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1
Introduction

We study the emerging area of algorithms for processing data streams
and associated applications, as an applied algorithms research agenda.
We begin with three puzzles.

1.1 Puzzle 1: Finding Missing Numbers

Let π be a permutation of {1, . . . ,n}. Further, let π−1 be π with one
element missing. Paul shows Carole π−1[i] in increasing order i. Carole’s
task is to determine the missing integer. It is trivial to do the task if
Carole can memorize all the numbers she has seen thus far (formally,
she has an n-bit vector), but if n is large, this is impractical. Let us
assume she has only a few – say O(logn) – bits of memory. Nevertheless,
Carole must determine the missing integer.

This starter puzzle has a simple solution: Carole stores

s =
n(n + 1)

2
−
∑
j≤i

π−1[j],

which is the missing integer in the end. Each input integer entails one
subtraction. The total number of bits stored is no more than 2logn.
This is nearly optimal because Carole needs at least logn bits in the

1
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2 Introduction

worst case since she needs to output the missing integer. (In fact, there
exists the following optimal algorithm for Carole using logn bits. For
each i, store the parity sum of the ith bits of all numbers seen thus
far. The final parity sum bits are the bits of the missing number.) A
similar solution will work even if n is unknown, for example by letting
n = maxj≤iπ−1[j] each time.

Paul and Carole have a history. It started with the “twenty ques-
tions” problem solved in [200]. Paul, which stood for Paul Erdos, was
the one who asked questions. Carole is an anagram for Oracle. Aptly,
she was the one who answered questions. Joel Spencer and Peter Win-
kler used Paul and Carole to coincide with Pusher and Chooser respec-
tively in studying certain chip games in which Carole chose which
groups the chips falls into and Paul determined which group of chips
to push. In the puzzle above, Paul permutes and Carole cumulates.

Generalizing the puzzle a little further, let π−2 be π with two
elements missing. The natural solution would be for Carole to store
s = n(n+1)

2 −∑j≤iπ−2[j] and p = n! − ∏j≤iπ−2[j], giving two equa-
tions with two unknown numbers, but this will result in storing large
number of bits since n! is large. Instead, Carole can use far fewer bits
tracking

s =
n(n + 1)

2
−
∑
j≤i

π−2[j] and ss =
n(n + 1)(2n + 1)

6
−
∑
j≤i

(π−2[j])2

In general, what is the smallest number of bits needed to identify the
k missing numbers in π−k? Following the approach above, the solution
is to maintain power sums

sp(x1, . . . ,xk) =
k∑

i=1

(xi)p,

for p = 1, . . . ,k and solving for xi’s. A different method uses elementary
symmetric polynomials [169]. The ith such polynomial σi(x1, . . . ,xk) is
the sum of all possible i term products of the parameters, i.e.,

σi(x1, . . . ,xk) =
∑

j1<···<ji

xj1 · · ·xji .

Carole continuously maintains σi’s for the missing k items in field Fq

for some prime n ≤ q ≤ 2n, as Paul presents the numbers one after the
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1.2. Puzzle 2: Fishing 3

other (the details are in [169]). Since

∏
i=1,...,k

(z − xi) =
k∑

i=0

(−1)iσi(x1, . . . ,xk)zk−i,

Carole needs to factor this polynomial in Fq to determine the missing
numbers. No deterministic algorithms are known for the factoring prob-
lem, but there are randomized algorithms take roughly O(k2 logn) bits
and time [213]. The elementary symmetric polynomial approach above
comes from [169] where the authors solve the set reconciliation prob-
lem in the communication complexity model. The subset reconciliation
problem is related to our puzzle.

Generalizing the puzzle, Paul may present a multiset of elements in
{1, . . . ,n} with a single missing integer, i.e., he is allowed to re-present
integers he showed before; Paul may present updates showing which
integers to insert and which to delete, and Carole’s task is to find
the integers that are no longer present; etc. All of these problems are
no longer (mere) puzzles; they are derived from motivating data stream
applications.

1.2 Puzzle 2: Fishing

Say Paul goes fishing. There are many different fish species U =
{1, . . . ,u}. Paul catches one fish at a time, at ∈ U being the fish species
he catches at time t. ct[j] = |{ai | ai = j, i ≤ t}| is the number of times
he catches the species j up to time t. Species j is rare at time t if it
appears precisely once in his catch up to time t. The rarity ρ[t] of his
catch at time t is the ratio of the number of rare j’s to u:

ρ[t] =
|{j | ct[j] = 1}|

u
.

Paul can calculate ρ[t] precisely with a 2u-bit vector and a counter for
the current number of rare species, updating the data structure in O(1)
operations per fish caught. However, Paul wants to store only as many
bits as will fit his tiny suitcase, i.e., o(u), preferably O(1) bits.

Suppose Paul has a deterministic algorithm to compute ρ[t] pre-
cisely. Feed Paul any set S ⊂ U of fish species, and say Paul’s algorithm
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4 Introduction

stores only o(u) bits in his suitcase. Now we can check if any i ∈ S by
simply feeding Paul i and checking ρ[t + 1]: the number of rare items
decreases by one if and only if i ∈ S. This way we can recover entire S
from his suitcase by feeding different i’s one at a time, which is impos-
sible in general if Paul had only stored o(|S|) bits. Therefore, if Paul
wishes to work out of his one suitcase, he can not compute ρ[t] exactly.
This argument has elements of lower bound proofs found in the area of
data streams.

However, proceeding to the task at hand, Paul can approximate ρ[t].
Paul picks k random fish species each independently, randomly with
probability 1/u at the beginning and maintains the number of times
each of these fish types appear in his bounty, as he catches fish one
after another. Say X1[t], . . . ,Xk[t] are these counts after time t. Paul
outputs ρ̂[t] = |{i |Xi[t]=1}|

k as an estimator for ρ. We have,

Pr(Xi[t] = 1) =
|{j | ct[j] = 1}|

u
= ρ[t],

for any fixed i and the probability is over the fish type Xi. If ρ[t] is
large, say at least 1/k, ρ̂[t] is a good estimator for ρ[t] with arbitrarily
small ε and significant probability.

However, typically, ρ is unlikely to be large because presumably u

is much larger than the species found at any spot Paul fishes. Choosing
a random species from {1, . . . ,u} and waiting for it to be caught is
ineffective. We can make it more realistic by redefining rarity with
respect to the species Paul in fact sees in his catch. Let

γ[t] =
|{j | ct[j] = 1}|
|{j | ct[j] �= 0}| .

As before, Paul would have to approximate γ[t] because he can not
compute it exactly using a small number of bits. Following [28], define
a family of hash functions H ⊂ [n]→ [n] (where [n] = {1, . . . ,n}) to be
min-wise independent if for any X ⊂ [n] and x ∈ X, we have

Prh∈H[h(x) = min h(X)] =
1
|X| ,

where, h(X) = {h(x): x ∈ X}. Paul chooses k min-wise independent
hash functions h1,h2, . . . ,hk for some parameter k to be determined
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1.2. Puzzle 2: Fishing 5

later and maintains h∗
i (t) = minj≤t hi(aj) at each time t, that is, min

hash value of the multi-set {. . . ,at−2,at−1,at}. He also maintain k coun-
ters C1(t),C2(t), . . . ,Ck(t); Ci(t) counts an item with (the current value
of) hash value h∗

i (t) in {. . . ,at−2,at−1,at}. It is trivial to maintain both
h∗

i (t) and Ci(t) as t progresses and new items are seen. Let

γ̂[t] =
|{i | 1 ≤ i ≤ k, Ci(t) = 1}|

k
.

Notice that Pr(Ci(t) = 1) is the probability that hi(t) is the hash value
of one of the items that appeared precisely once in a1, . . . ,at which
equals |{j |c[j]=1}|

|{j |c[j]�=0}| = γ[t]. Hence, γ̂[t] is a good estimator for γ[t] provided
γ[t] is large, say at least 1/k. That completes the sketch of the Paul’s
algorithm.

The remaining detail is that Paul needs to pick hi’s. If Paul resorts
to his tendency to permute, i.e., if he picks a randomly chosen permuta-
tion π over [u] = {1, . . . ,u}, then hi’s will be min-wise hash functions.
However, it requires Θ(u logu) bits to represent a random permuta-
tion from the set of all permutations over [u]. Thus the number of bits
needed to store the hash function will be close to u which is prohibitive!

To overcome this problem, Paul picks a family of approximate min-
hash functions. A family of hash functions, H ⊂ [n]→ [n] is called ε-
min-wise independent if for any X ⊂ [n] and x ∈ X, we have

Prh∈H [h(x) = min h(X)] =
1
|X|(1 ± ε).

Indyk [135] presents a family of ε-min-wise independent hash func-
tions such that any function from this family can be represented using
O(logu log(1/ε)) bits only and each hash function can be computed
efficiently in O(log(1/ε)) time. This family is a set of polynomials over
GF (u) of degree O(log(1/ε)). Plugging this result into the solution
above, Paul uses O(k logu log(1/ε)) bits and estimates γ̂[t] ∈ (1 ± ε)γ[t],
provided γ[t] is large, that is, at least 1/k. It will turn out that in appli-
cations of streaming interest, we need to only determine if γ[t] is large,
so this solution will do.

As an aside, the problem of estimating the rarity is related to a
different problem. Consider fishing again and think of it as a random
sampling process. There is an unknown probability distribution P on
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6 Introduction

the countable set of fish types with pt being the probability associated
with fish type t. A catch is a sample S fishes drawn independently
from fish types according to the distribution P . Let c[t] be the num-
ber of times fish type t appears in S. The problem is to estimate the
probability of fish type t being the next catch. Elementary reasoning
would indicate that this probability is c[t]/|S|. However, it is unlikely
that all (of the large number of) fish types in the ocean are seen in
Paul’s catch, or even impossible if the number of fish types is infinite.
Hence, there are fish types t∗ that do not appear in the sample (i.e.,
c[t∗] = 0) and the elementary reasoning above would indicate that they
have probability 0 of being caught next. This is a conundrum in the
elementary reasoning since t∗ is indeed present in the ocean and has
nonzero probability of being caught in a given probability distribution
P . Let m =

∑
t∗ �∈S p

∗
t . The problem of estimating m is called the miss-

ing mass problem. In a classical work by Good (attributed to Turing
too) [113], it is shown that m is estimated by s[1]/|S|, where s[k] is
the number of fish types that appear k times in S, provably with small
bias; recall that our rarity γ is closely related to s[1]/|S|. Hence, our
result here on estimating rarity in data streams is of independent inter-
est in estimating the missing mass. See recent work on Turing-Good
estimators in [185].

Once we generalize the fishing puzzle – letting the numerator be
more generally |{j | ct[j] ≤ α}| for some α, letting Carole go fishing too,
or letting Paul and Carole throw fish back into the Ocean as needed –
there are some real data streaming applications [71]. In the reality of
data streams, one is confronted with fishing in a far larger domain, that
is, u is typically very large.

1.3 Puzzle 3: Pointer and Chaser

We study yet another game between Paul and Carole. There are n + 1
positions numbered 1, . . . ,n + 1 and for each position i, Paul points to
some position given by P [i] ∈ {1,2, . . . ,n}. By the Pigeonhole principle,
there must exist at least two positions i, j such that P [i] = P [j] = D

say, for a duplicate. Several different duplicates may exist, and the same
duplicate may appear many times since P is an arbitrary many-to-one
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1.3. Puzzle 3: Pointer and Chaser 7

function. Carole’s goal is to find any one duplicate using O(logn) bits
of storage and using no more than O(n) queries to Paul.

The trivial solution to this problem is to take each item i ∈ {1, . . . ,n}
in turn and count how many positions j have P [j] = i by querying
P [1],P [2], . . . ,P [n + 1] in turn. This solution takesO(logn) bits of extra
storage but needs Θ(n) queries per i in the worst case for a total of
O(n2) queries in all. One of the interesting aspects of this solution is
that P is accessed in passes, that is, we query P [1],P [2], . . . ,P [n + 1]
in order and repeat that many times.

One suspects that this problem should be solvable along the lines
in Section 1.1 using a few passes. The only such solution we know
is not optimally efficient and works as follows. In the first pass by
querying P [1],P [2], . . . ,P [n + 1] in order, Carole counts the number of
items below n/2 and those above n/2. Whichever counter is strictly
larger than n/2 (one such counter exists) shows a range of size n/2
with a duplicate. Now we recurse on the range with a duplicate in the
next pass and so on. This method uses only O(logn) bits of storage
(2 counters together with the endpoints of the range of interest in the
current pass), but needs O(n) queries per pass, taking O(n logn) queries
in all. Further, this solution uses O(logn) passes. This solution can be
generalized to use O(k logn) bits of storage and use only O(logkn)
passes. As it is, this approach similar to Section 1.1 does not meet the
desired bound of O(n) queries.

Jun Tarui [204] has presented a lower bound on the number of
passes needed to solve this problem. Consider odd n and a restricted
class of inputs such that the numbers in the first half (and likewise the
second half) are distinct. Hence the duplicate item must appear once
in the first half and once in the second half. A solution with s bits of
memory and r passes implies a two-party protocol with r rounds and s
communication bits in each round for the game where Paul and Carole
get (n + 1)/2-sized subsets PA and CA respectively of {1, . . . ,n} and
the task is to find and agree on some w that is in the intersection of PA
and CA. Such a protocol corresponds to a monotone (i.e., AND/OR)
circuit computing the Majority function with depth at most r and fan-
in at most 2s. This leads to a lower bound of Ω(logn/ log logn) passes
for s = O(logn).
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8 Introduction

In the final solution, Carole does not count, but chases pointers.
Start chasing the pointers from X = n + 1 going successively to the
location pointed to by P [X] for current X. Now the problem of finding
a duplicate is the same as that of finding if a “linked list” has a loop
not containing the start “node” n + 1. This is easy to solve in O(n)
queries to P with 2 pointers. Notice that this solution makes use of the
random access given by P [X]. (As an aside, the problem is interesting
if P [i] ∈ S where S is some set of size n, not necessarily {1,2, . . . ,n}.
Then, we do not know of an algorithm that takes less than O(n2) time
within our space constraints.)

This puzzle is related to Pollard’s rho method for determining the
greatest common divisor between integers [4]. The primary focus here
is on separating the complexity of the problem using passes vs using
random accesses.

1.4 Lessons

The missing-number puzzle in Section 1.1 shows the case of a data
stream problem that can be deterministically solved precisely with
O(logn) bits (when k = 1,2, etc.). Such algorithms – deterministic and
exact – are uncommon in data stream processing. In contrast, the puz-
zle in Section 1.2 is solved only up to an approximation using a ran-
domized algorithm in polylog bits. This – randomized and approximate
solution – is more representative of currently known data stream algo-
rithms. Further, the estimation of γ in Section 1.2 is accurate only when
it is large; for small γ, the estimate γ̂ is arbitrarily bad. This points
to a feature that generally underlies data stream algorithmics. Such
features – which applied algorithmicists need to keep in mind while
formulating problems to address data stream issues – will be discussed
in more detail later. In Section 1.3, the puzzle demonstrates the differ-
ence between passes (the best known solution using only passes takes
O(n logn) time) and random access (solution takes O(n) time using
random access).
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