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Background

Very large databases are required to store massive amounts of data that are continuously 

inserted and queried. Analyzing big datasets and extracting pattern are valuable in many 

applications such as web click stream, network traffic monitoring, wireless sensor net-

work etc. For that purpose, there are two groups of techniques for mining huge datasets. 

One group attempts to solve this problem directly with efficient algorithms. Although 

these algorithms can achieve acceptable clustering results but insufficiency of data stor-

age capacity leads us to process data dynamically in extracting knowledge. �e second 

group of algorithms refers to streaming data and applies mining techniques [1]. In this 

kind of process, data have been considered as a stream of data which comes in from one 

side and exit from the other side and the data is not available to visit and process for the 

second time. �is main property of data stream will be associated with some difficulties 

in clustering data stream (due to clustering is the focus task in this paper) which include:
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1. Due to visiting data once during the processing data in stream, the performance of 

processing data is crucial.

2. Detecting a change in evolutionary data stream and detecting concept drift during 

the time whether gradual or abrupt.

Some works have been done in the area of the data stream clustering [2–5]. Despite of 

many efforts to improve the accuracy of the stream clustering methods [4, 6–16], there 

are some issues that fail to notice by the previous works in proposing data stream clus-

tering solutions. Some applications such as Intrusion Detection Systems contain many 

monotonous segments of data in dataset. Monotonous segment is defined as the repeti-

tive data in continuous records e.g. in KDDCUP99 dataset, records between 7820 and 

11,488 have very nearly the same value for their attributes (0,1032,0,0,0,0,0,0,0,0,0,0,0,0,0  , 

0,0,0,0,511,511,0,0,0,0,1,0,0,255,255,1,0,1,0,0,0,0,0,smurf ).

�us, monotonous segment causes many problems such as creation of empty clusters 

and it is utilizing time for clustering data with no cluster. Due to this fact, clustering of 

repetitive data in monotonous segments is useless and leads to high computational time 

for clustering. Furthermore, most researches in data stream clustering have focused on 

clustering algorithms for numerical data streams [2, 15, 17–20] and there is no reference 

on monitoring clustering structure for ordinal data streams. In addition, the current 

data stream clustering algorithms cannot mine true clusters effectively because of their 

weaknesses in determining important parameters such as k number of exact clusters in 

stream of data. In other words, it is possible that value of k is changed in stream of data. 

Considering novelty and concept drift in the stream of data especially in real time era 

is another important challenge which can be related to determining k number of exact 

clusters. Indirectly, this weakness (k number of exact clusters) will relate to the problem 

in finding good scalability in data stream clustering algorithms. In this paper, a novel 

approach is designed to overcome the difficulties in data stream clustering with consid-

eration on the above mentioned problems to achieve more accurate clustering result in 

high speed and scalable fashion. �e following ideas are adopted in our novel approach 

which will be extensively described in next sections:

a. A framework of data stream clustering that consists of online and offline compo-

nents is designed to cluster high scale datasets with ordinal data types and monoto-

nous data in real time processing.

b. Use a vector model and divide-and-conquer to reduce size and complexity of cluster-

ing problem.

c. An effective data stream algorithm is proposed for online component.

d. Propose an algorithm to detect concept drift and simplified fading function for 

removing expired micro-clusters and detect novel micro-clusters and outliers in 

batch processing.

�e remainder of this paper is organized as follows. In “Related work”, existing meth-

ods for data stream clustering which includes primitive and latest study with respect to 

their weaknesses and strengths will be reviewed. Background of the proposed method 

is explained in “Research design and methodology”. It also presents the data stream 
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clustering framework and how the proposed method is employed in the proposed 

framework and uses for stream clustering. “Results and discussion” and “Conclusion” are 

dedicated for experimental results of the proposed method and conclusion respectively.

Related work

Clustering is the task of assigning a set of objects into groups (called clusters) so that the 

objects in the same cluster are more similar to each other than to those in other clusters. 

Clustering is a main task of explorative data mining and a common technique for statis-

tical data analysis. It was used in many fields including machine learning, pattern rec-

ognition, image analysis, information retrieval, and bioinformatics. �ese applications 

usually store massive amounts of data which cause difficulties to do the task of clustering 

on entire dataset. Many researchers have focused on data stream as an efficient method 

to extract knowledge from big data [21–23]. On the other hand, many techniques are 

employed in data mining area but they must be modified to apply in data stream mining 

environments. Here, it is important that we note the difference between evolving data 

and concept drift. Evolving data refers to creating and disappearing objects whereas con-

cept drifts refers to changing clusters in terms of content during the time. Many studies 

have been executed to support concept drift [24]. Most researchers’ interest is to apply 

techniques for increasing compactness of representation, fast and incremental pro-

cessing of new data points, clear and fast identification of outliers [25]. It is possible to 

enumerate two main problems in data stream clustering which are concept change and 

visiting data once and there are different groups of solutions for data stream clustering 

from different perspectives that we summarized them in Table 1.

�ere are also group of methods that look into data processing perspective which can 

be carried out in two fashions: batch (STREAM [4]) and incremental online (ConStream 

[27]). In batch processing, each stream is divided to the buckets of data then each bucket 

Table 1 General group of methods for data stream clustering

Method Pros Cons

Condensation-based [5, 26–29] Having summary of data (global 
view)

Linear complexity
Scalability
Additive and subtractive property

Resource constraints
Detecting only spherical shape
Relearning
Applicable in low dimension

Data sampling [4, 30] Speed up
Memory usage
Low computational complexity

Low quality

Density –based [9, 15, 31–33] Arbitrary shaped clusters Density threshold must be deter-
mined

Noise sensitivity
Outlier sensitivity
Applicable in low dimension
Relearning

Grid-based [2, 19, 34] Arbitrary shaped clusters
High dimension [14]

Stability
Relearning

Hierarchical structure [11, 19, 35, 36] Support evolving and concept drift
No need to determining extra 

parameters

Relearning
Inflexibility
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is processed in the memory totally. Despite of batch processing, incremental online 

methods receive samples from the stream one by one and assign to the nearest cluster.

In this study, STREAM, ConStream and proposed method Divide-and-Conquer 

STREAM (DCSTREAM) have been compared for efficiency and accuracy in cluster-

ing results in data stream clustering. STREAM utilizes Divide-and-Conquer method 

to overcome difficulties in data stream clustering and should be distinguished from the 

proposed method. DCSTREAM uses Divide-and-Conquer method based on length of 

vector as it is described later whereas STREAM divides data by using sampling. Con-

Stream is selected as another comparison method due to its advantages in component-

based framework and condensational solution for clustering data stream. �us, we do 

not compare the proposed method with the recent stream clustering [15, 37] which are 

based on density and hierarchical methodology. It is clear that each category of methods 

can cover only a number of problems and applications.

Research design and methodology

DCSTREAM is the proposed method to cluster huge datasets using data stream clus-

tering which is based on Divide-AND-Conquer k-Means algorithm. �e framework of 

the DCSTREAM is partitioned into two main components which are online and offline 

according to different functions as shown in Fig. 1. It is noticeable that the online com-

ponent strongly affects the offline component.

We use window of data for online processing as the size of the window should be deter-

mined by the user and depends on the available memory. In this method, data which are 

active during window time Wi, will be expired during window time Wi+1. Consequently, 

visiting data in whole dataset is possibly once and during the window time only.

Furthermore, data pretreatment in a data stream mining system aims to reformat 

the original data file to prepare data for clustering. It includes feature selection, feature 

reduction, data cleaning and data transforming. Although these pretreatment tasks are 

Fig. 1 DCSTREAM Framework
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the same for any data stream mining problems, it does not under this study; therefore, 

we apply general methods in this task whereby feature selection and reduction have been 

done manually, missing values are ignored and normalizing the data if necessary.

Online component of DCSTREAM

�ree main modules are consisted in this component; subsets generator, micro-cluster gen-

erator and split and merge for micro-clusters. Data pretreatment module is outside from 

online component and it is done to preprocess stream data from the original data which is 

produced by the previous component in the form of data stream. �e Divide-AND-Con-

quer k-Means algorithm has been applied for generating micro-clusters. Concept drift has 

been managed by frequent split and merge that are stated in the following section.

Subsets generator

�is module calculates the length of objects inside window of data and creates one 

dimension vector for clustering by the K-Means algorithm. Based on the result of clus-

tering, the data is divided into some subsets. In fact, objects are categorized into some 

subsets based on their sizes or levels. Length of objects is defined by L(O) =

√

∑

d

i=0
o
2

i
, 

d and i are for the number of dimensions and value of its feature respectively.

We utilize average silhouette value to assess the essence of data in terms of monoto-

nous and the best number of subsets, average silhouette value has been defined as the 

below [38]:

For each datum i, let a(i) be the average dissimilarity of i with all other data within the 

same cluster (center of cluster). �en find the average dissimilarity of i with the data of 

another single cluster. Denote that the lowest average dissimilarity to i of any such clus-

ter by b(i) (centers of all other clusters). If average silhouette value equals 1, the nature 

of data may monotonous. In addition, we calculate the standard deviation for the entire 

data in the stream to check whether all the data are of the same value or not. Regardless 

of being average silhouette value equals 1 for the length of objects in the stream (same 

size for all objects inside the window), data may be deviated from the mean with respect 

to all features of the objects and thus it may include some clusters. �erefore, stand-

ard deviation is checked (it must be approximately equal to 0). On the other hand, data 

in the window according to their size may not be included as an intelligent structure 

that will be obvious as shown by average silhouette value (less than 0.25) [35]. Conse-

quently, this step should be discarded and continued to the next step which is generation 

of micro-clusters. �e details algorithm of subsets generating is shown in Fig. 2.

Micro‑clusters generator

For the purpose of achieving greater accuracy in the clustering process, it is necessary to 

maintain a high level of granularity in the underlying data structures. In order to achieve 

this goal, we will use a process in which condensed clusters of data points are main-

tained. We will refer to such groups as micro-clusters. In order to generate micro-clus-

ters as shown in Fig. 3, all samples in a window of the stream has been considered for 

s(i) =
b(i) − a(i)

max{a(i), b(i)}
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clustering called batch processing in opposite of incremental online processing (receiv-

ing samples one by one from the stream). According to this strategy, micro-clusters is 

produced and stored in the repository of micro-clusters for further analysis.

Fig. 2 Subsets Generating Algorithm

Fig. 3 Micro-clusters generating algorithm
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Figure 4 has demonstrated E-R diagram for this repository and attributes which are 

stored as relations in the repository.

Definition 1: A micro-cluster for a set of data points C at time t is defined as a tuple 

(micro-cluster-id, SC2, SC1, n, t). Each record is defined as follows:

Micro-cluster-id: this is an identification to identify every micro-cluster. It is also used 

to merge, split, concept drift detection, outlier detection and novelty detection.

SC1: the entry SC1 contains 
∑d

i=1

∑d
j=1

vi.vj here, v is a vector with d dimensions and 

i �= j.

SC2: the entry SC2 contains 
∑

d

i=1
vi here v is a vector with d dimensions.

n: the number of elements in each micro-cluster.

t: timestamp of each micro-cluster.

Macro-cluster entity in the repository is utilizing the same definition and attributes. 

In addition, it uses a weighted value w to apply fading function and decay concept. Every 

macro-cluster can include more than one micro-cluster and yields a hierarchical struc-

ture for clustering.

Split and merge

In order to detect concept drift, a frequent split and merge founded on compactness 

and separateness criteria has been devised. Basically, when two means of two clusters 

are approximately close to each other we can merge them in one cluster with respect 

to their compactness and separateness. �en again, we can split a micro-cluster when 

the number of elements in the micro cluster becomes too large and its compactness is 

decreased during the time. Nevertheless, determining parameters as the threshold for 

split and merge should be done by the user. However, a list of micro-clusters which are 

registered as frequent split and merge can be used to detect the concept drift. Merge and 

Split algorithm is shown in Fig. 5.

Fig. 4 E-R diagram for clustering repository
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O�ine component of DCSTREAM

�is component is designed for further analysis and providing a hierarchical structure 

for clusters by statistical database that is created by online component. For this purpose, 

three main tasks have been identified which are macro-cluster generator, outlier detect-

ing, novel and expired micro-clusters. �e main task is macro-cluster generator which 

is simply as same as micro-cluster generator in online component. �e only difference 

is macro-clustering process takes place in offline situation. Since the stream clustering 

process should provide a greater level of importance to recent clusters, we will provide a 

time-sensitive weight to each micro-cluster. It is assumed that each micro-cluster has a 

time-dependent weight defined by the function w (t). �e function w (t) is also referred 

as the fading function. �e fading function w (t) is a non-monotonic decreasing function 

which decays uniformly with time t. In order to formalize this concept, we will define the 

half-life of a micro-cluster in the repository. �e half-life t0 of a micro-cluster is defined 

as the time at which f (t0) = (1/2) f (0). After each window time, all micro clusters half-

life become half except micro clusters which are merged; therefore, half-life of a micro 

cluster less than a specific threshold is expired.

With the intention of detecting novelty in the data stream, we consider each new 

micro-cluster which has been registered for the first time in the repository as the novel 

micro-cluster. In contrast, if this novel micro-cluster does not receive enough data it can 

be considered as the outlier. To facilitate distinguish between the novel micro-clusters 

and abnormalities; we will introduce a parameter which is called as outlier factor and 

defined by the user. �is outlier can be a temporal outlier and later by merging other 

micro-clusters promotes to the real cluster in the next windows. For example, the first 

document belonging to a particular category in a document stream of current window 

may be recognized as an outlier, but it may later form a cluster of documents of its own 

by merging other micro-clusters in the next window. Due to this fact we are employing 

batch processing for online component, outlier and novel micro-cluster detection can be 

carried out easily after each time window is in the offline component. Consequently, by 

determining the time interval for fading function, outlier and novel micro-cluster detec-

tion is not required.

We have scrutinized the proposed method DCSTREAM for data stream clustering in 

an extensive experimental study and the obtained results are discussed. Due to exploit 

Fig. 5 Merge and Split algorithm
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vector concept in the computational model, it is important that we mention some criti-

cal assumptions on using this model as follows:

Our vector space is orthogonal, namely there is no correlation among properties of 

objects.

Elements of the specific vector have the same data types, meaning that conversion of 

different data types to one data type for vectors should be done before employing the 

vector model.

Number of dimensions is equal in all vectors which are entered for processing. In other 

words, this study does not include pre-processing of data.

Experimental setup

All evaluation tests have been run on a dual processor Intel® Core™ Duo CPU 3.16 GHz 

with 3.25  GB RAM with, Windows 7 (64bit) operating system. Implementations have 

been run on MATLAB 8 for coding the DCSTREAM.

Quality metrics

Once the DCSTREAM is implemented, the quality metrics are measured and computed 

by a set of well defined parameters. �ere are two main groups of quality metrics includ-

ing Internal and External evaluation criteria.

Internal evaluation refers to measuring the quality of the clusters without using class 

label for clusters. �ese kinds of evaluation usually assign the best score to the algorithm 

that produces clusters with high similarity within a cluster and low similarity between 

clusters. One drawback of using internal criteria in cluster evaluation is the high scores 

on an internal measure do not truly result in data clustering. Additionally, this evalua-

tion is biased towards algorithms that use the same cluster model. For example model 

used in k-Means clustering is naturally optimizes object distances, and a distance-based 

internal criterion will likely misjudge the resulting clustering. Compactness and Sepa-

rateness, Silhouette value (combination of compactness and separateness) and SSQ 

(sum of square distance) can be used to assess the quality clustering algorithms based 

on internal criterion. In external evaluation, clustering results are evaluated based on the 

known class labels. �ese types of evaluation methods measure how close the cluster-

ing is to the predetermined benchmark classes. We use two main and popular external 

evaluation metrics including cluster purity and F-measure criteria for experiments.

Cluster purity measures the percentage of the correct grouped data inside a cluster. 

Cluster purity is utilized to evaluate the quality of the micro-clusters produced by the 

online component. Furthermore, cluster purity quantifies a cluster intrinsic coherence. 

To evaluate the cluster purity, each cluster is assigned to the class which is most fre-

quent in the cluster, and then the accuracy of this assignment is measured by counting 

the number of correctly assigned samples and dividing by n the number of data in the 

cluster.

Another well-known evaluation parameter that is considered in the clustering meth-

ods specifically for document stream clustering is precision, recall and F-measure. Preci-

sion is a number of relevant samples retrieved divided by the total number of grouped 

samples. On the other hands, precision measures the degree to which the clustering 
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method produces accurate results. Recall is a number of relevant samples retrieved 

divided by the total number of samples that actually belong to the real cluster. In addi-

tion, recall measures the ability of the clustering method to produce all of the samples 

that are likely to be grouped by the method. F-measure has been defined to balance 

the contribution of precision (p) and recall (r) according to the following definitions: 

F-measure = (2·p·r)/(p + r)

Datasets description

For experiments, it is necessary to use some datasets that allows us to analyze effective-

ness of proposed method. Our experiments have been conducted on two groups of data-

sets: synthetic and real world datasets.

Real world datasets We selected the two most popular datasets in this research area. 

�e first dataset is KDDCUP 99 data set which related to the features of network connec-

tion data derived from 7 weeks of raw TCP logs consisting of both regular network traffic 

as well as 24 types of simulated attacks within a military local area network. KDDCUP 

99 used in the most cited related works [4, 8, 39]. Each connection is labeled as either 

normal, or as an attack, with exactly one specific attack type. Each connection record 

consists of about 100 bytes. �e research intends to compare efficiency of DCSTREAM 

with other available methods in this area. �e data is available both as a complete set 

that contains approximately 4.9 million records and as a 10 % sub-sampled set contain-

ing 494,020 points. Each connection record consists of 41 features plus a class ID. Of the 

available dimensions, 34 continuous valued features were used for clustering and a single 

outlier point was removed. Accurate clustering of this data demonstrates that the algo-

rithm is able to cope in real world situations where a data stream periodically contains 

bursts of unexpected and unusual data records. �e second dataset is the document data-

sets which are available in the CLUTO clustering toolkit. It can be obtained from http://

www.cs.umn.edu/˜cluto. Each document corresponds to a web page listed in the subject 

hierarchy of Yahoo! (http://www.yahoo.com). �e datasets k1a and k1b contain exactly 

the same set of documents but they differ in how the documents were assigned to differ-

ent classes. In particular, k1a contains a finer-grain categorization than that contained in 

k1b. We utilize documents obtained from these datasets. �is stream contained 163,000 

documents. �e original datasets includes 20 and 6 classes respectively.

Synthetic datasets We chose PEIVAND data sets to conduct our experiment on syn-

thetic data which can be gathered from PEIVAND website. �is website is for finding 

suitable partners who are very similar from point of personality’s view for a person. 

Based on eight pages of psychiatric questions personality of people for different aspects 

is extracted. Each group of questions is related to one dimension of personality. Data are 

organized in a table with 93 columns for attributes of people and 407 rows which are for 

samples. �ese dataset is converted into a stream for the testing process. �e conversion 

process is carried out as follows:

  • A continuous stream of records is created by concatenating the different instances 

of the data sets with one another. Since each data set contained b =  400 records, 

http://www.cs.umn.edu/%cb%9ccluto
http://www.cs.umn.edu/%cb%9ccluto
http://www.yahoo.com
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the corresponding stream consisted of 4000 records. �e PEYVAND data stream is 

referred as abrupt. We note that this stream has a very high level of temporal locality 

in its behavior.

  • A second stream is generated from the same set of records, but in this case, the order 

of the records is randomized. �us, a data point at a given stage of the stream could 

be generated from any of the sets of data. We refer to this stream as non-evolving. 

�is stream has almost no temporal locality.

  • A third stream is produced which constantly evolves over time. In order to make this 

smoothly evolving data stream, we applied a block mixing procedure in a sequential 

fashion. In the first step, the first 2 · b records are randomized. In the next step, the 

block of records in the range (b, 3 · b) are randomized. �is process is repeated suc-

cessively for each contiguous block of 2 · b records, at various intervals of b records. 

�e outcome is a data stream in which the evolution is more incessant than the origi-

nal data. �is stream reveals a medium level of temporal locality. We refer to this 

data set as gradual.

Results and discussion

With the purpose of evaluating the effectiveness of DCSTREAM, we addressed the fol-

lowing questions:

1. What is the best number of subsets for DCSTREAM?

2. How are the quality and the applicability of DCSTREAM on different real world 

datasets?

3. How does DCSTREAM react to evolutionary data and concept drift in available 

amount of memory?

4. How is the quality of DCSTREAM in detecting novel micro-clusters and outliers?

5. How is the runtime performance of DCSTREAM?

6. How is the scalability performance of DCSTREAM?

We have considered six experiments below to answer all the above questions and 

we chose two famous data stream clustering methods STREAM and ConStream in all 

experiments as the comparison methods.

Experiment 1: Number of subsets analysis

One of the most important parameters which may significantly impact the clustering 

quality and speed up is the number of subsets in each window. Finding the best value 

for number of subsets affects on time complexity and results in increased efficiency. 

Experiment 1 has been carried out to analyze the findings of selecting the best value for 

number of subsets. It is also demonstrated the effect of choosing the best value for the 

number of subsets. In this experiment, we find this value by applying k-means algorithm 

five times to avoid local minima in each window for length of vectors for 100,000 sam-

ples and calculating average silhouette for different value of k from 2 to 10. �e results 

of these 9 experiments have been organized in Fig. 6. Each experiment for specific k the 

number of subsets for windows during the stream progression is shown with a base line. 

For instance, consider k = 2 that is shown in the first base line. It is almost matched the 
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base line meaning that average silhouette value is 1 or nearly 1. Conversely, for the last 

experiment with k = 10, the average silhouette value is under of the base line meaning 

that the value is low or even for some window is negative for average silhouette value. 

�us, if the result is closer to base line it implies the better outcome otherwise the result 

is worse. As demonstrated in Fig. 6, there is the most stable value for average silhouette 

in k = 2. Furthermore, null value or value close to 1 (0.999) for mean(s) imply that the 

entire data in window are at same level and window of data can be considered as one 

cluster. It is also clear from Fig. 6 that average silhouette value for k > 2 in some stream 

is negative especially when it is closer to k = 9 which is the worst value for k number 

of subsets. �erefore, the number of subsets in each window was set to value 2 for all 

experiments for KDDCUP 99.

Experiment 2: DCSTREAM quality for real world datasets

We conducted Experiment 2 for measuring the quality and performance of DCSTREAM 

compared to the two previous methods STREAM and ConStream against the real world 

datasets. Intrusion Detection Dataset (KDDCUP 99) is chosen as the abrupt instance 

and document stream as gradual datasets.

One novel feature of DCSTREAM is that it creates a set of micro-clusters for each 

data window by considering both novelty and outliers. We show the effectiveness and 

high quality of method in detecting network intrusions. We also compare the cluster-

ing quality of our method with STREAM and ConStream using the KDDCUP 99 data-

set. STREAM is selected to compare with DCSTREAM because it exploits k-means for 

clustering stream of data. In fact, it is a good example for condensation-based method. 

Although, it uses batch processing instead of online incremental processing but it does 

not support evolving data and concept drift. �us, STREAM does not support detect-

ing the novelty and the expired clusters. STREAM uses divide and conquer approach to 

cluster stream of data. �e main difference between DCSTREAM and STREAM in using 

Divide and Conquer method for clustering is that STREAM exploits it for segmenta-

tion of entire data (divide), finding the intermediate median for each segment (conquer) 

and clustering of obtained median as the final results (combine the solutions), whereas 

DCSTREAM divides data in each stream based on vector length and cluster each subset 

(conquer). In addition, DCSTREAM employs average silhouette value to find k the best 

number of subsets in each stream while STREAM divides data without any criterion.

Fig. 6 The average silhouette value for k number of subsets in each window
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Experiment for KDDCUP 99 has shown that the DCSTREAM has substantially 

higher quality than STREAM. Figure  8 shows the results where stream speed =  1000 

which means that the stream window length is 1000. We run each algorithm  5 times 

and compute their average of purity. As shown in the Fig. 8, DCSTREAM is always bet-

ter than STREAM. For example, at first window, the purity of DCSTREAM is close to 

1, whereas, STREAM achieved only 0.3 for mean(s). Surprisingly, the high clustering 

quality of DCSTREAM is achieved while using batch processing instead of incremental 

online processing. As it can be seen from Fig. 7, the behavior of DCSTREAM is as more 

stable as STREAM. Due to distinguished data monotonous and outliers in first stage of 

DCSTREM which is dividing data window into some subsets, DCSTREAM achieves a 

higher quality and established performance. Furthermore, determining number of clus-

ters for STREAM is required as it affects the quality because determination of k value is 

not deterministic for a piece of data and it varies from one stream to the other streams, 

whereas DCSTREAM exploits average silhouette value to determine number of micro-

clusters in each stream and identify k automatically.

Although, both STREAM and DCSTREAM utilize batch processing for stream clus-

tering but there is no solution for monotonous data in STREAM. �erefore, STREAM 

attempts to cluster segment of data by which is not required to cluster. As a result, qual-

ity of clusters discovered by STREAM decreased especially for streams 7, 8 and 9 which 

Fig. 7 Quality comparison for STREAM, DSTREAM and ConStream

Fig. 8 Quality of clusters for 3 classes of datasets
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include monotonous data, while DCSTREAM could detect monotonous data in these 

streams and ignored clustering them. Furthermore, KDDCUP 99 includes abrupt con-

cept drift that is not recognizable by STREAM. �us, sudden fall for quality can be seen 

from Fig. 7 in some streams e.g. stream 13. In streams 16 and 17, the quality decreased 

for both STREAM and DCSTREAM. In fact, outlier detection is the reason of decreas-

ing quality. Data in these windows are in same class (normal) but the samples include 

outliers. However, DCSTREAM could achieve better quality than STREAM in this situ-

ation. �ere is a steep fall in quality for the first stream of data clustering by STREAM. 

First stream is very critical for clustering because of initialization. As it can be seen from 

Fig.  7 DCSTREAM is more successful than STREAM because DCSTREAM uses the 

two stages algorithm based on divide-and-conquer to avoid initialization problem of 

K-Means which is used by STREAM.

On the one hand, the divide and conquer enables DCSTREAM to approximate a hier-

archical structure based on level of objects as closely as desired. �is is in contrast to 

other clustering algorithms that are only based on the k-means data stream clustering 

with its weaknesses such as initial value for clusters and outlier detection. STREAM 

achieves a hierarchical structure but it is inflexible structure which is not possible to 

modify the hierarchical structure.

It is evident from Fig. 7 that even the quality of ConStream is better than STREAM but 

results of DCSTREAM are still higher than ConStream. Besides, ConStream employs 

incremental online processing to create micro-clusters. ConStream used a method for 

distinguishing outliers and novel micro-clusters by which the quality and performance 

has been affected. It also causes some other problems that must be solved such as time 

of using decay concept for outlier and novelty detection. Due to the use of a simple fad-

ing function and decay concept with batch processing these problems in ConStream are 

disappeared for DCSTREAM.

As shown in Fig.  7, there is a sudden fall in the first window because ConStream 

utilizes K-Means for initializing the micro-clusters similar to STREAM. In contrast, 

DCSTREAM is initialized with acceptable quality for micro-clusters as result of deter-

mining k number of micro-clusters automatically and employing two stages algorithm. 

It is obvious from Fig. 8 that, the quality of DCSTREAM has since begun to level out 

upcoming 1. �ere is a sharp decline for DCSTREAM in streams 6, 13 and 17. Based 

on experiment 1, window 13 includes a big diversity in data with a steady changed in 

samples. ConStream is at a peak in stream 11 similar to STREAM and DCSTREAM, 

this occurs because of monotonous data in this stream. Since DCSTREAM enables us to 

avoid clustering for monotonous data and leads to save in time consuming.

In Table 2, we reports the one way ANOVA test for clustering quality of DCSTREAM, 

ConStream and STREAM methods which has been carried out by IBM SPSS 20. A one 

way between groups analysis of variance was performed to investigate quality of clus-

tering differences in mean quality obtained by methods. Preliminary assumption testing 

was conducted to check normality and homogeneity of variance with no serious viola-

tions noted. �e ANOVA test revealed that there was a statistically significant deference 

in the mean quality between the three methods. Tukey Post Hoc multiple comparisons 

test shows that there was a statistically significant difference in the mean clustering qual-

ity for the following pairs: DCSTREAM, ConStream and STREAM. An inspection mean 
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quality of the clusters based on post hoc comparisons using Tukey test indicated that 

DCSTREAM obtained significantly higher mean in clustering quality than ConStream 

and STREAM. ConStream also achieved considerable higher mean quality of clustering 

than STREAM but it is not significant at 0.05 level (sig = 0.04).

To show that DCSTREAM is applicable in different domain we applied DCSTREAM 

for document stream clustering and compared the method to the ConStream which is 

the recent method for streaming text clustering. We further note that DCSTREAM does 

not require an input parameter k which defines the number of clusters but this param-

eter must be determined for ConStream. In order to test the relative effectiveness of the 

two methods, we used an input parameter k which was equal to the number of natural 

clusters in the data set for ConStream. For the sake of testing, the entire data stream was 

clustered in one pass; precision and recall of the two methods were measured.

In Table  3 we have illustrated the precision, recall and F-measure behavior of the 

DCSTREAM method with respect to the ConStream. �e precision and recall were 

computed against the true clusters which were either known from the base data in the 

text dataset. It is clear that the DCSTREAM substantially outperforms the ConStream in 

terms of both precision and F-measure. In contrast, DCSTREAM outcomes lower recall 

that ConStream. Due to using average silhouette value for detecting outliers and low 

quality micro-clusters, some samples identify in wrong micro-clusters.

Experiment 3: Evolutionary and concept drift results

Evolutionary and concept drift are two main problems for data stream clustering. In this 

experiment, we investigated how well the method grouped records corresponding to a 

given class or category in a cluster for evolutionary and concept drift. For the case of 

the synthetic datasets, we use an unknown label dataset which was introduced earlier as 

the seed for creating three classes of data including abrupt, gradual and non-evolving. 

Table 2 One way ANOVA test for multiple comparisons

Dependent variable: clustering quality

Tukey HSD

* The mean di�erence is signi�cant at the 0.05 level

(I) Clustering 
methods

(J) Clustering 
methods

Mean di�erence 
(I-J)

Std. Error Sig. 95 % Con�dence interval

Lower bound Upper bound

DCSTREAM ConStream .20615
*

.05246 .001 .0799 .3324

STREAM .33713
*

.05246 .000 .2109 .4634

ConStream DCSTREAM −.20615* .05246 .001 −.3324 −.0799

STREAM .13098
*

.05246 .040 .0048 .2572

STREAM DCSTREAM −.33713* .05246 .000 −.4634 −.2109

ConStream −.13098* .05246 .040 −.2572 −.0048

Table 3 Quality comparison for document stream clustering

Method Precision Recall F-measure

ConStream 44.7 45.1 44.89

DCSTREAM 54.2 43.9 48.5
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Additionally, values of features in this dataset are ordinal data type. We note that for 

unknown label datasets, the value of the silhouette can be computed and used for evalu-

ation. Since we use an unknown label dataset for synthetic dataset, it has been clustered 

in 4 groups. For this purpose, we choose different number of k for clustering to find the 

best value for the number of clusters with different clustering method to achieve the 

highest average value for silhouette. �e best number of cluster with the highest average 

silhouette value was achieved when k = 2. Despite of the best value for k, we select k = 4 

as the second best value for k because generation of three classes for evolutionary test 

is not possible with only two clusters of data. In contrast, quality of the clusters would 

be decreased based on silhouette value and it affects the synthetic datasets for further 

analysis.

We have illustrated the cluster average silhouette value results using the synthetic 

datasets in Fig. 8. �is experiment was conducted for stream length with 1000 points. 

�e quality is totally low using k = 4 for seed dataset to create stream of data because of 

the above mentioned problem. �e abrupt class stream is on top with the highest level 

of cluster silhouette, whereas, the non-evolving stream is on the bottom with the low-

est level of average silhouette value. �e reason for high quality in abrupt class is that 

DCSTREAM can detect monotonous segment more than gradual and non-evolving 

classes. �e worst situation is in non-evolving case because there is a big diversity in 

samples. As a result, it decreased the average silhouette value in non-evolving class.

Experiment 4: Novel micro-clusters and outlier detection

�e purpose of this experiment is to test the effect of the evolution process on the clus-

ters and outliers detected by the DCSTREAM. For this reason, we tested the number 

of new outliers created at the end of window time. In general, outliers were created 

by substantial changes in the stream behavior. As mentioned, after each window time, 

novel micro-clusters and outliers are distinguishable. An outlier is identified based on 

user specified number of micro-cluster members and the average silhouette value. On 

the other hand, after each stream micro-clusters are merged and split based on defined 

criteria which were discussed earlier. Novel and expired micro-clusters are recognizable 

after each split and merge. For all experiments, we assumed a slowly decaying stream 

in which the half-life was set to half for all micro-clusters except those micro-clusters 

that take part in split and merge process after each stream. �us, some micro-clusters 

may be expired based on determined threshold for the decay value by the user. It can 

be depended on memory available. By batch processing in each stream, detection of the 

novel micro-clusters with respect to repository of micro-clusters can be accomplished 

easily. In Fig. 9, we have a similar problem to Experiment 3. Due to big diversity in data 

for non-evolving class, many micro-clusters were detected by DCSTREAM. It refers to 

temporal locality in data. It is clear from Fig. 9 that the least number of micro-clusters 

were detected in abrupt class. For the case of the gradual and non-evolving data streams, 

the fraction of new cluster creations was not uniform. However, the average number of 

new cluster creations was higher in this case because of the greater non-uniformity of 

the data stream in the gradual and non-evolving datasets.

More details of the quality of the original results are illustrated in the number of outli-

ers in a data stream which is highly dependent upon the ordering and skew of the data 
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stream (Fig. 10). Clearly, when there are bursts of homogeneous behavior within a given 

temporal locality of the data stream named as monotonous data in this study, very few 

outliers are observed. �e rate of outlier generation is thus an indirect indicator of the 

level of temporal locality of the data stream. It can also help us to extract knowledge 

about monotonous segments of data to find normal and abnormal behavior of data.

Experiment 5: DCSTREAM performance

Performance of DCSTREAM can be evaluated in different directions. In this experiment, 

we test DCSTREAM runtime for KDDCUP 99 as the abrupt dataset against STREAM 

and ConStream and later we evaluate DCSTREAM against synthetic dataset. We have 

set the window size as 1000 for all experiments. Figure 11 illustrates the stream process-

ing rate for each of the methods with KDDCUP 99. It is obvious that, our method is 

significantly faster than the STREAM and ConStream. It is apparent that in each case, 

several thousand data points per minute could be processed. We also note that the run-

ning time was not uniform across the entire execution. �is suggests that the approach 

is extremely efficient and robust for KDDCUP 99 dataset. It is noticeable that each scale 

in x-axis represents 65000 samples. �e main reason of DCSTREAM efficiency is on 

Fig. 9 New micro-clusters detection

Fig. 10 Outlier detection

Fig. 11 Runtime comparison for three methods



Page 18 of 21Khalilian et al. Journal of Big Data  (2016) 3:1 

using two stages algorithm for clustering data by which detect monotonous data seg-

ment and avoid extra-clustering process. In other words, DCSTREAM is able to cluster 

data stream in the first step of the algorithm. It is clear that saving time consumption 

occurs during the stream clustering.

Despite of ConStream that employs incremental online processing to cluster data, 

DCSTREAM exploit batch processing with fading function to manage both evolving 

data and detecting outliers. ConStream uses a method during the clustering to detect 

novel micro-clusters and outliers which is time consuming (trend setter and mature 

cluster) because of applying fading function during the stream clustering [27]. In con-

trast, DCSTREAM detect novel micro-clusters and outliers after each stream processing 

automatically and uses fading function only for expired micro-clusters to remove from 

the active memory.

It is obvious from the Fig. 11 that STREAM is the best case for efficiency. Entire data 

clustering occurs in a hierarchical structure with sampling and divide-and-conquer 

approach. �us, evolving data is not taken into account and there is no overhead in runt-

ime of STREAM. �e behavior of STREAM is stable because it uses batch processing for 

all streams with the specific parameters. In first segment of data, DCSTREAM demon-

strates better performance because of existing monotonous data.

Experiment 6: DCSTREAM scalability

Several scale-up experiments were performed to investigate how well the execution time 

is for DCSTREAM scales with respect to portion, dimensions of data and length of data 

stream. As it is described earlier, it is not required to evaluate DCSTREAM for different 

number of k because DCSTREAM determines k number of micro-clusters automatically.

In Experiment 6, we investigate DCSTREAM scalability for synthetic datasets in three 

classes. As shown in Fig. 12, variables dependency between DCSTREAM runtime and 

portion of data is nearly linear, abrupt, gradual and non-evolving datasets. DCSTREAM 

runtime for abrupt dataset is little distorted from linear at the end of dataset but in non-

evolving it is completely linear.

A near linear relationship between DCSTREAM runtime and number of dimensions 

was discovered in the synthetic datasets which is presented in Fig. 13.

DCSTREAM runtime is a ratio scale variable which is a positive measurement on 

a non-linear scale, approximately at exponential scale for the entire length of stream. 

Fig. 12 DCSTREAM scalability for synthetic datasets
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�e execution time of DCSTREAM with respect to the stream length of data stream is 

shown in Fig. 14.

An interesting contrast is for stream length 500 and 1000 where runtime in the length 

of 500 contains less than 1000 points. �is exception refers to synthetic data creation 

methodology where we use blocks with 500 points for stream data.

Conclusion

In this study, a new method based on vector model and divide-and-conquer approach 

has been utilized for clustering evolving stream data. We have selected a vector model 

description because it allows us to model the hierarchical structure and relationships 

among data more accurately by which we are capable to overcome monotonous data and 

managing ordinal data type. Frequent split and merge provides an effective and detailed 

representation of any changes that may occur in the cluster over time. A key aspect 

of DCSTREAM is the use of dividing samples based on their length within the vector 

model description which allows the method to capture the general structure of the clus-

ters without requiring the complete cluster data to be stored in memory. Most of the 

time there is no requirement to execute second stage of algorithm. In other words in first 

stage micro-clusters can be revealed. �us, algorithm can save memory and processing 

time. A repository has been used to recall previously discovered micro-clusters in the 

presence of recurrent change to manage evolving data. For managing evolving data, a 

fading function with decay concept has been employed by DCSTREAM to detect expired 

micro-clusters. �is enables the algorithm to discard the least useful micro-clusters with 

Fig. 13 Dimension scalability for DCSTREAM

Fig. 14 DCSTREAM scalability for synthetic datasets
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memory constraint consideration. �e repository can also be used to obtain a historical 

perspective on the general hierarchical of the micro-clusters over time and to archive 

these changes for off-line analysis. Experimental results have demonstrated that the 

algorithm is able to effectively classify both synthetic and real world datasets. �e algo-

rithm was compared against implementation of ConStream and STREAM in terms of 

accuracy and performance using KDDCUP99 and document datasets. �e results show 

that DCSTREAM can achieve superior quality and performance as compare to the men-

tioned methods for abrupt and gradual real world datasets. Furthermore, quality and 

performance experiment results for KDDCUP99 demonstrated that monotonous data 

which was introduced in this study was maintained by DCSTREAM efficiently.

A deep detailed study is required for document stream clustering in different aspects. 

Time series and transaction applications, uncertain data and fuzzy consideration, arbi-

trary and non-convex shaped clusters can be considered for the future study.
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