
Data stream clustering by divide
and conquer approach based on vector model

Madjid Khalilian1* , Norwati Mustapha2 and Nasir Sulaiman2

Background

Very large databases are required to store massive amounts of data that are continuously

inserted and queried. Analyzing big datasets and extracting pattern are valuable in many

applications such as web click stream, network traffic monitoring, wireless sensor net-

work etc. For that purpose, there are two groups of techniques for mining huge datasets.

One group attempts to solve this problem directly with efficient algorithms. Although

these algorithms can achieve acceptable clustering results but insufficiency of data stor-

age capacity leads us to process data dynamically in extracting knowledge. �e second

group of algorithms refers to streaming data and applies mining techniques [1]. In this

kind of process, data have been considered as a stream of data which comes in from one

side and exit from the other side and the data is not available to visit and process for the

second time. �is main property of data stream will be associated with some difficulties

in clustering data stream (due to clustering is the focus task in this paper) which include:

Abstract

Recently, many researchers have focused on data stream processing as an efficient

method for extracting knowledge from big data. Data stream clustering is an unsuper-

vised approach that is employed for huge data. The continuous effort on data stream

clustering method has one common goal which is to achieve an accurate clustering

algorithm. However, there are some issues that are overlooked by the previous works

in proposing data stream clustering solutions; (1) clustering dataset including big seg-

ments of repetitive data, (2) monitoring clustering structure for ordinal data streams

and (3) determining important parameters such as k number of exact clusters in stream

of data. In this paper, DCSTREAM method is proposed with regard to the mentioned

issues to cluster big datasets using the vector model and k-Means divide and conquer

approach. Experimental results show that DCSTREAM can achieve superior quality and

performance as compare to STREAM and ConStream methods for abrupt and gradual

real world datasets. Results show that the usage of batch processing in DCSTREAM and

ConStream is time consuming compared to STREAM but it avoids further analysis for

detecting outliers and novel micro-clusters.

Keywords: Data mining, Data stream clustering, Vector space model, Divide-and-

conquer

Open Access

© 2016 Khalilian et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

RESEARCH

Khalilian et al. Journal of Big Data (2016) 3:1

DOI 10.1186/s40537-015-0036-x

*Correspondence:

khalilian@kiau.ac.ir
1 Islamic Azad University,

Karaj Branch, Karaj, Iran

Full list of author information

is available at the end of the

article

http://orcid.org/0000-0001-5479-7033
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-015-0036-x&domain=pdf

Page 2 of 21Khalilian et al. Journal of Big Data (2016) 3:1

1. Due to visiting data once during the processing data in stream, the performance of

processing data is crucial.

2. Detecting a change in evolutionary data stream and detecting concept drift during

the time whether gradual or abrupt.

Some works have been done in the area of the data stream clustering [2–5]. Despite of

many efforts to improve the accuracy of the stream clustering methods [4, 6–16], there

are some issues that fail to notice by the previous works in proposing data stream clus-

tering solutions. Some applications such as Intrusion Detection Systems contain many

monotonous segments of data in dataset. Monotonous segment is defined as the repeti-

tive data in continuous records e.g. in KDDCUP99 dataset, records between 7820 and

11,488 have very nearly the same value for their attributes (0,1032,0,0,0,0,0,0,0,0,0,0,0,0,0 ,

0,0,0,0,511,511,0,0,0,0,1,0,0,255,255,1,0,1,0,0,0,0,0,smurf).

�us, monotonous segment causes many problems such as creation of empty clusters

and it is utilizing time for clustering data with no cluster. Due to this fact, clustering of

repetitive data in monotonous segments is useless and leads to high computational time

for clustering. Furthermore, most researches in data stream clustering have focused on

clustering algorithms for numerical data streams [2, 15, 17–20] and there is no reference

on monitoring clustering structure for ordinal data streams. In addition, the current

data stream clustering algorithms cannot mine true clusters effectively because of their

weaknesses in determining important parameters such as k number of exact clusters in

stream of data. In other words, it is possible that value of k is changed in stream of data.

Considering novelty and concept drift in the stream of data especially in real time era

is another important challenge which can be related to determining k number of exact

clusters. Indirectly, this weakness (k number of exact clusters) will relate to the problem

in finding good scalability in data stream clustering algorithms. In this paper, a novel

approach is designed to overcome the difficulties in data stream clustering with consid-

eration on the above mentioned problems to achieve more accurate clustering result in

high speed and scalable fashion. �e following ideas are adopted in our novel approach

which will be extensively described in next sections:

a. A framework of data stream clustering that consists of online and offline compo-

nents is designed to cluster high scale datasets with ordinal data types and monoto-

nous data in real time processing.

b. Use a vector model and divide-and-conquer to reduce size and complexity of cluster-

ing problem.

c. An effective data stream algorithm is proposed for online component.

d. Propose an algorithm to detect concept drift and simplified fading function for

removing expired micro-clusters and detect novel micro-clusters and outliers in

batch processing.

�e remainder of this paper is organized as follows. In “Related work”, existing meth-

ods for data stream clustering which includes primitive and latest study with respect to

their weaknesses and strengths will be reviewed. Background of the proposed method

is explained in “Research design and methodology”. It also presents the data stream

Page 3 of 21Khalilian et al. Journal of Big Data (2016) 3:1

clustering framework and how the proposed method is employed in the proposed

framework and uses for stream clustering. “Results and discussion” and “Conclusion” are

dedicated for experimental results of the proposed method and conclusion respectively.

Related work

Clustering is the task of assigning a set of objects into groups (called clusters) so that the

objects in the same cluster are more similar to each other than to those in other clusters.

Clustering is a main task of explorative data mining and a common technique for statis-

tical data analysis. It was used in many fields including machine learning, pattern rec-

ognition, image analysis, information retrieval, and bioinformatics. �ese applications

usually store massive amounts of data which cause difficulties to do the task of clustering

on entire dataset. Many researchers have focused on data stream as an efficient method

to extract knowledge from big data [21–23]. On the other hand, many techniques are

employed in data mining area but they must be modified to apply in data stream mining

environments. Here, it is important that we note the difference between evolving data

and concept drift. Evolving data refers to creating and disappearing objects whereas con-

cept drifts refers to changing clusters in terms of content during the time. Many studies

have been executed to support concept drift [24]. Most researchers’ interest is to apply

techniques for increasing compactness of representation, fast and incremental pro-

cessing of new data points, clear and fast identification of outliers [25]. It is possible to

enumerate two main problems in data stream clustering which are concept change and

visiting data once and there are different groups of solutions for data stream clustering

from different perspectives that we summarized them in Table 1.

�ere are also group of methods that look into data processing perspective which can

be carried out in two fashions: batch (STREAM [4]) and incremental online (ConStream

[27]). In batch processing, each stream is divided to the buckets of data then each bucket

Table 1 General group of methods for data stream clustering

Method Pros Cons

Condensation-based [5, 26–29] Having summary of data (global
view)

Linear complexity
Scalability
Additive and subtractive property

Resource constraints
Detecting only spherical shape
Relearning
Applicable in low dimension

Data sampling [4, 30] Speed up
Memory usage
Low computational complexity

Low quality

Density –based [9, 15, 31–33] Arbitrary shaped clusters Density threshold must be deter-
mined

Noise sensitivity
Outlier sensitivity
Applicable in low dimension
Relearning

Grid-based [2, 19, 34] Arbitrary shaped clusters
High dimension [14]

Stability
Relearning

Hierarchical structure [11, 19, 35, 36] Support evolving and concept drift
No need to determining extra

parameters

Relearning
Inflexibility

Page 4 of 21Khalilian et al. Journal of Big Data (2016) 3:1

is processed in the memory totally. Despite of batch processing, incremental online

methods receive samples from the stream one by one and assign to the nearest cluster.

In this study, STREAM, ConStream and proposed method Divide-and-Conquer

STREAM (DCSTREAM) have been compared for efficiency and accuracy in cluster-

ing results in data stream clustering. STREAM utilizes Divide-and-Conquer method

to overcome difficulties in data stream clustering and should be distinguished from the

proposed method. DCSTREAM uses Divide-and-Conquer method based on length of

vector as it is described later whereas STREAM divides data by using sampling. Con-

Stream is selected as another comparison method due to its advantages in component-

based framework and condensational solution for clustering data stream. �us, we do

not compare the proposed method with the recent stream clustering [15, 37] which are

based on density and hierarchical methodology. It is clear that each category of methods

can cover only a number of problems and applications.

Research design and methodology

DCSTREAM is the proposed method to cluster huge datasets using data stream clus-

tering which is based on Divide-AND-Conquer k-Means algorithm. �e framework of

the DCSTREAM is partitioned into two main components which are online and offline

according to different functions as shown in Fig. 1. It is noticeable that the online com-

ponent strongly affects the offline component.

We use window of data for online processing as the size of the window should be deter-

mined by the user and depends on the available memory. In this method, data which are

active during window time Wi, will be expired during window time Wi+1. Consequently,

visiting data in whole dataset is possibly once and during the window time only.

Furthermore, data pretreatment in a data stream mining system aims to reformat

the original data file to prepare data for clustering. It includes feature selection, feature

reduction, data cleaning and data transforming. Although these pretreatment tasks are

Fig. 1 DCSTREAM Framework

Page 5 of 21Khalilian et al. Journal of Big Data (2016) 3:1

the same for any data stream mining problems, it does not under this study; therefore,

we apply general methods in this task whereby feature selection and reduction have been

done manually, missing values are ignored and normalizing the data if necessary.

Online component of DCSTREAM

�ree main modules are consisted in this component; subsets generator, micro-cluster gen-

erator and split and merge for micro-clusters. Data pretreatment module is outside from

online component and it is done to preprocess stream data from the original data which is

produced by the previous component in the form of data stream. �e Divide-AND-Con-

quer k-Means algorithm has been applied for generating micro-clusters. Concept drift has

been managed by frequent split and merge that are stated in the following section.

Subsets generator

�is module calculates the length of objects inside window of data and creates one

dimension vector for clustering by the K-Means algorithm. Based on the result of clus-

tering, the data is divided into some subsets. In fact, objects are categorized into some

subsets based on their sizes or levels. Length of objects is defined by L(O) =

√

∑

d

i=0
o
2

i
,

d and i are for the number of dimensions and value of its feature respectively.

We utilize average silhouette value to assess the essence of data in terms of monoto-

nous and the best number of subsets, average silhouette value has been defined as the

below [38]:

For each datum i, let a(i) be the average dissimilarity of i with all other data within the

same cluster (center of cluster). �en find the average dissimilarity of i with the data of

another single cluster. Denote that the lowest average dissimilarity to i of any such clus-

ter by b(i) (centers of all other clusters). If average silhouette value equals 1, the nature

of data may monotonous. In addition, we calculate the standard deviation for the entire

data in the stream to check whether all the data are of the same value or not. Regardless

of being average silhouette value equals 1 for the length of objects in the stream (same

size for all objects inside the window), data may be deviated from the mean with respect

to all features of the objects and thus it may include some clusters. �erefore, stand-

ard deviation is checked (it must be approximately equal to 0). On the other hand, data

in the window according to their size may not be included as an intelligent structure

that will be obvious as shown by average silhouette value (less than 0.25) [35]. Conse-

quently, this step should be discarded and continued to the next step which is generation

of micro-clusters. �e details algorithm of subsets generating is shown in Fig. 2.

Micro‑clusters generator

For the purpose of achieving greater accuracy in the clustering process, it is necessary to

maintain a high level of granularity in the underlying data structures. In order to achieve

this goal, we will use a process in which condensed clusters of data points are main-

tained. We will refer to such groups as micro-clusters. In order to generate micro-clus-

ters as shown in Fig. 3, all samples in a window of the stream has been considered for

s(i) =
b(i) − a(i)

max{a(i), b(i)}

Page 6 of 21Khalilian et al. Journal of Big Data (2016) 3:1

clustering called batch processing in opposite of incremental online processing (receiv-

ing samples one by one from the stream). According to this strategy, micro-clusters is

produced and stored in the repository of micro-clusters for further analysis.

Fig. 2 Subsets Generating Algorithm

Fig. 3 Micro-clusters generating algorithm

Page 7 of 21Khalilian et al. Journal of Big Data (2016) 3:1

Figure 4 has demonstrated E-R diagram for this repository and attributes which are

stored as relations in the repository.

Definition 1: A micro-cluster for a set of data points C at time t is defined as a tuple

(micro-cluster-id, SC2, SC1, n, t). Each record is defined as follows:

Micro-cluster-id: this is an identification to identify every micro-cluster. It is also used

to merge, split, concept drift detection, outlier detection and novelty detection.

SC1: the entry SC1 contains
∑d

i=1

∑d
j=1

vi.vj here, v is a vector with d dimensions and

i �= j.

SC2: the entry SC2 contains
∑

d

i=1
vi here v is a vector with d dimensions.

n: the number of elements in each micro-cluster.

t: timestamp of each micro-cluster.

Macro-cluster entity in the repository is utilizing the same definition and attributes.

In addition, it uses a weighted value w to apply fading function and decay concept. Every

macro-cluster can include more than one micro-cluster and yields a hierarchical struc-

ture for clustering.

Split and merge

In order to detect concept drift, a frequent split and merge founded on compactness

and separateness criteria has been devised. Basically, when two means of two clusters

are approximately close to each other we can merge them in one cluster with respect

to their compactness and separateness. �en again, we can split a micro-cluster when

the number of elements in the micro cluster becomes too large and its compactness is

decreased during the time. Nevertheless, determining parameters as the threshold for

split and merge should be done by the user. However, a list of micro-clusters which are

registered as frequent split and merge can be used to detect the concept drift. Merge and

Split algorithm is shown in Fig. 5.

Fig. 4 E-R diagram for clustering repository

Page 8 of 21Khalilian et al. Journal of Big Data (2016) 3:1

O�ine component of DCSTREAM

�is component is designed for further analysis and providing a hierarchical structure

for clusters by statistical database that is created by online component. For this purpose,

three main tasks have been identified which are macro-cluster generator, outlier detect-

ing, novel and expired micro-clusters. �e main task is macro-cluster generator which

is simply as same as micro-cluster generator in online component. �e only difference

is macro-clustering process takes place in offline situation. Since the stream clustering

process should provide a greater level of importance to recent clusters, we will provide a

time-sensitive weight to each micro-cluster. It is assumed that each micro-cluster has a

time-dependent weight defined by the function w (t). �e function w (t) is also referred

as the fading function. �e fading function w (t) is a non-monotonic decreasing function

which decays uniformly with time t. In order to formalize this concept, we will define the

half-life of a micro-cluster in the repository. �e half-life t0 of a micro-cluster is defined

as the time at which f (t0) = (1/2) f (0). After each window time, all micro clusters half-

life become half except micro clusters which are merged; therefore, half-life of a micro

cluster less than a specific threshold is expired.

With the intention of detecting novelty in the data stream, we consider each new

micro-cluster which has been registered for the first time in the repository as the novel

micro-cluster. In contrast, if this novel micro-cluster does not receive enough data it can

be considered as the outlier. To facilitate distinguish between the novel micro-clusters

and abnormalities; we will introduce a parameter which is called as outlier factor and

defined by the user. �is outlier can be a temporal outlier and later by merging other

micro-clusters promotes to the real cluster in the next windows. For example, the first

document belonging to a particular category in a document stream of current window

may be recognized as an outlier, but it may later form a cluster of documents of its own

by merging other micro-clusters in the next window. Due to this fact we are employing

batch processing for online component, outlier and novel micro-cluster detection can be

carried out easily after each time window is in the offline component. Consequently, by

determining the time interval for fading function, outlier and novel micro-cluster detec-

tion is not required.

We have scrutinized the proposed method DCSTREAM for data stream clustering in

an extensive experimental study and the obtained results are discussed. Due to exploit

Fig. 5 Merge and Split algorithm

Page 9 of 21Khalilian et al. Journal of Big Data (2016) 3:1

vector concept in the computational model, it is important that we mention some criti-

cal assumptions on using this model as follows:

Our vector space is orthogonal, namely there is no correlation among properties of

objects.

Elements of the specific vector have the same data types, meaning that conversion of

different data types to one data type for vectors should be done before employing the

vector model.

Number of dimensions is equal in all vectors which are entered for processing. In other

words, this study does not include pre-processing of data.

Experimental setup

All evaluation tests have been run on a dual processor Intel® Core™ Duo CPU 3.16 GHz

with 3.25 GB RAM with, Windows 7 (64bit) operating system. Implementations have

been run on MATLAB 8 for coding the DCSTREAM.

Quality metrics

Once the DCSTREAM is implemented, the quality metrics are measured and computed

by a set of well defined parameters. �ere are two main groups of quality metrics includ-

ing Internal and External evaluation criteria.

Internal evaluation refers to measuring the quality of the clusters without using class

label for clusters. �ese kinds of evaluation usually assign the best score to the algorithm

that produces clusters with high similarity within a cluster and low similarity between

clusters. One drawback of using internal criteria in cluster evaluation is the high scores

on an internal measure do not truly result in data clustering. Additionally, this evalua-

tion is biased towards algorithms that use the same cluster model. For example model

used in k-Means clustering is naturally optimizes object distances, and a distance-based

internal criterion will likely misjudge the resulting clustering. Compactness and Sepa-

rateness, Silhouette value (combination of compactness and separateness) and SSQ

(sum of square distance) can be used to assess the quality clustering algorithms based

on internal criterion. In external evaluation, clustering results are evaluated based on the

known class labels. �ese types of evaluation methods measure how close the cluster-

ing is to the predetermined benchmark classes. We use two main and popular external

evaluation metrics including cluster purity and F-measure criteria for experiments.

Cluster purity measures the percentage of the correct grouped data inside a cluster.

Cluster purity is utilized to evaluate the quality of the micro-clusters produced by the

online component. Furthermore, cluster purity quantifies a cluster intrinsic coherence.

To evaluate the cluster purity, each cluster is assigned to the class which is most fre-

quent in the cluster, and then the accuracy of this assignment is measured by counting

the number of correctly assigned samples and dividing by n the number of data in the

cluster.

Another well-known evaluation parameter that is considered in the clustering meth-

ods specifically for document stream clustering is precision, recall and F-measure. Preci-

sion is a number of relevant samples retrieved divided by the total number of grouped

samples. On the other hands, precision measures the degree to which the clustering

Page 10 of 21Khalilian et al. Journal of Big Data (2016) 3:1

method produces accurate results. Recall is a number of relevant samples retrieved

divided by the total number of samples that actually belong to the real cluster. In addi-

tion, recall measures the ability of the clustering method to produce all of the samples

that are likely to be grouped by the method. F-measure has been defined to balance

the contribution of precision (p) and recall (r) according to the following definitions:

F-measure = (2·p·r)/(p + r)

Datasets description

For experiments, it is necessary to use some datasets that allows us to analyze effective-

ness of proposed method. Our experiments have been conducted on two groups of data-

sets: synthetic and real world datasets.

Real world datasets We selected the two most popular datasets in this research area.

�e first dataset is KDDCUP 99 data set which related to the features of network connec-

tion data derived from 7 weeks of raw TCP logs consisting of both regular network traffic

as well as 24 types of simulated attacks within a military local area network. KDDCUP

99 used in the most cited related works [4, 8, 39]. Each connection is labeled as either

normal, or as an attack, with exactly one specific attack type. Each connection record

consists of about 100 bytes. �e research intends to compare efficiency of DCSTREAM

with other available methods in this area. �e data is available both as a complete set

that contains approximately 4.9 million records and as a 10 % sub-sampled set contain-

ing 494,020 points. Each connection record consists of 41 features plus a class ID. Of the

available dimensions, 34 continuous valued features were used for clustering and a single

outlier point was removed. Accurate clustering of this data demonstrates that the algo-

rithm is able to cope in real world situations where a data stream periodically contains

bursts of unexpected and unusual data records. �e second dataset is the document data-

sets which are available in the CLUTO clustering toolkit. It can be obtained from http://

www.cs.umn.edu/˜cluto. Each document corresponds to a web page listed in the subject

hierarchy of Yahoo! (http://www.yahoo.com). �e datasets k1a and k1b contain exactly

the same set of documents but they differ in how the documents were assigned to differ-

ent classes. In particular, k1a contains a finer-grain categorization than that contained in

k1b. We utilize documents obtained from these datasets. �is stream contained 163,000

documents. �e original datasets includes 20 and 6 classes respectively.

Synthetic datasets We chose PEIVAND data sets to conduct our experiment on syn-

thetic data which can be gathered from PEIVAND website. �is website is for finding

suitable partners who are very similar from point of personality’s view for a person.

Based on eight pages of psychiatric questions personality of people for different aspects

is extracted. Each group of questions is related to one dimension of personality. Data are

organized in a table with 93 columns for attributes of people and 407 rows which are for

samples. �ese dataset is converted into a stream for the testing process. �e conversion

process is carried out as follows:

 • A continuous stream of records is created by concatenating the different instances

of the data sets with one another. Since each data set contained b = 400 records,

http://www.cs.umn.edu/%cb%9ccluto
http://www.cs.umn.edu/%cb%9ccluto
http://www.yahoo.com

Page 11 of 21Khalilian et al. Journal of Big Data (2016) 3:1

the corresponding stream consisted of 4000 records. �e PEYVAND data stream is

referred as abrupt. We note that this stream has a very high level of temporal locality

in its behavior.

 • A second stream is generated from the same set of records, but in this case, the order

of the records is randomized. �us, a data point at a given stage of the stream could

be generated from any of the sets of data. We refer to this stream as non-evolving.

�is stream has almost no temporal locality.

 • A third stream is produced which constantly evolves over time. In order to make this

smoothly evolving data stream, we applied a block mixing procedure in a sequential

fashion. In the first step, the first 2 · b records are randomized. In the next step, the

block of records in the range (b, 3 · b) are randomized. �is process is repeated suc-

cessively for each contiguous block of 2 · b records, at various intervals of b records.

�e outcome is a data stream in which the evolution is more incessant than the origi-

nal data. �is stream reveals a medium level of temporal locality. We refer to this

data set as gradual.

Results and discussion

With the purpose of evaluating the effectiveness of DCSTREAM, we addressed the fol-

lowing questions:

1. What is the best number of subsets for DCSTREAM?

2. How are the quality and the applicability of DCSTREAM on different real world

datasets?

3. How does DCSTREAM react to evolutionary data and concept drift in available

amount of memory?

4. How is the quality of DCSTREAM in detecting novel micro-clusters and outliers?

5. How is the runtime performance of DCSTREAM?

6. How is the scalability performance of DCSTREAM?

We have considered six experiments below to answer all the above questions and

we chose two famous data stream clustering methods STREAM and ConStream in all

experiments as the comparison methods.

Experiment 1: Number of subsets analysis

One of the most important parameters which may significantly impact the clustering

quality and speed up is the number of subsets in each window. Finding the best value

for number of subsets affects on time complexity and results in increased efficiency.

Experiment 1 has been carried out to analyze the findings of selecting the best value for

number of subsets. It is also demonstrated the effect of choosing the best value for the

number of subsets. In this experiment, we find this value by applying k-means algorithm

five times to avoid local minima in each window for length of vectors for 100,000 sam-

ples and calculating average silhouette for different value of k from 2 to 10. �e results

of these 9 experiments have been organized in Fig. 6. Each experiment for specific k the

number of subsets for windows during the stream progression is shown with a base line.

For instance, consider k = 2 that is shown in the first base line. It is almost matched the

Page 12 of 21Khalilian et al. Journal of Big Data (2016) 3:1

base line meaning that average silhouette value is 1 or nearly 1. Conversely, for the last

experiment with k = 10, the average silhouette value is under of the base line meaning

that the value is low or even for some window is negative for average silhouette value.

�us, if the result is closer to base line it implies the better outcome otherwise the result

is worse. As demonstrated in Fig. 6, there is the most stable value for average silhouette

in k = 2. Furthermore, null value or value close to 1 (0.999) for mean(s) imply that the

entire data in window are at same level and window of data can be considered as one

cluster. It is also clear from Fig. 6 that average silhouette value for k > 2 in some stream

is negative especially when it is closer to k = 9 which is the worst value for k number

of subsets. �erefore, the number of subsets in each window was set to value 2 for all

experiments for KDDCUP 99.

Experiment 2: DCSTREAM quality for real world datasets

We conducted Experiment 2 for measuring the quality and performance of DCSTREAM

compared to the two previous methods STREAM and ConStream against the real world

datasets. Intrusion Detection Dataset (KDDCUP 99) is chosen as the abrupt instance

and document stream as gradual datasets.

One novel feature of DCSTREAM is that it creates a set of micro-clusters for each

data window by considering both novelty and outliers. We show the effectiveness and

high quality of method in detecting network intrusions. We also compare the cluster-

ing quality of our method with STREAM and ConStream using the KDDCUP 99 data-

set. STREAM is selected to compare with DCSTREAM because it exploits k-means for

clustering stream of data. In fact, it is a good example for condensation-based method.

Although, it uses batch processing instead of online incremental processing but it does

not support evolving data and concept drift. �us, STREAM does not support detect-

ing the novelty and the expired clusters. STREAM uses divide and conquer approach to

cluster stream of data. �e main difference between DCSTREAM and STREAM in using

Divide and Conquer method for clustering is that STREAM exploits it for segmenta-

tion of entire data (divide), finding the intermediate median for each segment (conquer)

and clustering of obtained median as the final results (combine the solutions), whereas

DCSTREAM divides data in each stream based on vector length and cluster each subset

(conquer). In addition, DCSTREAM employs average silhouette value to find k the best

number of subsets in each stream while STREAM divides data without any criterion.

Fig. 6 The average silhouette value for k number of subsets in each window

Page 13 of 21Khalilian et al. Journal of Big Data (2016) 3:1

Experiment for KDDCUP 99 has shown that the DCSTREAM has substantially

higher quality than STREAM. Figure 8 shows the results where stream speed = 1000

which means that the stream window length is 1000. We run each algorithm 5 times

and compute their average of purity. As shown in the Fig. 8, DCSTREAM is always bet-

ter than STREAM. For example, at first window, the purity of DCSTREAM is close to

1, whereas, STREAM achieved only 0.3 for mean(s). Surprisingly, the high clustering

quality of DCSTREAM is achieved while using batch processing instead of incremental

online processing. As it can be seen from Fig. 7, the behavior of DCSTREAM is as more

stable as STREAM. Due to distinguished data monotonous and outliers in first stage of

DCSTREM which is dividing data window into some subsets, DCSTREAM achieves a

higher quality and established performance. Furthermore, determining number of clus-

ters for STREAM is required as it affects the quality because determination of k value is

not deterministic for a piece of data and it varies from one stream to the other streams,

whereas DCSTREAM exploits average silhouette value to determine number of micro-

clusters in each stream and identify k automatically.

Although, both STREAM and DCSTREAM utilize batch processing for stream clus-

tering but there is no solution for monotonous data in STREAM. �erefore, STREAM

attempts to cluster segment of data by which is not required to cluster. As a result, qual-

ity of clusters discovered by STREAM decreased especially for streams 7, 8 and 9 which

Fig. 7 Quality comparison for STREAM, DSTREAM and ConStream

Fig. 8 Quality of clusters for 3 classes of datasets

Page 14 of 21Khalilian et al. Journal of Big Data (2016) 3:1

include monotonous data, while DCSTREAM could detect monotonous data in these

streams and ignored clustering them. Furthermore, KDDCUP 99 includes abrupt con-

cept drift that is not recognizable by STREAM. �us, sudden fall for quality can be seen

from Fig. 7 in some streams e.g. stream 13. In streams 16 and 17, the quality decreased

for both STREAM and DCSTREAM. In fact, outlier detection is the reason of decreas-

ing quality. Data in these windows are in same class (normal) but the samples include

outliers. However, DCSTREAM could achieve better quality than STREAM in this situ-

ation. �ere is a steep fall in quality for the first stream of data clustering by STREAM.

First stream is very critical for clustering because of initialization. As it can be seen from

Fig. 7 DCSTREAM is more successful than STREAM because DCSTREAM uses the

two stages algorithm based on divide-and-conquer to avoid initialization problem of

K-Means which is used by STREAM.

On the one hand, the divide and conquer enables DCSTREAM to approximate a hier-

archical structure based on level of objects as closely as desired. �is is in contrast to

other clustering algorithms that are only based on the k-means data stream clustering

with its weaknesses such as initial value for clusters and outlier detection. STREAM

achieves a hierarchical structure but it is inflexible structure which is not possible to

modify the hierarchical structure.

It is evident from Fig. 7 that even the quality of ConStream is better than STREAM but

results of DCSTREAM are still higher than ConStream. Besides, ConStream employs

incremental online processing to create micro-clusters. ConStream used a method for

distinguishing outliers and novel micro-clusters by which the quality and performance

has been affected. It also causes some other problems that must be solved such as time

of using decay concept for outlier and novelty detection. Due to the use of a simple fad-

ing function and decay concept with batch processing these problems in ConStream are

disappeared for DCSTREAM.

As shown in Fig. 7, there is a sudden fall in the first window because ConStream

utilizes K-Means for initializing the micro-clusters similar to STREAM. In contrast,

DCSTREAM is initialized with acceptable quality for micro-clusters as result of deter-

mining k number of micro-clusters automatically and employing two stages algorithm.

It is obvious from Fig. 8 that, the quality of DCSTREAM has since begun to level out

upcoming 1. �ere is a sharp decline for DCSTREAM in streams 6, 13 and 17. Based

on experiment 1, window 13 includes a big diversity in data with a steady changed in

samples. ConStream is at a peak in stream 11 similar to STREAM and DCSTREAM,

this occurs because of monotonous data in this stream. Since DCSTREAM enables us to

avoid clustering for monotonous data and leads to save in time consuming.

In Table 2, we reports the one way ANOVA test for clustering quality of DCSTREAM,

ConStream and STREAM methods which has been carried out by IBM SPSS 20. A one

way between groups analysis of variance was performed to investigate quality of clus-

tering differences in mean quality obtained by methods. Preliminary assumption testing

was conducted to check normality and homogeneity of variance with no serious viola-

tions noted. �e ANOVA test revealed that there was a statistically significant deference

in the mean quality between the three methods. Tukey Post Hoc multiple comparisons

test shows that there was a statistically significant difference in the mean clustering qual-

ity for the following pairs: DCSTREAM, ConStream and STREAM. An inspection mean

Page 15 of 21Khalilian et al. Journal of Big Data (2016) 3:1

quality of the clusters based on post hoc comparisons using Tukey test indicated that

DCSTREAM obtained significantly higher mean in clustering quality than ConStream

and STREAM. ConStream also achieved considerable higher mean quality of clustering

than STREAM but it is not significant at 0.05 level (sig = 0.04).

To show that DCSTREAM is applicable in different domain we applied DCSTREAM

for document stream clustering and compared the method to the ConStream which is

the recent method for streaming text clustering. We further note that DCSTREAM does

not require an input parameter k which defines the number of clusters but this param-

eter must be determined for ConStream. In order to test the relative effectiveness of the

two methods, we used an input parameter k which was equal to the number of natural

clusters in the data set for ConStream. For the sake of testing, the entire data stream was

clustered in one pass; precision and recall of the two methods were measured.

In Table 3 we have illustrated the precision, recall and F-measure behavior of the

DCSTREAM method with respect to the ConStream. �e precision and recall were

computed against the true clusters which were either known from the base data in the

text dataset. It is clear that the DCSTREAM substantially outperforms the ConStream in

terms of both precision and F-measure. In contrast, DCSTREAM outcomes lower recall

that ConStream. Due to using average silhouette value for detecting outliers and low

quality micro-clusters, some samples identify in wrong micro-clusters.

Experiment 3: Evolutionary and concept drift results

Evolutionary and concept drift are two main problems for data stream clustering. In this

experiment, we investigated how well the method grouped records corresponding to a

given class or category in a cluster for evolutionary and concept drift. For the case of

the synthetic datasets, we use an unknown label dataset which was introduced earlier as

the seed for creating three classes of data including abrupt, gradual and non-evolving.

Table 2 One way ANOVA test for multiple comparisons

Dependent variable: clustering quality

Tukey HSD

* The mean di�erence is signi�cant at the 0.05 level

(I) Clustering
methods

(J) Clustering
methods

Mean di�erence
(I-J)

Std. Error Sig. 95 % Con�dence interval

Lower bound Upper bound

DCSTREAM ConStream .20615
*

.05246 .001 .0799 .3324

STREAM .33713
*

.05246 .000 .2109 .4634

ConStream DCSTREAM −.20615* .05246 .001 −.3324 −.0799

STREAM .13098
*

.05246 .040 .0048 .2572

STREAM DCSTREAM −.33713* .05246 .000 −.4634 −.2109

ConStream −.13098* .05246 .040 −.2572 −.0048

Table 3 Quality comparison for document stream clustering

Method Precision Recall F-measure

ConStream 44.7 45.1 44.89

DCSTREAM 54.2 43.9 48.5

Page 16 of 21Khalilian et al. Journal of Big Data (2016) 3:1

Additionally, values of features in this dataset are ordinal data type. We note that for

unknown label datasets, the value of the silhouette can be computed and used for evalu-

ation. Since we use an unknown label dataset for synthetic dataset, it has been clustered

in 4 groups. For this purpose, we choose different number of k for clustering to find the

best value for the number of clusters with different clustering method to achieve the

highest average value for silhouette. �e best number of cluster with the highest average

silhouette value was achieved when k = 2. Despite of the best value for k, we select k = 4

as the second best value for k because generation of three classes for evolutionary test

is not possible with only two clusters of data. In contrast, quality of the clusters would

be decreased based on silhouette value and it affects the synthetic datasets for further

analysis.

We have illustrated the cluster average silhouette value results using the synthetic

datasets in Fig. 8. �is experiment was conducted for stream length with 1000 points.

�e quality is totally low using k = 4 for seed dataset to create stream of data because of

the above mentioned problem. �e abrupt class stream is on top with the highest level

of cluster silhouette, whereas, the non-evolving stream is on the bottom with the low-

est level of average silhouette value. �e reason for high quality in abrupt class is that

DCSTREAM can detect monotonous segment more than gradual and non-evolving

classes. �e worst situation is in non-evolving case because there is a big diversity in

samples. As a result, it decreased the average silhouette value in non-evolving class.

Experiment 4: Novel micro-clusters and outlier detection

�e purpose of this experiment is to test the effect of the evolution process on the clus-

ters and outliers detected by the DCSTREAM. For this reason, we tested the number

of new outliers created at the end of window time. In general, outliers were created

by substantial changes in the stream behavior. As mentioned, after each window time,

novel micro-clusters and outliers are distinguishable. An outlier is identified based on

user specified number of micro-cluster members and the average silhouette value. On

the other hand, after each stream micro-clusters are merged and split based on defined

criteria which were discussed earlier. Novel and expired micro-clusters are recognizable

after each split and merge. For all experiments, we assumed a slowly decaying stream

in which the half-life was set to half for all micro-clusters except those micro-clusters

that take part in split and merge process after each stream. �us, some micro-clusters

may be expired based on determined threshold for the decay value by the user. It can

be depended on memory available. By batch processing in each stream, detection of the

novel micro-clusters with respect to repository of micro-clusters can be accomplished

easily. In Fig. 9, we have a similar problem to Experiment 3. Due to big diversity in data

for non-evolving class, many micro-clusters were detected by DCSTREAM. It refers to

temporal locality in data. It is clear from Fig. 9 that the least number of micro-clusters

were detected in abrupt class. For the case of the gradual and non-evolving data streams,

the fraction of new cluster creations was not uniform. However, the average number of

new cluster creations was higher in this case because of the greater non-uniformity of

the data stream in the gradual and non-evolving datasets.

More details of the quality of the original results are illustrated in the number of outli-

ers in a data stream which is highly dependent upon the ordering and skew of the data

Page 17 of 21Khalilian et al. Journal of Big Data (2016) 3:1

stream (Fig. 10). Clearly, when there are bursts of homogeneous behavior within a given

temporal locality of the data stream named as monotonous data in this study, very few

outliers are observed. �e rate of outlier generation is thus an indirect indicator of the

level of temporal locality of the data stream. It can also help us to extract knowledge

about monotonous segments of data to find normal and abnormal behavior of data.

Experiment 5: DCSTREAM performance

Performance of DCSTREAM can be evaluated in different directions. In this experiment,

we test DCSTREAM runtime for KDDCUP 99 as the abrupt dataset against STREAM

and ConStream and later we evaluate DCSTREAM against synthetic dataset. We have

set the window size as 1000 for all experiments. Figure 11 illustrates the stream process-

ing rate for each of the methods with KDDCUP 99. It is obvious that, our method is

significantly faster than the STREAM and ConStream. It is apparent that in each case,

several thousand data points per minute could be processed. We also note that the run-

ning time was not uniform across the entire execution. �is suggests that the approach

is extremely efficient and robust for KDDCUP 99 dataset. It is noticeable that each scale

in x-axis represents 65000 samples. �e main reason of DCSTREAM efficiency is on

Fig. 9 New micro-clusters detection

Fig. 10 Outlier detection

Fig. 11 Runtime comparison for three methods

Page 18 of 21Khalilian et al. Journal of Big Data (2016) 3:1

using two stages algorithm for clustering data by which detect monotonous data seg-

ment and avoid extra-clustering process. In other words, DCSTREAM is able to cluster

data stream in the first step of the algorithm. It is clear that saving time consumption

occurs during the stream clustering.

Despite of ConStream that employs incremental online processing to cluster data,

DCSTREAM exploit batch processing with fading function to manage both evolving

data and detecting outliers. ConStream uses a method during the clustering to detect

novel micro-clusters and outliers which is time consuming (trend setter and mature

cluster) because of applying fading function during the stream clustering [27]. In con-

trast, DCSTREAM detect novel micro-clusters and outliers after each stream processing

automatically and uses fading function only for expired micro-clusters to remove from

the active memory.

It is obvious from the Fig. 11 that STREAM is the best case for efficiency. Entire data

clustering occurs in a hierarchical structure with sampling and divide-and-conquer

approach. �us, evolving data is not taken into account and there is no overhead in runt-

ime of STREAM. �e behavior of STREAM is stable because it uses batch processing for

all streams with the specific parameters. In first segment of data, DCSTREAM demon-

strates better performance because of existing monotonous data.

Experiment 6: DCSTREAM scalability

Several scale-up experiments were performed to investigate how well the execution time

is for DCSTREAM scales with respect to portion, dimensions of data and length of data

stream. As it is described earlier, it is not required to evaluate DCSTREAM for different

number of k because DCSTREAM determines k number of micro-clusters automatically.

In Experiment 6, we investigate DCSTREAM scalability for synthetic datasets in three

classes. As shown in Fig. 12, variables dependency between DCSTREAM runtime and

portion of data is nearly linear, abrupt, gradual and non-evolving datasets. DCSTREAM

runtime for abrupt dataset is little distorted from linear at the end of dataset but in non-

evolving it is completely linear.

A near linear relationship between DCSTREAM runtime and number of dimensions

was discovered in the synthetic datasets which is presented in Fig. 13.

DCSTREAM runtime is a ratio scale variable which is a positive measurement on

a non-linear scale, approximately at exponential scale for the entire length of stream.

Fig. 12 DCSTREAM scalability for synthetic datasets

Page 19 of 21Khalilian et al. Journal of Big Data (2016) 3:1

�e execution time of DCSTREAM with respect to the stream length of data stream is

shown in Fig. 14.

An interesting contrast is for stream length 500 and 1000 where runtime in the length

of 500 contains less than 1000 points. �is exception refers to synthetic data creation

methodology where we use blocks with 500 points for stream data.

Conclusion

In this study, a new method based on vector model and divide-and-conquer approach

has been utilized for clustering evolving stream data. We have selected a vector model

description because it allows us to model the hierarchical structure and relationships

among data more accurately by which we are capable to overcome monotonous data and

managing ordinal data type. Frequent split and merge provides an effective and detailed

representation of any changes that may occur in the cluster over time. A key aspect

of DCSTREAM is the use of dividing samples based on their length within the vector

model description which allows the method to capture the general structure of the clus-

ters without requiring the complete cluster data to be stored in memory. Most of the

time there is no requirement to execute second stage of algorithm. In other words in first

stage micro-clusters can be revealed. �us, algorithm can save memory and processing

time. A repository has been used to recall previously discovered micro-clusters in the

presence of recurrent change to manage evolving data. For managing evolving data, a

fading function with decay concept has been employed by DCSTREAM to detect expired

micro-clusters. �is enables the algorithm to discard the least useful micro-clusters with

Fig. 13 Dimension scalability for DCSTREAM

Fig. 14 DCSTREAM scalability for synthetic datasets

Page 20 of 21Khalilian et al. Journal of Big Data (2016) 3:1

memory constraint consideration. �e repository can also be used to obtain a historical

perspective on the general hierarchical of the micro-clusters over time and to archive

these changes for off-line analysis. Experimental results have demonstrated that the

algorithm is able to effectively classify both synthetic and real world datasets. �e algo-

rithm was compared against implementation of ConStream and STREAM in terms of

accuracy and performance using KDDCUP99 and document datasets. �e results show

that DCSTREAM can achieve superior quality and performance as compare to the men-

tioned methods for abrupt and gradual real world datasets. Furthermore, quality and

performance experiment results for KDDCUP99 demonstrated that monotonous data

which was introduced in this study was maintained by DCSTREAM efficiently.

A deep detailed study is required for document stream clustering in different aspects.

Time series and transaction applications, uncertain data and fuzzy consideration, arbi-

trary and non-convex shaped clusters can be considered for the future study.

Authors’ contributions

MK is the principal researcher for this study. His contributions include the fundamental idea, literature review, initial draft-

ing of the article, and results implementation. NM guided the initial research idea, and played an essential role in editing

the paper. NS also guided the research idea and discussed about the results to write the conclusion. All authors read and

approved the final manuscript.

Author details
1 Islamic Azad University, Karaj Branch, Karaj, Iran. 2 Faculty of Computer Science and Information Technology, UPM

University, Serdang, Malaysia.

Acknowledgements

The authors would also like to acknowledge the support provided by Islamic Azad University Karaj Branch.

Competing interests

The authors declare that they have no competing interests.

Received: 28 June 2015 Accepted: 30 November 2015

References

 1. Xu R, Wunsch D. Survey of clustering algorithms. IEEE Trans Neural Netw. 2005;16(3):645–78.

 2. Tu L, Chen Y. Stream data clustering based on grid density and attraction. ACM Trans Knowl Discov Data (TKDD).

2009;3(3):12.

 3. Aggarwal CC. A Framework for Clustering Massive-Domain Data Streams, presented at ICDE ‘09. IEEE 25th Interna-

tional Conference on Data Engineering; 2009.

 4. Guha S, Meyerson A, Mishra N, Motwani R, O’Callaghan L. Clustering data streams: theory and practice. IEEE Trans

Knowl Data Eng. 2003;15:515–28.

 5. Aggarwal CC, Yu PS. A framework for clustering massive text and categorical data streams. In: SDM; 2006.

 6. Zhang, Ramakrishnan, Livny. BIRCH: an efficient data clustering method for very large databases. Presented at ACM

SIGMOD Conference on Management of Data; 1996.

 7. Yunyue Z, Dennis S. StatStream: statistical monitoring of thousands of data streams in real time. In: Proceedings of

the 28th international conference on Very Large Data Bases. Hong Kong, China: VLDB Endowment; 2002.

 8. Aggarwal C, Jiawei H, Jianyong W, Philip SY. A framework for clustering evolving data streams. In: Proceedings of the

29th international conference on Very large data bases—Volume 29. Berlin, Germany: VLDB Endowment; 2003.

 9. Chen Y, Li T. Density-based clustering for real-time stream data. In: Proceedings of the 13th ACM SIGKDD interna-

tional conference on Knowledge discovery and data mining. ACM; 2007.

 10. Cormode, G, Muthukrishnan, S, Wei Z. Conquering the Divide: Continuous Clustering of Distributed Data Streams.

In: IEEE 23rd International Conference on Data Engineering, 2007. ICDE 2007, p. 1036–45.

 11. Rodrigues PP, Gama J, Pedroso JP. Hierarchical clustering of time-series data streams. In: IEEE transactions on knowl-

edge and data engineering; 2007, p. 615–27.

 12. Aoying Z, Feng C, Ying Y, Chaofeng S, Xiaofeng H. Distributed data stream clustering: a fast EM-based approach.

Presented at IEEE 23rd International Conference on Data Engineering, 2007. ICDE 2007.

 13. Aggarwal CC. On high dimensional projected clustering of uncertain data streams. Presented at IEEE 25th Interna-

tional Conference on Data Engineering, 2009. ICDE ‘09.

 14. Chen Z, He R, Li Y. Online fractal dimensionality reduction in time decaying stream environment. In: Eighth interna-

tional conference on fuzzy systems and knowledge discovery (FSKD), vol 3. IEEE; 2011. p. 1480–4.

 15. Tu Q, Lu JF, Yuan B, Tang JB, Yang JY. Density-based hierarchical clustering for streaming data. Pattern Recognit Lett.

2012;33(5):641–5.

Page 21 of 21Khalilian et al. Journal of Big Data (2016) 3:1

 16. Guha S, Meyerson A, Mishra N, Motwani R, O’Callaghan L. Streaming-data algorithms for high-quality clustering.

Presented at Proceedings 18th International Conference on Data Engineering; 2002.

 17. Aggarwal CC. On High Dimensional Projected Clustering of Uncertain Data Streams. Presented at IEEE 25th Interna-

tional Conference on Data Engineering, ICDE ‘09.

 18. Vivekanandan P, Nedunchezhian R. Mining data streams with concept drifts using genetic algorithm. Artif Intell Rev.

2011;36:163–78.

 19. Pardeshi B, Toshniwal D, Meghanathan N, Kaushik BK, Nagamalai D. Hierarchical clustering of projected data streams

using cluster validity index advances in computer science and information technology. vol. 131, Communications in

Computer and Information Science, Berlin: Springer; 2011. p. 551–9.

 20. Cardoso DD, Lima PM, De Gregorio M, Gama J, França FM. Clustering data streams with weightless neural networks.

In: ESANN; 2011.

 21. Ikonomovska E, Loskovska S, Gjorgjevik D. A survey of stream data mining. In: Proceedings of the 8th National

Conference with International Participation. 2007. pp. 19–25.

 22. Gaber MM, Zaslavsky A, Krishnaswamy S. Mining data streams: a review. ACM Sigmod Record. 2005;34(2):18–26.

 23. Daniel B. Requirements for clustering data streams. SIGKDD Explor Newsl. 2002;3:23–7.

 24. Wang H, Fan W, Yu PS, Han J. Mining concept-drifting data streams using ensemble classifiers. In: Proceedings of the

ninth ACM SIGKDD international conference on knowledge discovery and data mining. ACM; 2003. pp. 226–35.

 25. Barbara D. Requirements for clustering data streams. ACM SIGKDD Explorat Newslett. 2002;3:23–7.

 26. Aggarwal CC. A Framework for Clustering Massive-Domain Data Streams. Presented at IEEE 25th International

Conference on Data Engineering, ICDE ‘09.

 27. Aggarwal C, Yu P. On clustering massive text and categorical data streams. Knowl Inform Syst. 2009;24:171–96.

 28. Aggarwal, CC, Yu PS. A Framework for Clustering Uncertain Data Streams. Presented at IEEE 24th International

Conference on Data Engineering, ICDE 2008.

 29. Tian Z, Raghu R, Miron L. BIRCH: an efficient data clustering method for very large databases. SIGMOD Rec.

1996;25:103–14.

 30. Heinz C, Seeger B. Cluster kernels: resource-aware kernel density estimators over streaming data. IEEE Trans Knowl

Data Eng. 2008;20:880–93.

 31. Wan L, Ng WK, Dang XH, Yu PS, Zhang K. Density-based clustering of data streams at multiple resolutions. ACM

Trans Knowl Discov Data (TKDD). 2009;3(3):14

 32. Chehreghani MH, Abolhassani H, Chehreghani MH. Improving density-based methods for hierarchical clustering of

web pages. Data Knowl Eng. 2008;67:30–50.

 33. Yang D, Rundensteiner EA, Ward MO. Neighbor-based pattern detection for windows over streaming data. In:

Proceedings of the 12th international conference on extending database technology: advances in database tech-

nology. ACM; 2009. p. 529–40.

 34. Lin G, Chen L. A grid and fractal dimension-based data stream clustering algorithm. In: International symposium on

information science and engineering, ISISE’08, vol 1. IEEE; 2008. p. 66–70

 35. Wei J, Brice P. Data stream clustering and modeling using context-trees. Presented at 6th International Conference

on Service Systems and Service Management, ICSSSM ‘09.

 36. Chen K, Liu L. HE-Tree: a framework for detecting changes in clustering structure for categorical data streams. VLDB

J. 2009;18:1241–60.

 37. Hongbin G, Ruiguang L, Jie H. A Kind of Data Stream Clustering Algorithm Based on Grid and Relative Density.

Presented at Spring Congress on Engineering and Technology (S-CET); 2012.

 38. Kononenko I, Kukar M. Machin learning and data mining. Chichester: Horwood Publishing; 2007.

 39. Xiangliang Z, Furtlehner C, Germain-Renaud C, Sebag M. Data stream clustering with affinity propagation. Knowl

Data Eng IEEE Trans o. 2014;26:1644–56.

	Data stream clustering by divide and conquer approach based on vector model
	Abstract
	Background
	Related work
	Research design and methodology
	Online component of DCSTREAM
	Subsets generator
	Micro-clusters generator
	Split and merge

	Offline component of DCSTREAM
	Experimental setup
	Quality metrics
	Datasets description
	Real world datasets
	Synthetic datasets

	Results and discussion
	Experiment 1: Number of subsets analysis
	Experiment 2: DCSTREAM quality for real world datasets
	Experiment 3: Evolutionary and concept drift results
	Experiment 4: Novel micro-clusters and outlier detection
	Experiment 5: DCSTREAM performance
	Experiment 6: DCSTREAM scalability

	Conclusion
	Authors’ contributions
	References

