect a large amount of corruption in outsourced data. Several advances

have already been proposed [SBMS07, OR05, DQS04, FB06, SBD+04, SM06, JJ07,

DVW09, ABC+07, ABC+11, WWL+09, WCW+09]. In Shah et al. [SBMS07], they

introduced a third-party verifier who could delegate the periodic task of checking

data integrity. In their scheme, they reduced the client’s storage, communicational

and computational cost. This simple solution, however, requires a third-party ver-

ifier to keep a lot of hash values of the data blocks. In Oprea et al. [OR05], they

allowed a client to detect the modification of data blocks by a remote and untrusted

server. Their protocol did not bring additional storage cost to the server and the

client, but the entire file had to be retrieved during the verification executions. In

addition, the communication complexity is linear in the file size. Deswarte et al.

[DQS04] and Filho et al. [FB06] proposed techniques to verify data integrity using

RSA-based hash functions. Their schemes allowed a verifier to perform multiple

challenges using the same metadata. The limitation of their algorithms lies in the

computational complexity at the server. The computation costs must exponentiate

the entire data file. In addition, RSA over the entire file is extremely slow. As is

showed in Filho et at. [FB06], it required 20 seconds per megabyte for 1024-bit

keys on a GHz3.0 CPU. Yamamoto et al. [YOA07] presented an efficient scheme

for large data integrity check. Their scheme was based on homomorphic hash func-

tions. The advantage of their scheme is batch processing [CY07] for a homomorphic

hash function. Similar techniques can also be found in Sebe et al. [SBD+04]. In

[SBD+04], they presented a protocol based on the Diffie-Hellman problem in ZN ,

however the client has to store N bits per data block (N is the RSA modulus). The

total storage cost on the client side is O(n). Juels et al. [JJ07] proposed a scheme for

proof of retrievability by using ‘sentinels’. The sentinels (special blocks) were hidden

among other blocks in file F . The verifier challenged the prover by specifying the

positions of a collection of sentinels and asking the prover to return the associated

1.1. Motivations and Contributions 9

sentinel values. Their scheme is limited as they can handle only a limited number of

queries and increase storage overhead on the server side. In Dodis et al. [DVW09],

they improved the POR constructions. They built nearly optimal POR codes using

hitting samplers and error-correcting codes. Ateniese et al. [ABC+07, ABC+11]

described a proof of data possession (PDP) scheme that improved the response

length of the simple hash scheme by using homomorphic verifiable tags. In their

scheme, they constructed the homomorphic verifiable tags {Ti} (1 6 i 6 n) for n

data block {mi}. Later, the prover sent a linear combination of blocks
∑

i aimi

(with arbitrary coefficients {ai}) to the verifier. The verifier cloud be convinced

if
∑

i aimi was correctly generated using an aggregate tag T computed from {Ti}.
They also proposed a variant of their PDP scheme to achieve public verifiability un-

der a weaker security model. Erway et al. [EKPT09] introduced a framework and

efficient constructions for dynamic provable data possession which extends Ateniese

et al.’s model [ABC+07] to support provable updates. Their constructions captured

the dynamic operations such as insertion in the middle of a file, however they are

not efficient when moving and deleting the entire files. Shacham and Waters [SW08]

proposed an HTAG scheme which used a simple homomorphic MAC and a universal

hash family to reduce the communication bits to a constant factor of k. They also

achieved public verifiability in which the third party verifier could extract the data

file through multiple challenges and responses. Most previous public RIC schemes,

however, which include [SW08, ABC+07, ABC+11] do not provide security and this

means a public verifier can learn the information of private data during an integrity

check, since the cloud server might leak the data information.

It is noticed that Hao, Zhong and Yue’s public RIC scheme [HZY11] provided

a security feature against data leakage. They adopted the approach introduced

by Sebe et al. [SFB+08] to support data dynamics and privacy, but their scheme

requires the verifier to be in possession of all the homomorphic tags used for the

integrity check. Therefore, it increases costs for storage and communication. In

addition, although they prove that the public verifier cannot learn the target data,

the tags themselves can leak some information about the data.

To overcome these problems, a privacy-preserving RIC protocol which achieves

public verifiability without disclosing any information is proposed. No information

about the original data will be leaked. In fact, the verifier is only required to

know the public key of the data owner. The experimental results indicate that the

proposed scheme is efficient, especially when the data size is large or the integrity

1.1. Motivations and Contributions 10

check is frequent. The full proofs of security under the random oracle model are

also given.

Proof of Ownership. Beyond storage correctness, proof of ownership (POW) is

another security issue related to cloud data storage. Client-side deduplication allows

an attacker to gain access to arbitrary-size files when he has small hash signatures of

the files. To overcome such attacks, the technique of POW allows a user to efficiently

prove to a cloud server about his ownership, rather than short information about

the file such as a hash value.

Proof-of-ownership (POW) is closely related to two other similar problems: proof

of retrievability (POR) and proof of data possession (PDP). POR schemes [JJ07],

[SW08], [BJO09], [DVW09], [ZX11] are challenge-response protocols. In POR schemes,

a cloud provider demonstrates the file retrievability (i.e., recoverability without any

loss or corruption) to the client. PDP schemes [ABC+07], [ABC+11], [EKPT09],

[SFB+08], [FB06], [SBD+04], [WWL+09, WWRL10, WWR+11, ZB12, YOA07] are

similar protocols which only detect a large amount of corruption in outsourced data.

The main difference between POW and POR/PDP is that the latter usually uses a

pre-processing step on the client side while the former does not.

POW protocols are proposed for client-side data deduplication which enables the

storage server to store a single copy of repeating data. Client-side data deduplication

has become popular and important as it removes data redundancy and data repli-

cation, but it brings many data privacy and security issues for the user. Douceur

et al. [DAB+02] first studied the problem of deduplication in a multi-tenant system

in which deduplication had to be reconciled with confidentiality. Their proposed

convergent encryption enabled two users to produce a single ciphertext for dedupli-

cation. As there are many security problems with convergent encryption, Storer et

al. [SGLM08] proposed a security model for secure data deduplication. Recently,

Harnik et al. [HPSP10] formally identified the security problems of client-side dedu-

plication as follows: 1) The first kind of attacks attempted to fool the storage server

and abuse the storage system. A malicious user with the hash signature of a file

could convince the cloud server that he owns the file. By accepting the hash value

as a ‘proxy’ for the entire file, the cloud server allowed anyone who held the hash

value to access the entire file. 2) The second kind of attacks targeted the privacy

and confidentiality of users of the storage system. A malicious user could check

whether another honest user had already outsourced a data file by trying to upload

1.1. Motivations and Contributions 11

it as well. 3) The third kind of attacks focused on subverting the intended use of a

storage system. For example, two malicious users tried to use the cloud storage for

a covert channel as they might not have a direct interaction channel. The two users

first pre-agreed on two different files. Second, one malicious user outsourced one of

the two files. Then the other user could detect which file had been deduplicated and

output either 0 (for the fist file) or 1 (for the second file). In this way, two mali-

cious users successfully exchange a bit of information without a direct transmitting

channel.

To overcome such attacks, Halevi et al. [HHPSP11] introduced the notion of

POW for client-side deduplication. In addition, they presented Merkle tree-based

schemes to allow a user to efficiently prove his ownership to the server, rather than

some short information. However, their scheme cannot be adopted for encrypted file

scenario, because encryption of the same file by different users with random keys

results in different ciphertexts. The server cannot store the same hash root value

for the ownership verification. Some other schemes [RMW12], [NWZ12], [PS12],

[ZX12] focused on improving the efficiency of POW and applying an encrypted file

scenario. In [PS12], Pietro and Sorniottis proposed three correlative protocols to

achieve an efficient POW for deduplication. The main idea of their protocols is to

challenge random K bits of file F . The probability that a malicious user is able to

output the correct value of K bits of the file where each bit is selected at a random

position is negligible in security parameter k, but their scheme cannot be adopted for

encrypted files. In addition, the client’s files are totally revealed to the cloud server

during the protocol executions. In [NWZ12], they presented a private POW scheme

for encrypted files in cloud storage. Zheng et al. [ZX12] argued that the public

verifiability offered by POR/PDP schemes could be naturally exploited to achieve

POW, however by using POR/PDP schemes to achieve POW, their scheme brings

the clients mass information because it stores all the verified tags. In addition, none

of the above schemes can solve the POW problem for multiparty users because the

protocol execution was only related to the file F that has to be proven.

There are applications of ownership sharing by different users. Thus an innova-

tive proof of a multiparty ownership solution is proposed with the encrypted data

in the cloud. Every user can prove that he holds the plaintext of the encrypted file

when the server stores one ciphertext only.

1.2. Summary of This Thesis 12

1.2 Summary of This Thesis

The definition and advantages of cloud computing are revised in this chapter. The

security issues in cloud computing are outlined, especially the security challenges

for data security in the cloud. In particular, the aims of this thesis are illustrated

and the contributions are summarized .

In Chapter 2, the notations and definitions which are used throughout this thesis

are covered. The preliminaries and review background materials are presented.

In Chapter 3, a privacy enhanced key management scheme in the cloud is given.

It allows a data source to be accessed by multiple parties who hold different rights.

The security of the database is remained, while some selected data sources can be

securely shared with other parties.

In Chapter 4, a solution is presented to achieve flexible and fine-grained access

control on outsourced data files. In particular, the problem of defining and assigning

keys to users is concerned. The access policies and users’ information are hidden from

third-party cloud servers. The proposed scheme is partially based on the observation

that, in practical application scenarios, each user can be associated with a set of

attributes which are meaningful in the access policy and data file context. The access

policy can thus be defined as a logical expression formula over different attribute

sets. The logical expression can indicate what kind of user is allowed to access

the data file. As any access policy can be represented as such a logical expression

formula, fine-grained access control can be accomplished.

In Chapter 5, an efficient keyword search scheme for cloud computing is proposed.

The proposed solution is very lightweight. It enables efficient multi-user keyword

searches over outsourced data files in the cloud environment, without leaking any

private information about either the data owner or users in the search query. The

security requirements are formally defined and the proposed scheme is proven secure

under a simple assumption in the standard model.

In Chapter 6, a privacy-preserving RIC protocol which achieves public verifia-

bility without disclosing any information is proposed. No information about the

original data will be leaked. In fact, the verifier is only required to know the public

key of the data owner. The experimental results indicate that the proposed scheme

is efficient, especially when the data size is large or the integrity check is frequent.

The full proofs of security under the random oracle model is also given.

Chapter 7 deals with proof of ownership as an important data security issue in

1.2. Summary of This Thesis 13

cloud computing, as mentioned earlier. There are many applications of ownership

sharing by different users. In this chapter, an innovative PMOW scheme for proof

of multiparty ownership is proposed, for encrypted data in the cloud. Every user

can prove that he holds the plaintext of the encrypted file when the server stores

one ciphertext only. The proposed solution achieves CCA2 security and The full

proof analysis is also given in the ideal cipher model.

Finally, the thesis is concluded in Chapter 8 with a summary of the thesis to-

gether with some possible future research directions.

Chapter 2

Background

In this chapter, the notations and definitions which are used throughout this thesis

are covered. The aim of this chapter is to make this thesis self-contained. Back-

ground materials on the topic of hash function, pseudo-random function, number-

theoretic problems, bilinear maps, Merkle-tree protocols and zero-knowledge knowledge-

of-proof protocols will be presented.

2.1 Preliminaries

2.1.1 Miscellaneous Notations

Notations. Throughout this thesis, N denotes the set of natural numbers {1, 2, · · · }
and by Z the set of integers {· · · ,−2,−1, 0, 1, 2, · · · }. Zp denotes the set {0, · · · , p−
1} and Z

∗
p the set of positive integers smaller than p and relatively prime to p. That

is,

Z
∗
p = {n|1 6 n 6 p and gcd(n, p) = 1}.

The notation [1, k] denotes the set {1, · · · , k}.

Functions and Algorithms. Let f : X1 → X2 be the function f with input X1

and output X2. Let A denote an algorithm. Let A(·) to denote that A has one input

and A(·, · · · , ·) to denote that A has several inputs. y ← A(x) denotes that y is the

output of algorithm A on input x.

Experiments. Let S be a probability distribution which is a graph, table or formula

that gives the probability for each value of the random variable. x← S denotes the

experiment of sampling an element x from a probability distribution S. If F is a

finite set, then x ← F denotes the experiment of sampling uniformly from the set

14

2.1. Preliminaries 15

F . Semicolon is used to describe the ordered sequences of event that make up an

experiment, e.g.,

u← S; (v, w)← A(u)

Probabilities. If pre(., .) denotes a predicate, then

Pr[u← S; (v, w)← A(u) : pre(v, w)]

is the probability that the predicate pre(v, w) is true after the ordered sequence of

events (u← S; (v, w)← A(u)). The notation

{u← S; (v, w)← A(u) : (v, w)}

denotes the probability distribution over {v, w} generated by the experiment (u←
S; (v, w)← A(u)). Following standard notation,

Pr[A|B]

denotes the probability of event A conditioned on the event B. When the Pr[B] = 0,

then the conditional probability is not defined.

Big-O Notation. The standard asymptotic notation is used to describe the running

time of algorithms. The expression f(n) = O(g(n)) means that there exist some

positive constant c and a positive integer n0 such that 0 6 f(n) 6 cg(n) for all

n > n0. Broadly speaking, it means that g is the upper bound of f . If f is bounder

below by g, that is, g(n) = O(f(n)), then f(n) = Ω(g(n)).

2.1.2 Complexity Problems on Zp

The security of many cryptosystems relies on the intractability of solving some hard

problems. In the following, three hard problems are described in detail. Let p be a

large prime and q a prime divisor of p − 1. Let G be a subgroup in Z
∗
p with prime

order q. Let g be the generator of G.

• Discrete Logarithm Problem. The discrete logarithm problem (DLP)

[BL96] forms the basis in the security of many cryptosystems. DLP is re-

stricted in cyclic group in this thesis.

Definition 2.1 The Discrete Logarithm Problem in G is defined as follows:

On input a tuple (g, Y) ∈ G
2, output x such that Y = gx.

2.1. Preliminaries 16

Shoup [Sho97] derived a lower bound on any algorithms that solve DLP with-

out exploiting any special properties of the encoding of the group element.

Such algorithms are known as generic algorithms. Specifically, the lower bound

is Ω(
√
d), where d is the largest prime dividing the order of the group. In-

deed, such bound is met by the well-known Pollard’s rho algorithm [Pol78]

that works in arbitrary groups.

• Computational Diffie-Hellman Problem. If DLP in G can be solved,

the computation Diffie-Hellman problem (CDH) can also be solved although

whether the converse is true or not is still an open problem.

Definition 2.2 The Computational Diffie-Hellman Problem in G such that

|G| = p is defined as follows: On input a tuple (g, gx, gy) ∈ G
3, output gxy.

• Decisional Diffie-Hellman Problem. The decisional Diffie-Hellman prob-

lem (DDH) is the decisional version of the CDH problem. It was first formally

introduced in [Bra93].

Definition 2.3 The Decisional Diffie-Hellman Problem in G such that |G| =
p is defined as follows: On input a tuple (g, gx, gy, gz) ∈ G

4, decide if gz = gxy.

2.1.3 Bilinear Maps

The necessary facts about bilinear maps and groups are briefly reviewed, in the

notation of [BLS04]: Let G1 and G2 be two (multiplicative) cyclic groups of prime

order p, with an additional group GT such that |G1| = |G2| = |GT |. A bilinear map

is a map e : G1 ×G2 → GT with the following properties:

1. Bilinear: for all u ∈ G1, v ∈ G2 and a, b ∈ Z, e(ua, vb) = e(u, v)ab.

2. Non-degenerate: for g1 is a generator of G1 and g2 is a generator of G2,

e(g1, g2) 6= 1.

These properties imply another two properties: for any u1, u2 ∈ G1, v ∈ G2,

e(u1u2, v) = e(u1, v) · e(u2, v); and for any u, v ∈ G2, and φ is a computable isomor-

phism from G2 to G1, with φ(g2) = g1, then e(φ(u), v) = e(φ(v), u).

2.2. Cryptographic Tools 17

2.2 Cryptographic Tools

2.2.1 Cryptographic Hash Functions

A hash function, H : {0, 1}∗ → {0, 1}λ is an efficient one-way algorithms that

maps an input of an arbitrary-length bit-string x to an output H(x) of fixed length

λ. The cryptographic hash functions must be efficiently computable. The hash

function is required to be pre-image resistant. That is, given a hash function H,

it is computationally hard to find x when given y, such that y = H(x). The

hash functions are also required to be collision resistant [Dam87]. That is, it is

computationally hard to find a pair x0, x1 with x0 6= x1, such that H(x0) = H(x1).

2.2.2 Pseudo-random Functions

A random function is a machine that upon receiving input x proceeds as follows.

If it has not seen x before, it chooses a value y ← {0, 1}n and returns y; it then

records that f(x) = y. If it has seen x before, then it looks up x, and outputs the

same value y as before.

Intuitively, a pseudo-random function (PRF) is like a random function to any

polynomial time adversary. It is originally defined by [GGM86] as an important

cryptographic primitive. They are deterministic functions f : {0, 1}n → {0, 1}n

which are computable in polynomial time and take two inputs x, k ∈ {0, 1}n where

k is a hidden random seed. Naturally, a distribution of functions is pseudo-random

if it satisfies the following requirements [NRR00]:

• Easy to sample: It is easy to sample a function according to the distribution.

• Easy to compute: Given such a function, it is easy to evaluate it at any given

point.

• Pseudo-random: It is hard to tell apart a function sampled according to the

pseudo-random distribution form a uniformly distributed function when the

distinguisher is given access to the function as a black-box.

Theorem 2.1 If a pseudorandom generator exists, then pseudo-random functions

exist.

2.2. Cryptographic Tools 18

Pseudo-random functions have a wide range of applications, most notably in

cryptography, but also in computational complexity and computational learning

theory.

2.2.3 Public Key Encryption Scheme

In a public key encryption scheme, the public key is published in a secure repository,

where anyone can use it to encrypt messages. The private key is kept by the recipient

so that only he can decrypt massages which are sent to him.

Definition 2.4 (Public key encryption scheme) A triple of algorithms (Gen, Enc,

Dec) is a public key encryption scheme if

• (pk, sk) ← Gen(1n) is a polynomial time algorithm that produces a key pair

(pk, sk).

• c← Endpk(m) is a polynomial time algorithm that given pk and m ∈ {0, 1}n

produces a ciphertext c.

• m← Decsk(c) is a deterministic algorithm that given a ciphertext c and secret

key sk produces a message m ∈ {0, 1}n ∪ ⊥.

• There exists a polynomial time algorithm A that on input (1n, i), outputs the

ith n-bit message (if such a message exists) according to some order.

• For all n ∈ N, m ∈ {0, 1}n,

Pr[(pk, sk)← Gen(1n) : Decsk(Encpk(m)) = m] = 1.

The decryption algorithm is allowed to produce a special symbol ⊥ when the

input ciphertext is undecipherable. The security property for public key encryption

can be defined as follows.

Definition 2.5 (Secure public key encryption) The public key encryption scheme

(Gen, End, Dec) is said to be secure if for all non uniform polynomial time

distinguisher D, there exists a negligible function ǫ(·) such that for all n ∈ N,

m0,m1 ∈ {0, 1}n, D distinguishes between the following distributions with proba-

bility at most ǫ(n):

• {(pk, sk)← Gen(1n) : (pk,Encpk(m0))}n.

• {(pk, sk)← Gen(1n) : (pk,Encpk(m1))}n.

2.2. Cryptographic Tools 19

2.2.4 Commitment Schemes

Commitment schemes are usually referred to as the digital equivalent of a “physical”

locked box. They consist of two phases:

• Commit phase: Sender puts a value x in a locked box.

• Reveal phase: Sender unlocks the box and reveals x.

It is required that before the reveal phase the value x should remain hidden:

this property is called hiding. Additionally, during the reveal phase, there should

only exists a single value that the commitment can be revealed to: this property

is called binding. In the following, a formalization of single-message commitments

is provided, where both the commit and the reveal phases only consist of a single

message sent from the committer to the receiver.

Definition 2.6 (Commitment) A polynomial time machine Com is called a com-

mitment scheme if there exists some polynomial l(·) such that the following two

properties hold:

• Binding. For all n ∈ N and all x0, x1 ∈ {0, 1}n, r0, r1 ∈ {0, 1}l(n), it holds
that Com(x0, r0) 6= Com(x0, r1).

• Hiding. For every non uniform polynomial time distinguisher D, there exists a

negligible function ǫ such that for every n ∈ N, x0, x1 ∈ {0, 1}n, D distinguishes

the following distributions with probability at most ǫ(n).

– {r ← {0, 1}l(n) : Com(x0, r)}.

– {r ← {0, 1}l(n) : Com(x1, r)}.

Theorem 2.2 If one-way permutations exist, then commitment schemes exist.

2.2.5 Sequences of Games

Sequences of games [Sho04] is a tool for organizing the security proofs. To prove

security using the sequence-of-games approach, it is needed to proceed as follows.

• Construct. Construct a sequence of games, Game 0, Game 1, · · · , Game n,

where Game 0 is the original attack game with respect to a given adversary

and cryptographic primitive.

2.3. Zero-Knowledge Proof-of-Knowledge 20

• Define. Let S0 be the event S, and for i = 1, · · · , n, the construction defines

an event Si in Game i, usually in a way naturally related to the definition of

S.

• Proof. The proof shows that Pr[Si] is negligibly close to Pr[Si+1] for i =

0, · · · , n− 1, and that Pr[Sn] is equal (or negligibly close) to the target prob-

ability.

From the above and fact that n is a constant, it follows that Pr[S] is negligibly

close to the target probability. Then the security is proved.

However, the above procession is the general framework of such a security proof.

In constructing such proofs, it is desirable that the changes between successive games

are very small, so that analyzing the change is as simple as possible. Shoup [Sho04]

presented that the transitions between successive games can be restricted to one of

three types: indistinguishability, failure events and bridging steps. Throughout this

thesis, it is restricted on the type of transitions based on indistinguishability.

Transitions Based on Indistinguishability [Sho04]. Suppose D1 and D2 are

two computational indistinguishable distributions. To prove |Pr[Si] − Pr[Si+1]| is
negligible, one argues that there exist a distinguishing algorithm A that interpolates

between Game i and Game i+1. When A is given an element which is selected from

distribution D1, it outputs 1 with probability Pr[Si]. When A is given an element

which is selected from distribution D2, it outputs 1 with probability Pr[Si+1]. Then

the indistinguishability assumption implies that |Pr[Si]− Pr[Si+1]| is negligible.
Typically, one can design the two games so that they could easily be rewritten as

a single ‘hybrid’ game that takes an auxiliary input. One get Game i if the auxiliary

input is drawn from D1 and get Game i+1 if the auxiliary input is drawn from D2.

The distinguisher algorithm A then simply runs the hybrid game with its input and

outputs 1 if the appropriate event occurs.

2.3 Zero-Knowledge Proof-of-Knowledge

Proof of Knowledge. In a proof of knowledge protocol[ASM10], the prover at-

tempts to convince the verifier that it knows a certain quantity satisfying some kinds

of relation with respect to a commonly known string. For example, given the pub-

licly known value y = gx, the prover attempts convince the verifier that it knows

2.3. Zero-Knowledge Proof-of-Knowledge 21

x.

To define a proof of knowledge, the NP-relation R is first defined as follows.

Definition 2.7 An NP-relation R ⊆ {0, 1}∗ × {0, 1}∗ is given by a deterministic

algorithm W (·, ·) that runs in time polynomial in the length of its first input. The

relation is:

R = {(x, w) : W (x, w)accepts}.

The associated NP-language LR = {x : ∃w such that W (x, w) accepts}. The witness
set for an x ∈ {0, 1}∗ is R(x) = {w : W (x, w) = 1}.

That is, the NP-relation R is just the set of theorem-witness pairs (x, w) that are

accepted by the verifier W . It is easily seen that the language LR associated with

the relation is an NP language. For example, for the discrete logarithm problem in

G, the natural relation is R = {(x ∈ G,w ∈ Zp) : g
w = x}.

A proof of knowledge for a relation R is now defined. The definition captures

the intuition that form any (possible cheating) prover P ∗ that is able to convince

the verifier with good enough probability on a statement x ∈ LR, there is a way to

extract a valid witness for x from P ∗ with a related (not too small) probability.

Definition 2.8 An interactive proof system (P, V) is a proof of knowledge with

knowledge error k ∈ [0, 1] for an NP-relation R if there exists an n.u.p.p.t oracle

machine K (the knowledge extractor) such that for any x ∈ LR, and for any (possible

unbounded) P ∗ for which p∗x = Pr [outV [P ∗ ↔ V (x)] = 1] > k, it has

Pr
[

KP ∗

(x) ∈ R(x)
]

> poly(p∗x − k).

That is, the probability that the knowledge extractor K finds a valid witness for x

using its access to prover P ∗ is at least polynomially related to the probability p∗x

that P ∗ convinces the honest verifier on x, unless some knowledge error.

Zero-Knowledge Proof. In a zero-knowledge proof protocol that was first intro-

duced by Goldwasser, Micali and Rackoff [GMR89], a prover convinces a verifier that

some statement is true without the verifier learning anything except the validity of

the statement.

Zero-Knowledge Proof-of-Knowledge (ZKPoK). ZKPoK is a proof of knowl-

edge protocol which is zero-knowledge.
∑

-protocols are a special type of three-move

2.3. Zero-Knowledge Proof-of-Knowledge 22

ZKPoK protocols, which can be converted into non-interactive Signature Proof of

Knowledge (SPK) schemes or simply signature schemes [GMR88] that are secure in

the random oracle (RO) model [BR93, CGH04]. Let PK{(x) : y = gx} denote a
∑

-protocol that proves the knowledge of x ∈ Zp such that y = gx for some y ∈ G

[CS03]. The x value on the left of the colon denotes variable whose knowledge is to

be proven, while other values on denote publicly known value.

Chapter 3

Privacy Enhanced Data Outsourcing in
the Cloud

How to secure outsourcing data in cloud computing is a challenging problem, since

a public cloud environment cannot been considered to be trusted. The situation

becomes even more challenging when outsourced data sources in a cloud environ-

ment are managed by multiple outsourcers who have different access levels. In

this chapter, an efficient and innovative tree-based key management scheme is in-

troduced, which allows a data source to be accessed by multiple parties who hold

different rights. It is ensured that the database remains secure, while some selected

data sources can be securely shared with other parties. The original scheme was

presented at Journal of Network and Computer Applications, 2012 [ZMS+12].

3.1 Introduction

Cloud Storage Services such as Microsoft’s Azure storage and Amazon’s S3 have

gained popularity recently. While more and more enterprises store their private data

on the cloud storages, which are generally managed by untrusted parties, secure and

privacy have become major concerns. As a countermeasure, Microsoft has recently

deployed a virtual private storage service [KL10]. Although the recent efforts in

secure cloud computing, there are a number of unsolved security issues. One of such

issues is the confidentiality and privacy of user data, while those data has to be

shared/managed by multiple parties. This is also the issue to be addressed in this

chapter.

The data stored in a cloud database is considered as data outsourcing, since they

are managed by an external party. For security, those data are generally encrypted

so that only authorized users can access them. Generally, outsourced data consist

of many data blocks, hence the management of encryption keys is a major challenge

23

3.1. Introduction 24

as mentioned in Chapter 1.

The classical tree-based hierarchy schemes such as RFC2627 [WHA99]) and the

scheme proposed by Wong et al. [WGL98] have been widely used in group key

management. In RFC2627 [WHA99], the hierarchical tree approach is the recom-

mended approach to address the multicast key management problem. This approach

provides for the following requisite features: 1)provides for the secure removal of a

compromised user from the multicast group, 2)provides for transmission efficiency,

3)provides for storage efficiency. The hierarchical tree approach balances the costs

of time, storage and number of required message transmissions, using a hierarchical

system of auxiliary keys to facilitate distribution of new key. The result is that the

storage requirement for each user and the transmissions required for key replacement

are both logarithmic in the number of users, with no background transmissions re-

quired. This approach is robust against collusion of excluded users. Moreover, while

the scheme is hierarchical in nature, no infrastructure is needed beyond a server (e.g.,

a root), though the presence of such elements could be used to advantage.

Many key management methods of access hierarchies for data outsourcing have

been proposed based on this approach[WLOB09, DdVJ+03, BCdV+09, dVFJ+07a,

ABFF09, PL01]. These methods provide some useful solutions to minimize the

number of cryptographic keys, which have to be managed and stored. Aiming

to provide secure and efficient access to outsourced data, Wang et al.[WLOB09]

proposed a tree-based cryptographic key management scheme for data storages in

the cloud. They referred the scenario to as “owner-write-users-read”. Their tree-

based key management structure was similar to a traditional one, where a single

root node held the master key that could be used to derive other node keys. Each

node key could be used to derive the keys of its children in the hierarchy. With

their scheme, a data block stored in the cloud can be updated by a party who holds

either the specific decryption key or a node key corresponding to one of its parents.

If there is an outsourcing server authorized to manage a node (not the root node)

that has several child nodes, then the outsourced party is granted the node key, which

can be used to derive all sub-keys for its child nodes. In another word, once a parent

node in the tree is given, all the child nodes wll be known. This is a common problem

which exists in many tree-based key management schemes. Existing ones such as

[WLOB09, DdVF+05, DdVF+07, dVFJ+08, dVFJ+07b, AFB05, YLZL01, KPT00,

NNL01a, LNS03, KLKJ06, SL04, BSS11] can work perfectly, only if all legitimate

users are authorized to access all the child nodes under the specific parent node.

3.1. Introduction 25

Considering this problem, a practical application is suggested for private data

management. It is named as OWUR/W (owner-write-users-read/write) applica-

tions, where a data source protected with a node key in a key management tree can

be shared with or managed by another party without compromising the security of

the data encrypted with its child nodes’ keys. Additionally, data can be updated

not only by the data owner, but also by other legitimate parties. It is found that

this scenario is very useful in outsourcing management. Meanwhile, it is noticed

that other existing schemes do not offer this feature.

Intuitively, it is necessary that the encrypted data block associated with a node

can be decrypted by multiple decryption keys where one of them is associated with

the tree and can be utilized to generate its keys children’s keys, while other decryp-

tion keys are only used to decrypt the data block stored in the node. Let us assume

two decryption keys (d1, d2), assigned to a node, where one of them is associated

with the tree (let us assume that d1 is the key associated with the tree and d2 is

known to the manager only). Both decryption keys are associated with the unique

encryption key, e. For a user, who is authorized to access only the data block stored

in the node and should not have to access its children, the manager only grant d2

to the user. With d2, the user can decrypt the data block but can not generate

the decryption keys of this node’s children. It is believed that this method offers

additional privacy protection to the outsourced data.

In this chapter, an innovative tree-based key management scheme is proposed.

The proposed scheme can indeed capture the idea given above. It is also shown how

apply the proposed scheme to protect outsourced data in cloud computing.

Organization of This Chapter. The rest of this chapter is organized as follows.

In the next section, the data outsourcing model for cryptographic cloud storage

is presented. In Section 3.3 , the key derivation hierarchy for key management in

cloud storage is described. In Section 3.4, a concrete example is given and the

main construction is presented, including the encryption method and the detailed

algorithms. In Section 3.5, the data access procedure is analyzed. In Section 3.6, an

extension of the proposed scheme is discussed. The security proof of the proposed

scheme is given in Section 3.7 and Section 3.8 concludes this chapter.

3.2. The Model 26

3.2 The Model

In this section, the data outsourcing model is presented, following the application

scenario presented in Section 3.1. An illustration of the proposed model is presented

in Figure 3.1. The system consists of four major parties:

• The cloud Provider (P), who provides third-party data storage services.

• The original data owner (O), who holds the master (root) key and is respon-

sible to set up the key management system.

• The sub-tree data manager (M), who holds an authorized node key, which

can be used to derive all decryption keys for its child nodes. Notice that it

is assumed each node has two decryption keys: one can be used to derive all

decryption keys of its children and the other can only be used to decrypt the

encrypted data in the specific node.

• A user or another sub-tree data manager (U), who probably use or share a

data block at a node managed byM but does not hold the full administrative

right of deriving the decryption keys of the children of this node.

Root Node

(d0)O

Node N(i+1)j

accessed by U

(dijk)

Sub-tree

managed
by MP

.

Figure 3.1: The data outsourcing model.

The encryption method is asymmetric, in the sense that the encryption key and

decryption key(s) are different. For simplicity, it is assumed that the data stored in

each node is encrypted by one encryption key associated with two decryption keys.

One of these two decryption keys is used for the decryption of the database located

3.3. Key Derivation Hierarchy 27

at the corresponding node and the generation of sub-keys for the child nodes, while

another one can only be used for the decryption of the database at the same node.

Let eij denote encryption keys and dijk the corresponding decryption keys, re-

spectively, where i denotes the level of a tree, j the index of nodes and k the index

of decryption keys. The root master key is denoted by d0. Let Nij denote a node in

the tree. Using a binary tree as an example, the proposed model can be described

as follows:

• The original owner O generates a master (root) key, d0, which can be used to

derive all other decryption keys and encryption keys in a tree.

• Each node in the tree obtains a master decryption key dij1 and the secondary

decryption key dij2, generated from the root key. The secondary decryption

key dij2 is derived from dij1.

• The sub-tree data managerM obtains a key dij1 as its master key, which can

be used to generate all node keys of the sub-tree, including the secondary keys.

• User U can request a secondary decryption key dij2 fromM for accessing the

encrypted data stored in node Nij.

This key management scheme holds all features from a normal binary tree hier-

archy and introduces the new secondary key, which enables flexibility in key man-

agement and additional privacy protection.

3.3 Key Derivation Hierarchy

Without loss of generality, it is assumed that the outsourced data contains n blocks

and 2(i−1) 6 n 6 2i where i denotes the level of the tree. Therefore, a complete

binary tree from Node N0 to Nij is constructed, where i and j denote the level of a

tree and j the node index, respectively.

Before defining the key derivation tree, Key Value is first defined.

Definition 3.1 (Key Value) Except the root node N0, any node Nij in the key

derivation tree T, has a key value Kij of two decryption keys dij1 and dij2. These

two decryption keys are also denoted as key pair (dij1,dij2). Such a key pair can

generate the encryption key eij for this node.

3.3. Key Derivation Hierarchy 28

The definition of Key Derivation Tree is given as follows. Notice that the en-

cryption key associated with a key value is less important in the key derivation.

Definition 3.2 (Key Derivation Tree) A key derivation tree, denoted T, is a

tree T = 〈N,K〉, rooted at vertex N0. Any node Nij except the leaves, can derive its

child nodes of indices i(2j− 1) (for the left) and i(2j) (for the right), for i = 1, 2, ...

and j = 1, ..., 2i, while its parent (if any) is found at index (i − 1)⌈ j
2
⌉. Kij ⊆ K,

denotes the key value of each node Nij, where the key value consists of a set of

decryption keys corresponding to this node.

To construct the key derivation tree, a cryptographic one-way hash function is

chosen as the key generation function: H : {0, 1}∗ → ZZq, which can be used to

compute the decryption key of child nodes of any node Nij, while hard to invert the

key of Nij. The key value Kij of node Nij is represented by Kij ← (dij1, dij2) where

dij1 denotes the master decryption key and dij2 denotes the secondary decryption

key. The one-way hash function H is also being used to compute dij2 from the input

dij1: dij2 ← H(dij1). The key derivation hierarchy is illustrated in Figure 3.2, where

i > 0, j > 1.

(di11, di12) (di(j-1)1, di(j-1)2) (dij1, dij2)

(d(i-1) (j/2 1, d(i-1) (j/2 2)

(di21, di22)

(d(i-1)11, d(i-1)22)

(d241, d242)(d231, d232)(d221, d222)(d211, d212)

(d121, d122)(d111, d112)

d0

e12e11

ei1 ei2 ei(j-1) eij

Figure 3.2: Key derivation hierarchy.

With the root key d0 for node N0, all the key pairs can be derived:

d0 → d111 → d112, d0 → d121 → d122.

3.4. The Concrete Scheme 29

d111 → d211 → d212, d111 → d221 → d222.

d121 → d231 → d232, d121 → d241 → d242.

... ...

d(i−1)⌈ j
2
⌉1 → di(j−1)1 → di(j−1)2, d(i−1)⌈ j

2
⌉1 → dij1 → dij2

... ...

The encryption keys are generated from key pairs which contain the master

decryption key and the secondary decryption key, for example,

(d111, d112)→ e11, (d121, d122)→ e12,

(d211, d212)→ e21, (d221, d222)→ e22,

... ...

(di(j−1), di(j−1)2)→ ei(j−1), (dij1, dij2)→ eij

... ...

To derive child keys, the original data owner O conducts the following computa-

tions. For a key pair (dij1,dij2) of node (i, j), its child on the left can be calculated

as

(d(i+1)(2j−1)1, d(i+1)(2j−1)2) = (H(dij1‖(2j − 1)), H(H(dij1‖(2j − 1)))).

and its child on the right can be calculated as

(d(i+1)(2j)1, d(i+1)(2j)2) = (H(dij1‖2j), H(H(dij1‖2j))).

Other sub-keys can be generated accordingly. In this way, the whole key deriva-

tion tree can be constructed. A concrete scheme will also be given in the following

section.

3.4 The Concrete Scheme

Having demonstrated how the proposed scheme works, a concrete construction is

now provided. The polynomial introduced in [MVN99] is borrowed and it is demon-

strated how to apply it to the proposed key derivation tree.

3.4. The Concrete Scheme 30

3.4.1 The Polynomial Function

The security of this system relies on difficulty of computing discrete logarithm. The

protocols are based on a polynomial function and a set of exponentials. Let p, q be

two large prime numbers such that q|p − 1, and g ∈ Z
∗
p be a generator of order q.

Let {xi} ∈R Zq for i = 0, 1, 2..., n be a set of integers. The polynomial function of

order n is constructed as follows.

f(x) =
∏n

i=1(x− xi) ≡
∑n

i=0 aix
i mod q,

where {ai} are coefficients:

a0 =
n
∏

j=1

(−xj),

a1 =
n

∑

i=1

n
∏

i 6=j

(−xj),

· · · ,

an−2 =
n

∑

i 6=j

(−xi)(−xj),

an−1 =
n

∑

i=1

(−xj),

an = 1.

It is noted that
∑n

i=0 aix
i
j = 0. This property is important for the proposed scheme.

Having the set {ai}, the corresponding exponential functions can be constructed,

{ga0 , ga1 , · · · , gan} ≡ {g0, g1, · · · , gn} mod p.

All elements here are computed under modulo p. For convenience, modulo p will be

omitted in the rest of this paper.

Now it is ready to construct an asymmetric-key system where the encryption key

is the tuple {g0, g1, · · · , gn} mapping to n decryption keys {xi}.

3.4.2 Key Derivation Tree and Data Encryption

Let us use a binary tree as an example and (i, j) as an arbitrary node. Then the main

construction contains four algorithms: Key Generation, Encryption, Decryption and

Key Derivation.

3.4. The Concrete Scheme 31

Key Generation

The decryption keys are denoted by (dij1, dij2), which correspond to (x1, x2) in the 2-

degree polynomial defined above, where dij2 = H(dij1). For simplicity, it is denoted

that (dij1, dij2) = (d1, d2). The encryption key corresponding to (d1, d2) is e =

(g0, g1, g2), where g0 = ga0 = gd1d2 , g1 = ga1 = g−(d1+d2), g2 = ga2 = g. For

simplicity, the subscripts of eij is omitted.

Encryption

The encryption algorithm takes as input a message M ∈ {0, 1}∗, the encryption key

e, a random k ∈ Zq, and a generator h ∈ Z
∗
p, and outputs a ciphertext (c1, c2), where

c1 ← (hk · gk0 , gk1 , gk2), c2 = M · hk.

Rewrite c1 as (b1, b2, b3) for convenience. The encryption scheme is a variant of

ElGamal encryption, which is proven to be secure under the assumption of Chosen

Plaintext Attack when the group Z
∗
p is properly selected. It can be easily converted

into Chosen Ciphertext Security by Fujisaki-Okamoto transformation [FO99].

Decryption

This algorithm takes as input the ciphertext (c1, c2) and one of decryption keys d1

and d2, and outputs M . hk can be computed from b1 · bdi2 · bdi
2

3 , for i ∈ {1, 2}. Thus,
M can be computed as M = c2/h

k.

Key Derivation

This algorithm takes as input the master decryption key dij1 and a one way hash

function H : {0, 1}∗ → Zq. It outputs the two child nodes of key dij1. During the

key derivation procedure, the left child node can be computed as

(d(i+1)(2j−1)1, d(i+1)(2j−1)2) = (H(dij1‖(2j − 1)), H(H(dij1‖(2j − 1)))),

and the right child node can be computed as

(d(i+1)(2j)1, d(i+1)(2j)2) = (H(dij1‖2j), H(H(dij1‖2j))).

By repeating this algorithm, the whole key derivation tree can be generated.

The proposed scheme also considers “Write” applications and allows the user

to re-encrypt the data. This means that the encryption key e should be given to

3.5. Data Access Procedure 32

the user. The reader might think that the user could alter the encryption key by

changing a new encryption key, as he can easily replace his existing decryption key

with a different one. However, this action will fail if the data manager checks the

correctness of the encryption regularly. An alternative solution is to use an RSA

modulus and assume that two corresponding primes, which form the modulus, is

only known to the manager. This change makes the encryption key inviolable.

3.5 Data Access Procedure

In this section, the data access procedure is described for four associated parties

given in Section 3.2. Here some notations are first given.

• M, O, P , U : abbreviated names appear as the four major parties as given in

the proposed model.

• M → O: m. M sends message m to O.

• kXY : a symmetric key shared between parties X and Y .

• TX : a timestamp generated by X;

UsingNij as example, the data block is encrypted with eij, which is corresponding

to two decryption keys (dij1, dij2). The data access procedure is described in two

phases, shown in Figure 3.3 and Figure 3.4.

3.5.1 The First Phase

In the first phase, Data Owner O, Sub-tree Manager M and Cloud Provider P
execute the following five steps.

1. M sends O a key request message: M REQ, where M REQ = {sub id, TM ,

MAC(kMO, sub id, TM)}. MAC denotes the message authentication code with

the key kMO shared by M and O. After the original data owner O sets up

the system, the first step in the data access procedure are run by O and its

sub-tree data manager M. M sends O an access request message M REQ

in order to obtain the sub-tree root key. The sub id field in this message

provides the index of the sub-tree root node. Upon receiving the M REQ

message, O performs data-integrity validation by checking the MAC of sub id

and timestamp.

3.5. Data Access Procedure 33

O

(Data Owner)

P

(Cloud

Provider)

M

(Sub-tree

Manager)

(1) key request message

(2) O sends M the sub-tree root key

(3) data access request message

(4) encrypted data blocks

(5) data updating

Figure 3.3: The first phase.

2. O sends M the sub-tree root key dij1 encrypted with EkMO
. Upon receiving

dij1, M can use it to derive the second key and other keys of its child nodes

and access the the encrypted data block as given in the next step.

3. M sends P an access request message: M REQ, where M REQ = {sub tree id,

TM , MAC(kMP , sub tree id, TM)}

4. M accesses the stored data block.

5. With the sub-tree root key dij1 for Nij,M can update all the sub-tree nodes.

this sub-procedure is called as a write step becauseM can modify and more im-

portantly, re-encrypt the sub-tree data. After that,M sends the re-encrypted

data block back to P .

3.5.2 The Second Phase

In the second phase, User U , Data Owner O and Cloud Provider P execute the

following five steps:

1. U sends M a key request message: U REQ, where U REQ = {req id, TU ,

MAC(kMU , req id, TU)}. This step runs between User U and the sub-tree

data manager M. Without any interaction with the original data owner O,
the user U starts the connection by sending a key request message U REQ to

the sub-tree managerM. MAC is the message authentication code using the

3.6. Generalization of Key Derivation Hierarchy 34

M

(Sub-tree

Manager)

P

(Cloud

Provider)

U

(User)

(1) key request message

(2) M sends U the required dij2

(3) data access request message

(4) encrypted data blocks

(5) user updates the data

Figure 3.4: The second process.

key kMU . The req id field contains the node information for U . U performs

data-integrity validation with the MAC, upon receiving the U REQ message.

2. M sends U the secondary decryption key dij2 with respect to the same node.

U can use this decryption key to decrypt the same data block. If U is a

legitimate user that can write the data,M also provides the encryptions key

eij corresponding to this node.

3. U sends P an access request: U REQ= {req node id, TU , MAC(kUP , req node id,

TU)}.

4. U accesses the encrypted data block.

5. Given the encryption key eij, U can update this specific data node. this sub-

procedure is called as a user write step where a legitimate user can modify and

re-encrypt the specific data block.

3.6 Generalization of Key Derivation Hierarchy

A flexible and efficient key management scheme should be adaptable and expandable

for different application scenarios. For this consideration, the proposed scheme

is expanded into multiple branches and multiple sub-keys respectively. Then a

generalized key derivation hierarchy is given with a consideration of both cases.

3.6. Generalization of Key Derivation Hierarchy 35

3.6.1 Multiple Branches

The proposed scheme can be expanded easily for multiple branches (m > 2) as

Figure 3.5.

(d2[m(m-1)+1]1, d2[m(m-1)+1]2)

d0

e1m

e11

(d1m1, d1m2)

(d111, d112)

(d121, d122)

(d2()1, d2()2)2
m

2
m

(d131, d132)

(d2[m(m-1)+2]1, d2[m(m-1)+2]2)

Figure 3.5: A key derivation tree with multiple branches.

Every parent node has m child nodes which can be derived in a similar way.

Taking parent node (d1m1, d1m2) as an example, its first child node (d2[m(m−1)+1]1,

d2[m(m−1)+1]2) can be computed as (H(d1m1||[m(m1) + 1]), H(H(d1m1||[m(m1) +

1]))), and its last child node (d2(m2)1, d2(m2)2) can be computed as (H(d1m1||m2,

H(H(d1m1||m2))). This expansion lowers the level of derivation hierarchy, by in-

creasing the number of nodes in each level.

3.6.2 Multiple Sub-keys

It can also be expanded to n sub-keys (n > 2), where these sub-keys map to a single

encryption key used to encryption the corresponding data block. In regard to node

Nij, this n sub-keys are denoted by (dij1,dij2,...,dijn) and the encryption key by eij.

Every decryption key can be used to decrypt the data block, while only the master

decryption key dij1 can derive n sub-keys in the tree.

Taking n = 3 as an example (shown in Figure 3.6), the decryption keys are

3.7. Proof and Analysis 36

(di11, di12, di13) (di(j-1)1, di(j-1)2, di(j-1)3) (dij1, dij2, dij3)(di21, di22, di23)

(d(i-1)11, d(i-1)22, d(i-1)23)

(d241, d242, d243)(d231, d232, d233)(d221, d222, d222)(d211, d212, d213)

(d121, d122, d123)(d111, d112, d113)

d0

e12e11

ei1 ei2 ei(j-1) eij

Figure 3.6: Take n = 3 as an example.

denoted by (dij1,dij2,dij3), which correspond to (x1, x2, x3) in the 3-degree poly-

nomial defined in Section 3.4, where dij2 = H(dij1||1), dij3 = H(dij1||2). De-

note (dij1, dij2, dij3) by (d1, d2, d3), the encryption key corresponding to (d1, d2, d3)

is e = (g0, g1, g2, g3), where g0 = ga0 = g−d1d2d3 , g1 = ga1 = gd1d2+d1d3+d2d3 ,

g2 = ga2 = g−(d1+d2+d3), g3 = ga3 = g.

Combining both cases above, a generalized key derivation tree can be given. An

m-branch n sub-key derivation tree is presented in Figure 3.7.

3.7 Proof and Analysis

3.7.1 Security Natation

The informal definition of the security property is first given. A construction of

encryption system must possess this security property.

Confidentiality. Entities (including the cloud server) other than the authorized

users should not be able to learn anything about the underlying plaintext message.

Definition 3.3 (Security) A construction of the encryption system is secure if it

holds confidentiality.

3.7. Proof and Analysis 37

e11

(d2[m(m-1)+1]1, d2[m(m-1)+1]2, …, d2[m(m-1)+1]u)

d0

e1m(d1m1, d1m2, …, d1mu)

(d111, d112,…, d11u)

(d121, d122,…, d12u)

(d2()1, d2()2,…, d2()u)

(d2[m(m-1)+2]1, d2[m(m-1)+2]2, …, d2[m(m-1)+2]u)

2
m

2
m

2
m e 22()m

Figure 3.7: Expanding to M-Branch N-Tuple Hierarchy.

3.7.2 Security Model

The security requirement is formalized by the following security game. The adver-

sary A models a malicious user or a cloud server which is Byzantine, i.e., can behave

arbitrarily, however, cannot collude with authorized users. Let C be the challenger.

Then the game runs as follows:

Setup Phase C sets up the encryption system and makes all public parameters in

the system available to A.

Query Phase 1 The adversary A can make at most qs queries to an encryption or-

acle, providing some message mi during each query. C then computes the ciphertext

CTmi
and sends it back to A.

Challenge Phase The adversaryA submits two messages (M0,M1) of equal length.

Then the Challenger C flips a fair coin b ∈R {0, 1} and encrypts message Mb. The

ciphertext is then passed to A.

Query Phase 2 A can issue queries as in Query Phase 1 except it cannot submit

queries with input M0 and M1.

3.7. Proof and Analysis 38

Output Phase Eventually A outputs a guess b∗ of b. A wins if and only if b∗ = b.

The advantage of an adversary A in this game is defined as Pr[b∗ = b]− 1/2.

3.7.3 Proof of Security

Theorem 3.1 The encryption scheme is secure if DDH problem in Z
∗
p is hard.

Proof:

It will be shown that the proposed scheme is secure under the assumption of

Chosen Plaintext Attack if the DDH problem is hard in Z
∗
p. Let S be a game

simulator. Suppose there exist a polynomial-time adversary A that can attack the

proposed scheme in the standard model with advantage ǫ/2. The simulator S is

given a DDH problem instance (g, gα, gβ, R) from the DDH challenger generated in

the following process. The challenger flips a fair binary coin µ, outside of S’s view.
It sets the problem instance as (g, gα, gβ, R) where R = gαβ if µ = 0 or R is a

random group element if µ = 1. The goal of S is to output the value µ.

• Setup Phase The simulator S chooses public parameters. S generates the

keys (d1, d2, e). S sets h = gk for some random value k.

• Query Phase 1 The adversaryA can make queries for encrypting the message

m. S returns with the ciphertext CTm.

• Challenge Phase A will submit two challenge messages M0 and M1 to S. S
flips a fair coin b ∈ {0, 1} and sets d1 = α. The encryption key is then (ga0 ,

ga1 , ga2) such that each aj = uj ·α+ vj for some know uj and vj for j = 0, 1, 2.

Thus, gaj can be computed by S as (gα)ujgvj). S returns an encryption of Mb

as follows:

CT =

{

c1 ← (gβ)k ·Ru0 · (gβ)v0 , Ru1 · (gβ)v1 , Ru2 · (gβ)v2
c2 = Mb · (gβ)k

If µ = 0, R = gαβ. Then by inspection, the ciphertext is a valid ciphertext for

message Mb, with the randomness r = β.

If µ = 1, then R is just a random group element. Thus the ciphertext is just

a random element and the ciphertext contains no information about Mb.

3.8. Conclusion 39

• Query Phase 2 S acts exactly as it did in Query Phase 1 except for messages

M0 and M1.

• Output Phase A will submit b∗ of b. If b∗ = b, the simulator will output

µ∗ = 0 to indicate that it was given a valid DDH triple; otherwise, it will

output µ∗ = 1 to indicate it was given a random element triple.

In the case where µ = 1, the adversary gains no information about b. Therefore,

Pr[b∗ = b|µ = 1] = 1
2
. Since the simulator guesses µ∗ = 1 when b∗ 6= b, Pr[µ∗ =

µ|µ = 1] = 1
2
. If µ = 0 then the adversary sees an encryption of Mb. The adversary’s

advantage in this situation is ǫ by assumption. Therefore, Pr[b∗ = b|µ = 0] = 1
2
+ ǫ.

Since the simulator guesses µ∗ = 0 when b∗ = b, Pr[µ∗ = µ|µ = 0] = 1
2
+ ǫ.

The overall advantage of the simulator in the DDH game is: 1
2
Pr[µ∗ = µ|µ =

0] + 1
2
Pr[µ∗ = µ|µ = 1]− 1

2
= 1

2
· (1

2
+ ǫ) + 1

2
· 1
2
− 1

2
= 1

2
ǫ.

3.8 Conclusion

Key management and access control are important for secure cloud computing. As a

traditional approach, tree-based key management has attracted a lot of attention. It

is found that a traditional tree-based approach had some drawbacks. In a traditional

tree-based key management hierarchy, a node key holder can derive all the child node

keys. In order to solve this problem and maintain the key management feature, in

this chapter, OWUR/W applications are proposed for data sourcing. A secure

and flexible tree-based key derivation hierarchy is presented. The proposed scheme

allowed the outsourcing party to access the data block located at a specified node,

while he could not access the data blocks encrypted with child keys. It is believed

that the proposed tree-based outsourcing key management opens up an entirely new

approach for secure and flexible key management.

Chapter 4

Piracy-Preserved Access Control for
Cloud Computing

The problem of access control on outsourced data to ‘honest but curious’ cloud

servers has received considerable attention, especially in scenarios involving poten-

tially huge sets of data files, where re-encryption and re-transmission by the data

owner may not be acceptable. Considering the user privacy and data security in

cloud environment, in this chapter, a solution is proposed to achieve flexible and

fine-grained access control on outsourced data files. In particular, the problem of

defining and assigning keys to users is concerned. The access policies and users’

information are hidden to the third-party cloud servers. The proposed scheme is

partially based on the observation that, in practical application scenarios each user

can be associated with a set of attributes which are meaningful in the access policy

and data file context. The access policy can thus be defined as a logical expression

formula over different attribute sets to reflect the scope of data files that the kind

of users is allowed to access. As any access policy can be represented using a logical

expression formula, fine-grained access control can be accomplished. The original

scheme was presented at Trustcomm, 2012 [ZMSY11].

4.1 Introduction

Cloud computing is a new computing infrastructure for hosting data and deploying

services and has drawn extensive attention from both academia and industry. Cloud

computing is regarded as an infrastructure for delivering computing power, where

cloud users can use third-party resources through networks and save their invest-

ments significantly by migrating their businesses into the cloud. Due to its low cost,

robustness and ubiquitous nature, cloud computing is changing the way entities

store and manage their data. Outsourcing data to cloud servers can offer a number

40

4.1. Introduction 41

of benefits to cloud users, including low capital expenditures, dynamic provisioning

and economies of scale. While this infrastructure, exemplified by Microsoft’s Azure

Service Platform, Amazon Simple Storage Service (S3), Amazon’s Elastic Compute

Cloud (EC2), and Rackspace’s Mosso has already provides well known examples, it

has also encountered new security risks.

As more and more sensitive data are shared and stored in the cloud, data security

and privacy have been considered as a thorniest problem that may impede the growth

of cloud computing. Since all the resources are provided over the Internet, the cloud

becomes a single point of access for all the users. Fine-grained data access control

can play an important role on data security.

Recently, the problem of access management on outsourced data to cloud servers

has received considerable attention and several advancements have already been

proposed [LZC+10, LWG11, CSK11, BLLS11, ZLS11, Lee12, ZHA+12, WeLD12,

ASB+12, YLJ12, SWYW12, GM09, HYJZ09]. An existing feasible solution to

achieve fine-grained access control of outsourced data in cloud computing is to en-

crypt the data through certain cryptographic primitives and only disclose the private

keys to authorized users. Without the appropriate decryption keys, unauthorized

users including the cloud providers, cannot decrypt the data. This solution has

been widely used (such as [dVFJ+07b, KRS+03]) and most schemes using it are

deployed by introducing a per file group for efficiency. However, the complexity of

these schemes [BKP09, HCM01, CHR09, TWZ09, YC10, LYRL10, TS11] is propor-

tional to the system scale and the number of users. Recently, Yu et al. [YWRL10]

stretched out a scalable data access control scheme for cloud computing, which com-

bined techniques of key-policy attribute-based encryption, proxy re-encryption and

lazy re-encryption. In their scheme, cloud servers were unable to learn the plaintext

during data re-encryption. However, the cloud servers must learn the whole user ID

list and attribute list in exchange.

Vimercati et al. [dVFJ+07b] proposed an encryption scheme for securing data

stoppage on untrusted servers. Their scheme was based on key derivation methods

[AFB05]. In their scheme, to grant access for a user, the owner created correspond-

ing public tokens with his secret key. The user was able to derive decryption keys

for desired files. Then the owner transmitted these public tokens to the semi-trusted

server and delegates the task of token distribution to it. Given these public tokens,

the server was not able to derive the decryption key of any file. This solution intro-

duced a minimal number of secret key per user and a minimal number of encryption

4.1. Introduction 42

key per each file. However, the complexity of operations of file creation and user

grant/revocation is linear to the number of users. Goh et al. [GSMB03] proposed

SiRiUS which was layered over existing file systems such as NFS, but provided end-

to-end security. For the purpose of access control, SiRiUS attached each file with a

meta data file that contained the file’s access control list (ACL), each entry of which

was the encryption of the file’s file encryption key (FEK) using the public key of an

authorized user. The extended version of SiRiUS used NNL broadcast encryption

algorithm [NNL01b] to encrypt the FEK of each file. As the complexity of the user

revocation solution in NNL is proportional to the number of revoked users, SiRiUS

has the same complexity in terms of each meta data file’s size and the encryption

overhead, and thus is not flexible. Ateniese et al. [AFGH05] proposed a secure dis-

tributed storage scheme based on proxy re-encryption. Specifically, the data owner

encrypted blocks of content with a master public key, which could only be decrypted

by the master private key. The data owner then generated proxy re-encryption keys

by using his master private key and the user’s public key. With these proxy re-

encryption keys, the semi-trusted proxies could convert the ciphertext into another

ciphertext for a specific granted user. The main problem with this scheme is that

user access privilege is not protected from the proxy.

Nowadays, ABE has been seen as an ideal technique for achieving flexible, scal-

able and fine-grained access control mechanisms in the cloud. Wang et al. [WLW10]

proposed a hierarchical attribute-based encryption scheme to achieve fine-grained

access control in cloud storage services by combining hierarchical identity-based

encryption and ciphertext-policy attribute-based encryption (CP-ABE). In their

scheme, they assumed that all attributes in one conjunctive clause were adminis-

tered by the same domain master, however it is difficult to implement in practice so

that the same attribute can be administered by multiple domain masters according

to specific policies. Another difficulty is that their scheme can not support com-

pound attributes efficiently and does not support multiple value assignments. Yu et

al. [YWRL10] stretched out a scalable data access control scheme for cloud comput-

ing which combined techniques of key-policy attribute-based encryption (KP-ABE),

proxy re-encryption and lazy re-encryption, where cloud servers were unable to learn

the plaintext during data re-encryption, however the encryptor in their scheme is

not able to decide who can decrypt the encrypted data, and has no choice but to

trust the key issuer. In addition, the cloud servers must learn the whole user ID list

and attribute list in exchange.

4.1. Introduction 43

Considering the user privacy and data security in a cloud environment, in this

chapter, an encryption system is proposed to achieve flexible and fine-grained access

control on outsourced data. In particular, the problem of defining and assigning

keys to users is concerned. The access policies and users’ information are hidden

to the third-party cloud servers. The proposed scheme is partially based on the

observation that, in practical application scenarios, each user can be associated with

a set of attributes, which are meaningful in the access policy and data file context.

The access policy can thus be defined as a logical expression formula over different

attribute sets to reflect the scope of data file that the kind of user is allowed to

access. As any access policy can be represented as such a logical expression formula,

fine-grained access control can be achieved. In this system, a policy hidden attribute-

set based encryption and server re-encryption mechanism (SRM) are proposed to

achieve as follows: 1) The cloud server can re-encrypt data files by given encryption

keys from data owner, without learning the contents or requiring any information

about the users from data owner, 2) data file creation/deletion does not require

a system-wide data file update or re-keying, and 3) new user creation and user

revocation do not affect other users and do not require other users to re-key their

private key.

The contribution of this chapter can be summarized as threefold: 1) A two-tier

encryption model is proposed to achieve flexible and fine-grained access control for

outsourced data in clouds, 2) private data content and information about the users

as well as the access policies are not leaked to the cloud provider, and 3) the proposed

scheme is provable secure under the standard model.

Organization of This Chapter. The rest of this chapter is organized as follows.

In Section 4.2, the design goals and main idea are introduced. The encryption model

is also proposed. In Section 4.3, the base model is presented. In Section 4.4, the

surface model is then described. The security proof and analysis of the proposed

scheme are given in Section 4.5. Section 4.6 concludes this chapter.

4.2. Design Goal and Main Idea 44

4.2 Design Goal and Main Idea

4.2.1 Design Goal

The main design goal is to help the data owner achieve a flexible and fine-grained

access control on the outsourced data in clouds. The aim is to prevent the cloud

provider from learning the data contents and user information, and allow the data

owner to define users who can get access to data files. Specifically, user’s creation or

revocation should not affect other users, namely other users do not need to update

their secret keys. In addition, the proposed scheme also features policy-hiding and

is secure against to the collusion attacks from malicious users.

4.2.2 Main Idea

Considering to achieve a flexible and fine-grained access control on the outsourced

data in cloud environment, a functional encryption system which is named as en-

cryption is proposed. This system proposes attribute-set-based encryption as a base

tier and server re-encryption mechanism as a surface tier.

As any access structure can be represented as an access tree T , each data file is

associated with an access structure from where different attribute sets can be gener-

ated. Take the example in Figure 4.1, which gives an instance of access structure and

attribute sets that can be generated. It describes a data file that can be accessed by

CS staff, CS students from class one, or CS students from class two. Specifically, the

privileged users hold an attribute set as one of the following: (University, CS, Stu-

dent, Class.1), (University, CS, Student, Class.2), or (University, CS, Staff). These

attribute sets are used to generate the private keys of the privileged users. Each

attribute in the attribute sets is given a chosen value Si. A student in class one who

holds an attribute set (University, CS, Student, Class.1) can decrypt this data file

using his private key computed as h(Suni + Scs + Sstudent + Sclass.1). Analogically, a

professor in CS department decrypts the data file by using his secret key computed

as h(Suni + Scs + Sstaff). The construction of attribute-set based encryption allows

different users to decrypt the data file with the corresponding secret keys, which

does not encrypt access structure into a ciphertext.

However, this access control cannot be considered as flexible when the attribute-

set based scheme runs alone. One challenging issue here, caused by user revocation,

is to require a system-wide private keys update against the expedience of users.

4.2. Design Goal and Main Idea 45

C
lo

u
d

 P
ro

v
id

er

D
at

a

O
w

n
er

U
se

rs

D
at

a
ac

ce
ss

O
u

ts
o

u
rc

e

d
at

a
fi

le
s

A
N

D
A

N
D

O
R

O
R

C
la

ss
.1

C
la

ss
.2

C
S

S
ta

ff

U
n

iv
er

si
ty

A
N

D
S

tu
d
en

t

A
cc

es
s

S
tr

u
ct

u
re

A
tt

ri
b

u
te

 S
et

s

U
n

iv
er

si
ty

U
n

iv
er

si
ty

U
n

iv
er

si
ty

C
S

C
S

C
S

S
tu

d
en

t

S
tu

d
en

t

S
ta

ff

C
la

ss
.1

C
la

ss
.2

F
ig
u
re

4.
1:

A
n
ex
am

p
le

fo
r
th
e
p
ro
p
os
ed

sc
en
ar
io
.

4.2. Design Goal and Main Idea 46

Thus, a server re-encryption mechanism is proposed. This mechanism combines

with the attribute-set based scheme, to eliminate users from updating their private

keys when a user joins or leaves. In addition, in scenarios involving potentially

huge sets of data files of considerable size, re-encryption and re-transmission by

data owner may not be acceptable. As the cloud servers are assumed to be more

powerful, the task of data file re-encryption is done by the cloud server without

disclosing file content and attribute list.

4.2.3 The Encryption System

It is assumed that the two-tier encryption system consists of the following three

parties: the Data Owner who is also the cloud user, the Cloud Provider who provides

cloud servers, and many data consumers that can be referred as users for brevity.

The data owner encrypts the data files first before sends them into the cloud and

builds a server re-encryption mechanism (SRM) that works as a second level dynamic

password generator. Now each tier model of this system is introduced in details, as

base model and surface model respectively.

• Base Phase: The data owner at local, before outsourcing data into the clouds,

performs a attribute-set based encryption on the data files according to the

access policies.

• Surface Phase: The cloud server performs the dynamic encryption opera-

tions over the encrypted data files, when receiving request messages from the

data owner.

To access the data files stored in cloud, users download the ones of their interest

from the cloud provider and decrypt them with their own decryption key. The data

owner is not required to be always online unless there are necessary changes in the

access structure that caused by the the user grant or revocation. As the servers in

cloud are assumed to have abundant storage capacity and computation power, the

task of data file re-encryption is transferred to the cloud servers without the leakage

of data file contents and any information about the users, including the number of

users and users’ ID list. The server re-encryption mechanism, which run on the

cloud servers, handles the data file re-encrypt task in a imperceptible way without

requiring the users to re-key their decryption keys for re-encrypted data files.

4.3. Base Phase 47

Attribute Matrix

University CS Student StaffClass.1 Class.2

1

1

1

1

1

1

1

1

1

1

1

0 0

0 0 0

0 0

Figure 4.2: Generate an access matrix.

4.3 Base Phase

4.3.1 Access Structure and Attribute Sets

Consistently with the data outsourcing scenario, it is assumed that there exists

several attribute sets in the system and the data owner therefore defines access

structures for users to access the outsourced data. These access structures are

abstracted in a down-top manner to generate authorizations that can be modeled

via an access matrix. Each row of the access matrix is set to one privilege attribute

set for a specific user or users, with a generated secret key for corresponding data

file.

Definition 4.1 (Access Structure)

Any access structure can be represented as an access tree T, where each interior

node x in the tree is a threshold gate with threshold value kx and numx children,

0 < kx ≤ numx. These threshold gates can capture the cases of AND and OR,

as kx = 1 for “OR” and kx = numx for “AND”. Each leaf node x of the tree is

described by an attribute and a threshold value kx = 1.

A few functions for T are first defined. The function attr(x) and node(i) = x is

defined if and only if x is a leaf node. parent(x) returns the parent of a node x while

attr(x) = i and node(i) = x are used to associate the node x with attribute i. T

also defines an ordering for the children of every node, from 1 to num. The function

index(x) returns the ordering number associated with the node x. The index values

are uniquely assigned to nodes in T in an arbitrary manner.

4.3. Base Phase 48

Definition 4.2 (Attribute Sets) Let A be the set of leaf nodes in the access structure

T, which contains n different attributes denoted as a1, a2, a3, ..., an. Define a function

F (Ã,T) =

{

1 when set Ã satisfies the access structure T,

0 otherwise

Then Ã is an authorized attribute set if and only if Ã ⊆ A and F (Ã,T) = 1. AS

denotes the set of authorized attribute sets, that is, AS = {Ã|F (Ã,T) = 1}. Let

m = |AS|, then AS = {Ã1, Ã2, ..., Ãm} where Ãi ⊆ AS for i = 1, 2, ...,m.

The set of attribute sets AS can be presented by an n ×m matrix, with n and

m defined above. The i-th row of Matrix(A) is a vector (bi,1, . . . , bi,n) in {0, 1}n

representing the authorized attribute set Ãi. bi,j = 1 if the attribute aj is presented

in Ãj and 0 otherwise. The Matrix(A) then records the set of authorized attribute

sets AS = {Ã|F (Ã, T) = 1} that corresponds to different users. As an example,

the attribute matrix shown in Figure 4.2 illustrates the attribute sets in Figure 4.1

correctly, and enforces the access structure represented by the access tree.

Given an attribute matrix Matirx(A), secret keys to different users can be de-

fined and assigned. It is assumed that each user is associated with a single key

generated from the components of an attribute set, while communicated to him by

the owner on a secure transmission channel. Given the values of the components in

attribute set Ãi(1 ≤ i ≤ m), a secret key SKj is defined as,

SKj = h(
∑

ai∈Ãj

si), 1 ≤ i ≤ n, 1 ≤ j ≤ m.

where h is a deterministic cryptographic function, for example a secure one-way

hash function, and si denotes the random values assigned to the attributes ai. After

m keys are generated from attribute sets Ã1, Ã2, ..., Ãm, the key assignment function

then associates with each user holding attribute set Ãi and the secret key SKi.

Definition 4.3 (Key Assignment) Key assignment is a function G that releases

SKi to each user u ∈ U who holds the attribute set Ãi.

4.3.2 Definition of Attribute-set Based Encryption

The formal definition of the proposed attribute-set based encryption is given in

this section. An attribute-set based encryption scheme consists of four probabilistic

polynomial-time algorithms: Setup, KeyGen, Encryption and Decryption.

4.3. Base Phase 49

Setup(λ,T,A) → (SK1, SK2, ..., SKm,Matrix(A)). The setup algorithm takes as

input the security parameter λ, the access structure T and the attribute universe

description A and outputs m different secret keys for numxroot
attribute sets and an

attribute matrix Matrix(A).

KeyGen(SK1, SK2, ..., SKm) → PK. The key generation algorithm takes as input

the different secret keys (SK1, SK2, ..., SKm) and outputs an encryption key PK.

Encryption(PK,M) → CT . The encryption algorithm takes as input the encryp-

tion parameters PK, the message M , and an access formula A over the universe

attributes and outputs a ciphertext CT such that only users whose private keys

satisfy the access formula should be able to extract M .

Decrypt(CT, SKj)→M . The decryption algorithm takes as input a ciphertext CT ,

and one of the private keys SKj where 1 ≤ j ≤ m and outputs the plaintext M .

4.3.3 Main Construction

The main construction of the base phase is performed by the data owner, before out-

sourcing the data item into the cloud. It enforces policy hidden attribute-set based

encryption on the data files according to the access policies. Here the polynomial

function which is introduced in [MVN99] has been borrowed.

Setup(T,A)→ (SK1, SK2, ..., SKm,Matrix(A)). In the basic construction, it chooses

two large prime numbers p and q such that q|p − 1, and chooses a generator

element g ∈ Z
∗
p of order q. For each attribute ai ∈ A, it chooses a random

value si ∈ Zp. With the access structure T, xroot may have numxroot
values the

different attribute sets, that is, m secret keys associated with attribute sets Ã1

to Ãm. By generating the Matrix(A), these secret keys can be computed as

SKj = h(
∑

ai⊆Ãi
siai), 1 ≤ i ≤ n, 1 ≤ j ≤ m.

KeyGen(SK1, SK2, ..., SKm) → PK. On input the secret keys, the key generation

algorithm constructs a polynomial function as

f(x) =
m
∏

j=1

(x− SKj) ≡
m
∑

j=0

ajx
j mod q,

where aj’s are coefficients. It generates the encryption key PK = (ga0 , ga1 , ..., gam).

Encryption(PK,M)→ CT . The encryption algorithm then chooses random r ∈ Zq

and generators h ∈ Z
∗
p, and outputs a ciphertext (c1, c2):

4.4. Surface Phase 50

CT =

{

c1 ← (hr · gr0, gr1, ..., grm)
c2 = M · hr

Decrypt(CT, SKj) → M . For each decryption key SKj, the decryption algorithm

computes
{

hr ← hr · gr0 · g
SKjr
1 · ... · gSKj

mr
m

M = c2/h
r

Thus M can be computed.

4.4 Surface Phase

The surface phase is initialized by the data owner and performed by the cloud servers

over the outsourced data files. It enforces the dynamic encryption operations over

the encrypted data files, when receiving request messages from the data owner. The

request messages contain new encryption keys for cloud servers as input. Combining

with the base phase, the surface phase allows the server to conduct re-encryption

for the users.

4.4.1 Server re-encryption Mechanism

The proposed server re-encryption mechanism (SRM) is a mechanism that runs by

the cloud server, especially for new user creation or user revocation. This mechanism

proceeds in rounds as a state transition diagram, shown as Figure 4.3. During each

round, the server listens to the request from the data owner with an encrypted

data file index CTi corresponding to a new public key PK∗, and then performs

re-encryption on CTi with PK∗ and associate the re-encrypted ciphertext CT ∗ with

index i. Finally SRM updates the re-encrypted data CT ∗ to replace the previous

CT and record this replacement in the system.

The main difference between the proposed server re-encryption mechanism and

proxy re-encryption is as follows. In proxy re-encryption, it allows a proxy to trans-

form a ciphertext computed under data owner’s public-key into one that can be

opened by user’s secret key. In this case, the data owner could designate a proxy to

re-encrypt her file into a format that the user can decrypt using his own secret key.

The re-encryption key is generated by the user (decryptor) or generated by using the

decryptor’s public key. However in the proposed server re-encryption mechanism,

4.4. Surface Phase 51

Enabled

Listening

Re-encryptAssociate

Update

Record

SRM

Figure 4.3: The state transition diagram of SRM.

the re-encryption key is assumed to be generated only by the data owner (encryptor)

and no additional information is required.

Under the construction of SRM, the data owner only needs to generate server re-

encryption keys and does not need to re-send a novel encrypted version of the data

files. As for example, if the data file has a size of 10GByte and the request to the

cloud server requires a 1MByte data packet, in terms of network traffic, compared

to the transmission of the re-encrypted data file, the improvement is in the order of

107.

4.4.2 Main Construction of SRM

The main construction of SRM is composed of three algorithms: Setup, Re-encrypt,

and Decrypt. Noted that the Decrypt algorithm is not run on SRM, but be operated

on the user’s side. This algorithm is presented as part of the main construction only

for completeness.

Setup(λ,CTi) → I. The setup algorithm takes in the security parameters λ and

every index CTi of the outsourced data, generates an index list I as output.

Re-encrypt(CT, PK∗)→ CT ∗. On receiving PK∗ as ((hv ·(g∗0)v, (g∗1)v, ..., (g∗m)v), e),
where e = h−r · hv, output the re-encrypted ciphertext as (c∗1, c

∗
2):

CT =

{

c∗1 ← (hv · (g∗0)v, (g∗1)v, ..., (g∗m)v)
c∗2 = c2 · e = M · hr · h−r · hv = M · hv

4.5. Proof and Analysis 52

Decrypt(CT ∗, SKj)→M . For each SKj, the decryption algorithm computes M as

in the base phase.

4.5 Proof and Analysis

4.5.1 Security Notations

The informal definitions of the various security properties are first presented. A

construction of encryption system must possess these security properties.

Confidentiality. Entities (including the cloud server) other than the intended

recipients specified by the access structure should not be able to learn anything

about the underlying plaintext message, even if users who are not intended recipients

collude.

Access-privacy. The cloud server or any recipient should not be able to gain any

knowledge of the access structure except that the recipient knows whether he satisfies

the access policy. Also, colluded users (who do not meet the access structure) should

be unable to gain any knowledge about the access policy.

Definition 4.4 (Security) A construction of the encryption system is secure if it

holds confidentiality and access-privacy.

4.5.2 Security Model

Formally speaking, the confidentiality of an encryption system is defined as follows.

Definition 4.5 (C-IND-CPA-RCA) An encryption system has Ciphertext Indis-

tinguishability against Chosen Plaintext Attack and Restricted Collusion Attack (C-

IND-CPA-RCA) if no PPT adversary A can win the following games against the

Challenger C with probability non-negligibly greater than 1/2. Meanwhile, none of the

collusion of corrupted users collectively satisfies the target access structure through-

out the games.

Below a game-base approach is used to define the security formally. The ad-

versary A models a malicious user or a cloud server which is Byzantine, i.e., can

4.5. Proof and Analysis 53

behave arbitrarily, however, cannot collude with users that satisfies the target ac-

cess structure. In the formalized game, the adversaries are trying to break the

C-IND-CPA-RCA security.

Let C be the game simulator. Then the game 1 runs as follows:

Setup Phase C sets up the encryption system and makes all public parameters

such as the attributes in the system available to A.

Probing Phase 1 The adversary A has the ability to arbitrarily: a) register a new

user into the system, and decide the set of attributes possessed by the user being

registered. For simplicity, it is assumed that a user immediately acquires all the

credentials for his attributes upon registration, b) issue queries for attribute sets Ãi

for many access structure Tj where Ãi ⊆ Tj for all j, c) issue retrieval requests to

the owner for encryption keys, and d) corrupt an honest user, thereby learning his

secrets and acting on behalf of him.

Challenge Phase The adversary A submits two messages (M0,M1) of equal length

and a challenge access structure T of his choice under the restriction that, none of

the collusion of corrupted users collectively satisfies the challenge access structure

throughout the games. Then the Challenger C flips a fair coin b ∈R {0, 1}, generates
γ with Ãi and encrypts message Mb with γ. The ciphertext is then passed to A.

Probing Phase 2 Probing phase 1 is repeated.

Guess Phase Eventually A outputs a guess b∗ of b. A wins if and only if b∗ = b.

The advantage of an adversary A in this game is defined as Pr[b∗ = b]− 1/2.

Now the access-privacy of an encryption system is defined and formalized by

using game 2.

Definition 4.6 (AP-IND-CPA-RCA) An encryption system has Access Privacy In-

distinguishability against Chosen Plaintext Attack and Restricted Collusion Attack

(AP-IND-CPA-RCA) if no PPT adversary A can win the following games against

the Challenger C with probability non-negligibly greater than 1/2. Meanwhile, all

corrupted users satisfy none of the target access structures throughout the game and

the target access structures have same number of satisfying attribute sets.

Let C and A denote the Challenger and Adversary respectively, then game 2

runs as follows:

4.5. Proof and Analysis 54

Setup Phase C sets up the encryption system and makes all public parameters

such as the attributes in the system available to A.

Probing Phase 1 The adversary A has the ability to arbitrarily: a) register a new

honest user into the system, and decide the set of attributes possessed by the user

being registered. For simplicity, it is assumed that a user immediately acquires all

the credentials for his attributes upon registration, b) make deposit and retrieval

requests to the owner or cloud server, and c) corrupt an honest user, thereby learning

his secrets and acting on behalf of him.

Challenge Phase The adversary A sends to C a message M∗ and two valid access

structures T1 and T2 of his choice under the restriction same in the above definition.

Then the Challenger C flips a fair coin b ∈R {0, 1} and encrypts message M under

access structure Tb. The resulting ciphertext C∗ is then passed to A.

Probing Phase 2 A may do whatever he is allowed to in Probing phase 1.

Guess Phase Eventually A outputs a guess b∗ of b. A wins if and only if b∗ = b.

The advantage of an adversary A in this game is defined as Pr[b∗ = b]− 1/2.

4.5.3 Proof Of Security

The security of encryption is reduced to the hardness of the DDH assumption.

Theorem 4.1 If the DDH assumption holds for Z
∗
p, then the encryption system

has Ciphertext Indistinguishability against Chosen Plaintext Attack and Restricted

Collusion Attack (C-IND-CPA-RCA).

Proof: Suppose there exists a polynomial-time adversary A that can attack the

proposed scheme in the standard model with advantage ǫ. A simulator B which can

play the DDH game with advantage ǫ/2 is built. The simulator B is given a DDH

problem instance (g, gα, gβ, R) from the DDH challenger generated in the following

process. The challenger flips a fair binary coin µ, outside of B’s view. It sets the

problem instance as (g, gα, gβ, R) where R = gαβ if µ = 0 or R is a random group

element if µ = 1. The goal of B is to output the big µ.

Setup The simulator B chooses public parameters G and g, and sets h = gk for

some random value k.

4.5. Proof and Analysis 55

Probing 1 The adversaryA adaptively makes requests for registering new users into

the system with chosen attribute set Ãi for many access structure Tj. B generates

the encryption key and the decryption key according to the protocol.

Challenge The adversary A will submit two challenge messages M0 and M1 to

the simulator and a challenge access structure T. Define the polynomial f(x) =
∏m

j=1(x − SKj) such that the SKj’s are the user secret key satisfying the access

structure T. Without loss of generality, let SK0 = α and suppose the rest of the

SKj’s are just random numbers. Rewrite f(x) =
∏m

j=1(x − SKj) ≡
∑m

j=0 ajx
j

mod q. The simulator can express each coefficient aj as aj = uj · α + vj for some

known uj, vj for j = 0 to m. B sets the encryption key as (gaj = (gα)ujgvj)mj=0.

The simulation is perfect because due to the restriction of the game, A has no

information about the SKj’s.

The simulator flips a fair binary coin b, and returns an encryption of Mb as

follows:

CT =

{

c1 ← (gβ)k ·Ru0 · (gβ)v0 , Ru1 · (gβ)v1 , ..., Rum · (gβ)vm
c2 = Mb · (gβ)k

If µ = 0, R = gαβ. Then by inspection, the ciphertext is a valid ciphertext for

message Mb, with the randomness r = β.

If µ = 1, then R is just a random group element. Thus the ciphertext will be

a random element of G from the adversary’s viewpoint and the ciphertext contains

no information about Mb.

Probing 2 The simulator acts exactly as it did in phase 1.

Guess A will submit b∗ of b. If b∗ = b, the simulator will output µ∗ = 0 to indicate

that it was given a valid DDH triple; otherwise, it will output µ∗ = 1 to indicate it

was given a random element triple.

In the case where µ = 1, the adversary gains no information about b. Therefore,

it has Pr[b∗ = b|µ = 1] = 1
2
. Since the simulator guesses µ∗ = 1 when b∗ 6= b,

it has Pr[µ∗ = µ|µ = 1] = 1
2
. If µ = 0 then the adversary sees an encryption of

Mb. The adversary’s advantage in this situation is ǫ by assumption. Therefore,

Pr[b∗ = b|µ = 0] = 1
2
+ ǫ. Since the simulator guesses µ∗ = 0 when b∗ = b, it has

Pr[µ∗ = µ|µ = 0] = 1
2
+ ǫ. The overall advantage of the simulator in the DDH game

is:

1

2
Pr[µ∗ = µ|µ = 0] +

1

2
Pr[µ∗ = µ|µ = 1]− 1

2
=

1

2
· (1
2
+ ǫ) +

1

2
· 1
2
− 1

2
=

1

2
ǫ.

4.5. Proof and Analysis 56

Theorem 4.2 If the DDH assumption holds for Z∗
p, then the encryption system has

Access Privacy Indistinguishability against Chosen Ciphertext Attack and Restricted

Collusion Attacks (AP-IND-CPA-RCA).

Proof: Suppose there exists a polynomial-time adversary A that can attack the

proposed scheme in the standard model with advantage ǫ. A simulator B which can

play the DDH game with advantage ǫ/2 is built.

Again, B is given a DDH problem instance (g, gα, gβ, R) and its goal is to deter-

mine if R = gαβ indicating µ = 0 or R is just a random group element indicating

µ = 1.

Setup The simulator B chooses public parameters G and g, and sets h = gk for

some random value k.

Probing 1 The adversary A adaptively makes requests for several access structures

Tj. B generates the encryption key and the decryption key according to the protocol.

Challenge The adversary A will submit a challenge message M and two challenge

access structures T0, T1 to the simulator. SKj,b for j = 0 to m and b ∈ {0, 1} is

used to denote the set of secret keys for access structure Tb. Since the two access

structures are different, there exists at least one secret key that is not common to

both access structure. Without loss of generality, let SK0,0 be that secret key. The

simulator B sets SK0,0 = α and randomly picks values for all other SKj,b’s. The

encryption key of T0 is then (ga0,0 , . . . , gam,0) such that each aj,0 is of the form ujα+vj

for j = 0 to m. Thus, gaj,0 can be computed by B as (gα)ujgvj . The encryption key

of T1 is (ga0,1 , . . . , gam,1) such that each aj,1 is known to the simulator.

It encrypts M under T0 as follows.

CT =

{

c1 ← (gβ)k ·Ru0 · (gβ)v0 , Ru1 · (gβ)v1 , ..., Rum · (gβ)vm
c2 = M · (gβ)k

If µ = 0, R = gαβ. Then by inspection, the ciphertext is a valid ciphertext for

message M under the access structure T0. If µ = 1, then R is just a random element

and thus the ciphertext contains no information about Tb.

Probing 2 The simulator acts exactly as it did in phase 1.

4.6. Conclusion 57

Guess A will submit b∗. If b∗ = 0, the simulator will output µ∗ = 0 to indicate that

it was given a valid DDH triple; otherwise, it will output µ∗ = 1 to indicate it was

given a random element triple.

In the case where µ = 1, the adversary gains no information about Tb. Therefore,

it has Pr[b∗ = 0|µ = 1] = 1
2
. Since the simulator guesses µ∗ = 1 when b∗ 6= 0, it

has Pr[µ∗ = µ|µ = 1] = 1
2
. The adversary’s advantage in the case when µ = 0 is

ǫ by definition. Therefore, Pr[b∗ = 0|µ = 0] = 1
2
+ ǫ. Since the simulator guesses

µ∗ = 0 when b∗ = 0, it has Pr[µ∗ = µ|µ = 0] = 1
2
+ ǫ. The overall advantage of the

simulator in the DDH game is:

1

2
Pr[µ∗ = µ|µ = 0] +

1

2
Pr[µ∗ = µ|µ = 1]− 1

2
=

1

2
· (1
2
+ ǫ) +

1

2
· 1
2
− 1

2
=

1

2
ǫ.

4.6 Conclusion

There is an emerging trend towards data resourcing where data management is

outsourced to clouds that provide storage capabilities and high-bandwidth distri-

bution channels. In this chapter, an encryption scheme for a two-tier system is

proposed to achieve flexible and fine-grained access control in the cloud. Most of

the computation-intensive tasks are delegated to cloud servers without leaking pri-

vate data. The security of the proposed scheme is proven in the standard model.

Chapter 5

Privacy-Enhanced Keyword Search in
Clouds

The advent of cloud computing has dramatically changed the IT scene, as it offers

cost savings and improvements to major operations. Nevertheless, the major ob-

stacle relies on the effort on how to secure sensitive data files that are outsourced

to the cloud environment. To ensure confidentiality, the sensitive data are usually

encrypted prior to being outsourced. Nevertheless, effective data utilization remains

a challenging task and there is a clear need for a secure and efficient searching mech-

anism over the encrypted data in the cloud, to increase the usability of the secure

cloud environment. Unfortunately, existing works in the area of secure searching in

the outsourcing scenario usually incur high computational complexity, which makes

the approach impractical. In this chapter, an efficient keyword search scheme for

cloud computing is proposed. The proposed solution is very simple, and it enables

efficient multi-user keyword search over outsourced data files in the cloud environ-

ment, without leaking any private information about either the data owner or users

in the search query. The security requirements are formally defined and the security

of the proposed scheme is proven under a simple assumption in the standard model.

5.1 Introduction

Due to its low cost, robustness and flexibility, cloud computing changes the way enti-

ties manage their data and offers individuals and companies with affordable storage,

professional maintenance and adjustable space. Among the four cloud computing

deployed models that includes: public, private, community and hybrid, public cloud

where the outsourced resources can be accessed by the general public has gain a

dramatic growth. By using a public cloud, a variety of users could access or share

information that are stored in the cloud, independent of their different locations.

58

5.1. Introduction 59

Meanwhile, it also makes effective data utilization a challenging task as the out-

sourced data is usually in the encrypted form.

To set the scene, let us consider the following scenario. Let us consider a user

Alice who uses a public cloud to store her personal data files such as family pho-

tos, blogs and working documents. To prevent the cloud server from learning the

contents, she encrypts all her files prior to sending her data to the cloud. Once

a while, she would like to access her files from different devices, such as a Boxee

Box, an Apple TV or even her iPhone. Naturally, Alice would not remember all the

contents that she has stored in the cloud. Therefore, there is a need for efficient

searching over her outsourced files using the appropriate keywords. Since some of her

mobile devices are only equipped with limited computational power, the searching

mechanism should be very efficient, and it should ideally avoid using the relatively

expensive techniques in public key cryptography, such as bilinear pairings.

In other some cases, she would also like to share some of the files with her family

and friends. For example, data files with labels “family” and “friends” from Alice

would be accessible by her family member and friends, respectively. However, this

requires Alice to define whom her family and friends are and requires the cloud

server to enforce access control. This requirement may burden the regular users

with the required expensive operations, and it may also reveal some information

with regards to Alice’s social networks.

Thus it is necessary to look for a practical scheme which provides:

• an efficient data search, and

• a simple access control.

Overview of The Proposed Approach. It turns out that a simple and straight-

forward approach could fit Alice’s requirements. Before outsourcing each data file,

Alice attaches a “hidden index” h related to a certain keyword w to it. The hidden

index h is computed as H(w) for a hash function H using a keyword w. This can be

easily extended to the multi-keyword case where each file F is attached with several

hidden indexes for the relevant keywords. In order to search all files related to a

keyword w∗, Alice computes h∗ = H(w∗) and sends h∗ to the cloud, who returns

all the data files attached with hidden index h∗. This idea can be used for simple

access control as well. For instance, data files to be shared with Alice’s friends could

be attached be a hidden index with w as “friends”. Alice’s friends could then access

5.1. Introduction 60

those files using “friends” as the searching keyword. In this case a keyword plays

the role of a password.

Unfortunately, this approach is inadequate in terms of the keyword search as

well as a simple access control. Firstly, it leaks some information about the keyword

to the cloud since the cloud can guess the keywords by testing whether the hash

of it matches with the hidden index. Secondly, the keyword are human-memorable

and is thus suspectable to the guessing attack. This is thus unsuitable even for a

simple access control purpose.

One possible way to deal with these vulnerabilities is to generate a random value

ti for each possible keyword wi. Since ti is completely random, the scheme will not

be vulnerable to the guessing attack. However, the drawback is apparent. Alice is

required to build up a look up table which links every keyword to its corresponding

random number. Firstly, the table could be large if Alice would set the file name as

keyword (which is natural since this would allow her to search using the file name).

Secondly, Alice has to keep an up-to-date copy of the table in all her devices.

Finally, the above issue is tackled by the use of the pseudo-random function

(Prf). Instead of generating a random value ti for each possible keyword wi, Alice

computes ti as the output of the pseudo-random function with input wi and a secret

seed s. The value of s is kept secret and is stored in all Alice’s devices. Indeed, the

issue of storing the look up table has been reduced to just storing merely one secret

seed s.

The proposed system is called simple privacy-enhanced keyword search in clouds

(SPEKS) to emphasize its simplicity. The term privacy-enhanced is used to reflect

the privacy guarantee about the proposed scheme. The cloud server can still tell if

two data files share the same keyword. Exact security guarantee provided by the

proposed system will be formalized in subsequent sections.

Related Works. Existing works close to the proposed scheme can be found in the

areas of “searching with privacy” and “searching on private-key-encrypted data”.

In theory, the classical work of Goldreich and Ostrovsky [GO96] on oblivious RAMs

could resolve the problem of doing (private) searches on remote encrypted data,

where oblivious RAMs hided all information about the RAM use from a remote and

potentially malicious server with a poly-logarithmic overhead in all parameters (in-

cluding computation and communication). Although their scheme is asymptotically

efficient and nearly optimal, it does not appear to be efficient in practice as large

5.1. Introduction 61

constants are hidden in the big-O notation.

In an effort to reduce the round complexity associated with oblivious RAMs,

Song et al. [SWP00] presented a solution for searchable encryption and after that

how to do keyword searches on encrypted data efficiently was raised. In [SWP00],

they achieved searchable encryption by constructing a special two-layered encryption

for each word. Given a trapdoor, the server could strip the outer layer and assertain

whether the inner layer was in the correct form. The limitations in this construction

are as follows. First, it is not compatible with existing file encryption schemes

and a specific encryption method must be used. Second, while the construction is

proven to be a secure encryption scheme, it is not proven to be a secure searchable

encryption scheme. Third, the distribution of the underlying plaintexts is vulnerable

to statistical attacks. Their approach may leak the locations of the keyword in a

file. Finally, searching is linear in the length of the document collection.

The above limitations are addressed by Goh [jG03], Chang and Mitzenmacher

[CM05] and also Curtmola, Garay, Kamara and Ostrovsky [CGKO06]. In [jG03],

they built an index of keywords for each file using a Bloom filter with pseudo-

random functions. One inherent problem with this Bloom-filter-based approach is

that Bloom filters can induce false positives, which would potentially cause mobile

users to download extra files not containing the keyword. In [CM05], Chang and

Mitzenmacher achieved the notion of security to IND2-CKA for chosen keyword

attack, however their scheme cannot guarantee that the trapdoors do not leak any

information about the words being queried. In [CGKO06], they proposed a multi-

user construction that was efficient on the server side. However, every node in the

link list has to be augmented with information about the file index of the next node.

In a different direction, Boneh, di Crescenzo, Ostvrosky and Persiano [BCOP04]

and Boneh, Kuchilevitz, Ostvrosky and Skeith [BKOI07] studied the problem of

how to search on data encrypted by a public-key cryptosystem. These schemes are

motivated by an encrypted email system. Their constructions, however, have an

overhead in search time that is proportional to the square root of the database size,

which is far less efficient than the best private-key solutions. Boneh et al.’s approach

[BCOP04] was known to be the seminal public key encryption scheme with keyword

search (PEKS). It was observed in [BSNS05] that Boneh et al.’s scheme [BCOP04]

required a secure channel, which made it impractical. Hence, Baek, Susilo and

Safavi-Naini [BSNS05] proposed the notion of secure-channel-free PEKS to improve

this drawback. This work had been further extended and revised in the recent

5.2. Model 62

literature, such as [RPSL09, RPSL10]. Byun et al. [BRPL06] suggested the notion

of a keyword-guessing attack and showed that the existing schemes were insecure

against this attack, given that the number of possible keywords was bounded by

some polynomial. They provided an open problem on how to construct a PEKS

with designated verifier that was secure against keyword-guessing attacks. This

question was answered affirmatively in [RPSL10]. In order to realize the practicality

of PEKS, the combination of a public key encryption scheme with PEKS to make a

single integrated entity had been studied in [BSNS06].

Organization of This Chapter. The rest of this chapter is organized as follows. In

the next section, the notion of SPEKS and its security requirements are formalized.

In Section 5.3, the construction and security analysis are given. In Section 5.4, the

performance of the proposed scheme is estimated. Section 5.5 concludes this chapter.

5.2 Model

In this section, the notion of SPEKS and its security requirements are formalized.

5.2.1 Syntax

SPEKS is a tuple of five algorithms, namely, ParamGen, KeyGen, IndexGen, TokenGen,

Test, whose definition is given below.

• ParamGen. On input a security parameter λ, this algorithm outputs a system-

wide parameter param. param is assumed to be an implicit to all the algo-

rithms below.

• KeyGen. This algorithm outputs a secret key s.

• IndexGen. On input a keyword w ∈ {0, 1}∗, a secret key s, this algorithm

outputs a value h. The value h is called a hidden index.

• TokenGen. On input a keyword w ∈ {0, 1}∗, a secret key s, this algorithm

outputs a value ω. The value ω is called a hidden token.

• Test. On input a hidden index h, a hidden token ω, this algorithm outputs 1

or 0.

As usual, correctness is of SPEKS is defined as follows.

5.2. Model 63

Definition 5.1 (Correctness) For any λ and any keyword w, Test(param, h, ω) =

1 if there exists ParamGen(λ) = param, s = KeyGen(param), h = IndexGen(param, s, w)

and ω = TokenGen(param, s, w).

5.2.2 Typical Use of SPEKS

Figure 5.1 briefly explain how a user Alice and the cloud server employ the algo-

rithms in a typical scenario. Firstly, the cloud server invokes ParamGen to generate

the parameters1. Alice invokes KeyGen to create her secret key s. Before outsourcing

her data file F to the cloud server, Alice would choose several suitable keywords,

say, w1, ..., wn and invokes hF,i = IndexGen(s, wi). She submits F along with hF,i to

the cloud. F is possibly the encryption of Alice’s data. How F is generated is out

of scope of this chapter.

Cloud Servers and Storage

ParamGen
Parameters

Alice

KeyGen

Secret key s

IndexGen
Submits file F
along with hF,i

hF,i = IndexGen(s,wi)

Choose several suitable
keywords

= TokenGen(s,)' 'w

TokenGen

 search files from the cloud

with keyword w’

Test

Returns all the files associated
with hidden index hF,I

such that Test(hF,i,)=1'

Cloud Servers and Storage

ParamGen
Parameters

Alice

KeyGen

Secret key s

IndexGen
Submits file F
along with hF,i

hF,i = IndexGen(s,wi)

Choose several suitable
keywords

= TokenGen(s,)' 'w

TokenGen

 search files from the cloud

with keyword w’

Test

Returns all the files associated
with hidden index hF,I

such that Test(hF,i,)=1'

Figure 5.1: Typical use of SPEKS.

When Alice would like to search her files from the cloud with keyword w∗, she

invokes ω∗ = TokenGen(s, w∗) and submits ω∗ to the cloud. The cloud returns all

the files associated with hidden index hF,i such that Test(hF,i, ω
∗) = 1. Alice could

share her files with keyword w∗ to others by giving them the value ω∗.

1It is noted that Alice could generate the parameters, but in this case, the cloud server is
required to store a number of parameters since the cloud server needs to serve multiple users.

5.2. Model 64

5.2.3 A SPEKS System

In this section, the proposed SPEKS system is described. Essentially, the scheme

can be divided into two phases, namely Setup and Search. It should be highlighten

that the cloud user’s storage only consists of a small and constant value, in addition

to the keywords.

• Setup: The cloud server S runs the algorithm ParamGen to outputs a system-

wide parameter param. The cloud user U runs the algorithm KeyGen to

generate the secret key s. U then runs the algorithm IndexGen and algorithm

TokenGen to generate the hidden index h and hidden token ω. Then U may

now delete the original data files from his/her local storage.

• Search: When the cloud user U requests to search for a hidden token ω:

1. S computes H(ω).

2. S runs the algorithm Test, checks whether there is a hidden index h equals

with H(ω), and sends U back the found data file.

When a friend F of U requests to search for a keyword wi:

1. F sends the keyword wi to U and U can return the hidden token ω.

2. F sends ω to S.

3. S computes H(ω), checks whether there is a h that matches with H(ω),

and returns the corresponding data file to F .

5.2.4 Security Requirements

Two security requirements are identified for SPEKS. The first one regards privacy.

Specifically, no one, not even the cloud server, should be able to obtain information

about the underlying keyword when given the hidden token and hidden index. The

second one concerns about the basic access control. No one should be able to

compute the hidden token when given the hidden index. These two requirements are

formalized by using security game played between a challenger C and an adversary

A.

Game Privacy.

5.2. Model 65

• Setup Challenger C invokes ParamGen(1λ) = param, and KeyGen(param) =

s. Here param is given to the adversary A.

• Query Phase 1 A can issue two types of queries:

1. Index Query: A submits a keyword w and C replies with

IndexGen(param, s, w).

2. Token Query: A submits a keyword w and C replies with

TokenGen(param, s, w).

• Challenge Phase A submits two keywords w0, w1. C flips a fair coin b ∈
{0, 1} and computes hb = IndexGen(param, s, wb). hb is returned to A as the

challenge.

• Query Phase 2 A can issue the same type of queries as in Query Phase 1

except it cannot submit queries with input w0 and w1.

• Output A outputs a guess bit b′. A wins the game if b = b′.

The advantage of A in Game Privacy is defined as the probability that A wins minus

1/2.

Game Authenticity.

• Setup Challenger C invokes

ParamGen(1λ) = param and KeyGen(param) = s.

param is given to the adversary A.

• Query Phase 1 A can issue two types of queries:

1. Index Query: A submits a keyword w and C replies with

IndexGen(param, s, w).

2. Token Query: A submits a keyword w and C replies with

TokenGen(param, s, w).

5.3. The Construction and Security Analysis 66

• Challenge PhaseA submits one keyword w′. C computes h′ = IndexGen(param, s, w′).

h′ is returned to A as the challenge.

• Query Phase 2 A can issue the same type of queries as in Query Phase 1

except it cannot submit queries with input w′.

• Output A outputs a value ω′. A wins the game if Test(param, h′, ω′) = 1.

The advantage of A in Game Authenticity is defined as the probability that A wins.

Definition 5.2 (Security) A construction of SPEKS is secure if no PPT adversary

A can win Game Privacy or Game Authenticity with non-negligible advantage.

5.3 The Construction and Security Analysis

5.3.1 Main Construction

• ParamGen. On input λ, output a one-way hash function H : {0, 1}∗ → {0, 1}λ.

• KeyGen. Randomly pick a pseudo-random function Prf : {0, 1}λ × {0, 1}∗ →
{0, 1}λ and a bitstring s ∈R {0, 1}λ and output s.

• IndexGen. On input w and s, output h = H(Prf(s, w)).

• TokenGen. On input w and s, output ω = Prf(s, w).

• Test. On input a hidden index h and a hidden token ω, output 1 if and only

if h = H(ω) and 0 otherwise.

5.3.2 Security Proof

Theorem 5.1 The construction of SPEKS is secure if the pseudo-random function

Prf employed is secure and the hash function H employed is one-way.

Proof: The proof is divided into two parts. In the first part, it is shown that if there

exists an adversary A that has non-negligible probability in wining Game Privacy, a

simulator S can be constructed to distinguish a pseudo-random function Prf from a

random function R. In the second part, it is shown that if there exists an adversary

A that has non-negligible probability in wining Game Authenticity, a simulator S
which breaks the one-way property of the hash function H can be constructed.

5.3. The Construction and Security Analysis 67

Privacy.

• Setup S is given a function F and its goal is to distinguish if F is a random

function or not. Suppose with probability 1/2 S is given a truly random

function. S can query the function F adaptively. S chooses a one-way hash

function H and set H as param.

• Query Phase 1 S answers the queries as follows.

1. Index Query: A submits a keyword w and S replies with H(F (w)) by

querying F .

2. Token Query: A submits a keyword w and S replies with F (w) by query-

ing F .

• Challenge Phase A submits two keywords w0, w1. S flips a fair coin b ∈
{0, 1} and computes hb = H(F (w)). hb is returned to A

• Query Phase 2 S answer A’s queries in the same way as in Query Phase 1.

• Output A outputs a guess bit b′.

If A guesses correctly, S concludes F is not a random function. Otherwise, S con-

cludes F is a random function. Suppose A wins with probability 1/2+ǫ, probability

that S distinguishes correctly is 1/2+ ǫ/2. The reason is that if F is a random func-

tion, probability that A wins is exactly 1/2 since hb contains no information about

b. On the other hand, if F is not a random function, A can win with probability

1/2 + ǫ. Thus, S answers correctly with probability 1/2 + ǫ/2.

Authenticity. Here a simply game-hoping [Sho04, BP06] is used. In the first

game, denoted as Game Authenticity Real, the behavior of simulator S is described

below.

• Setup S chooses a pseudo-random function Prf with seed s and a hash

function H. H is given to A as param.

• Query Phase 1 S answers the queries as follows.

1. Index Query: A submits a keyword w and S replies with H(Prf(s, w)).

2. Token Query: A submits a keyword w and S replies with Prf(s, w).

5.4. Performance 68

• Challenge Phase A submits one keywords w′. S returns hb = H(Prf(s,

w′)) to A.

• Query Phase 2 S answers A’s queries in the same way as in Query Phase 1.

• Output A outputs a guess bit b′.

In the second game, denoted as Game Authenticity Modified, the simulator S’s
behavior is defined as follows.

• Setup S is given a hash function H, a value y and its goal is to compute a

value x such that y = H(x). S gives A H as param.

• Query Phase 1 For every keyword w submitted by A, S chooses a random

value rw and maintains a list of tuples (w, rw). S then answers the queries as

follows.

1. Index Query: A submits a keyword w and S replies with H(rw)

2. Token Query: A submits a keyword w and S replies with rw

• Challenge Phase A submits one keyword w′. S returns y to A.

• Query Phase 2 S answers A’s queries in the same way as in Query Phase 1.

• Output A outputs a value ω′.

A wins if and only if H(ω′) = y. Thus, S outputs x = ω′ as the pre-image of

y. It remains to argue the advantage of A in Game Authenticity Real and Game

Authenticity Modified are the same. A simple argument will do. If the advantage

of A in both games are difference, it is straight-forward to use A to distinguishes

Prf from a truly random function.

5.4 Performance

Efficiency. It is straightforward to see the construction of SPEKS is very effi-

cient. Generation of a hidden index requires evaluation of one hash function and

one pseudo-random function. Generation of a hidden token requires evaluation of

one pesudo-random function. Testing if a hidden token matches with a hidden index

requires evaluation of one hash function. The overall cost during n protocol execu-

tions is 2T n
hash+T n

prf , where T
n
hash is the time cost of hashing n values into the group

5.5. Conclusion 69

G and T n
prf is the time cost of n pseudo-random functions. The time complexity in

the proposed scheme is O(n). Since both hash function and pseudorandom function

can be implemented efficiently by heuristic algorithms, all operations of SPEKS

can be conducted efficiently. Indeed, they are computable even by low power hand-

held devices. As for the storage, the data owner is required to store a single secret

seed s in the client side. In addition, while O(n · log n) external memory is required

in [GO96], SPEKS requires no external memory cost for storing the remote n data

files in the server side.

5.5 Conclusion

In this chapter, an efficient SPEKS was constructed. It was shown that SPEKS

was suitable for keyword search in the cloud environment. Comparing with the

existing keyword search schemes such as [LYCL11, WCRL12, ÖS12], the proposed

construction is much more efficient on both sides of the data owner and the cloud

server. In addition, the security of the proposed scheme has been proved in the

standard model.

Chapter 6

Public Remote Integrity Check for
Private Data

With Remote Integrity Check (RIC), the integrity of remotely stored data can be

(publicly) verified without the need of retrieving the original data. Hao, Zhong and

Yue [HZY11] (vol. 23, no. 9, IEEE Trans. Knowl. Data Eng.) proposed a pri-

vacy preserving scheme for RIC. Their scheme preserved private information during

public verification; however, they require the verifier to be in possession of all the

homomorphic tags, which are the outputs of a one-way homomorphic function on

input the data, to the public. This requirement increases both the storage and com-

munication cost. In addition, these tags might leak some information of the original

data, although they proved that the verifier cannot obtain any information about the

stored data during an execution. To overcome these problems, a privacy-preserving

RIC protocol is proposed in this chapter. The proposed protocol achieves public

verifiability without disclosing any information. It is ensured that no information

about the original data will be leaked. In fact, the verifier is only required to know

the public key of the data owner. The experimental results indicate that the pro-

posed scheme is efficient especially when the data size is large or the integrity check

is frequent. The full proofs of security is also given under the random oracle model.

6.1 Introduction

Data integrity is essential for cloud applications. Remotely verifying data in the

cloud is referred to as the remote integrity check (RIC), where a verifier verifies

the target cloud dataset without the need of retrieving the dataset. This scenario

can be extended to achieve public verifiability. With a public RIC, anyone can be

the verifier. This raises a concern on data security, since the information of the

stored data should not be revealed to the public. Most of previous public RIC

70

6.1. Introduction 71

schemes [SW08, ABC+07, ABC+11] do not provide security so that a public verifier

can learn the information of private data during an integrity check, since the cloud

server might leak the data information. It is noticed that Hao, Zhong and Yue’s

public RIC scheme [HZY11] provides a security feature against data leakage. They

adopted the approach introduced by Sebe et al. [SFB+08] to support data dynamics

and privacy. However, their scheme requires the verifier to be in possession of all

the homomorphic tags used for the integrity check; therefore, it increases costs

for storage and communication. In addition, although they have proved that the

public verifier cannot learn the target dataset, the tags themselves could leak some

information about the dataset.

In this chapter, an innovative public RIC scheme without disclosing any infor-

mation of stored data in cloud storage is proposed. The proposed scheme ensures

no information leakage of both the verified data and the homomorphic tags. The

authenticator proposed by Shacham and Waters [SW08] is adopted to achieve public

verifiability and protection of the data privacy. The proposed scheme also eliminates

the knowledge requirement of integrity tags for verification.

Comparison.

A comparison between the proposed RIC scheme and some selected existing

schemes is made in Table 6.1. The comparison is mainly based on the following

requirements and properties:

• Public verifiability. Because data integrity check is a frequent task, a client

may want to outsource this task to another party. With public verifiability,

anyone can be a verifier.

• Privacy-preserving. During the remote integrity check, a public verifier should

not obtain access to the client’s data files. However, the homomorphic tags

may disclose some information about the client’s data files.

• Without Data Disclosing. This property is defined as the extension of privacy-

preserving requirement. The third party verifier should not require any data

information during the protocol execution. Additionally, the homomorphic

tags should not disclose any data information to the public verifier.

• Sampling. As access the entire data file can be expensive in I/O costs, a

flexible RIC should allow the server to access only small portions of the file

6.1. Introduction 72

T
ab

le
6.
1:

C
om

p
ar
is
on

s
b
et
w
ee
n
so
m
e
p
re
v
io
u
s
p
ro
to
co
ls

an
d
th
e
p
ro
p
os
ed

sc
h
em

e.
H
er
e
n
is

th
e
to
ta
l
b
lo
ck

n
u
m
b
er
,
c
is

th
e

sa
m
p
li
n
g
b
lo
ck

n
u
m
b
er
,
l
is

th
e
le
n
gt
h
of

ea
ch

b
lo
ck
.
C
om

m
u
n
ic
a
ti
on

(1
)
an

d
C
om

m
u
n
ic
a
ti
on

(2
)
in
d
ic
at
e
th
e
co
m
m
u
n
ic
at
io
n

co
st

on
ve
ri
fi
er

si
d
e
an

d
cl
ie
n
t
si
d
e
re
sp
ec
ti
ve
ly
.
T
o
ac
h
ie
ve

80
-b
it

se
cu
ri
ty
,
th
e
sc
h
em

es
[A

B
C

+
07
,
A
B
C

+
11
,
H
Z
Y
11
]
u
se

R
S
A

cr
y
p
to
gr
ap

h
y
w
h
er
e
l
=

10
24

b
it
,
w
h
il
e
th
e
sc
h
em

es
[S
W

08
,
W

W
L
+
09
,
W

W
R
L
10
]
an

d
th
e
p
ro
p
os
ed

sc
h
em

e
u
se

el
li
p
ti
c
cu
rv
e

cr
y
p
to
gr
ap

h
y
w
it
h
|p
|=

16
0b
it

w
h
er
e
th
e
b
lo
ck

le
n
gt
h
l
=

16
0
b
it
.

[A
B
C

+
07
],
[A

B
C

+
11
]

[S
W

08
]

[W
W

L
+
09
]

[W
W

R
L
10
],
[W

C
W

+
09
]

[H
Z
Y
11
]

P
ro
p
os
ed

S
ch
em

e
P
u
b
li
c
ve
ri
fi
ab

il
it
y

X
X

×
X

X
X

P
ri
va
cy
-p
re
se
rv
in
g

×
×

×
X

X
X

W
it
h
ou

t
d
is
cl
os
in
g
d
at
a

×
×

×
×

×
X

S
am

p
li
n
g

X
X

X
X

×
X

F
or
m
at

in
d
ep

en
d
en
ce

X
X

X
X

X
X

S
iz
e
of

ta
gs

O
(n
·l
)

O
(n
·l
)

O
(n
·l
)

O
(n
·l
)

O
(n
·l
)

O
(n
·l
)

S
to
ra
ge

O
(l
)

O
(l
)

O
(l
)

O
(l
)

O
(n
l)

O
(l
)

C
om

m
u
n
ic
a
ti
on

(1
)

O
(c
·l
)

O
(c
·l
)

O
(c
·l
·l
og

n
)

O
(c
·l
)

O
(l
)

O
(c
·l
)

C
om

m
u
n
ic
a
ti
on

(2
)

O
(l
)

O
(l
)

O
(l
)

O
(l
)

O
(n
·l
)

O
(l
)

6.1. Introduction 73

during the verification. This property can be also referred as ‘sub-file access’

or ‘sub-linear authentication’.

• Format independence. Data format independence is a relevant feature in prac-

tical deployments. Encryption is an orthogonal issue and the outsourced data

file may consist of encrypted data chunks.

• Storage cost and Size of tags. An efficient RIC protocol should have a minimal

storage overhead to minimize costs, on both cloud server and verifier side. To

reduce the storage cost, the size of tags should be small.

• Communication cost. Transmitting large amounts of data across the network

can consume heavy bandwidths. An efficient RIC protocol should also intro-

duce low communication cost for protocol execution.

Main Contributions. The main contributions of this chapter can be summarized

as follows: 1) A remote integrity check protocol is proposed for outsourced data

in cloud computing, which achieves public verifiability without disclosing any data

information. Compared with the protocol proposed by Hao et al. [HZY11], the

proposed scheme solves the issue that the verifier must be in possession of the tags

that would leak information about the verified data. 2) Full proofs of security against

arbitrary adversaries is given in the random oracle model. 3) The experimental

results have shown that the proposed scheme is efficient especially when the size of

the data file is large or the integrity check is frequent.

Related Work. Designing secure and efficient data verification protocols has at-

tracted a lot of attention [OLR12]: works have varied from designing secure local

memory and secure storage at remote servers to securing cloud storage applications.

The needs in each field being specific, result in diverse kinds of such protocols.

Early verification schemes [BEG+94, BGG95, NR05] concentrated on the prob-

lem of data integrity on a local untrusted memory, i.e., memory checking. The chal-

lenging problem of data integrity verification without explicit knowledge of the full

file was first proposed in broad generality by Blum et al. [BEG+94], who explored

the task of checking the correctness of a memory-management program efficiently.

Naor and Rothblum [NR05] explored the problem of dynamic memory-checking in

a range of settings. Clarke et al. [CSG+05] focused on a trusted party which stored

a small amount of state information, verifying the integrity of arbitrary blocks of

6.1. Introduction 74

external memory. These early verification schemes are the first to suggest check-

ing data integrity, however they are not applicable for remote data integrity checks

because they require the data to be transmitted in its entirety to the verifier.

The latest verification schemes concentrated on the problems of securing data

integrity at remote servers and securing clouds storage applications. These schemes

can be classified into ‘Proof of retrievability’ (POR) schemes (e.g., [JJ07, BJO09,

DVW09, SW08]) and ‘Provable data possession’ (PDP) schemes (e.g., [ABC+07,

ABC+11, EKPT09]). A POR scheme is a challenge-response protocol. In POR

schemes, a cloud provider demonstrates the file retrievability (i.e., recoverability

without any loss or corruption) to a client. PDP schemes are similar protocols

which only detect a large amount of corruption in outsourced data. For differ-

ent application requirements, the latest verification schemes can also be classified

into static schemes (e.g., [JJ07], [ABC+07], [SW08]) and dynamic schemes (e.g.,

[EKPT09, SvDOJ11, CC12]). The static schemes consider static data, in which

the client cannot modify the original data. In these schemes, the client can per-

form a limited set of updates only. The dynamic schemes support the full range of

dynamic operations on the outsourced data, including modification, insertion and

deletion. Most existing PDP and POR schemes are designed for static data which

have infrequent modifications. In Erway et al. [EKPT09], dynamic PDP protocols

were proposed. However, designing efficient dynamic POR schemes is still an open

problem. Several papers [WWL+09], [ZX11] claimed to construct dynamic POR

protocols, but in fact only provided dynamic PDP schemes. Recently, Stefanov et

al. [SvDOJ11] proposed Iris, a system that supported dynamic POR, including pro-

tection against small data corruption. However, Iris brings additional cost to the

client because the parity data is required to be stored.

The main techniques for achieving secure and efficient remote data integrity

check can be summarized as follows:

(1) Use of a simple third-party verifier. As the simple hash method requires the

client to store numbers of hash values to do a remote integrity check, Shah et al.

[SBMS07] introduced a third-party verifier who could delegate the periodic task of

checking data integrity, in order to reduce the client’s storage, communicational and

computational cost. This simple solution, however, requires a third-party verifier to

keep a lot of hash values of the data blocks.

(2) Use of block ciphers. Tweakable block ciphers were used in Oprea et al.

[OR05] which allowed a client to detect the modification of data blocks by a remote

6.1. Introduction 75

and untrusted server. Their protocol did not bring additional storage cost to the

server and the client, but the entire file had to be retrieved during the verification

executions and the communication complexity is linear in the file size.

(3) Use of hash functions. Deswarte et al. [DQS04] and Filho et al. [FB06]

proposed RSA-based hash functions to verify remote data integrity. They allowed a

verifier to perform multiple challenges by using the same metadata. The limitation

of their algorithms lies in the computational complexity at the server, which must

exponentiate the entire data file, that is accessing all the data blocks. In addition,

RSA over the entire file is extremely slow. As is shown in Filho et at. [FB06], it

requires 20 seconds per megabyte for 1024-bit keys on a GHz3.0 CPU. Yamamoto

et al. [YOA07] presented an efficient scheme for large data integrity checks, based

on homomorphic hash functions. The advantage of their scheme is batch processing

[CY07] for a homomorphic hash function. Similar techniques can also be found in

Sebe et al. [SBD+04]. In [SBD+04], they presented a protocol based on the Diffie-

Hellman problem in ZN , however in their scheme, the client has to store N bits per

data block (N is the RSA modulus) and the total storage cost on the client side is

O(n).

(4) Use of erasure-coded data. Schwarz and Miller [SM06] proposed a scheme

that used m/n erasure-correcting coding to safeguard the stored data. They used

algebraic signatures, which are hash functions with algebraic properties, to do the

verification. The algebraic properties ensured that the signature of the k parity

containers equaled the parity of the signatures of the m data blocks. However, in

their scheme, the file access, computation and communication complexity are all

linear in the number of data blocks per challenge. Moreover, this scheme receives

a less formal security analysis. Kotla et al. [KAD07] used a hierarchical erasure

coding in which both the client and server computed forward error correcting codes.

However, the server reveals the parameters of the encoding it uses to make storage

safe from failures.

(5) Use of “sentinels”. Juels et al. [JJ07] proposed a scheme for proof of retriev-

ability using ‘sentinels’. The sentinels (special blocks) were hidden among other

blocks in file F . The verifier challenged the prover by specifying the positions of a

collection of sentinels and asking the prover to return the associated sentinel values.

Their scheme is limited, as they can handle only a limited number of queries and

increase storage overhead on the server side. In addition, the client needs to store

all the sentinels. Furthermore, it requires that the original x can be recovered from

6.1. Introduction 76

multiple challenges and responses. This is the main difference with the proposed

scheme. In Dodis et al. [DVW09], they improved the POR constructions and built

nearly optimal POR codes using hitting samplers and error-correcting codes.

(6) Use of homomorphic verifiable tags. Ateniese et al. [ABC+07, ABC+11] de-

scribed a proof of data possession (PDP) scheme that improved the response length

of the simple hash scheme using homomorphic verifiable tags. In their scheme, they

constructed the homomorphic verifiable tags Ti for each data block mi. Later, the

prover sent a linear combination of blocks
∑

i aimi (with arbitrary coefficients {ai})
to the verifier. The verifier cloud be convinced if

∑

i aimi was correctly generated

using an aggregate tag T computed from {Ti}. They also proposed a variant of their

PDP scheme to achieve public verifiability under a weaker security model. Erway

et al. [EKPT09] introduced a framework and efficient constructions for dynamic

provable data possession which extends Ateniese et al.’s model [ABC+07] to sup-

port provable updates. Their constructions captured the dynamic operations such

as insertion in the middle of a file, however they are not efficient when moving and

deleting the entire files. Shacham and Waters [SW08] proposed two HTAG schemes

which used a simple homomorphic MAC and a universal hash family to reduce the

communication bits to a constant factor of k. One of their schemes supported private

verifiability and the other supports public verifiability. In Xu and Chang [XC12],

they improved the private verifiability scheme of Shacham and Waters’. The size

of a response (or proof) was dominated by s group elements where each was λ bits

long. Xu and Chang managed to aggregate these s group elements into two group

elements, leading to a reduction in proof size from O(s ·λ) to O(λ) bits. Some other

schemes that also use homomorphic verifiable tags can be found in Chang and Xu

[CX08], Wang et al. [WWL+09], Wang et al. [WCW+09], Wang et al. [WWRL10],

Wang et al. [WWR+11] and Zeng [Zen08].

Organization of This Chapter. The rest of this chapter is organized as follows.

In Section 6.2, the framework and definitions are presented. In Section 6.3, the

main construction of the remote integrity check scheme is presented. In Section 6.4,

the full proofs of security is given in the random oracle model. In Section 6.5, the

complexity of the proposed protocol is analyzed, in the aspects of communication,

computation and storage costs. Experimental results are also given to show the

performance. Section 6.6 concludes this chapter.

6.2. Framework 77

6.2 Framework

The framework for public remote integrity check in clouds is first described, as

shown in Figure 6.1. The public RIC protocol checks that the cloud storage retains

the outsourced data file M which can be divided into chunks of data blocks mi’s.

Prior to outsourcing the data file, the data owner O pre-processes those mi’s and

generates several homomorphic verifiable tags Ti’s. Then the owner O outsources

his file M and all the tags Ti’s to cloud storage and deletes them in local database.

The data format of M is independent here and it could be an encrypted file. Later,

the owner O outsources the periodic task of checking data integrity to some third

party verifier V . The third party verifier sends a challenge to the cloud server S
and asks S to respond based on the stored data blocks as well as the tags. Upon

successful completion of the protocol, V is convinced that the data file M has not

been altered or deleted by S. To conduct the protocol, V is only required to know

the public key of the data owner. In addition, no information about the data blocks

nor the tags are revealed to V . This framework is designed for the purpose of the

data owner O who wants to outsource the periodic task of data integrity checking,

but does not want to leak his/her data at the same time.

The Main Difference with Simple TPV Solutions. The main difference be-

tween the proposed RIC scheme and those remote integrity check schemes which use

third-party verifier (TPV), is that the proposed solution has constant storage and

communication cost by contrast of the multiple MACs that stored in the verifier’s

side. If one is to allow the TPV to store all the message authentication code for

all the data blocks, then the simple solution that introduce a third-party verifier

who can delegate the periodic task of checking data integrity, can reduce the data

owner’s storage, communicational and computational cost. However, this simple

solution require the TPV to store numbers of MACs which is linear to the number

of data chunks outsourced, and a large amount of bandwidth which is linear to the

number of queried blocks in the verification interaction.

Threat Model. The cloud server S must answer the challenges from the third

party verifier V . Failing to do so represents a data loss. However the cloud server

is not trusted, that is to say, the cloud server may try to convince the verifier that

it possesses the file even though the file is totally or partially missing. The cloud

server may have several motivations for misbehavior. For example, the server may

6.2. Framework 78

Chal ={(j, aj)|1≤ j ≤ l, aj Zp } M

m1 m2 mi ……

(a) Pre-process the data

T1 T2 …… Ti F’=

M

Cloud Storage

F’

(b) Outsource data to cloud servers

(c) Third-party remote integrity check

Proof = (TP, TQ, TA, P, Q1, Q2) Check

PK { (ρ,r): 𝑃 = 𝑢ρ𝑣r }

PK { (t,s): 𝑄2 = } 𝑔1𝑡𝑔2𝑠

PK { (ρ,s): 𝐴 = 𝐵ρ𝐶s }

Figure 6.1: The framework of public RIC in cloud storage.

want to reclaim storage by discarding data that has not been or is rarely accessed,

or hide some data loss incidents due to management errors and hardware failures.

The third party verifier V must verify the integrity of the outsourced data. The

third-party verifier may not be fully-trusted as well. That is, the verifier may try

to retrieve the owner’s data through the process of verification. A public remote

integrity check protocol has to detect the cloud server’s misbehavior when the server

has deleted a fraction of the file. Moreover, it has to ensure that the third party

verifier cannot learn any outsourced data through executions.

6.2.1 Formal Definitions

The syntax of the proposed public remote integrity check scheme is given as follows.

In Section 6.4, the security definition will be given formally.

6.3. The Proposed Scheme 79

Definition 6.1 (Public Remote Integrity Check Scheme) A public RIC scheme con-

sists of two polynomial-time algorithms (KeyGen, TagGen) and an interactive pro-

tocol (Proof) that captures the properties including data possession and public veri-

fication without disclosing data.

KeyGen. This algorithm is run by the data owner. It takes a security parameter

k as input and outputs a pair of matching public and secret keys (pk, sk).

TagGen. This algorithm is run by the data owner to generate the homomorphic

tags for the data chunks. It takes as inputs a public key pk, a secret keysk and a

data block mi, outputs the homomorphic tag Ti for this data block mi.

Proof. This is a pair of interactive algorithms (ProofS,ProofV) executed by

the cloud server and a public verifier respectively. The input of ProofS is a public

key pk, a set of data blocks and homomorphic tags {mi, Ti}. The input of ProofV

is a public key pk. Upon completion of the protocol, ProofV outputs 1 if the proof

is accepted, and 0 otherwise.

Definition 6.2 (Correctness) A public remote integrity check scheme is correct if

for all key pairs (pk, sk) output by KeyGen, for all the tags Ti output by TagGen

with input mi, sk, ProofV with input pk outputs 1 if it is interacting with ProofS

with input pk, {Ti,mi}.

6.3 The Proposed Scheme

Firstly, the main construction of the proposed scheme is described. The construction

is based on the scheme from [SW08]. Zero-knowledge proof techniques are incorpo-

rated into their scheme so that the verifier does not learn anything about the data

during the proof protocol. Secondly, how a public RIC system can be constructed

is shown.

6.3.1 Main Construction

Let e : G × G → GT be a computable bilinear map with |G| = |GT | = p for

some large prime p. Let g, g1, g2, u and v be generators of G. The scheme also

employs a hash function H : {0, 1}∗ → G, viewed as a random oracle. Details of

6.3. The Proposed Scheme 80

the construction of a hash function whose range is the group G has been described

in [BLS01]. The main construction of the proposed scheme is as follows:

KeyGen. Select a random x ∈ Zp, this algorithm generates the public key as

(gx, g, g1, g2, u, v) . The secret key is x.

TagGen((sk,mi) → Ti). Before generating the tags, the data file M is pre-

processed into n data blocks m1,m2, ...,mn ∈ Zp. In the following each data block

will be referred as mi for 1 6 i 6 n. This algorithm then generates a homomorphic

tag Ti for data block mi, where Ti = (H(i) · umi)x.

Proof. The pair of algorithms ProofS,ProofV interacts as follows.

• ProofV chooses a set of data blocks for challenge. Let I ⊂ {1, . . . , n} be the

index set for the blocks to be challenged. ProofV randomly chooses c, d ∈R Zp,

computes D = gc1g
d
2 . ProofV randomly picks aj ∈R Zp for j ∈ I and sends

I, {aj}j∈I , D to ProofS as the challenge.

• ProofS computes T =
∏

j∈I T
aj
j , ρ =

∑

j∈I ajmj, B = e(u, gx) and C =

e(g1, g). ProofS then randomly chooses r, s, t, tρ, tr, tt, ts ∈R Zp and computes

TP = utρ · vtr , TQ = gtt1 · gts2 , TA = Btρ · Cts ,

P = uρ · vr, Q1 = T · gs1, Q2 = gt1 · gs2.

ProofS sends (TP , TQ, TA, P,Q1, Q2) to ProofV .

• ProofV sends (c, d) to ProofS.

• ProofS checks if D = gc1g
d
2 and computes

zρ = tρ − c · ρ, zr = tr − c · r,
zt = tt − c · t, zs = ts − c · s

and sends (zρ, zr, zt, zs) to ProofV .

• PV outputs 1 if and only if all the following equations hold

TP
?
= P c · uzρ · vzr (6.1a)

TQ
?
= Qc

2 · gzt1 · gzs2 (6.1b)

TA
?
=

e(Q1, g)

e(
l
∏

j=1

H(j)aj , gx)

c

· Bzρ · Czs , j ∈ I (6.1c)

and 0 otherwise.

6.4. Security Analysis 81

6.3.2 A Brief Explanation of The Proposed Protocol

Note that a tuple (T, ρ) satisfying the equation

e(T, g) = e(
∏

j∈I

(H(j)aj)uρ, v)

is a proof-of-retrievability of the messages {mj}j∈I according to [SW08]. Instead

of requiring the cloud server to send (T, ρ) to the verifier (which leaks information

about the data), the protocol ProofS is modified so that it is a zero-knowledge proof-

of-knowledge of the tuple (T, ρ) satisfying the above equation. Indeed, the message

flow ℘ =
(

D, (TP , TQ, TA, P,Q1, Q2), (c, d), (zρ, zr, zt, zs)
)

can be viewed as a zero-

knowledge proof-of-knowledge of such a tuple. Intuitively, the proposed protocol is

secure if [SW08] is a secure proof-of-retrievability and that ℘ is a zero-knowledge

proof-of-knowledge protocol with soundness.

6.3.3 A Public RIC System

Now a public RIC system can be constructed as Figure 6.2, from the above scheme

in three phases: Setup, Challenge and Proof . It should be emphasized that the

cloud server does not send back to the verifier any of the data file blocks and not

even their sum. Additionally, the third-party verifier checks the integrity of the

outsourced file without having the secret key. In particular, the third-party verifier

does not retrieve any information about the data even when the challenge only

consists of a single block.

6.4 Security Analysis

Two security requirements are identified for the proposed scheme. The first one

regards data possession . Specifically, an adversary cannot successfully construct

a valid proof without possessing all the blocks corresponding to a given challenge,

unless it guesses all the missing blocks. The second one is to capture public ver-

ification without disclosing data . No third party verifier should be able to

retrieve any data or tag information in probabilistic polynomial time. To formalize

this notion, it is required that for any verifier, a PPT simulator can be constructed

to simulate the view of the verifier without the knowledge of the messages and

homomorphic tags.

6.4. Security Analysis 82

• Setup: The data owner O invokes the algorithm KeyGen to generate a
pair of matching public and secret keys (pk, sk). O then invokes TagGen
for all data blocks (1 6 i 6 n) and sends all the homomorphic tags Ti’s
to the cloud server S, along with pk and mi’s. O may now delete the
original data file M and all the tags Ti’s from his local storage.

• Challenge: The third-party verifier V requests remote integrity check
for l distinct blocks of the data file M (with 1 6 l 6 n):

1. V generates a challenge chal = {(j, aj)|1 6 j 6 l, aj ∈R Zp} and
sends chal to S.

2. S computes (TP , TQ, TA, P,Q1, Q2) as follows: TP = utρ · vtr , TQ =
gtt1 · gts2 , TA = Btρ · Cts , P = uρ · vr, Q1 = T · gs1, Q2 = gt1 · gs2 where
T =

∏

j∈I T
aj
j , ρ =

∑

j∈I ajmj, B = e(u, gx) and C = e(g1, g).
(TP , TQ, TA, P,Q1, Q2) is returned to V .

3. V generates a random challenge c.

4. S computes zρ = tρ− c ·ρ, zr = tr− c · r, zt = tt− c · t, zs = ts− c · s,
and returns (zρ, zr, zt, zs) to V .

• Proof: V checks the integrity of the outsourced data without either
having the data or the secret key sk:

1. V computes A = e(Q1,g)

e(
l∏

j=1

H(j)aj ,gx)

.

2. V checks the validity of the proof by verifying whether the three
equations 6.1a, 6.1b and 6.1c hold.

Figure 6.2: A Public RIC System

6.4. Security Analysis 83

6.4.1 Data Possession

This requirement is formalized by using a security game played between a challenger

C and an adversary A. A public RIC protocol is sound if any cloud server that con-

vinces an honest verifier is in possession of the data file M . Following the definition

in [HZY11], it means that there exists an extractor algorithm that can extract the

data file M when it is interacting with the cloud server in the public RIC protocol.

Data Possession:

In the DP-game, the challenger C denotes the third-party verifier and the adver-

sary A = (A1,A2) denotes a cheating cloud server. The game is divided into two

phases, the learning phase and the proof phase.

• Setup: The challenger C runs KeyGen to generate a keypair (pk, sk), and

sends pk to the adversary A.

• Query: The adversaryA can make at most qs queries to a tag oracle, providing

some file block mi during each query. C then computes all the homomorphic

tags Ti and sends them back to A, along with all the mi’s. The adversary

stores all the mi’s and the corresponding tags Ti’s.

• Execute: The adversary A can undertake at most qe executions of public

RIC protocol for any file M that he has made a tag query, with specifying the

corresponding Ti’s.

• Proof: The adversary A outputs the description of a prover machine P and

the set of messagesM ⊂ {1, . . . , qs} to be challenged. C interacts with P in

the proof protocol withM being the set of messages to be challenged.

Informally speaking, the data possession property requires that if P can pass

through the verification protocol with C, P should be in possession of all messages

mi for i ∈M. This is formalized as follows.

Definition 6.3 (Soundness) A public remote integrity check scheme is sound if

there exists a knowledge extractor K that can recover {mi|i ∈ M} from the prover

machine P with non-negligible probability.

Theorem 6.1 The construction of a public RIC system captures data possession if

Waters public-verification scheme is secure in the random oracle model.

6.4. Security Analysis 84

In the following it shows how to construct the extractor K. Note that K will

only be used in proofs. It is an algorithm that runs in probabilistic polynomial

time on input P , pk and the index setM. The output of K is the set of messages

{mi|i ∈M}
The knowledge extractor K will work in the following way: If the prover P

responds correctly to an initial challenge c, then K will rewind P and issue a different

challenge c′ for which P also responds correctly. Note that this requires K to have

the discrete logarithm of g2 to base g1 so that it can issue two different challenges

for the same value D. If K can find two such challenges c and c′, then K has the

following equations:

TP = P c · uzρ · vzr = P c′ · uzρ′ · vzr ′ ,
TQ = Qc

2 · gzt1 · gzs2 = Qc′

2 · gzt
′

1 · gzs
′

2 ,

TA = Ac · Bzρ · Czs = Ac′ · Bzρ′ · Czs′ .

Now it can get

P c

P c′
=

uzρ · vzr
uzρ′ · vzr ′ ,

Qc
2

Qc′
2

=
gzt1 · gzs2
gzt

′

1 · gzs
′

2

,

Ac

Ac′
=

Bzρ · Czs

Bzρ′ · Czs′
.

If denotes △c = c′ − c, △zρ = zρ
′ − zρ, △zr = zr

′ − zr, △zt = zt
′ − zt and

△zs = zs
′ − zs, from the above equations it can have

P = u−
△zρ
△c v−

△zr
△c ,

Q2 = g
−

△zt
△c

1 g
−△zs

△c

2 ,

A = B−
△zρ
△c C−△zs

△c .

Then, it has

e(Q1,g)

e(
l∏

j=1

H(j)aj ,gx)

= e(u−
△zρ
△c , gx) · e(g1, g)−

△zs
△c .

That is,

e(Q1 · g
△zs
△c

1 , g) = e(
l
∏

j=1

H(j)aj , gx) · e(u−
△zρ
△c , gx).

6.4. Security Analysis 85

Thus K can compute T = Q1 · g
△zs
△c

1 and ρ = −△zρ/△c. In [SW08], it has been

proven under the CDH assumption that ρ must be correctly formed. That is, note

that ρ is a linear equation of the form a1m1 + a2m2 + · · ·+ alml. Then by choosing

independent coefficients a1, a2, · · · , al in l executions of the extraction above on the

same blocks m1,m2, · · · ,ml, K can obtain l independent linear equations in the

variables m1,m2, · · ·ml. Thus K can solve these equations to obtain the data file M

that contain blocks m1,m2, · · · ,ml.

The extraction is required to be succeed (with all but negligible probability)

from the prover (adversary) that causes the verifier (challenger) to accept with a

non-negligible probability ǫ. Then the extractor K can recover enough blocks to

reconstruct the original M from such an adversary will take O(n/ǫ) interactions.

6.4.2 Public Verification without Disclosing Data

To capture the requirement of public verification without disclosing data, it is re-

quired that there exists a PPT simulator S which is capable of simulating the view

of any verifier given that the public parameters and the public key of the user as

input. In other words, the RIC protocol is zero-knowledge.

Theorem 6.2 The proposed public remote integrity check protocol is a RIC protocol

is zero-knowledge.

Proof: In order to prove that the public RIC protocol is a zero-knowledge (ZK)

proof system, one needs to prove three properties: completeness, soundness and

zero-knowledge.

Completeness. Suppose the honest prover posses the secret M just as required in

GenProof. It is straightforward that the prover can always convince the verifier to

accept the proof. Thus the perfect completeness condition follows.

Soundness. To show soundness (namely that even an arbitrarily malicious prover

P ∗ can not convince the verifier V to accept a false statement with more than a

negligible probability), how to extract a witness M from two different runs of the

proposed protocol is first demonstrated.

Assume there are two different transcripts of the proposed protocol, the extrac-

tor K can be constructed in the following way that as described in section 6.4.1.

6.4. Security Analysis 86

Having O(n/ǫ) interactions, the extractor K can recover enough blocks to recon-

struct the original M from a malicious prover P ∗. In such a case, T = Q1 · g
△zs
△c

and ρ = −△zρ/△c can be efficiently computed from the transcripts. Thus it can be

concluded that for any first round message (TP , TQ, TA, P,Q1, Q2) that P
∗ may send

to V , there is at most one possible challenge c which P ∗ could answer correctly.

Then P ∗ can effectively compute a witness as above. However P ∗ must decided

upon its first round message before seeing the challenge and therefore will receive

the “correct” challenge c with probability at most 1
p
which is negligible.

Honest Verifier Zero-knowledge. To show that the proposed protocol is zero-

knowledge, it is necessary to describe an efficient simulator S that interacts with

any verifier, and produces an interaction that is indistinguishable from the verifier’s

interaction with the prover.

• The verifier sends the values I, {ai}, D to S.

• S randomly picks and sends T ′
P , T

′
Q, T

′
A, P

′, Q′
1, Q

′
2 ∈R G to the verifier.

• The verifier returns (c, d) to S.

• S validates D = gc1g
d
2 and rewinds the verifier to the point when it receives the

tuples (I, {ai}, D).

• S randomly picks zρ, zr, zt, zs ∈R Zp, P,Q1, Q2 ∈R G and computes the follow-

ing values:

TP = P cuzρvzr

TQ = Qc
2 · gzt1 · gzs2

TA =

e(Q1, g)

e(
l
∏

j=1

H(j)aj , gx)

c

· Bzρ · Czs

• S sends TP , TQ, TA to the verifier.

• The verifier returns (c, d) to S. Under the discrete logarithm assumption, the

values (c, d) will be the same with the first run.

• S returns zρ, zr, zt, zs to the verifier.

6.5. Performance Analysis 87

Note that the distribution of P , Q1, Q2 is identical to the real one computable

by the prover since for any value of ρ and T , there exists random numbers r, s, t such

that P = uρvr, Q1 = Tgs and Q2 = gt1g
s
2. Similarly, for any values of ρ, t, r, s there

exists random numbers tρ, tt, tr, ts such that zρ = tρ − cρ, zt = tt − ct, zr = tr − cr

and zs = ts − ts. Thus, the view of the verifier interacting with the simulator S is

identical to that of the real prover.

6.5 Performance Analysis

6.5.1 Complexity Analysis

In this section, the complexity of the proposed scheme is analyzed, in the aspects of

communication, computation and storage costs. In particular, the proposed scheme

is compared with the one proposed in [HZY11].

Communication Costs. Unlike [HZY11], the proposed scheme does not only con-

sider the communication costs in Proof phase, but also consider the communication

cost in Setup phase as the communications on the client side only occur in Setup

phase. As mentioned in Table 1, the client side communication cost is O(1) in the

proposed protocol, while is O(n) in [HZY11] as it requires the client to releases all

the tags to every possible verifier. The verifier side communication cost is O(c) in

the proposed protocol while is O(1) in [HZY11]. As the sampling block number c is

much more smaller than the total block number n, for example, c = 460 or 300, the

sum cost O(1)+O(c) in the proposed scheme is lower than O(1)+O(n) in [HZY11].

Storage Costs. The storage cost mainly occurs on the server side as all the data

chunks and homomorphic tags have been outsourced to the cloud storage. Separate

analysis of the storage cost is given on the client side, the server side and the verifier

side. A detailed comparison with [HZY11] is drawn .

• Client side. In [HZY11], the client needs to store the public key and the

private key. The storage cost is 2|N |+ |p|+ |q| bits (|N | = 1024 bits). In the

proposed scheme, the client also needs to store the pair of matching public

and secret keys (pk, sk), however with the lower storage cost as 7|p| bits (e.g.,
|p| = 160 bits).

• Verifier side. The verifier needs to store the public key pk in the proposed

6.5. Performance Analysis 88

scheme. The storage cost is only 6|p| bits. However in [HZY11], the verifier is

required to store all the RSA-based tags. The storage cost of the tags is linear

to the total number of blocks, that upper bounded by ⌈|m|/l⌉ · |N | bits. Here
|m| denotes the total length of the outsourced data and l denotes the length

of each data block.

• Server side. The cloud server needs to store all the data chunks and the tags.

The storage cost on the server side is |m| + ⌈|m|/l⌉ · |p| bits in the proposed

scheme while it is higher in [HZY11] with |m|+ ⌈|m|/l⌉ · |N | bits.

Computation Costs. Separate analysis of the computation costs is also given on

the client side, the server side and the verifier side.

• Client side. The computation cost on the client side only occurs in Setup

phase, for generating the homomorphic tags. It is O(n) in [HZY11]. As mod-

ulo operations are far more efficient than the modular exponentiations, only

the latter is considered as [HZY11]. The computation cost of the client is

2⌈|m|/l⌉Texp(|p|, p) + T
⌈|m|/l⌉
hash + T

⌈|m|/l⌉
multi , where Texp(len, num) is the time cost

for computing a modular exponentiation with a len-bit long exponent modular

num, T n
hash is the time cost of hashing n values into the group G and T n

mult

is the time cost of n multiplications. The time complexity in the proposed

scheme is also O(n).

• Verifier side. During the verification in the proposed scheme, the verifier

needs to check whether the three equations hold. It contains (9 + c) modular

exponentiations, four pairings and (c−1+2+2+2) multiplications in group G.

The computation cost in verifier side is (9+c)Texp(|p|, p)+T 4
pairing+T c+5

mult, where

c is the sampling block number and T n
pairing is the time cost of n pairings. The

time complexity in the proposed scheme is O(c) while it is O(2n) in [HZY11].

• Server side. In the proposed scheme, the main computation cost on the

server side occurs for generating the proof, as the server needs to compute

(11 + c) modular exponentiations, two pairings, (c + 5) multiplications and

(c − 1) additions. The computation cost for generating the response is much

lower, which only contains four additions and four multiplications in group G.

Thus the sum cost for computation on the server side is (11 + c)Texp(|p|, p) +
T 2
pairing + T c+9

mult + T c+3
add , where T n

add is the time cost of n additions in group

6.5. Performance Analysis 89

G. The time complexity in the proposed scheme is O(c), while it is O(2n) in

[HZY11].

6.5.2 Performance Analysis

The performance of the proposed scheme is now assessed. This analysis focuses on

the extra computation cost that is introduced by the proposal. The experiment

is conducted by using Turbo C on a Windows 7 system with an Intel Core Duo

processor running at 2.53GHz and 4.00GB of RAM. All the algorithms use the

Pairing-Based Cryptography (PBC) library version 0.5.12. The elliptic curve utilized

in the experiment is an MNT curve that has a 160-bit group order, with base field

size of 512 bits and the embedding degree k = 2. All experimental results present

the mean of 20 trials.

0 1 2 3 4 5 6 7 8
0

100

200

300

400

500

600

700

File (MB)

T
im

e
 (

m
s)

[NZY11]
Proposed

Figure 6.3: Comparison on computation time cost for verifying the proof on verifier
side, between the proposed scheme and [HZY11].

The analysis begins by estimating the computation cost on client side. From

6.5. Performance Analysis 90

Table 7.1, it can be seen that the processing time increases linearly with the data

block number n. Compared with the protocol [HZY11] in which is also implemented

by Turbo C and Miracl library on the same platform, the process executions of the

proposed scheme cost much. The main reason is that, for a same file F , the block

number is ⌈ F
1024
⌉ in [HZY11] where the length of each data block is chosen to be

1024 bits, and the block number is ⌈ F
160
⌉ in the proposed scheme.

0 50 100 150 200 250 300 350 400 450 500
0

100

200

300

400

500

600

Block number n

T
im

e
 (

m
s)

[HZY11]
Proposed

Figure 6.4: Comparison on computation time cost for generating the proof on server
side, between the proposed scheme and [HZY11].

The experimental results show that the computation costs are fewer on both of

verifier side and server side in the proposed scheme, comparing with the proposed

one in [HZY11]. For a fair comparison, the cost of processing all data blocks is

compared, though the proposed scheme supports sampling in which a much smaller

number of blocks is challenged, for a slightly degraded soundness guarantee (to

achieve an accuracy of 99%, a sample of 460 blocks is often sufficient). As shown

in Figure 6.3 and Figure 6.4, the processing time of the proposed scheme is slightly

better than [HZY11] even without sampling. If c = 460 blocks are sampled for 99

6.6. Conclusion 91

percent accuracy, the processing time would keep at around 69ms, regardless of the

actual file size. This indicates that for data files which have large file size or frequent

integrity check, the proposed scheme is highly efficient.

Table 6.2: The processing time for generating the homomorphic tags on client side.
The length of each data block |mi| is set to be 160 bits.

File Size (KB)
The Proposed Scheme

sampling block number processing time (ms)

1.25 64 725

2.5 l28 1443

5 256 2798

10 512 5518

6.6 Conclusion

In this chapter, a public RIC scheme is presented for privacy-preserving remote in-

tegrity check in cloud storage. The proposed scheme achieves data possession and

protection against malicious third party verifiers. It ensures no leakage of both

the verified data and the tags during the protocol executions. The security of the

proposed scheme has been proven in the random oracle model. The performance

analysis and experimental results show that the proposed scheme is efficient, espe-

cially when the size of the data file is large or the integrity check is frequent.

Chapter 7

PMOW: Proof of Multiparty Ownership
for Encrypted Data in Clouds

The notion of proof of ownership (POW) in clouds was introduced by Halevi et

al. [HHPSP11]. In their scheme, a user could efficiently prove that he holds the

file, rather than some short information. However, their scheme could not support

either multiple users application or encrypted file scenario. It is observed that

there are applications where different users share the ownership of the outsourced

file. Thus in this chapter, an innovative PMOW scheme is proposed for proof of

multiparty ownership with the encrypted data in cloud. Every user can prove he

holds the plaintext of the encrypted file when the server stores one ciphertext only.

The proposed solution achieves CCA2 security and Full proof analysis is also given

under the ideal cipher model.

7.1 Introduction

Currently, cloud storage is becoming more popular. A promising technology called

deduplication has been applied to reduce the cost of the cloud storage. Deduplication

is essentially a data compression technique for elimination of redundant data. A

typical flavor of deduplication detects duplicate data blocks within the storage device

and deduplicates them by placing pointers rather than storing multiple copies at

various places within the disk.

Client-side deduplication in cloud storage attempts to save the bandwidth of

uploading copies for the existing files to the server. It enables the cloud server to

store a single copy of repeating data. In a typical cloud storage with client-side

deduplication, e.g. Dropbox 1, Wuala and MozyHome, the user sends to the server

1It is noticed that Dropbox disabled the deduplication across different users (in Feb 2012), prob-
ably due to recent vulnerabilities discovered in their original cross-user client-side deduplication

92

7.1. Introduction 93

a hash of the file before uploading. Then the server checks whether this hash value

is already in the database. If so, the server claims that the file is already in the cloud

storage and is not needed to upload. Recently, Harnik et al. [HPSP10] addressed the

security problems of client-side deduplication. A malicious user who gets the hash

signature of a file can convince the cloud server about his ownership. By accepting

the hash value as a “proxy” for the entire file, the cloud server allows anyone who

gets the hash value to access the entire file. To overcome such attacks, Halevi et

al. [HHPSP11] introduced the notion of proofs-of-ownership (POW). In addition,

they present Merkle-tree based schemes to allow an user efficiently prove about the

user’s ownership, rather than some short information. The POW protocol works by

first encoding the file F using an encoding function E which is resilient to erasure

of up to α fraction of the bits, and then building a Merkle-tree over the encoded file

F ′ = E(F). Let H be a collision resistant hash function with output length of λ bits.

Let MTH,λ(F
′) be the binary Merkle-tree over buffer F ′ by using λ-bit leaves and

the hash function H. On M -bit input file F ∈ {0, 1}M , the server who is the verifier

computes the encoded F ′ = E(F) and builds the Merkle-tree MTH,λ(F
′). After

that, the server stores the root node Hroot of the Merkle-tree. During the protocol

execution of POW, the server randomly chooses u leaf indexes, l1, l2, · · · , lu, where
u is the smallest integer such that (1− α)u < ǫ (ǫ is the desired soundness bound).

The server then enquires the sibling-paths of all the leaves from the prover, and

accepts if all are valid with respect to MTH,λ(F
′).

However, the state-of-the-art work by Halevi et al. [HHPSP11] cannot be adopted

directly for a joint ownership where multiple users share the ownership of the input

file F , because the protocol execution is related to the proven file only. Additionally,

their scheme cannot be adopted for encrypted file scenario, because encryption of

the same file by different users with random keys results in different ciphertexts.

The server cannot store the same hash root value for ownership verification.

There are applications of ownership sharing by different users. For example,

multiple members in a workgroup share the ownership of some working documents

in clouds. No one can delete the files individually before the files are not down-

loaded by every member. These working documents are usually be encrypted before

outsourcing, for security and privacy considerations. The cloud provider who has

access to the storage infrastructure, can neither be considered as a fully trusted

method. This also indicates the importance and urgency in the study of security in client-side
deduplication.

7.1. Introduction 94

Table 7.1: Comparisons between previous schemes and the proposed scheme.

[NWZ12] [PS12] [ZX12] [XCZ13] Proposed Scheme
Proof of ownership X X X X X

Privacy X × X X X

Encrypted files X × X × X

Joint ownership × × × × X

party nor a resistance to attacks. Thus in this chapter, a solution for proof of a mul-

tiparty ownership with the encrypted data is designed. Every user can prove that

he holds the plaintext of the encrypted file when the server stores one ciphertext

only. The proposed protocol is called as proof of multiparty ownership (PMOW)

to emphasize its simplicity.

Main Contributions. The main contributions of this chapter can be illustrated

as following: 1) PMOW is proposed. This protocol helps different users prove the

joint ownership of encrypted files for client-side deduplication in clouds. 2) CCA2

security against arbitrary adversaries is achieved under the ideal cipher model.

Comparison.

A comparison is made between the proposed PMOW scheme and some selected

existing schemes in Table 7.1. The comparison is mainly based on the following

requirements and properties:

• Proof of ownership. A malicious user who gets some partial information of a

file cannot convince the verifier about his ownership.

• Privacy. During a proof of ownership execution, only the privileged users

should obtain access to the client’s data files. In other words, the verifier who

has access to the storage infrastructure, can neither be considered as a fully

trusted party nor a resistance to attacks.

• Encrypted files. The proof of ownership protocol should be applied to en-

crypted files scenario.

• Joint ownership. The proof of ownership protocol should support the applica-

tions of ownership sharing by different users.

7.1. Introduction 95

Related Work. Proof-of-ownership (POW) is closely related to two other similar

problems: proof of retrievability (POR) and proof data possession (PDP). POR

schemes [JJ07], [SW08], [BJO09], [DVW09], [ZX11] are challenge-response proto-

cols. In POR schemes, a cloud provider demonstrates the file retrievability (i.e.,

recoverability without any loss or corruption) to a client. PDP schemes [ABC+07],

[ABC+11], [EKPT09], [SFB+08], [FB06], [SBD+04], [WWL+09, WWRL10, WWR+11,

ZB12, YOA07] are similar protocols which only detect a large amount of corruption

in outsourced data. The main difference between POW and POR/PDP is that the

latter usually use a pre-processing step on the client side, while the former does not.

POW protocols are proposed for client-side data deduplication that enables the

storage server to store a single copy of repeating data. Cilent-side data deduplication

has become popular and important as it removes data redundancy and data repli-

cation, but it brings many data privacy and security issues for the user. Douceur

et al. [DAB+02] first studied the problem of deduplication in a multi-tenant system

in which deduplication had to be reconciled with confidentiality. Their proposed

convergent encryption enabled two users to produce a single ciphertext for dedupli-

cation. As there are many security problems of convergent encryption, Storer et al.

[SGLM08] proposed a security model to secure data deduplication.

Recently, Harnik et al. [HPSP10] formally identified the security problems of

client-side deduplication as follows: 1) The first kind of attacks attempted to fool

the storage server and abuse the storage system. A malicious user with the hash

signature of a file could convince the cloud server about his ownership. By accepting

the hash value as a ‘proxy’ for the entire file, the cloud server allowed anyone who

held the hash value to access the entire file. 2) The second kind of attacks targeted

the privacy and confidentiality of users of the storage system. A malicious user could

check whether another honest user had already outsourced a data file by trying to

upload it as well. 3) The third kind of attacks focused on subverting the intended

use of a storage system. For example, two malicious users tried to use the cloud

storage for a convert channel as they might not have a direct interaction channel.

These two users first pre-agreed on two different files. Second, one malicious user

outsourced one of the two files. Then the other user could detect which file had been

deduplicated and output either 0 (for the fist file) or 1 (for the second file). In this

way, two malicious users successfully exchange a bit of information without a direct

transmitting channel.

To overcome such attacks, Halevi et al. [HHPSP11] introduced the notion of

7.2. Technique Preliminaries 96

POW for client-side deduplication. In addition, they presented Merkle tree-based

schemes to allow a user to efficiently prove his ownership to the server, rather than

short information about the file such as a hash value. However, the state-of-the-art

work [HHPSP11] cannot be adopted directly for multiple users who share the own-

ership of the input file F . In addition, their scheme cannot be adopted for encrypted

file scenarios, as mentioned before. Some other schemes [RMW12], [NWZ12], [PS12],

[ZX12], [XCZ13] focused on improving efficiency of POW, or applying an encrypted

file scenario. In [PS12], Pietro and Sorniottis proposed three correlative protocols

to achieve an efficient POW for deduplication. The main idea of their protocols is

to challenge random K bits of file F . The probability that a malicious user is able

to output the correct value of K bits of the file, where each bit selected at a random

position, is negligible in the security parameter k. However, their scheme cannot

be adopted for encrypted file scenarios. In addition, the client’s files are totally

revealed to the cloud server during the protocol executions. Zheng et al. [ZX12]

argued that the public verifiability offered by POR/PDP schemes could be natu-

rally exploited to achieve POW, however by using POR/PDP schemes to achieve

POW, their scheme brings the clients mass information because it stores all the

verified tags. In [NWZ12], they presented a private POW scheme for encrypted

files in cloud storage. In [XCZ13], they proposed a secure client-side deduplication

scheme to protect data confidentiality (and some partial information) against both

outside adversaries and honest-but-curious cloud storage server, while Halevi et al.

[HHPSP11] trusted cloud storage server in data confidentiality. However, none of

the above schemes can solve the POW problem for multiparty users because the

protocol executions are only related to the file that has to be proven.

7.2 Technique Preliminaries

This section starts by describing the framework for proof of multiparty ownership

in cloud storage, as shown in Figure 7.1. The PMOW protocol checks whether

every user has the ownership of the file F . Prior to outsource the data file, the

client C encrypts the file, chooses a random symmetric key k and generates several

ciphertexts CTi(k) for users Ui, 1 6 i 6 n. Then the client C outsources the

ciphertexts (CTF , {CTi(k)}) to cloud server V who is the verifier in the protocol. V
uses an erasure-code R to pre-process the input buffer CTF and divides R(CTF) into

blocks mj, 1 6 j 6 m. These blocks are hashed in pairs until the root node Hroot

7.2. Technique Preliminaries 97

V C

Un

U1

CTF, {CTi} 1≤i≤n

Cloud server Client

…
…

Proofi = (A,Ti1,Ti2,Ti3,Ti4,Ti5,{mji},{Pji})

Figure 7.1: The framework for proof of multiparty ownership in cloud.

is reached, as described in Figure 7.2. By generating such a Merkle-tree MTH,λ, V
can compute a short verification information v which is the root node of the tree.

Later at a time, the multiple users Ui who share the file ownership download the

ciphertexts and decrypt the symmetric key k and the file F ulteriorly. V sends

a challenge to every user in the set and asks a proof based on the file F . Upon

successfully completion of the protocol, the cloud server V is convinced that every

user Ui (1 6 i 6 n) has the file F . To conduct the protocol, V only needs to know

the short verification information v. In addition, no information about F is revealed

to V .

Theat Model. The multiple users Ui must answer the challenges from the cloud

server (verifier) V . If the users are failing to do so, it represents a failing joint proof

of ownership. However the users are not trusted, that is to say, some of the users

may try to convince the verifier alone with their own proofs. The motivations can

be various for their misbehavior. For example, a malicious user wants to tamper

with the working group’s documents by giving the verifier an forged ownership proof

which should be generated by all the group members. Additionally, the cloud server

V must verify the multiparty ownership of the stored encrypted file. However the

cloud server may not be fully trusted as well. That is to say, the cloud server may

7.2. Technique Preliminaries 98

m1 m2 mm

m1 m2 m3 m4 mm-1 mm

……

……

…… ……

H(m1,m2) H(mm-1,mm) H(m3,m4)

R(CTF) = ……

MTH, λ

Hroot

H(H(m1,m2), H(m3,m4)) H(H(mm-3,mm-2), H(mm-1,mm))

Figure 7.2: Build the Merkle-Tree.

try to retrieve the client C’s file through the proof protocol executions. A PMOW

protocol must detect the misbehavior of the users when someone cheats with the

forged joint proof of ownership. Moreover, it has to ensure that the cloud server

cannot learn any outsourced files through all the protocol executions.

7.2.1 Preliminaries

In this section, some notations are defined and the cryptographic tools which are

used as building blocks in PMOW construction are reviewed.

Notations. Let λ be a security parameter, a function ǫ(λ) is negligible if it is

smaller than λ−const for any const and sufficiently large λ. Let p be a large prime

and G be a group of prime order p. Let H(·) be a collision-resistant hash function

that maps binary strings of arbitrary length to binary strings of a fixed length, i.e.,

H : {0, 1}∗ → {0, 1}λ. The scheme also employs an erasure-code R(·) : {0, 1}F →
{0, 1}F ′

, resilient to erasure of α fraction of the bits (for some constant α > 0).

Namely, from any (1 − α)M ′ bits of R(F) it is possible to recover the original F .

Let Enc, Dec be the symmetric encryption/decryption algorithms. Denote MTH,λ

(with respect to hash function H) as the Merkle-tree and MTPH(v,m, u) as the

7.2. Technique Preliminaries 99

Merkle-tree protocol where the verifier knows the root value v and number of leaves

m, and asks to see u leaves of the tree and their sibling paths.

Merkle-tree Lemma. A Merkle tree can provide a commitment to a large input

file. With this commitment, it is later possible to verify individual blocks of the

file without giving the entire input buffer. The same method is used to construct

the Merkle tree in [HHPSP11] . Firstly, the large input file is divided into blocks.

Secondly, group these blocks in pairs and use a collision-resistant hash function to

hash each pair. Then the hash values are grouped again in pairs and each pair

is further hashed until reach the root hash value. At last it constructs a binary

tree with the leaves corresponding to the file blocks and the root corresponding

to the last remaining hash value. In the following the notations in [HHPSP11]

are used. MTH,λ (with respect to hash function H) denotes the Merkle-tree and

MTPH(v,m, u) denotes the Merkle-tree protocol where the verifier knows the root

value v and number of leaves m, and asks to see u leaves of the tree and their sibling

paths (for a leaf node l ∈MTH,λ, the sibling path of l consists of all the sibling nodes

on the path from l to the root). The following lemma shows that every prover that

passes the Merkle-tree protocol with high enough probability can be converted into

an extractor that extracts most of the leaves of the tree. The security of Merkle-tree

lemma has been proved in [HHPSP11].

Lemma 7.1 There exists a black-box extractor K with oracle access to a Merkle-tree

prover, that has the following properties:

• For every prover P and v ∈ {0, 1}∗, m,u ∈ N and β ∈ [0, 1], KP (v,m, u, β)

makes at most u2s(log(s)+1)
β

calls to its prover oracle P .

• Fix any hash function h and input buffer F with m leaves of λ-bits each, and

let v be the root value of MTh,λ. Also fix some u ∈ N and a prover (that may

depend on h, F and u) P ∗ = P ∗(h, F, u).

Then if P ∗ has probability at least (1−α)u+β of convincing the verifier in MTPh(v,m, u)

(for some α, β ∈ (0, 1]), then with probability at least 1
4
(over its internal random-

ness) the extractor KP ∗

(v,m, u, β) outputs values for at least a (1 − α)-fraction of

the leaves of the tree, together with valid sibling paths for all the leaves.

7.2. Technique Preliminaries 100

7.2.2 Formal Definitions

The syntax of the proposed proof of multiparty ownership (PMOW) scheme is

given as follows.

Definition 7.1 (Proof of Multiparty Ownership Scheme) A proof of multiparty own-

ership scheme consists of four polynomial-time algorithms (KeyGenC, KeyGenU ,

FilePrepC, FilePrepU) and an interactive multiparty protocol (Proof) that captures

the properties including strong proof-of-ownership.

KeyGenC . This algorithm is run by the client who outsource the file. This

algorithm takes as input a security parameter λ and gives as output the client’s key

pair (CPK, CSK).

KeyGenU . This algorithm is run by the user. KeyGenU takes as input the

security parameter λ and outputs a pair of matching public and secret keys (PK,

SK).

FilePrepC . This algorithm is run by the client to prepare the file before out-

sourcing. It takes as input (F ,PKUi
,CSK) and gives as output the ciphertext of

CTF .

FilePrepV . This algorithm is run by the cloud server to prepare the verification

information. It takes as input CTF and gives as output the verification information

v on file CTF .

Proof. This is a tuple of multiparty interactive algorithms ({ProofUi
}, ProofV)

executed by the users and the cloud server (verifier) respectively. The input of

ProofUi
is (CTF , CPK, SKUi

). The input of ProofV is (v, PKUi
, CTF). Upon

completion of the protocol, ProofV outputs 1 if the proof is accepted, and 0 other-

wise.

Definition 7.2 (Correctness) A proof of multiparty ownership scheme is correct if

for (CPK, CSK) output by KeyGenC, for all key pairs (PK, SK) output by

KeyGenU , for all CTF output by FilePrepC with input (F ,PKUi
,CSK), for all

verification information v output by FilePrepV with input CTF , ProofV with input

(CTF , PKUi
) outputs 1 if it is interacting with all the ProofUi

with input (CTF ,

CPK, SKUi
).

7.3. The Proposed Scheme 101

7.3 The Proposed Scheme

Firstly, a short review of Cramer and Shoup’s CCA2 encryption scheme [CS98]

and Desai’s CCA2 Unbalanced Feistel Encryption (UFE) scheme [Des00] is given.

Secondly, the proof protocol between the cloud server (verifier) and the multiple

users (prover) is described. Thirdly, the main construction of the proposed scheme is

presented. The proposed construction is based on the original scheme in [HHPSP11]

and Cramer and Shoup’s CCA2 encryption scheme is used to encrypt CSK.

7.3.1 Cramer and Shoup’s CCA2 encrytion scheme

KeyGeneration. Choose random elements g1, g2 ∈ G and x1, x2, y1, y2, z ∈ Zp.

Choose a hash function H from the family of universal one-way hash functions.

Then the private key is (x1, x2, y1, y2, z), the public key is (g1, g2, e, d, h, H) where

e = gx1

1 · gx2

2 , d = gy11 · gy22 , h = gz1.

Encryption. Given a symmetric key k ∈ G, the encryption algorithm chooses

r ∈R Zp and generates the ciphertext CT = (c1, c2, c3, c4) where c1 = gr1, c2 = gr2,

c3 = hr · k and c4 = (gx1

1 gx2

2)r · (gy11 gy22)r·H(c1,c2,c3).

Decryption. Given a ciphertext CT , this algorithm computes ω = H(c1, c2, c3) and

test if cx1+y1ω
1 · cx2+y2ω

2 equals to c4. If yes, this algorithm outputs k = c3/c
z
1.

7.3.2 Desai’s CCA2 UFE scheme

Desai’s UFE scheme is a CCA2 symmetric encryption scheme which is based on a

variable-length input pseudorandom function (VI-PRF) and a variable-length out-

put pseudorandom function (VO-PRF). A VI-PRF is a function that takes inputs of

any pre-specified length or of variable length and outputs some fixed length. Some

efficient constructions of VI-PRFs are the CBC-MAC variant analyzed by Petrank

and Rackoff [PR00] and the “three-way” variants of Black and Rogaway [BR00]. A

VO-PRF is a function that takes inputs a fixed-length part and a part specifying the

length of the required output, outputs some pre-specified length or variable length.

A simple and efficient VO-PRF has been presented in [Des00]. Denote Kvi−prf and

Kvo−prf are the randomized key generation algorithms for VI-PRF and VO-PRF

respectively. Let I : Kvi−prf × {0, 1}∗ → {0, 1}λ be a VI-PRF. Let G : Kvo−prf ×
{0, 1}∗ × 1∗→ {0, 1}∗ be a VO-PRF. The UFE scheme is as following.

7.3. The Proposed Scheme 102

KeyGeneration. This algorithm specifies a key k = k1‖k2 (|k1| = |k2|) where

k1 ← Kvi−prf and k2 ← Kvo−prf .

Encryption. Given a file F , this algorithm chooses a random r ← {0, 1}λ, computes

C = F ⊕Gk2(r) and σ = r ⊕ Ik1(C), and outputs a ciphertext CT = C‖σ.

Decryption. Given a ciphertext CT , this algorithm firstly parses CT as C‖σ where

|σ| = λ and then computes r = σ ⊕ Ik1(C). The output of this algorithm is F =

C ⊕Gk2(r).

7.3.3 Main Construction

The main construction of the proposed scheme is as follows.

KeyGenC . Takes the security parameter λ as input, this algorithm outputs the

symmetric key k = k1‖k2.

KeyGenU . This algorithm takes as input the security parameter λ and gives as

output (pki, ski) for user set I ⊂ {1, · · · , n}. For each user i ∈ I, this algorithm

chooses random elements g1, g2 ∈ G and xi1, xi2, yi1, yi2, zi ∈ Zp, computes

ei = g1
xi1 · g2xi2 , di = g1

yi1 · g2yi2 , hi = g1
zi .

Then the public key pki = (g1, g2, ei, di, hi, H) and the secret key ski = (xi1, xi2, yi1,

yi2, zi).

FilePrepC({pki}i∈I , k, F) → (CTF , {CTi}i∈I). This algorithm takes as input the

file F , the symmetric key k and all pki for i ∈ I, it outputs the ciphertext of file F

as CTF = C‖σ where C = F ⊕Gk2(r1) and σ = r1⊕ Ik1(C) for r1 ← {0, 1}λ. It also
outputs the ciphertexts CTi as CTi = (Ci1, Ci2, Ci3, Ci4) where Ci1 = gr21 , Ci2 = gr22 ,

Ci3 = hr3
i · k, and Ci4 = (g1

xi1g2
xi2)r2 · (g1yi1g2yi2)r2·H(Ci1,Ci2,Ci3) for r2 ∈R Zp.

FilePrepV (CTF → v) Before generating the verification information v, the input

buffer CTF is firstly pre-processed into R(CTF)by using the erasure-code R(·). Di-
vides R(CTF) into m = ⌈ |R(CTF)|

λ
⌉ blocks. In the following, each block is referred

as mj for 1 6 j 6 m. This algorithm then construct a binary Merkle-tree MTH,λ,i

(with respect to hash function H) on the data blocks mj as m leaf nodes. It groups

the hashed leaves in pairs and continue to hash each pair until reach the root node

Hroot. At last, this root node is stored as the verification information v.

7.3. The Proposed Scheme 103

Proof. The tuple of algorithms {ProofUi
}i∈I , ProofV interact as follows.

• ProofV sends the ciphertexts CTF , CTi to ProofUi
.

• ProofUi
computes ω = H(Ci1, Ci2, Ci3) and tests if

Cxi1+yi1·ω
i1 · Cxi2+yi2·ω

i2
?
= Ci4.

If yes, then computes

k = k1‖k2 = Ci3

C
zi
i1

, r1 = σ ⊕ Ik1(C), F = C ⊕Gk2(r1).

• ProofV runs MTPH(v,m, u) and chooses random u leaf nodes, where u is

the smallest integer such that (1 − α)u < ǫ for desired soundness bound ǫ.

ProofV also randomly chooses c, d ∈R Zp and computes D = gc1 · gd2 . Let

L ⊂ {1, · · · , u} be the index set of the leaf nodes. ProofV sends L and D to

ProofUi
as the challenge.

• ProofUi
first computes A = k · yiti for some random ti ∈ Zp, yi ∈ G. Then

ProofUi
chooses ρzi ,ρti , ρxi1

, ρxi2
, ρyi1 , ρyi2 ∈R Zp and computes

Ti1 = C
ρzi
i1 · yi−ρti ,

Ti2 = g
ρzi
1 ,

Ti3 = C
ρxi1
i1 · (Cω

i1)
ρyi1 · Cρxi2

i2 · (Cω
i2)

ρyi2 ,

Ti4 = g
ρxi1
1 · gρxi22 ,

Ti5 = g
ρyi1
1 · gρyi22 .

ProofUi
next constructs the Merkle-tree MTH,λ which is corresponding with

{mj}16j6m. Denote Pj the set of all the sibling nodes on the path from leaf

mj to root Hroot in MTH,λ. After that, ProofUi
sends ProofV the proof (A,

Ti1, Ti2, Ti3, Ti4, Ti5, {mji}j∈L,i∈I , {Pji}j∈L,i∈I}).

• ProofV randomly sends the challenge c, d to ProofUi
.

• ProofUi
checks if D = gc1 · gd2 and computes

zzi = ρzi − c · zi, zti = ρti − c · ti,
zxi1

= ρxi1
− c · xi1, zxi2

= ρxi2
− c · xi2,

zyi1 = ρyi1 − c · yi1, zyi2 = ρyi2 − c · yi2.

and sends (zzi , zti , zxi1
, zxi2

, zyi1 ,zyi2) to ProofV .

7.4. Security Requirement 104

• ProofV generates {Hroot}i∈I according to ({lji}j∈L,i∈I , {Pji}j∈L,i∈I) and com-

putes v′ = H({Hroot}i∈I). It outputs 1 if the following equations hold

v′
?
= v,

Ti1
?
= [

Ci3

A
]c · Czzi

i1 · (y−1)zti ,

Ti2
?
= hc

i · g
zzi
1 ,

Ti3
?
= Cc

i4 · C
zxi1
i1 · (Cω

i1)
zyi1 · Czxi2

i2 · (Cω
i2)

zyi2 ,

Ti4
?
= eci · g

zxi1
1 · gzxi22 ,

Ti5
?
= dci · g

zyi1
1 · gzyi22 .

and 0 otherwise.

7.4 Security Requirement

There are two security requirements that a construction of PMOW scheme must

possess. One concerns about joint proof of ownership. Specifically, in a PMOW

scheme with joint proof of ownership, a valid proof can only be generated by all

privilege users who have the whole file F . Another one regards indistinguishability.

In a PMOW scheme with indistinguishability, no cloud server should be able to

learn the verified file during the proof executions.

7.4.1 Joint proof of ownership

This requirement is formalized by using security game played between a challenger C
and an adversary A. In the PMOW-game, the challenger C denotes the cloud server

and the adversaryA = (A1,A2) denotes n cheating users. A1 controls all the users

and can make arbitrary queries to the challenger. A2(sti) presents a user i with

input the state information sti. The game is divided into two phases, the learning

phase and the proof phase. In the learning phase, A1 generates arbitrary state

information after querying the challenger; in the proof phase, every user A2(sti)

generates his proof without any interaction.

PMOW-game

• Setup: The challenger C runs KeyGenC to generate a key pair (CPK, CSK).

The challenger C also runs KeyGenU to generate n key pairs (PK∗,SK∗). The

adversary A is given (CPK, PK∗,SK∗).

7.4. Security Requirement 105

• Phase 1: For any file F , the adversary A1 can make arbitrary queries to

the challenger C before the proof protocol begins. For (PK∗, SK∗), the chal-

lenger generates the verification information v and returns the ciphertext

of CTF and CSK. The adversary A1 outputs arbitrary state information

(st1, st2, · · · , stn).

• Phase 2: The adversary A2 takes input the state information sti, 1 6 i 6 n

individually. Without any interaction, A2(st1), A2(st2), · · · , A2(stn) output

a prover machine P and a joint proof v′.

Informally speaking, the joint proof of ownership property requires that if P can

pass through the proof protocol with C, A2(sti) should be in possession of the file

CTF and symmetric key k. This can be formalized as follows.

Definition 7.3 (Soundness) A PMOW scheme is sound if there exist a knowledge

extractor K = (K1,K2) that can recover CTF and CSK from every A2(sti) (1 6 i 6

n) with non-negligible probability.

Theorem 7.2 The construction of a PMOW scheme captures the joint proof of

ownership if Halevis POW scheme is secure in the random oracle model.

Proof. The proof is divided into two parts. In the first part, the construction of

a PMOW scheme is proven to be a proof of ownership protocol with soundness

(1 − α)u. Assume that there is an adversary A2(sti) that breaks the joint proof-

of-ownership property. Specifically, it is assumed that the erasure code can correct

erasure of up to α-fraction of the input. It is also assumed that the adversary

A2(sti) runs an most qk proof protocols and succeeds in convincing the cloud server

with probability better than t(1−α)u + β (t denotes the bits of min entropy of any

input distribution D) for a non-negligible β.

Now it is shown how to construct the extractor K1. Note that K1 will only be

used in proofs. It is an extractor from Merkle-tree lemma (which says that every

prover that passes the Merkle-tree protocol with high enough probability can be

converted into an extractor that extracts most of the leaves of the tree). If a prover

P ∗ has probability at least (1 − α)u + β of convincing the verifier in the Merkle-

tree protocol (for some α, β ∈ (0, 1]), then with probability at least 1/4 (over its

internal randomness) the extractor K outputs values for at least a (1 − α)-fraction

7.4. Security Requirement 106

of the leaves of the tree, together with valid sibling paths for all these leaves. In

[HHPSP11], the security of Merkle-tree lemma has been proven.

A simulator S is created. S gets as input a random hash function H ∈ H. The
simulator S chooses the encrypted file CTF ∈ D and runs the PMOW game with

the challenger. Whenever the adversary A2(sti) begins a new interaction with the

challenger C, the simulator S uses the extractor K1 to extract a (1−α)-fraction of the

leaves of the tree. If these (1−α) fraction of the leaves differ from the corresponding

leaves in CTF , then the simulator S extracts a collision for the hash function h form

the Merkle tree, since both the paths in the real tree MTH,λ(F) and the paths given

by the adversary A2(sti) (who is the prover) are valid.

As it is also assumed that the adversary (the same as the extractor) is missing at

least slackness s bits of min-entropy about encrypted file CTF , then the probability

of the extractor K1 outputting (1−α)-fraction of CTF is at most 2−s. It is assumed

that the adversary wins the game in at least one of the k executions of the protocol

with probability at least (1− α)u + β/k. Hence with probability at least β/2k over

the choice of H ∈ H, this function H still leaves the adversary with probability

greater than (1 − α)u + β/2k of convincing the verifier in the protocol execution.

For such hash function H, the extractor K1 will have probability of at least 1/4 to

output (1 − α)-fraction of the leaves. Hence for such function h, collisions can be

found with probability at least 1/4− 2−s, and the overall collision probability is at

least β/2k · (1/4− 2−s) ≈ β/8k.

Thus, whenever the adversary A2(sti) begins a successful interaction with the

challenger C, the extractor K1 can extract 1−α
m

leaves of lij for every A2(sti), 1 6

i 6 n. That is to say, the extractor K1 can output enough leaves to extract CTF

from every A2(sti) will take
m2

(1−α)·β
interactions.

In the second part, the construction of a PMOW scheme is proven to be a joint

proof of ownership protocol. Now it is shown how to construct the extractor K2.

As the same as K1, K2 will only be used in proofs too. It is an algorithm that runs

in probabilistic polynomial time on input the prover machine P , CPK and PKUi
.

The output of the extractor K2 is the symmetric key k and SKUi
.

The knowledge extractor K2 will work in the following way: If the prover machine

P responds correctly to an initial challenge c, then K2 rewinds P and issues a

different challenge c′ for which P also responds correctly. If the extractor K2 can

find two such challenges c and c′, then K2 has the following equations:

7.4. Security Requirement 107

Ti1 = [
Ci3

A
]c · Czzi

i1 · (y−1)zti = [
Ci3

A
]c

′ · Cz′zi
i1 · (y−1)z

′
ti ,

Ti2 = hc
i · g

zzi
1 = hc′

i · g
z′zi
1 ,

Ti3 = Cc
i4 · C

zxi1
i1 · (Cω

i1)
zyi1 · Czxi2

i2 · (Cω
i2)

zyi2 = Cc′

i4 · C
z′xi1
i1 · (Cω

i1)
z′yi1 · Cz′xi2

i2 · (Cω
i2)

z′yi2 ,

Ti4 = eci · g
zxi1
1 · gzxi22 = ec

′

i · g
z′xi1
1 · gz

′
xi2

2 ,

Ti5 = dci · g
zyi1
1 · gzyi22 = dc

′

i · g
z′yi1
1 · gz

′
yi2

2 .

If denotes △c = c′ − c, △zzi = z′zi − zzi , △zti = z′ti − zti , △zxi1
= z′xi1

− zxi1
,

△zxi2
= z′xi2

− zxi2
, △zyi1 = z′yi1 − yxi1

, △zyi2 = z′yi2 − zyi2 , from the above equations

it can have

[
Ci3

A
]△c = C

−△zzi
i1 · (y−1)−△zti ,

h△c
i = g

−△zzi
1 ,

C−△c
i4 = C

△zxi1
i1 · (Cω

i1)
△zyi1 · C△zxi2

i2 · (Cω
i2)

△zyi2 ,

e−△c
i = g

△zxi1
1 · g△zxi2

2 ,

d−△c
i = g

△zyi1
1 · g△zyi2

2 .

Then it has

Ci3

C
△zzi
i1

= A · y−
△zti
△c ,

hi = g
−

△zzi
△c

i ,

Ci4 = C
−

△zxi1
△c

i1 · (Cω
i1)

−
△zyi1
△c · C−

△zxi2
△c

i2 · (Cω
i2)

−
△zyi2
△c ,

ei = g
−

△zxi1
△c

1 · g−
△zxi2
△c

2 ,

di = g
−

△zyi1
△c

1 · g−
△zyi2
△c

2 .

Thus the knowledge extractor K2 can compute k = A · y−
△zzi
△c , zi = −△zzi/△c,

xi1 = −△zxi1
/△c, xi2 = −△zxi2

/△c, yi1 = −△zyi1/△c and yi2 = −△zyi2/△c. In

other words, the extractor K2 can obtain k and SKUi
from the above equations.

The extraction is required to be succeed (with all but negligible probability) from

the adversary A2(sti) (prover) that causes the challenger C (verifier) to accept with

a non-negligible probability β. Then the knowledge extractor K2 can recover the

symmetric key k from such an adversary will take O(n/β) interactions.

7.4. Security Requirement 108

7.4.2 Indistinguishability under chosen ciphertext attack

The indistinguishability against adaptive chosen ciphertext attack is defined as the

following game between the challenger C and the adversaryA. In the Indistinguishability-

game, the challenger C denotes the client and honest users and the adversary A
denotes a cheating cloud server who wants to learn the file that are stored in clouds.

Indistinguishability-game

• Setup: The challenger C takes a sufficiently large security parameter and

runs KeyGenC to generate a key pair (CPK, CSK). The challenger C also

runs KeyGenU to generate n key pairs (PKi, SKi) for user set {Ui}i∈I . The
adversary A is given (CPK, PKi).

• Query Phase 1: The adversary A can perform a polynomially bounded

number of following queries in an adaptive manner:

– FilePrep Query: A submits a file F . C chooses a random symmetric key

k and replies with

FilePrep(F , {Ui}i∈I) = (CTF , {CTi(k)}i∈I).

– Reveal Query: A submits the ciphertexts of CT ′
F and {CT ′

i (k)}i∈I . C
replies with file F .

– Proof Query: A submits the ciphertexts of CTF and {CTi(k)}i∈I , and
the user set {Ui}i∈I . C replies with Proof .

• Challenge Phase: A gives two messages F ∗
0 and F ∗

1 to the challenger C. C
randomly picks a bit b and sends (CT ∗

Fb
, {CT ∗

i (k)}i∈I) to A as returns.

• Query Phase 2: The adversary A can issue the same type of queries as

query phase 1, except it cannot submit reveal queries with input (CT ∗
Fb
,

{CT ∗
i (k)}i∈I).

• Guess Phase: A outputs a guess b∗.

The advantage of an adversary A in the Indistinguishability-game is defined to

be

AdvA = Pr[b∗ = b]− 1
2
.

7.4. Security Requirement 109

Definition 7.4 (Indistinguishability) A construction of PMOW is IND-CCA se-

cure if no PPT adversary A can win Indistinguishability-game with non-negligible

advantage.

Theorem 7.3 The construction of a PMOW is secure if Cramer and Shoups

scheme is CCA2 secure.

Proof. Assume there exist an adversary A that can win the Indistinguishability

game with non-negligible probability ǫ. Then a simulator S which interacts with

the adversary A can be constructed. In order to simplify the proof, an ideal cipher

Enc is used, instead of Desais CCA2 symmetric encryption scheme. S runs in the

following way:

• Setup. S receives the public keys PKi of the encryption schemes. Based on

the public keys PKi, S chooses a hash function H(·) and an erasure code R(·).
Then S sends all the public parameters to the adversary A.

• Queries Simulation. S simulates all the queries as follows.

– FilePrep Query: S maintains an ideal cipher table of triples (k, F, CTF)

of answered queries CTF = Enck(F). The ideal cipher table is referred

as “Enc-table”. If there exists a tuple (k, F, CTF) in the Enc-table, S
returns CTF . Else, S computes the value CTF = Enc(k, F) and records

(k, F, CTF) in the Enc-table. Upon receiving the fileprep query for a file

F , S chooses a random key k, searches the Enc-table and outputs the

ciphertexts (CTF , CTi(k)) where CTF = Enck(F) and {CTi(k)}i∈I =

{(Ci1, Ci2, Ci3,Ci4)}i∈I where Ci1 = gr21 , Ci2 = gr22 , Ci3 = hr3
i · k, and

Ci4 = (g1
xi1g2

xi2)r2 · (g1yi1g2yi2)r2·H(Ci1,Ci2,Ci3) for r2 ∈R Zp.

– Reveal Query: DefineDO1 as the decryption oracle of Cramer and Shoups

scheme and DO2 as the decryption oracle of ideal cipher Enc. If there

exists a tuple (k, F, CTF) in the Enc-table, DO2 answers F . Other-

wise, DO2 picks a random F ← {0, 1}λ, records (k, F, CTF) in the Enc-

table and returns F while making sure that no collision is created for

Enc−1(k, ·). Upon receiving the reveal query for the ciphertexts of CT ′
F

and {CT ′
i (k)}i∈I . S uses DO1 and DO2 to output the file F .

7.4. Security Requirement 110

– Proof Query: Upon receiving the proof query for the ciphertexts of CTF

and {CTi(k)}i∈I , and the user set {Ui}i∈I . S produces an interaction that

is indistinguishable form the adversary’s interaction with the provers. In

other words, S plays the role of a full zero-knowledge simulator for proof

queries.

∗ A sends the values I, u, D to S.
∗ S randomly picks and sends T ′

i1, T
′
i2, T

′
i3, T

′
i4, T

′
i5, A

′, C ′
i1, C

′
i2, C

′
i3,

C ′
i4 ∈R Zp to A.

∗ A returns c, d to S.
∗ S validates D = gc1 · gd2 and rewinds the verifier to the point when it

receives the tuple (I, u,D).

∗ S randomly picks zzi , zti , zxi1
, zxi2

, zyi1 , zyi2 , A, Ci1, Ci2, Ci3, Ci4

∈R Zp and computes the following values for ω = H(Ci1, Ci2, Ci3):

v′ = v,

Ti1 = [
Ci3

A
]c · Czzi

i1 · (y−1)zti ,

Ti2 = hc
i · g

zzi
1 ,

Ti3 = Cc
i4 · C

zxi1
i1 · (Cω

i1)
zyi1 · Czxi2

i2 · (Cω
i2)

zyi2 ,

Ti4 = eci · g
zxi1
1 · gzxi22 ,

Ti5 = dci · g
zyi1
1 · gzyi22 .

To the adversary A all the distributions given by S are indistinguish-

able from the real one generated by the provers.

• Challenge. A submits two messages F ∗
0 and F ∗

1 . S chooses two random

keys k∗
0, k

∗
1, flips a fair coin b ∈ {0, 1}, and computes CT ∗ = Enc(kb, Fb) and

{CT ∗
i (k)} = Encpki(kb) for i ∈ I.

Suppose there exists an adversary A which can win the Indistinguishability game

with non-negligible probability 1
2
+ ǫ, in the following it is shown that the simulator

S can breaks the CCA2 security of Cramer and Shoups encryption scheme Enc.

The adversary A is given the ciphertexts of CT ∗ = Enc(kb, Fb) and {CT ∗
i (k)} =

Encpki(kb) for i ∈ I. If A can win the game with non-negligible probability 1
2
+ ǫ,

the simulator S can distinguish the ideal cipher textbfEnc from a random funtion

correctly with a probability 1
2
+ ǫ

2
. The reason is that if Enc is a random function,

7.5. Complexity Analysis 111

• Setup. The client C invokes the algorithm KeyGenC to generate a
symmetric key k and also invokes the algorithm KeyGenU to gener-
ate n pairs of matching public and secret keys (pki, ski) for user set
I ⊂ {1, · · · , n}. C then invokes FilePrepC for file F and sends the
ciphertexts (CTF , CTi) to the cloud server V . V invokes FilePrepV

to construct the binary Merkle-tree MTH,λ and generate the verification
information v. Note that V only access the verification information v
during the protocol executions.

• Proof. V verifies the proof of multiparty ownership by invoking the
interactive algorithm Proof with the multiple users Ui.

Figure 7.3: A PMOW System

probability that A wins is exactly 1/2 since CT ∗ contains no information about b.

On the other hand, if Enc is not a random function, A can win with probability
1
2
+ ǫ. Then the simulator S can answer correctly with probability 1

2
+ ǫ

2
. Thus the

simulator S can break the CCA2 security of Cramer and Shoups encryption scheme

with non-negligible probability 1
2
+ ǫ

2
.

7.5 Complexity Analysis

In this section, a PMOW system is first given. Then the complexity of the proposed

scheme is analyzed, in the aspects of communication, computation and storage costs.

7.5.1 A PMOW System

A PMOW system can be constructed as in Figure 7.3, from the proposed scheme

in two phases: Setup and Proof . It should be emphasized that the cloud server

only accesses the small verification information v, rather than the stored encrypted

file when verifying the joint proof. Moreover, the cloud server does not retrieve any

data during the proof executions.

7.5.2 Complexity Analysis

Communication Costs. On the client side, the communications only occur in

Setup phase and the cost is O(n) as the client needs to send the cloud server the

ciphertexts of the symmetric key for all the users. The communications only occur

7.5. Complexity Analysis 112

in Proof phase on both of verifier and user side, and the costs are O(n) and O(u)

respectively.

Storage Costs. The additional storage costs which are brought by the proposed

scheme are considered. The storage cost mainly occurs on the verifier side as all the

ciphertexts are outsourced to cloud storage. Separate analysis of the storage cost is

given on the client side, the verifier side and the user side.

• Client side. The client has to store the symmetric key for the file. In addition,

he has to store the matching public and private keys for the multiple users.

The total cost is 2|k| + 11n · |p| bits (k is the key length for VO-PRF and

VI-PRF, e.g., |k| = 128bit).

• Verifier side. The cloud server has to store the verification information v, and

all the public keys for the users. In addition, he has to store all the ciphertexts

and the symmetric key. Denote |M | as the total length of the outsourced file

F . Then the cost is |M |+ 2|λ|+ 10n · |p| bits.

• User side. Every user needs to store the corresponding public keys, private

keys and the file F . The total storage cost for n users is |M |+ 11n · |p| bits.

Computation Costs. Separate analysis of the computation costs is also given on

the client side, the verifier side and the user side.

• Client side. The computation cost on the client side only occurs in Setup

phase, for encrypting the input file F and the symmetric key k for the user set

I ⊂ {1, · · · , n}. The computation cost of the client is 19nTexp(|p|, p) +T n
hash

+T 7n
multi +T 2

xor +T 2
prf , where Texp(len, num) is the time cost for computing a

modular exponentiation with a len-bit long exponent modular num, T n
hash is

the time cost of n hashing operations, T n
multi is the time cost of n multipli-

cations, T n
xor is the time cost of n xor operations and T n

prf is the time cost

of n pseudorandom functions (either V O − PRF or V I − PRF). The time

complexity on the client side is O(n).

• Verifier side. The cloud server needs to generate the verification information

v and check whether the six equations hold. During the whole protocol exe-

cution, the cloud server has to do (m − 1) hashing operations, 16n modular

7.6. Conclusion 113

exponentiations and 14n multiplications. The computation cost on verifier

side is 16nTexp(|p|, p) +T (m − 1)hash +T 14n
multi. The time complexity on the

verifier side is O(n).

• User side. The main computation cost on the user side occurs for generating

the joint proof. For every user i ⊂ I, he needs to compute m − 1 + 1 hash,

nineteen multiplications, eight additions, fifteen modular exponentiations, two

xor operations and two pseudorandom functions. Thus the computation cost

on user side is 15Texp(|p|, p) +Tm
hash +T 19multi +T 8

add +T 2
xor +T 2

prf where T n
add

is the time cost of n additions. As m = ⌈ |R(CTF)|
λ
⌉, the time complexity on the

user side is O(1).

7.6 Conclusion

In this chapter, the solution of proof-of-multiparty-ownership (PMOW) is pro-

posed. Multiple users can prove to a cloud server about their joint ownership, when

they do not send the file to the server actually. Additionally, the cloud server stores

one ciphertext only. In client-side deduplication, the proposed proposal can counter

the attacks as follows: 1) Malicious users cheat on the cloud server about their joint

ownership, when some users do not have the file, 2) the untrusted cloud server re-

veals the client’s file, 3) when an attacker has a short information of the file, he fools

the cloud server about his ownership. Two definitions for security are defined and

CCA2 security is achieved under the ideal cipher model. The full proof analysis and

complexity analysis of the proposed scheme are also presented.

Chapter 8

Conclusions

8.1 Summary of The Contributions

The contributions of this thesis can be briefly concluded as follows.

8.1.1 Key Management in Cloud Computing

Data encryption before outsourcing to the cloud is a common and simple way to

protect data privacy. Although the encryption algorithms are public, information

encrypted under these algorithms is secure because the key used to encrypt the

data remains secret. As a result, key management is a critical element in cloud

computing. It is the ability to correctly assign, secure and monitor keys that defines

the level of operational security provided by any encryption implementation.

In Chapter 3, it is found that a traditional tree-based approach has some draw-

backs. In a traditional tree-based key management hierarchy, a node key holder

can derive all the child keys. In order to solve this problem and maintain the key

management feature, in this chapter OWUR/W applications for data sourcing were

proposed and a secure and flexible tree-based key derivation hierarchy was presented.

The proposed tree-based key derivation hierarchy allowed the outsourcing party to

access the data block located at a specified node, while not being able to access

the data blocks encrypted with child keys. It is believed that the proposed tree-

based outsourcing key management opens up an entirely new approach for secure

and flexible key management.

8.1.2 Access Control in Cloud Computing

Unlike the traditional access control in which the data users and storage servers are

in the same trusted domain, access control techniques are very different in cloud

114

8.1. Summary of The Contributions 115

computing as the cloud servers are not considered trustworthy by most cloud users,

especially large enterprises and organizations. One possible method to enforce data

access control without relying on cloud servers could be to encrypt data and disclose

the corresponding decryption keys only to the privileged users, but that causes high

performance costs. A fine-grained access control which is efficient and secure is

necessary for cloud computing.

In Chapter 4, an encryption scheme for a two-tier system was presented to achieve

flexible and fine-grained access control in the cloud. Most of the computation-

intensive tasks were delegated to cloud servers without leaking private data. The

security of the proposed scheme was also proven in the standard model.

8.1.3 Searchable Encryption Techniques in Cloud Comput-

ing

As the data is usually encrypted before being outsourced to cloud servers, how to

search the encrypted data in the cloud has recently gained attention and led to the

development of searchable encryption techniques. This problem is challenging, how-

ever, because meeting performance, system usability and scalability requirements is

extremely difficult.

In Chapter 5, an efficient SPEKS was constructed. SPEKS is suitable for

keyword search in the cloud environment. Compared with the existing keyword

search schemes such as [LYCL11, WCRL12, ÖS12], the proposed construction is

much more efficient from the point of view of both the data owner and the cloud

servers. In addition, the security of the proposed scheme had been proved in the

standard model.

8.1.4 Remote Integrity Check

Storing data in the remote cloud servers has become common. As the clients store

their important data in remote cloud servers without a local copy, it is important

to check remote data integrity (RIC). While it is easy to check data integrity after

completely downloading the data, it is a large waste of communication bandwidth.

Hence, designing efficient remote integrity check protocols without downloading the

data is an important security issue in the cloud.

In Chapter 6, a privacy-preserving RIC protocol was proposed. The proposed

8.2. Future Work 116

protocol achieved public verifiability without disclosing any information. It is en-

sured that no information about the original data would be leaked. In fact, the

verifier was only required to know the public key of the data owner. The experimen-

tal results indicated that the proposed scheme is efficient especially when the size

of the data file is large or the integrity check is frequent. The full proofs of security

was also given under the random oracle model.

8.1.5 Proof of Ownership

Beyond storage integrity, proof of ownership (POW) is another security issue related

to cloud data storage. Client-side deduplication allows an attacker to gain access

to arbitrary-size files when he has small hash signatures of these files. To overcome

such attacks, the technique of POW allows a user efficiently prove to a cloud server

about his ownership, rather than some short information (i.e. a short hash value of

the file).

In Chapter 7, an innovative PMOW scheme for proof of multiparty ownership

with the encrypted data was proposed. Every user can prove to the server that he

holds the plaintext of the encrypted file when the server stores one ciphertext only.

The proposed solution achieved CCA2 security and the full proof analysis was given

in the ideal cipher model.

8.2 Future Work

How to design efficient dynamic POR schemes is still an open problem. In addition,

how to prevent malicious cloud users from abusing cloud resources is still a security

issue (i.e., malicious data hosting or bonnet command and control). One way to solve

this problem is to monitor the cloud usage more strictly, however this is inevitably

in conflict with legal users’ privacy rights. Further research is needed.

Bibliography

[ABC+07] Giuseppe Ateniese, Randal C. Burns, Reza Curtmola,

Joseph Herring, Lea Kissner, Zachary N. J. Peterson, and

Dawn Xiaodong Song. Provable data possession at untrusted

sto/Users/hg/Library/Containers/com.apple.TextEdit/Data/Desktop/Thesis

by Miao/MyThesis/Thesis.bblres. In ACM Conference on Computer

and Communications Security, pages 598–609, 2007.

[ABC+11] Giuseppe Ateniese, Randal C. Burns, Reza Curtmola, Joseph Herring,

Osama Khan, Lea Kissner, Zachary N. J. Peterson, and Dawn Song.

Remote data checking using provable data possession. ACM Trans.

Inf. Syst. Secur., 14:1–34, 2011.

[ABFF09] Mikhail J. Atallah, Marina Blanton, Nelly Fazio, and Keith B. Frikken.

Dynamic and efficient key management for access hierarchies. ACM

Trans. Inf. Syst. Secur., 12(3), 2009.

[AFB05] Mikhail J. Atallah, Keith B. Frikken, and Marina Blanton. Dynamic

and efficient key management for access hierarchies. In ACM Confer-

ence on Computer and Communications Security, pages 190–202, 2005.

[AFGH05] Giuseppe Ateniese, Kevin Fu, Matthew Green, and Susan Hohenberger.

Improved proxy re-encryption schemes with applications to secure dis-

tributed storage. IACR Cryptology ePrint Archive, 2005:28, 2005.

[ASB+12] Abdulrahman Almutairi, Muhammad I. Sarfraz, Saleh Basalamah,

Walid G. Aref, and Arif Ghafoor. A distributed access control ar-

chitecture for cloud computing. IEEE Software, 29(2):36–44, 2012.

117

BIBLIOGRAPHY 118

[ASM10] Man Ho Au, Willy Susilo, and Yi Mu. Proof-of-knowledge of repre-

sentation of committed value and its applications. In ACISP, pages

352–369, 2010.

[BCdV+09] Carlo Blundo, Stelvio Cimato, Sabrina De Capitani di Vimercati, Al-

fredo De Santis, Sara Foresti, Stefano Paraboschi, and Pierangela

Samarati. Efficient key management for enforcing access control in

outsourced scenarios. In SEC, pages 364–375, 2009.

[BCOP04] Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and Giuseppe

Persiano. Public key encryption with keyword search. In EURO-

CRYPT, pages 506–522, 2004.

[BEG+94] Manuel Blum, William S. Evans, Peter Gemmell, Sampath Kannan,

and Moni Naor. Checking the correctness of memories. Algorithmica,

12(2/3):225–244, 1994.

[BGG95] Mihir Bellare, Oded Goldreich, and Shafi Goldwasser. Incremental

cryptography and application to virus protection. In STOC, pages

45–56, 1995.

[BJO09] Kevin D. Bowers, Ari Juels, and Alina Oprea. Hail: a high-availability

and integrity layer for cloud storage. In ACM Conference on Computer

and Communications Security, pages 187–198, 2009.

[BKOI07] Dan Boneh, Eyal Kushilevitz, Rafail Ostrovsky, and William E. Skeith

III. Public key encryption that allows pir queries. In CRYPTO, pages

50–67, 2007.

[BKP09] Rakeshbabu Bobba, Himanshu Khurana, and Manoj Prabhakaran.

Attribute-sets: A practically motivated enhancement to attribute-

based encryption. In ESORICS, pages 587–604, 2009.

[BL96] Dan Boneh and Richard J. Lipton. Algorithms for black-box fields and

their application to cryptography (extended abstract). In CRYPTO,

pages 283–297, 1996.

[BLLS11] Mrinmoy Barua, Xiaohui Liang, Rongxing Lu, and Xuemin Shen. Es-

pac: Enabling security and patient-centric access control for ehealth in

cloud computing. IJSN, 6(2/3):67–76, 2011.

BIBLIOGRAPHY 119

[BLS01] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the

weil pairing. In ASIACRYPT, pages 514–532, 2001.

[BLS04] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the

weil pairing. J. Cryptology, 17(4):297–319, 2004.

[BP06] Bruno Blanchet and David Pointcheval. Automated security proofs

with sequences of games. In CRYPTO, pages 537–554, 2006.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A

paradigm for designing efficient protocols. In ACM Conference on

Computer and Communications Security, pages 62–73, 1993.

[BR00] John Black and Phillip Rogaway. Cbc macs for arbitrary-length mes-

sages: The three-key constructions. In CRYPTO, pages 197–215, 2000.

[Bra93] Stefan Brands. An efficient off-line electronic cash system based on the

representation problem. Technical report, CWI, 1993.

[BRPL06] Jin Wook Byun, Hyun Suk Rhee, Hyun-A Park, and Dong Hoon Lee.

Off-line keyword guessing attacks on recent keyword search schemes

over encrypted data. In Secure Data Management, pages 75–83, 2006.

[BSNS05] Joonsang Baek, Reihaneh Safavi-Naini, and Willy Susilo. Public key

encryption with keyword search revisited. IACR Cryptology ePrint

Archive, 2005:191, 2005.

[BSNS06] Joonsang Baek, Reihaneh Safavi-Naini, and Willy Susilo. On the inte-

gration of public key data encryption and public key encryption with

keyword search. In ISC, pages 217–232, 2006.

[BSS11] Atanu Basu, Indranil Sengupta, and Jamuna Kanta Sing. Secured

cloud storage scheme using ecc based key management in user hierar-

chy. In ICISS, pages 175–189, 2011.

[BYV+09] Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James Broberg,

and Ivona Brandic. Cloud computing and emerging it platforms: Vi-

sion, hype, and reality for delivering computing as the 5th utility. Fu-

ture Generation Comp. Syst., 25(6):599–616, 2009.

BIBLIOGRAPHY 120

[CC12] Bo Chen and Reza Curtmola. Robust dynamic provable data posses-

sion. In ICDCS Workshops, pages 515–525, 2012.

[CGH04] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle

methodology, revisited. J. ACM, 51(4):557–594, 2004.

[CGKO06] Reza Curtmola, Juan A. Garay, Seny Kamara, and Rafail Ostrovsky.

Searchable symmetric encryption: improved definitions and efficient

constructions. In ACM Conference on Computer and Communications

Security, pages 79–88, 2006.

[CHR09] Danwei Chen, Xiuli Huang, and Xunyi Ren. Access control of cloud

service based on ucon. In CloudCom, pages 559–564, 2009.

[CM05] Yan-Cheng Chang and Michael Mitzenmacher. Privacy preserving key-

word searches on remote encrypted data. In ACNS, pages 442–455,

2005.

[CS98] Ronald Cramer and Victor Shoup. A practical public key cryptosys-

tem provably secure against adaptive chosen ciphertext attack. In

CRYPTO, pages 13–25, 1998.

[CS03] Jan Camenisch and Victor Shoup. Practical verifiable encryption and

decryption of discrete logarithms. In CRYPTO, pages 126–144, 2003.

[CSG+05] Dwaine E. Clarke, G. Edward Suh, Blaise Gassend, Ajay Sudan,

Marten van Dijk, and Srinivas Devadas. Towards constant bandwidth

overhead integrity checking of untrusted data. In IEEE Symposium on

Security and Privacy, pages 139–153, 2005.

[CSK11] ByungRae Cha, JaeHyun Seo, and JongWon Kim. Design of attribute-

based access control in cloud computing environment. In ICITCS,

pages 41–50, 2011.

[CX08] Ee Chien Chang and Jia Xu. Remote integrity check with dishonest

storage server. In ESORICS, pages 223–237, 2008.

[CY07] Koji Chida and Go Yamamoto. Batch processing of interactive proofs.

In CT-RSA, pages 196–207, 2007.

BIBLIOGRAPHY 121

[DAB+02] John R. Douceur, Atul Adya, William J. Bolosky, Dan Simon, and

Marvin Theimer. Reclaiming space from duplicate files in a serverless

distributed file system. In ICDCS, pages 617–624, 2002.

[Dam87] Ivan Damg̊ard. Collision free hash functions and public key signature

schemes. In EUROCRYPT, pages 203–216, 1987.

[DdVF+05] Ernesto Damiani, Sabrina De Capitani di Vimercati, Sara Foresti,

Sushil Jajodia, Stefano Paraboschi, and Pierangela Samarati. Key

management for multi-user encrypted databases. In StorageSS, pages

74–83, 2005.

[DdVF+07] Ernesto Damiani, Sabrina De Capitani di Vimercati, Sara Foresti,

Sushil Jajodia, Stefano Paraboschi, and Pierangela Samarati. An ex-

perimental evaluation of multi-key strategies for data outsourcing. In

SEC, pages 385–396, 2007.

[DdVJ+03] Ernesto Damiani, Sabrina De Capitani di Vimercati, Sushil Jajodia,

Stefano Paraboschi, and Pierangela Samarati. Balancing confidentiality

and efficiency in untrusted relational dbmss. In ACM Conference on

Computer and Communications Security, pages 93–102, 2003.

[Des00] Anand Desai. New paradigms for constructing symmetric encryption

schemes secure against chosen-ciphertext attack. In CRYPTO, pages

394–412, 2000.

[DQS04] Yves Deswarte, Jean Jacques Quisquater, and Ayda Saidane. Remote

integrity checking. In Sushil Jajodia and Leon Strous, editors, In-

tegrity and Internal Control in Information Systems VI, volume 140 of

IFIP International Federation for Information Processing, pages 1–11.

Springer Boston, 2004.

[dVFJ+07a] Sabrina De Capitani di Vimercati, Sara Foresti, Sushil Jajodia, Stefano

Paraboschi, and Pierangela Samarati. A data outsourcing architecture

combining cryptography and access control. In CSAW, pages 63–69,

2007.

[dVFJ+07b] Sabrina De Capitani di Vimercati, Sara Foresti, Sushil Jajodia, Stefano

Paraboschi, and Pierangela Samarati. Over-encryption: Management

BIBLIOGRAPHY 122

of access control evolution on outsourced data. In VLDB, pages 123–

134, 2007.

[dVFJ+08] Sabrina De Capitani di Vimercati, Sara Foresti, Sushil Jajodia, Ste-

fano Paraboschi, Gerardo Pelosi, and Pierangela Samarati. Preserving

confidentiality of security policies in data outsourcing. In WPES, pages

75–84, 2008.

[DVW09] Yevgeniy Dodis, Salil P. Vadhan, and Daniel Wichs. Proofs of retriev-

ability via hardness amplification. In TCC, pages 109–127, 2009.

[EKPT09] C. Christopher Erway, Alptekin Küpçü, Charalampos Papamanthou,

and Roberto Tamassia. Dynamic provable data possession. In ACM

Conference on Computer and Communications Security, pages 213–

222, 2009.

[Erd09] Hakan Erdogmus. Cloud computing: Does nirvana hide behind the

nebula? IEEE Software, 26(2):4–6, 2009.

[FB06] Décio Luiz Gazzoni Filho and Paulo Sérgio Licciardi Messeder Barreto.

Demonstrating data possession and uncheatable data transfer. IACR

Cryptology ePrint Archive, pages 150–159, 2006.

[FO99] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asym-

metric and symmetric encryption schemes. In CRYPTO, pages 537–

554, 1999.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct

random functions. J. ACM, 33(4):792–807, 1986.

[GM09] Antonios Gouglidis and Ioannis Mavridis. On the definition of access

control requirements for grid and cloud computing systems. In Grid-

Nets, pages 19–26, 2009.

[GMCL09] Luis Miguel Vaquero Gonzalez, Luis Rodero Merino, Juan Caceres, and

Maik A. Lindner. A break in the clouds: towards a cloud definition.

Computer Communication Review, 39(1):50–55, 2009.

BIBLIOGRAPHY 123

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signa-

ture scheme secure against adaptive chosen-message attacks. SIAM J.

Comput., 17(2):281–308, 1988.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge

complexity of interactive proof systems. SIAM J. Comput., 18(1):186–

208, 1989.

[GO96] Oded Goldreich and Rafail Ostrovsky. Software protection and simu-

lation on oblivious RAMs. J. ACM, 43(3):431–473, 1996.

[GSMB03] Eu-Jin Goh, Hovav Shacham, Nagendra Modadugu, and Dan Boneh.

Sirius: Securing remote untrusted storage. In NDSS, 2003.

[HCM01] Hugh Harney, Andrea Colgrove, and Patrick Drew McDaniel. Princi-

ples of policy in secure groups. In NDSS, 2001.

[HHPSP11] Shai Halevi, Danny Harnik, Benny Pinkas, and Alexandra Shulman-

Peleg. Proofs of ownership in remote storage systems. In ACM Con-

ference on Computer and Communications Security, pages 491–500,

2011.

[HPSP10] Danny Harnik, Benny Pinkas, and Alexandra Shulman-Peleg. Side

channels in cloud services: Deduplication in cloud storage. IEEE Se-

curity & Privacy, 8(6):40–47, 2010.

[HYJZ09] Luokai Hu, Shi Ying, Xiangyang Jia, and Kai Zhao. Towards an ap-

proach of semantic access control for cloud computing. In CloudCom,

pages 145–156, 2009.

[HZY11] Zhuo Hao, Sheng Zhong, and Nenghai Yu. A privacy-preserving re-

mote data integrity checking protocol with data dynamics and public

verifiability. IEEE Trans. Knowl. Data Eng., 23(9):1432–1437, 2011.

[jG03] Eu jin Goh. Secure indexes. IACR Technical Report 2003/216, 2003.

[JJ07] Ari Juels and Burton S. Kaliski Jr. Pors: proofs of retrievability for

large files. In ACM Conference on Computer and Communications

Security, pages 584–597, 2007.

BIBLIOGRAPHY 124

[KAD07] Ramakrishna Kotla, Lorenzo Alvisi, and Michael Dahlin. Safestore: A

durable and practical storage system. In USENIX Annual Technical

Conference, pages 129–142, 2007.

[KL10] Seny Kamara and Kristin Lauter. Cryptographic cloud storage. In

Financial Cryptography Workshops, pages 136–149, 2010.

[KLKJ06] Deuk-Whee Kwak, Seungjoo Lee, JongWon Kim, and Eunjin Jung. An

efficient key tree management algorithm for lkh group key management.

In ICOIN, pages 703–712, 2006.

[KPT00] Yongdae Kim, Adrian Perrig, and Gene Tsudik. Simple and fault-

tolerant key agreement for dynamic collaborative groups. In ACM

Conference on Computer and Communications Security, pages 235–

244, 2000.

[KRS+03] Mahesh Kallahalla, Erik Riedel, Ram Swaminathan, Qian Wang, and

Kevin Fu. Plutus: Scalable secure file sharing on untrusted storage. In

FAST, 2003.

[Lee12] Ruby B. Lee. Hardware-enhanced access control for cloud computing.

In SACMAT, pages 1–2, 2012.

[LNS03] Donggang Liu, Peng Ning, and Kun Sun. Efficient self-healing group

key distribution with revocation capability. In ACM Conference on

Computer and Communications Security, pages 231–240, 2003.

[LWG11] Jun Liu, Zhiguo Wan, and Ming Gu. Hierarchical attribute-set based

encryption for scalable, flexible and fine-grained access control in cloud

computing. In ISPEC, pages 98–107, 2011.

[LYCL11] Ming Li, Shucheng Yu, Ning Cao, and Wenjing Lou. Authorized private

keyword search over encrypted data in cloud computing. In ICDCS,

pages 383–392, 2011.

[LYRL10] Ming Li, Shucheng Yu, Kui Ren, and Wenjing Lou. Securing personal

health records in cloud computing: Patient-centric and fine-grained

data access control in multi-owner settings. In SecureComm, pages

89–106, 2010.

BIBLIOGRAPHY 125

[LZC+10] Jin Li, Gansen Zhao, Xiaofeng Chen, Dongqing Xie, Chunming Rong,

Wenjun Li, Lianzhang Tang, and Yong Tang. Fine-grained data ac-

cess control systems with user accountability in cloud computing. In

CloudCom, pages 89–96, 2010.

[MG09] Peter Mell and Timothy Grance. The nist definition of cloud comput-

ing. Technical report, National Institute of Standards and Technology,

Information Technology Laboratory, 2009.

[MVN99] Yi Mu, Vijay Varadharajan, and Khanh Quoc Nguyen. Delegated

decryption. In IMA Int. Conf., pages 258–269, 1999.

[NNL01a] Dalit Naor, Moni Naor, and Jeffery Lotspiech. Revocation and tracing

schemes for stateless receivers. In CRYPTO, pages 41–62, 2001.

[NNL01b] Dalit Naor, Moni Naor, and Jeffery Lotspiech. Revocation and tracing

schemes for stateless receivers. In CRYPTO, pages 41–62, 2001.

[NR05] Moni Naor and Guy N. Rothblum. The complexity of online memory

checking. In FOCS, pages 573–584, 2005.

[NRR00] Moni Naor, Omer Reingold, and Alon Rosen. Pseudo-random functions

and factoring (extended abstract). In STOC, pages 11–20, 2000.

[NWZ12] Wee Keong Ng, Yonggang Wen, and Huafei Zhu. Private data dedu-

plication protocols in cloud storage. In SAC, pages 441–446, 2012.

[OLR12] Nouha Oualha, Jean Leneutre, and Yves Roudier. Verifying remote

data integrity in peer-to-peer data storage: A comprehensive survey

of protocols. Peer-to-Peer Networking and Applications, 5(3):231–243,

2012.

[OR05] Alina Oprea and Michael K. Reiter. Space-efficient block storage in-

tegrity. In NDSS, 2005.

[ÖS12] Cengiz Örencik and Erkay Savas. Efficient and secure ranked multi-

keyword search on encrypted cloud data. In EDBT/ICDT Workshops,

pages 186–195, 2012.

BIBLIOGRAPHY 126

[PL01] Chang-Seop Park and Dong Hoon Lee. Secure and efficient key man-

agement for dynamic multicast groups. Operating Systems Review,

35(4):32–38, 2001.

[Pol78] J. M. Pollard. Monte carlo methods for index computation (mod p).

Mathematics of Computation, 32(143):918–924, 1978.

[PR00] Erez Petrank and Charles Rackoff. Cbc mac for real-time data sources.

J. Cryptology, 13(3):315–338, 2000.

[PS12] Roberto Di Pietro and Alessandro Sorniotti. Boosting efficiency and

security in proof of ownership for deduplication. In ASIACCS, 2012.

[RMW12] Fatema Rashid, Ali Miri, and Isaac Woungang. A secure data dedupli-

cation framework for cloud environments. In PST, pages 81–87, 2012.

[RPSL09] Hyun Sook Rhee, Jong Hwan Park, Willy Susilo, and Dong Hoon Lee.

Improved searchable public key encryption with designated tester. In

ASIACCS, pages 376–379, 2009.

[RPSL10] Hyun Sook Rhee, Jong Hwan Park, Willy Susilo, and Dong Hoon Lee.

Trapdoor security in a searchable public-key encryption scheme with

a designated tester. Journal of Systems and Software, 83(5):763–771,

2010.

[RTSS09] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Sav-

age. Hey, you, get off of my cloud: exploring information leakage in

third-party compute clouds. In ACM Conference on Computer and

Communications Security, pages 199–212, 2009.

[RVR+07] Barath Raghavan, Kashi Venkatesh Vishwanath, Sriram Ramabhad-

ran, Ken Yocum, and Alex C. Snoeren. Cloud control with distributed

rate limiting. In SIGCOMM, pages 337–348, 2007.

[SBD+04] F. Sebe, A. M. Balleste, Y. Deswarte, J. D. Ferrer, and J.J.Quisquater.

Time-bounded remote file integrity checking. Technical report, LAAS,

2004.

[SBMS07] Mehul A. Shah, Mary Baker, Jeffrey C. Mogul, and Ram Swaminathan.

Auditing to keep online storage services honest. In HotOS, 2007.

BIBLIOGRAPHY 127

[SFB+08] Francesc Sebé, Josep Domingo Ferrer, Antoni Mart́ınez Ballesté, Yves

Deswarte, and Jean Jacques Quisquater. Efficient remote data pos-

session checking in critical information infrastructures. IEEE Trans.

Knowl. Data Eng., 20(8):1034–1038, 2008.

[SGLM08] Mark W. Storer, Kevin M. Greenan, Darrell D. E. Long, and Ethan L.

Miller. Secure data deduplication. In StorageSS, pages 1–10, 2008.

[Sho97] Victor Shoup. Lower bounds for discrete logarithms and related prob-

lems. In EUROCRYPT, pages 256–266, 1997.

[Sho04] Victor Shoup. Sequences of games: a tool for taming complexity in

security proofs. IACR Cryptology ePrint Archive, 2004:332, 2004.

[SL04] Yan Sun and K. J. Ray Liu. Scalable hierarchical access control in

secure group communications. In INFOCOM, 2004.

[SM06] Thomas J. E. Schwarz and Ethan L. Miller. Store, forget, and check:

Using algebraic signatures to check remotely administered storage. In

ICDCS, pages 12–22, 2006.

[SvDOJ11] Emil Stefanov, Marten van Dijk, Alina Oprea, and Ari Juels. Iris: A

scalable cloud file system with efficient integrity checks. IACR Cryp-

tology ePrint Archive, 2011:585, 2011.

[SW08] Hovav Shacham and Brent Waters. Compact proofs of retrievability.

In ASIACRYPT, pages 90–107, 2008.

[SWP00] Dawn Xiaodong Song, David Wagner, and Adrian Perrig. Practical

techniques for searches on encrypted data. In IEEE Symposium on

Security and Privacy, pages 44–55, 2000.

[SWYW12] Lili Sun, Hua Wang, Jianming Yong, and Guoxin Wu. Semantic access

control for cloud computing based on e-healthcare. In CSCWD, pages

512–518, 2012.

[TS11] Wei-Tek Tsai and Qihong Shao. Role-based access-control using refer-

ence ontology in clouds. In ISADS, pages 121–128, 2011.

BIBLIOGRAPHY 128

[TWZ09] XiuXia Tian, Xiaoling Wang, and Aoying Zhou. Dsp re-encryption:

A flexible mechanism for access control enforcement management in

daas. In IEEE CLOUD, pages 25–32, 2009.

[WCRL12] Cong Wang, Ning Cao, Kui Ren, and Wenjing Lou. Enabling secure

and efficient ranked keyword search over outsourced cloud data. IEEE

Trans. Parallel Distrib. Syst., 23(8):1467–1479, 2012.

[WCW+09] Cong Wang, Sherman S. M. Chow, Qian Wang, Kui Ren, and Wenjing

Lou. Privacy-preserving public auditing for secure cloud storage. IACR

Cryptology ePrint Archive, pages 579–590, 2009.

[WeLD12] Zhiguo Wan, Jun e Liu, and Robert H. Deng. Hasbe: A hierarchical

attribute-based solution for flexible and scalable access control in cloud

computing. IEEE Transactions on Information Forensics and Security,

7(2):743–754, 2012.

[WGL98] Chung Kei Wong, Mohamed G. Gouda, and Simon S. Lam. Secure

group communications using key graphs. In SIGCOMM, pages 68–79,

1998.

[WHA99] D. Waller, E. Harder, and R. Agee. Key management for multicast:

Issues and architectures. Technical report, RFC2627, 1999.

[WLOB09] Weichao Wang, Zhiwei Li, Rodney Owens, and Bharat K. Bhargava.

Secure and efficient access to outsourced data. In CCSW, pages 55–66,

2009.

[WLW10] Guojun Wang, Qin Liu, and Jie Wu. Hierarchical attribute-based en-

cryption for fine-grained access control in cloud storage services. In

ACM Conference on Computer and Communications Security, pages

735–737, 2010.

[WWL+09] Qian Wang, Cong Wang, Jin Li, Kui Ren, and Wenjing Lou. En-

abling public verifiability and data dynamics for storage security in

cloud computing. In ESORICS, pages 355–370, 2009.

[WWR+11] Qian Wang, Cong Wang, Kui Ren, Wenjing Lou, and Jin Li. Enabling

public auditability and data dynamics for storage security in cloud

computing. IEEE Trans. Parallel Distrib. Syst., 22(5):847–859, 2011.

BIBLIOGRAPHY 129

[WWRL10] Cong Wang, Qian Wang, Kui Ren, and Wenjing Lou. Privacy-

preserving public auditing for data storage security in cloud computing.

In INFOCOM, pages 525–533, 2010.

[XC12] Jia Xu and Ee-Chien Chang. Towards efficient proofs of retrievability.

In ASIACCS, pages 79–80, 2012.

[XCZ13] Jia Xu, Ee-Chien Chang, and Jianying Zhou. Weak leakage-resilient

client-side deduplication of encrypted data in cloud storage. In ASI-

ACCS, pages 195–206, 2013.

[YC10] Jong P. Yoon and Zhixiong Chen. Using privilege chain for access

control and trustiness of resources in cloud computing. In NDT (1),

pages 358–368, 2010.

[YLJ12] Ran Yang, Chuang Lin, and Yixin Jiang. Enforcing scalable and dy-

namic hierarchical access control in cloud computing. In ICC, pages

923–927, 2012.

[YLZL01] Yang Richard Yang, Xiaozhou (Steve) Li, X. Brian Zhang, and Si-

mon S. Lam. Reliable group rekeying: a performance analysis. In

SIGCOMM, pages 27–38, 2001.

[YOA07] Go Yamamoto, Satoshi Oda, and Kazumaro Aoki. Fast integrity for

large data. In SPEED, pages 21–32, 2007.

[YWRL10] Shucheng Yu, Cong Wang, Kui Ren, and Wenjing Lou. Achieving se-

cure, scalable, and fine-grained data access control in cloud computing.

In INFOCOM, pages 534–542, 2010.

[ZB12] Yihua Zhang and Marina Blanton. Efficient dynamic provable posses-

sion of remote data via update trees. IACR Cryptology ePrint Archive,

2012:291, 2012.

[Zen08] Ke Zeng. Publicly verifiable remote data integrity. In ICICS, pages

419–434, 2008.

[ZHA+12] Yan Zhu, Hongxin Hu, Gail-Joon Ahn, Dijiang Huang, and Shan-Biao

Wang. Towards temporal access control in cloud computing. In INFO-

COM, pages 2576–2580, 2012.

BIBLIOGRAPHY 130

[ZLS11] Tianyi Zhu, Weidong Liu, and Jiaxing Song. An efficient role based

access control system for cloud computing. In CIT, pages 97–102, 2011.

[ZMS+12] Miao Zhou, Yi Mu, Willy Susilo, Jun Yan, and Liju Dong. Privacy

enhanced data outsourcing in the cloud. J. Network and Computer

Applications, 35(4):1367–1373, 2012.

[ZMSY11] Miao Zhou, Yi Mu, Willy Susilo, and Jun Yan. Piracy-preserved access

control for cloud computing. In IEEE TrustCom, pages 83–90, 2011.

[ZX11] Qingji Zheng and Shouhuai Xu. Fair and dynamic proofs of retrievabil-

ity. In Proceedings of the 1st ACM Conference on Data and Application

Security and Privacy (CODASPY), pages 237–248, 2011.

[ZX12] Qingji Zheng and Shouhuai Xu. Secure and efficient proof of storage

with deduplication. In Proceedings of the 2nd ACM Conference on

Data and Application Security and Privacy (CODASPY), pages 1–12,

2012.

