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Abstract. Recent research efforts in the fields of data stream process-
ing and data stream management systems (DSMSs) show the increasing
importance of processing data streams, e. g., in the e-science domain. To-
gether with the advent of peer-to-peer (P2P) networks and grid comput-
ing, this leads to the necessity of developing new techniques for distribut-
ing and processing continuous queries over data streams in such networks.
In this paper, we present a novel approach for optimizing the integra-
tion, distribution, and execution of newly registered continuous queries
over data streams in grid-based P2P networks. We introduce Windowed
XQuery (WXQuery), our XQuery-based subscription language for con-
tinuous queries over XML data streams supporting window-based op-
erators. Concentrating on filtering and window-based aggregation, we
present our stream sharing algorithms as well as experimental evaluation
results from the astrophysics application domain to assess our approach.

1 Introduction

Over the past few years, data stream processing and data stream management
systems (DSMSs) have been very active research areas. This trend is promoted
by the increasing need to process streaming data on-the-fly whenever possible,
instead of storing intermediate results or buffering whole input data sets before
processing. Newly upcoming and evolving fields, such as e-science applications
in physics and astronomy, deal with huge volumes of data and render storing
all of the delivered data increasingly impractical. Also, transmitting all the data
over physically limited and therefore eventually congested network connections
is a problem. This is especially true if only small subsets of the data or some
processing results—which usually constitute a much smaller data volume than
the input data—are actually needed.

We propose data stream sharing as a new optimization technique addressing
these issues. Data stream sharing is based on two main optimization approaches.
These are (1) in-network query processing for distributing and executing newly
registered continuous queries in the network and (2) multi-subscription opti-
mization for enabling the reuse of existing (parts of) data streams that were
generated to satisfy previously registered subscriptions.1

? This research is supported by the German Federal Ministry of Education and Re-
search within the D-Grid initiative under contract 01AK804F and by Microsoft Re-
search Cambridge under contract 2005-041.

1 The terms query, continuous query, and subscription are treated as synonyms
throughout this paper.
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Fig. 1. No stream sharing
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Fig. 2. Stream sharing

These optimizations are an integral part of our StreamGlobe system [1, 2]. To
enable them, we use peer-to-peer (P2P) networking techniques. In contrast to the
conventional use of P2P networks for file sharing, StreamGlobe uses P2P-based
networks for data stream sharing. The system architecture is based on a P2P
overlay backbone network that is organized as a super-peer network [3], i. e., peers
are classified into super-peers and thin-peers. Super-peers are powerful servers
which form a stationary super-peer backbone network. Thin-peers—often simply
called peers in the following—are less powerful devices that can be registered at
a super-peer and deliver data streams or register queries in the network. The
StreamGlobe implementation adheres to established grid computing standards
(OGSA) and therefore fits seamlessly into existing e-science platforms.

As a motivating example, we introduce an astrophysical e-science application.
Consider Figures 1 and 2 which both illustrate the same exemplary network.
Here, SP0 to SP7 are the super-peers that constitute the super-peer backbone
network and P0 to P4 are thin-peers. Peer P0 is a satellite-bound telescope that
detects photons and registers a data stream called photons at super-peer SP4.
This data stream contains real astrophysical data collected during the ROSAT
All-Sky Survey (RASS) which we obtained through our cooperation partners
from the Max Planck Institute for Extraterrestrial Physics (MPE).

In our scenario, we deal with streams of XML data. The data items in stream
photons comply to a DTD with the tree structure shown below. As its name im-
plies, the data stream delivers a stream of photons detected by the telescope’s
photon detector. Each photon contains its celestial and detector pixel coordi-
nates, its detector pulse, its energy, and its detection time.

ra dec

cel

dx dy

det

coord phc en det time

photon

We assume that peers P1 to P4 in the example network are devices of astro-
physicists used to register subscriptions in the network referencing the available
data stream as input. Subscriptions are registered using WXQuery, our XQuery-



based subscription language that will be introduced in detail in Section 2. We
will only consider Queries 1 and 2 of Figures 1 and 2 here. Queries 3 and 4 will be
presented in Section 2. All queries reference data stream photons as their single
input. Query 1 (Q1) is shown below.

Q1: <photons>

{ for $p in stream("photons")/photons/photon

where $p/coord/cel/ra >= 120.0 and $p/coord/cel/ra <= 138.0

and $p/coord/cel/dec >= -49.0 and $p/coord/cel/dec <= -40.0

return <vela> { $p/coord/cel/ra } { $p/coord/cel/dec }

{ $p/phc } { $p/en } { $p/det_time } </vela> }

</photons>

This query selects the area of the vela supernova remnant. The stream function
was newly introduced by us and indicates a possibly infinite data stream used
as input to the query. Query 2 (Q2) below filters a smaller section of the sky.

Q2: <photons>

{ for $p in stream("photons")/photons/photon

where $p/en >= 1.3

and $p/coord/cel/ra >= 130.5 and $p/coord/cel/ra <= 135.5

and $p/coord/cel/dec >= -48.0 and $p/coord/cel/dec <= -45.0

return <rxj> { $p/coord/cel/ra } { $p/coord/cel/dec }

{ $p/en } { $p/det_time } </rxj> }

</photons>

This query selects the area of the RXJ0852.0-4622 supernova remnant which
is situated within the area of vela. Note that the section of the sky selected
by Query 2 is completely contained in the section selected by Query 1. Also,
Query 2 is only interested in photons having an energy value of at least 1.3 keV.

We first consider Figure 1 which shows the traditional scenario of data ship-
ping. The thickness of the arrows associated with the various network connec-
tions indicates the size of the data streams transmitted over these connections.
Each of the four queries in the system only needs a certain part of the original
data stream. However, in each case, the whole stream gets transmitted from the
data source to the data sink leading to the transmission of unnecessary data.
Since query execution for each subscription takes place at the super-peer that
the subscribing peer is connected to, queries that perform the same operations
on the same input data streams cause redundant execution of operators.

Figure 2 shows the benefits of using our stream sharing approach which
answers newly registered subscriptions using (parts of) data streams already
present in the network. This includes data streams which have been generated
earlier for satisfying previously registered continuous queries. We assume that
Queries 1 to 4 have been registered one after another in ascending order in our
example. Obviously, network traffic and processing overhead can be significantly
reduced by avoiding redundant transmissions and computations through sharing
previously generated data streams. For example, when Query 1 is registered, its
execution can be pushed into the network and computed at SP4 instead of SP1.
The result is then routed to P1 via SP5 and SP1. When Query 2 is registered
afterwards, it can reuse the stream constituting the answer for Query 1 at SP5

because the result of Query 2 is completely contained in the answer for Query 1.



The result data stream of Query 1 is duplicated at SP5, yielding two identical
streams. One is used to answer Query 1, the other is filtered using the selection
and projection specified by Query 2. This results in a new stream that constitutes
the result of Query 2 which is subsequently routed to P2 via SP7.

The contributions presented in this paper are as follows. First, we introduce
Windowed XQuery (WXQuery), our XQuery-based subscription language for
continuous queries over XML data streams enabling the formulation of queries
including window-based aggregation operators. Second, we present a proper-
ties representation of data streams and subscriptions, a cost model, and algo-
rithms for optimizing the evaluation of newly registered continuous queries in a
data stream management system by sharing possibly preprocessed data streams.
Eventually, we show experimental evaluation results to assess our approach.

The paper is organized as follows. In Section 2, we introduce WXQuery. Our
new data stream sharing approach is presented in Section 3. Section 4 shows
some evaluation results. Related work is presented in Section 5. Finally, Section 6
concludes and states ongoing and future work.

2 Subscription Language

In StreamGlobe, subscriptions over XML data streams are registered using Win-
dowed XQuery (WXQuery). WXQuery is a fragment of XQuery [4] that has been
augmented with support for window-based operators.

In Definition 2.1 below, α and β are WXQuery expressions and χ denotes a
condition. A tag name is denoted by t. Further, $x and $y are variables repre-
senting XML trees, where $y can also start with a function call to reference a
document node or the stream node of a data stream like stream("photons") in
the example subscriptions. A variable representing the result of a window-based
aggregation operation is denoted by $a. The variable $z can represent any of
the three kinds of variables $x, $y, or $a as described above. We use π to de-
note a relative path that only employs the child axis (“/”). It does not include
wildcards (“*”), conditions (“[p]”), or other axes (e. g., “//”). A relative path
π differs from π in that it can also contain conditions. An aggregation operator
is denoted by Φ, i. e., Φ ∈ {min,max,sum,count,avg}.

Expressions enclosed in [[ ]]?, [[ ]]∗, or [[ ]]+ in the definition are optional, can
occur zero or more times, or can occur one or more times, respectively. A vertical
bar (|) indicates an alternation. An expression of the form αi1,...,in represents
a WXQuery expression from a restricted set of expressions. For example, α1,2

stands for any one of the two element constructor expressions numbered 1 and
2 in the definition below and α3,4,5,6,7 stands for any one of the remaining ex-
pressions numbered 3 to 7.

Definition 2.1 (WXQuery). The WXQuery subscription language comprises
all subscriptions that consist only of the following expressions:

1. <t/> (empty direct element constructor)
2. <t> [[α1,2 | {α3,4,5,6,7}]]∗ </t> (direct element constructor)
3. [[for $x in $y[[/π]]?[[|count ∆ [[step µ]]?| | |π diff ∆ [[step µ]]?|]]? |

let $a := Φ($y[[/π]]?)]]+ [[where χ]]? return α (FLWR expression)



4. if χ then α else β (conditional expression)
5. $y/π (output of subtrees reachable from node $y through path π)
6. $z (output of subtree rooted at node $z)
7. ([[α[[,β]]∗]]?) (sequence)

The FLWR expression in the WXQuery definition introduces our new syn-
tax for expressing data windows, e. g., for use with window-based aggregation
operators. Query 3 (Q3) in the network of Figures 1 and 2 is an example for the
use of such an operator.
Q3: <photons>

{ for $w in stream("photons")/photons/photon

[coord/cel/ra >= 120.0 and coord/cel/ra <= 138.0

and coord/cel/dec >= -49.0 and coord/cel/dec <= -40.0]

|det_time diff 20 step 10|

let $a := avg($w/en)

return <avg_en> { $a } </avg_en> }

</photons>

Query 4 (Q4) employs a different window.
Q4: <photons>

{ for $w in stream("photons")/photons/photon

[coord/cel/ra >= 120.0 and coord/cel/ra <= 138.0

and coord/cel/dec >= -49.0 and coord/cel/dec <= -40.0]

|det_time diff 60 step 40|

let $a := avg($w/en)

where $a >= 1.3

return <avg_en> { $a } </avg_en> }

</photons>

The definition of a data window is enclosed in “|” characters. Item-based
windows—indicated by the keyword count—contain a fixed number of items
given by the numeric value of ∆. Optionally, a step size µ determining the up-
date interval of the data window can be specified. For example, the window
|count 20 step 10| defines a data window that always contains 20 data items
and, during each update, removes the 10 oldest entries from the window while
adding the next 10 new data items arriving in the stream. If omitted, the step
size defaults to the value of ∆, meaning the contents of the window are com-
pletely replaced by new ones during each update. The situation is analogous
for time-based windows, except that ∆ indicates the size of the window in time
units and the step size indicates the time interval between two successive data
windows. Again, the step size defaults to ∆ if omitted. Time-based windows can
only be applied on data streams that are sorted according to the values of a par-
ticular reference element that is used to control the window. This premise could
be somewhat relaxed to a fuzzy order by requiring that a fixed sized buffer is
sufficient to derive the total order. The value of the reference element of a time-
based data window can either be a real or an abstract timestamp. An example
for a time-based window is |det time diff 60 step 40| in Query 4. Note that
the path inside the window is not meant to be evaluated yielding a sequence as
defined by the conventional XPath semantics. Rather, it specifies the reference
element controlling the window.



Conditions in our context, whether they appear in a where clause (“χ”) or
within a path (“[p]”), are conjunctions of atomic predicates. Atomic predicates
are of the form $v θ c or $v θ $w+c, where $v and $w represent paths of the form
π, c represents a constant value, and θ ∈ {=, <,≤, >,≥}. Constant values can
be negative and are either integer values or decimal values with a finite number
of decimal places.

Restructuring (introducing new elements, reordering or renaming output ele-
ments, etc.) is done in a post-processing step at the super-peer that is connected
to the peer that registered the subscription. The result of the post-processing
is delivered to the final destination and is not considered for reuse in the net-
work. Since attributes in XML data can always be converted into corresponding
elements, we restrict ourselves to dealing with elements.

3 Data Stream Sharing

This section introduces our properties-based approach for representing subscrip-
tions and data streams, our cost model, and the algorithms for searching, iden-
tifying, and choosing appropriate streams for satisfying new subscriptions.

3.1 Properties

Subscriptions and data streams are treated symmetrically in our context. This
is due to the fact that a subscription can always be seen as producing a result
data stream and a data stream can always be seen as the result of a subscrip-
tion. Therefore, subscriptions and data streams are also represented by the same
properties data structure.

The properties of subscriptions and data streams consist of three parts and
describe how the associated (result) data stream was generated. An abstract
schematic illustration of the properties of Query 1 from Section 1 is shown in
Figure 3. A subscription or data stream is described by a set of original input
data streams, a set of operators for each input data stream used to transform the
respective input data stream into the represented (result) data stream and, for
each operator, a set of conditions specifying the operator, i. e., selection predi-
cates, projection elements, data window specifications, or aggregation operators
together with the identifier of the corresponding aggregated element. Predicates,
e. g., selection predicates, are stored using a graph representation as shown in
Figure 3. Data window specifications are also stored in a specific format that con-
tains the ordered reference element (only for time-based windows), the window
type (count or diff), the window size (∆) and the step size (µ). This approach
supports flat WXQueries without nesting. An advanced approach supporting
nested queries is part of future work.

Note that the properties as described above serve two purposes. First, they
represent the parts of the originally queried input data streams that are needed
by the corresponding subscription. Second, they describe the contents—relative
to the contents of the input data streams—of the data stream produced as a
result of that subscription. Also note that properties do not need to represent
transformation details like the exact structure of query results as stated in a
query’s return clause.
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3.2 Cost Model

We now introduce the cost model used in our optimizations. The cost function
C focuses on the amount of additional network traffic and peer load caused
by answering a new subscription. Other parameters, e. g., latency of network
connections, could easily be added. To define C, we need to introduce some
notation. Let p be the properties of a new continuous query q that is to be
registered in the network. Then size(p) denotes the average size of one data
stream item (e. g., one photon) of the stream represented by p. Let Pq be the
set of properties of all input data streams of q, occ(ns) the average occurrence
and size(ns) the average size of element ns in the input stream represented by
properties s, and Πps the set of projection elements of p concerning the input
stream represented by s. Then, for a subscription that only contains selection
and projection operators, size(p) is calculated using the following formula:

size(p) :=
∑
s∈Pq

size(s) −
∑

ns /∈Πps

(
occ(ns) · size(ns)

)
Note that, in the above formula, size(p) denotes the average size of one data
stream item in the stream represented by p, e. g., one photon element in stream
photons, whereas size(ns) denotes the average size of one subelement ns, e. g.,
the phc subelement of a photon. For aggregate queries, the result data stream
is a stream of aggregate result values. The average result data stream size is
therefore independent of the input stream size in this case and is computed as
the sum of the sizes of the aggregate values and their surrounding element tags.
For queries returning the contents of data windows, the average size of a data
window needs to be determined. For item-based data windows this can be done
by multiplying the window size with the average size of the items contained in
the window and adding the sizes of the enclosing window tags. For time-based
data windows this works analogously except that the average number of data
items contained in the window must be estimated as the product of the input
stream frequency and the window size.

The average frequency of data items in the stream represented by p is denoted
by freq(p). With sel(σp) denoting the selectivity of the subscription represented
by p, freq(p) can be computed as follows:

freq(p) := sel(σp) ·
∑
s∈Pq

freq(s)



Note that the expression
∑

s∈Pq
freq(s) in this formula depends on the semantics

of the employed operators in q. The above formula is valid for selection opera-
tors. Projection operators do not influence freq(p). For window-based queries,
freq(p) depends on the step size defined for the data window and the average
frequency of the input data stream. For item-based data windows, freq(p) cor-
responds to the frequency of the respective input data stream divided by the
step size µ of the data window. For time-based data windows, freq(p) depends
on the distribution of the values of the reference element. To be able to estimate
the frequency of the result data stream in such a case, we keep track of the aver-
age increment of the reference element value between two successive data items
arriving in the stream. Dividing the step size µ of the time-based data window
by this average increment yields the average number of data items that need to
be read from the stream before the window update is complete. Then, as with
item-based data windows, the frequency of the input data stream is divided by
this estimated number of data items to obtain the estimated average frequency
of the result data stream.

Introducing b(e) as the maximum bandwith of a network connection e, we can
characterize the relative amount ub(e) of bandwith of e used by the additional
data streams routed over e for answering q using the following formula:

ub(e) :=

∑
p∈Pe

(
size(p) · freq(p)

)
b(e)

Here, Pe denotes the set of properties of all additional data streams added over
e to answer q.

The average computational load caused by an operator o on a peer v with a
set of input stream properties Po is denoted load(o, v, Po). The maximum load of
a peer v is represented by l(v). The relative amount ul(v) of computational load
on a peer v caused by the additional operators in Ov installed at v for answering
a new subscription can be computed as follows:

ul(v) :=

∑
o∈Ov

load(o, v, Po)
l(v)

Cost function inputs like average frequencies of data stream items, average
sizes and occurences of elements, and selectivities of operators are obtained from
statistics and selectivity estimations. The average load load(o, v, Po) of an opera-
tor o on a peer v with a set of input stream properties Po depends on the perfor-
mance of the executing peer, expressed by a performance index (pindex(v)), and
the characteristics of the operator itself. For example, assuming a linear depen-
dency of the load caused by a selection operator σ from the frequency freq(s) of
its only input stream represented by properties s, the average load caused by σ
on a peer v can be defined as load(σ, v, s) := bload(σ) ·pindex(v) ·freq(s). Here,
bload(σ) represents a base load factor for the selection operator. Factors like base
loads of operators and performance indices of peers as well as formulas for com-
bining these factors yielding realistic load estimations have to be determined,
e. g., on the basis of reference values.



The cost function C is then defined as follows:

C(P) := γ ·

( ∑
e∈EP

(
ub(e) + max(0, (ub(e) − ab(e))) · e(ub(e)−ab(e))

))
+

(1 − γ) ·

( ∑
v∈VP

(
ul(v) + max(0, (ul(v) − al(v))) · e(ul(v)−al(v))

))

In this function, P denotes the evaluation plan of the new subscription, i. e., the
operators that have to be installed, the peers on which they have to be installed,
and the additional data streams that are generated and routed through the
network. Furthermore, EP is the set of network connections and VP is the set
of peers affected by plan P. A weighting factor γ ∈ [0, 1] determines, which part
of the cost function should be more dominant—network traffic or peer load.
An exponential penalty is given for overload situations on peers and network
connections. The relative amount of available bandwith on network connection
e and of available computational load on peer v is represented by ab(e) and al(v),
respectively. A plan P is better than another plan P ′ according to cost function
C, expressed by P ≺C P ′, if and only if C(P) < C(P ′).

3.3 Stream Sharing Algorithms

We now describe our stream sharing algorithms for registering and efficiently
satisfying new continuous queries in P2P data stream management systems.
The algorithms search for shareable data streams in the network, compare the
properties of new subscriptions with those of existing data streams, and decide
which streams to reuse at which peers.

Query Registration. The algorithm for continuous query registration searches
for shareable data streams in the network and decides if a certain available data
stream can actually be shared for answering a new query by comparing the
corresponding properties. Further, it decides whether a newly found evaluation
plan for the new query is better than the previously best plan.

The algorithm is divided into four parts. The Subscribe algorithm shown
in Algorithm 1 describes the discovery of shareable data streams and the gen-
eration of corresponding query evaluation plans. The MatchProperties and
MatchPredicates algorithms which are detailed in Algorithms 2 and 3 handle
the matching of properties and predicates, respectively. Finally, the matching of
aggregation operators is dealt with in the MatchAggregations algorithm.
Beginning with Algorithm 1, the inputs pq and vq are the properties of the new
subscription q and the network node where q is registered, respectively. The out-
put of the algorithm is the evaluation plan P, describing how the network has
to be changed in terms of installed operators and routed data streams in order
to satisfy q. Note that there will always be at least one plan that is suitable for
answering q—provided that q refers to existing inputs—namely the plan using
the originally registered versions of q’s input streams. The goal of our approach



is to find possibly transformed versions of these streams—generated by projec-
tion, selection, or aggregation operators in the network for answering previously
registered continuous queries—that can also be used to answer q, possibly by
applying some further transformations.

The Subscribe algorithm starts with an empty evaluation plan P (line 1 in
Algorithm 1) and iterates over the properties of all input data streams of q (line
2). For each such input data stream, the algorithm performs some initialization
tasks (lines 3–6). First, a FIFO queue LV for network nodes (peers) and another
queue LP for properties are initialized. Then, the properties ps of the currently
considered input data stream s and the network node where this input data
stream is registered are stored in pb and vb, respectively. The variables pb and
vb represent the properties of the currently best solution for the data stream
chosen as input for satisfying q and the network node where to find and reuse
that stream. Installing the whole new subscription at the super-peer at which
it is registered and using the original input streams, routed to the subscription
via shortest paths in the network, is set as the initial evaluation plan. Therefore,
the part of the query evaluation plan that deals with input stream s, called Ps,
is initially set to routing s from the peer where it is registered to the peer where
q is registered via the shortest path in the network and performing any query
evaluation tasks on data stream s at the target peer. This plan is generated by
means of the generateP lan function that takes as inputs the properties pb of
the data stream chosen for reuse, the node vb where to reuse that stream, and
the node vq where the query to be answered is registered and where the query
result is needed. At each time during the remaining execution of the algorithm,
the current best plan for input data stream s is represented by Ps. Finally, the
start node vb of the search is added as first node to LV .

If a subscription references more than one input stream, each stream is han-
dled individually by the subscription algorithm. The algorithm assures that at
least the relevant parts of each input stream are delivered to the super-peer con-
nected to the peer that registered q. Any combination of input data streams as
demanded by the subscription is performed at this peer during the final post-
processing step and the result of this combination is not considered for reuse in
the network. This is the same as with any restructuring of the query result as
described in Section 2.

After the initialization, the algorithm performs a breadth-first search in the
network graph for each input stream, starting at the node that corresponds to the
super-peer at which the corresponding original input stream of q is registered.
Using LIFO queues for LV and LP instead of FIFO queues would cause the
algorithm to perform depth-first search which would be equally possible. The
peers in LV are dequeued one after another (line 8). Each peer in LV is marked
in order to handle circles in the network graph, i. e., consider each node at most
once. For each dequeued peer, all properties of data streams that are available at
the currently handled peer and that are variants of ps are subsequently inserted
into LP (lines 9–11). These properties are then consecutively taken out of the
queue and matched against the properties pq of q using Algorithm 2 (lines 12–
14). This will be described in detail below. Network connections that do not have
any associated properties because they do not carry any data streams are ignored



Algorithm 1 Subscribe

Input: The properties pq of the subscription q to be registered and the node vq where
q is to be registered.

Output: A query evaluation plan P.

1: P ← ∅;
2: for all ps ∈ getInputDS(pq) do
3: LV ← ∅; LP ← ∅;
4: pb ← ps; vb ← getTNode(pb);
5: Ps ← generateP lan(pb, vb, vq);
6: add(LV , vb);
7: while LV 6= ∅ do
8: v ← dequeue(LV ); mark(v);
9: for all data streams available at v that are variants of ps do

10: enqueue all associated properties in LP ;
11: end for
12: while LP 6= ∅ do
13: p ← dequeue(LP );
14: if MatchProperties(p, ps) then
15: n ← getTNode(p);
16: if (¬(isMarked(n)) ∧ (n /∈ LV )) then
17: add(LV , n);
18: end if
19: P ′

s ← generateP lan(p, v, vq);
20: if P ′

s ≺C Ps then
21: pb ← p; vb ← v; Ps ← P ′

s;
22: end if
23: end if
24: end while
25: end while
26: unmark all nodes;
27: add(P,Ps);
28: end for
29: return P;

during the breadth-first search. Also, non-matching properties do not add any
peers to LV since following these paths cannot yield a reusable data stream.
Pruning the search in this way leads to the breadth-first search traversing only
the relevant part of the network instead of the whole network.

If a property p has been successfully matched, its corresponding stream can
be reused for answering q. If the target peer of p, i. e., the peer to which the
stream corresponding to p is delivered, is still unmarked, it is added to LV to be
processed later on during the breadth-first search (lines 15–18). For any found
solution, a new plan P ′

s is generated, again using the generateP lan function
(line 19). Then, the value of the cost function C for the plan reusing the found
data stream is computed and compared against the current best solution (line
20). Only if the new solution is better according to C, it replaces the current best
solution and is stored along with its cost function value for future comparisons



(lines 20–22). When there are no properties left in queue LP , the next node of
LV is considered. If there are no more nodes left in LV , the best plan Ps found
for input stream s is added to the overall plan P for evaluating q (line 27).
When all input streams of q have been considered, the algorithm terminates and
returns the current best solution for plan P as the final result.

Matching Properties. Next, we explain how Algorithm 2 matches properties.
For each input data stream of a subscription, the properties of the subscription
reflect which operators and operator conditions are employed to transform the
respective input stream into the subscription result. These properties have to be
matched with the properties of data streams already present in the network to
find shareable streams for each input stream of the new subscription. The inputs
for the properties matching algorithm are the properties p of the data stream that
is considered for reuse and the properties p′ of the newly registered subscription.
The algorithm returns true if these properties match and false otherwise.

If the input streams of both properties match—checked in lines 1–4 of Algo-
rithm 2—the sets of operators used to transform the inputs are fetched from the
properties data structures (line 5) and assigned to O and O′, respectively. For
each operator in O there must be a corresponding operator in O′. For example,
if O contains a selection operator, the data stream represented by p is only con-
sidered for sharing if p′ also contains a corresponding selection. Otherwise, the
stream represented by p would not contain all the necessary data for the query
represented by p′. If a corresponding operator is found in O′, it has to be assured
that the conditions of the two operators, which are fetched from the properties
data structures in line 10 of the algorithm, are compatible. We distinguish four
cases (lines 11–30), i. e., selection, projection, window-based aggregation, and
unknown operators. If the corresponding operators are selection operators (lines
11–15), the algorithm retrieves the graphs representing the selection predicates
(line 12) and tries to match them using Algorithm 3. In case of a projection
(lines 16–20), the set R of projection elements of p that are actually returned in
the result data stream of the query represented by p—these are the projection
elements marked with bullets in the properties of Query 1 in Figure 3—has to
be a superset of the set R′ of all the elements referenced by the query, marked
as well as unmarked, in order for the stream represented by p to be reusable. If
o and o′ are one of the window-based aggregation operators min, max, sum, count,
or avg, it has to be assured that the conditions and data windows are compatible
(lines 21–24). This is done by the MatchAggregations algorithm described
further below. All other operators are handled in the fourth and final case (lines
25–30). These are unknown operators, in particular user defined functions. Noth-
ing is known about the semantics of these operators. We only require them to
be deterministic, meaning that the same operator applied to the same inputs
must always yield the same result. The algorithm then demands that not only
the operators but also their input vectors, i. e., their parameter lists retrieved in
line 26 of the algorithm, are the same for shareability. More sophisticated tech-
niques for identifying shareable user defined operators involve the development
of suitable operator descriptions providing the necessary meta data. Developing
such techniques and operator descriptions is part of future work.



Algorithm 2 MatchProperties

Input: The properties p of a data stream considered for sharing and p′ of a subscription
to be registered.

Output: true if p and p′ match, false otherwise.

1: s ← getDS(p); s′ ← getDS(p′);
2: if s 6= s′ then
3: return false;
4: end if
5: O ← getOps(s); O′ ← getOps(s′);
6: for all o ∈ O do
7: match ← false;
8: for all o′ ∈ O′ do
9: if o = o′ then

10: C ← getConds(o); C′ ← getConds(o′);
11: if o = σ then
12: G ← getPGraph(C); G′ ← getPGraph(C′);
13: if MatchPredicates(G, G′) then
14: match ← true; break;
15: end if
16: else if o = Π then
17: R ← getOutElems(C); R′ ← getRefElems(C′);
18: if R ⊇ R′ then
19: match ← true; break;
20: end if
21: else if o ∈ {min,max,sum,count,avg} then
22: if MatchAggregations(C, C′); then
23: match ← true; break;
24: end if
25: else
26: ~i ← getParams(C); ~i′ ← getParams(C′);

27: if ~i = ~i′ then
28: match ← true; break;
29: end if
30: end if
31: end if
32: end for
33: if match = false then
34: return false;
35: end if
36: end for
37: return true;

Matching Predicates. A predicate is represented by a weighted directed graph
G = (V,E) within the corresponding properties. The construction and represen-
tation of predicate graphs are an extension of related work on the processing of
conjunctive predicates [5]. In addition to integer valued variables and constants,
we also allow decimal values with a finite number of decimal places. First, predi-
cates are normalized to contain only comparisons of the form $v ≥ c, $v ≤ c and



Algorithm 3 MatchPredicates

Input: The predicate graphs G = (V, E) of a data stream considered for sharing and
G′ = (V ′, E′) of a subscription to be registered.

Output: true if the predicates represented by G match the predicates represented by
G′, false otherwise.

1: for all v ∈ V do
2: vmatch ← false;
3: for all v′ ∈ V ′ do
4: if v =̂ v′ then
5: vmatch ← true;
6: for all x ∈ {e ∈ E|e connected to v} do
7: ematch ← false;
8: for all y ∈ {e′ ∈ E′|e′ connected to v′} do
9: if ζ(x) ⇐ ζ(y) then

10: ematch ← true; break;
11: end if
12: end for
13: if ematch = false then
14: return false;
15: end if
16: end for
17: break;
18: end if
19: end for
20: if vmatch = false then
21: return false;
22: end if
23: end for
24: return true;

$v ≤ $w + c where $v and $w represent variables and c represents a constant
integer or decimal value. Each variable in the predicate becomes a node in V
and an atomic predicate of the form $v ≤ $w + c is represented by a weighted
directed edge in E from node $v to node $w with weight c. Further, V contains a
node for the constant zero. An atomic predicate of the form $v ≤ c is represented
by an edge from node $v to node zero with weight c and an atomic predicate of
the form $v ≥ c, which can be expressed as 0 ≤ $v − c, by an edge from node
zero to node $v with weight −c. As an illustrating example, consider Figure 3
which contains the predicate graph of the selection in Query 1. After the con-
struction of G, the predicate can be checked for satisfiability and is minimized
using techniques introduced in earlier related work [5]. If an operator’s predicate
is unsatisfiable, the corresponding subscription can be rejected. A minimized
predicate does not contain any redundant atomic predicates. Note that the con-
struction of the properties together with all the steps described in this paragraph
is performed only once for each new subscription during the registration process.

Algorithm 3 can match any predicates in the described graph representation,
e. g., selection and join predicates. In this paper, it is used to match the predicates
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of selection operators. The algorithm takes the data structures G and G′ of the
weighted directed graphs representing the selection predicates of the existing
data stream and the new subscription which are to be compared and returns
true if the predicates of G′ imply those of G, i. e., reusability of the data stream
is not prevented by the predicates. One prerequisite for the possibility of data
stream sharing is that, for each node v in the node set V of G, there exists
an equivalent node v′ in the node set V ′ of G′, denoted by v =̂ v′ in line 4 of
Algorithm 3. Nodes are equivalent if the variables represented by them refer to
the same element. Furthermore, if two equivalent nodes v and v′ have been found,
for each edge x connected to v there must be an edge y connected to v′ such
that the atomic predicate represented by x, denoted by ζ(x), is compatible with
the atomic predicate represented by y, denoted by ζ(y). In our algorithm, this is
the case if ζ(x) ⇐ ζ(y) in line 9. An example matching for the predicate graphs
of Queries 1 and 2 is shown in Figure 4. For brevity, only the variable names
instead of the full paths are shown as node labels in the figure. The definition of
ζ(e) for any edge e in a predicate graph G can be formally expressed as

ζ(e) := (sourcelabel(e) ≤ targetlabel(e) + weight(e))

where sourcelabel(e) and targetlabel(e) denote the absolute path to the vari-
able represented by the source and the target node of edge e, respectively, and
weight(e) denotes the weight of edge e.

Window-based Aggregation. Sharing results of window-based aggregation
operators has been studied before [6]. Our approach differs from this previous
solution in two ways. First, we introduce a step size in our windows which al-
lows us to explicitly specify when a new aggregate value shall be computed.
Second, we consider existing results of other subscriptions for sharing instead of
precomputing aggregation results that might never be used. As usual, we cat-
egorize aggregation operators using three classes. These classes are distributive
(e. g., min, max, sum, count), algebraic (e. g., avg), and holistic aggregates (e. g.,
quantile). We concentrate on the above mentioned distributive and algebraic
aggregation operators here.

The MatchAggregations operation is used in Algorithm 2 to compare the
conditions of window-based aggregation operators. Such operators are compared
by examining their input data, their results, and their data windows as follows.
First, MatchAggregations checks whether the aggregate considered for reuse
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and the new aggregate employ the same aggregation operator, are based on the
same input data, and aggregate the same element. Furthermore, selections in
aggregate subscriptions have to be handled more strictly than in other subscrip-
tions. It has to be assured that any selection performed on the aggregated data
stream prior to the aggregation is the same in both the reused and the new ag-
gregate subscription. Second, it is checked whether the aggregation result which
is considered for sharing has been filtered in any way. As an example consider
Query 4 which filters its aggregation result $a using the predicate $a > 1.3.
Reusing such aggregate values for computing more coarse-grained window ag-
gregates is not possible in general since a part of the necessary data might have
been filtered out. However, they can still be reused for aggregates that apply the
same or a more restrictive filter on the aggregation result as long as all other
prerequisites for reusability are fulfilled.

Eventually, the data windows of both operators are examined. For time-based
windows, reuse is only possible if both windows have the same ordered reference
element, e. g., det time in Queries 3 and 4. For both, time-based and item-based
windows, we require the window size and the step size of the windows to be
compatible for being able to reuse existing aggregate values without any further
complex optimizations or transformations. One requirement for this is that the
window size of the new subscription is a multiple of the window size of the data
stream considered for reuse. This guarantees that a fixed number of reused win-
dows fits into one new window. Furthermore, the size of a reused aggregate’s
data window must be a multiple of its step size. This assures that a sequence of
non-overlapping windows, i. e., aggregate values, covering the whole input data
can be obtained—possibly by ignoring some windows. Note that ignored aggre-
gate values might have to be temporarily buffered to be reused for computing
subsequent values of the new aggregate. The situation for the step sizes of both
windows is analogous to their window sizes as described above, guaranteeing
that the reused aggregate delivers an aggregate value at least each time the new
aggregate has to produce one. These three conditions for data window share-
ability can be expressed as ∆′ mod ∆ = 0, ∆ mod µ = 0, and µ′ mod µ = 0.
The sharing of result data streams of window-based aggregation operators is
illustrated in Figure 5, using Queries 3 and 4 of Section 2 as examples.

Note that for the values of avg aggregates to be shareable, we internally rep-
resent such aggregates by their appropriate sum and count values. These values
are actually transmitted in the super-peer network. The final aggregate value is
computed at the super-peer at which the corresponding subscription is registered
by evaluating (sum/count). The described internal representation of avg aggre-
gates also enables their reuse for computing sum and count aggregates, i. e., the



requirement of equal aggregate operators for shareability as introduced above
can be relaxed.

4 Evaluation

This section presents the results of some performance evaluations that we con-
ducted using our prototype implementation in the StreamGlobe system. For the
evaluation, the system was installed on a blade server. Each super-peer ran on
one blade. The blades had a 2.8GHz Xeon Processor and 1GB of main memory
each. They were interconnected by a 100MBit/s LAN. We report on two scenar-
ios here. The first one is based on the network topology of the example scenario
of Section 1 and involves 8 super-peers, 1 data stream, and 25 queries. The sec-
ond scenario uses a 4 × 4 grid topology with 16 super-peers, 2 data streams,
and 100 queries. All data streams and queries are based on real astrophysical
data. The queries were generated using query templates for selection, projection,
and aggregation queries. Constant values, e. g., in selection predicates or data
window definitions, were chosen uniformely from a predefined set of values to
enable a certain degree of shareability.

For each scenario, we compare three strategies. Data shipping simply trans-
mits the whole input data stream for each query from the data source to the
target super-peer using a shortest path in the network. The whole query evalu-
ation takes place at the target super-peer. Query shipping evaluates each query
completely at the super-peer that the data source is registered at. The query re-
sult is transmitted to the target peer again using a shortest path in the network.
This of course only works for queries that reference a single input data stream,
which is the case in our example queries used here. Finally, stream sharing uses
our previously described optimization algorithms.

Benchmark results in terms of average CPU load in percent and average
network traffic on network connections in kbps are shown in Figure 6 for the
first scenario. As can be clearly seen from the diagrams, query shipping leads to
massive peaks of CPU load at data stream source peers since all computation
on the respective stream is executed there. On the other hand, network traffic
caused by this strategy is comparatively low. Data shipping, as expected, causes
much more network traffic but also relatively high CPU load over the whole
range of super-peers in the network since all the data needs to be forwarded
over many peers and network connections, often even multiple times. Stream
sharing distributes computational load much better over the peers in the net-
work than query shipping and causes less overall CPU load than data shipping.
Furthermore, network traffic is also greatly reduced compared to the other two
strategies due to the effects of reusing streams for multiple queries.

The results for the second scenario in terms of average CPU load in percent
and accumulated network traffic in MBit including both, incoming and outgoing
traffic for each super-peer are shown in Figure 7. The results clearly indicate, that
our approach significantly reduces network traffic at single peers as well as overall
in the network. Note that, while data shipping transmits the whole original
data stream through the network multiple times, once for each subscription
referencing the stream as input, query shipping already significantly reduces
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network traffic by means of early filtering at the data stream source. However,
like data shipping, query shipping still transmits one data stream per query in
the network. Stream sharing is able to further reduce network traffic greatly
by using multi-subscription optimization, i. e., transmitting data streams in the
network only once and sharing them for satisfying multiple similar or equal
queries. CPU load is comparable to the other approaches on most peers in this
scenario, except for the peak at the data stream source node for query shipping.

We expect our approach to distribute load better over peers in larger scenar-
ios than the other two approaches. This expectation is confirmed by the results
of an additional test where we limited the maximum CPU load of peers to 10%
of their actual capacity and the maximum bandwith of network connections be-
tween peers to 1MBit/s. We then used the second scenario and determined how
many queries had to be rejected by the system because no query evaluation plan
without causing overload on peers or network connections could be found. While
data shipping had to reject 47 and query shipping had to reject 35 out of the
100 queries that we tried to register, our stream sharing approach only rejected
2 queries in this scenario.

Of course, stream sharing does not come for free. Table 1 shows the times in
milliseconds a query took from the beginning of its registration until it was suc-
cessfully installed and executed in the network in the two benchmark scenarios.
The stream sharing approach stays within a factor of 3 of the other two much
simpler approaches. This is acceptable, since we are dealing with continuous
queries that usually remain registered over long periods of time.



Table 1. Query registration times

Time (ms) Average Minimum Maximum
Scenario 1 2 1 2 1 2

Data Shipping 931 1363 390 265 2078 4953
Query Shipping 890 1287 284 250 2032 4802
Stream Sharing 2153 3558 509 672 5025 11855

5 Related Work

Numerous DSMSs have been proposed in recent years [7–12]. The contributions
presented in this paper can be used to augment existing DSMSs to support the
efficient integration of incrementally subscribed continuous queries.

The approach of optimizing query execution by computing identical or simi-
lar parts of queries only once and reusing them multiple times for various queries
is similar to multi-query optimization [13]. However, instead of optimizing a set
of queries all at once, we incrementally optimize queries one after another when
they are registered in the network, based on the current network state. Shar-
ing of work between queries over streams has also been addressed in previous
work [14, 15]. Our solution differs from these approaches in that we can adap-
tively distribute subscription evaluation among peers in a network.

Of further interest is the problem of query containment, which has also been
discussed in the context of XML queries with nesting [16]. Query containment,
especially for XML queries, is a difficult problem. We were able to make it
manageable by exploiting the properties of our distributed system architecture.

Finally, for more details on data stream sharing, we refer to an extended
version of this paper [17].

6 Conclusion

In this paper, we have presented a subscription language, a properties approach,
a cost model, and algorithms for registering continuous queries over data streams
in P2P networks using data stream sharing. Our approach takes three steps.
First, the properties of a newly registered subscription are constructed. Second,
shareable data streams generated for answering previously registered subscrip-
tions in the network are identified by matching properties. An appropriate stream
for answering the new subscription is chosen according to a cost model that fo-
cuses on the reduction of network traffic and peer load. Finally, operators are
placed in the network to execute the new subscription. An experimental evalu-
ation confirms the effectiveness of our approach.

We are currently working on an enhanced version of the approach presented
in this paper that is able to handle nested queries and to widen data streams.
This enables the system to consider data streams for sharing that initially do
not contain all the necessary data for a new query but can be altered to do so by
changing some operators in the network. Apart from that, there are numerous
opportunities for future work. One is to address the issue of scalability by intro-
ducing a hierarchical network organization with several interconnected subnets
where each subnet is optimized separately.
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J.H., Lindner, W., Maskey, A.S., Rasin, A., Ryvkina, E., Tatbul, N., Xing, Y.,
Zdonik, S.: The Design of the Borealis Stream Processing Engine. In: Proc. of the
Conf. on Innovative Data Systems Research, Asilomar, CA, USA (2005) 277–289

8. Arasu, A., Babcock, B., Babu, S., Datar, M., Ito, K., Motwani, R., Nishizawa,
I., Srivastava, U., Thomas, D., Varma, R., Widom, J.: STREAM: The Stanford
Stream Data Manager. IEEE Data Engineering Bulletin 26(1) (2003) 19–26

9. Chandrasekaran, S., Cooper, O., Deshpande, A., Franklin, M.J., Hellerstein, J.M.,
Hong, W., Krishnamurthy, S., Madden, S., Raman, V., Reiss, F., Shah, M.A.:
TelegraphCQ: Continuous Dataflow Processing for an Uncertain World. In: Proc.
of the Conf. on Innovative Data Systems Research, Asilomar, CA, USA (2003)

10. Chen, J., DeWitt, D.J., Tian, F., Wang, Y.: NiagaraCQ: A Scalable Continuous
Query System for Internet Databases. In: Proc. of the ACM SIGMOD Intl. Conf.
on Management of Data, Dallas, TX, USA (2000) 379–390

11. Cherniack, M., Balakrishnan, H., Balazinska, M., Carney, D., Çetintemel, U., Xing,
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