
Data Streams:

Algorithms and

Applications

Full text available at: http://dx.doi.org/10.1561/0400000002

Data Streams:
Algorithms and

Applications

S. Muthukrishnan

Rutgers University
New Brunswick

NJ, USA

muthu@cs.rutgers.edu

Full text available at: http://dx.doi.org/10.1561/0400000002

Foundations and Trends R© in
Theoretical Computer Science

Published, sold and distributed by:
now Publishers Inc.
PO Box 1024
Hanover, MA 02339
USA
Tel. +1 781 871 0245
www.nowpublishers.com
sales@nowpublishers.com

Outside North America:
now Publishers Inc.
PO Box 179
2600 AD Delft
The Netherlands
Tel. +31-6-51115274

A Cataloging-in-Publication record is available from the Library of Congress

Printed on acid-free paper

ISBN: 1-933019-14-X; ISSNs: Paper version 1551-305X; Electronic ver-
sion 1551-3068
c© 2005 S. Muthukrishnan

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any
means, mechanical, photocopying, recording or otherwise, without prior
written permission of the publishers.

now Publishers Inc. has an exclusive license to publish this mate-
rial worldwide. Permission to use this content must be obtained from
the copyright license holder. Please apply to now Publishers, PO Box
179, 2600 AD Delft, The Netherlands, www.nowpublishers.com; e-mail:
sales@nowpublishers.com

Full text available at: http://dx.doi.org/10.1561/0400000002

Contents

1 Introduction 1

1.1 Puzzle 1: Finding Missing Numbers 1
1.2 Puzzle 2: Fishing 3
1.3 Puzzle 3: Pointer and Chaser 6
1.4 Lessons 8

2 Map 9

3 The Data Stream Phenomenon 11

4 Data Streaming: Formal Aspects 15

4.1 Data Stream Models 15
4.2 Motivating Scenarios 20
4.3 Other Data Streaming Applications 24
4.4 Other Applications for Data Stream Models 26

5 Foundations: Basic Mathematical Ideas 29

5.1 Sampling 29
5.2 Random Projections 40

v

Full text available at: http://dx.doi.org/10.1561/0400000002

vi Contents

6 Foundations: Basic Algorithmic Techniques 51

6.1 Group Testing 51
6.2 Tree Method 54
6.3 Other Algorithmic Techniques 62

7 Foundations: Summary 67

7.1 Lower Bounds 67
7.2 Summary and Data Stream Principles 69

8 Streaming Systems 73

9 New Directions 77

9.1 Related Areas 77
9.2 Functional Approximation Theory 78
9.3 Data Structures 85
9.4 Computational Geometry 86
9.5 Graph Theory 88
9.6 Databases 91
9.7 Hardware 95
9.8 Streaming Models 96
9.9 Data Stream Quality Monitoring 101
9.10 Fish-Eye View 103

10 Historic Notes 109

11 Concluding Remarks 111

Acknowledgements 113

References 115

Full text available at: http://dx.doi.org/10.1561/0400000002

1
Introduction

We study the emerging area of algorithms for processing data streams
and associated applications, as an applied algorithms research agenda.
We begin with three puzzles.

1.1 Puzzle 1: Finding Missing Numbers

Let π be a permutation of {1, . . . ,n}. Further, let π−1 be π with one
element missing. Paul shows Carole π−1[i] in increasing order i. Carole’s
task is to determine the missing integer. It is trivial to do the task if
Carole can memorize all the numbers she has seen thus far (formally,
she has an n-bit vector), but if n is large, this is impractical. Let us
assume she has only a few – say O(logn) – bits of memory. Nevertheless,
Carole must determine the missing integer.

This starter puzzle has a simple solution: Carole stores

s =
n(n + 1)

2
−
∑
j≤i

π−1[j],

which is the missing integer in the end. Each input integer entails one
subtraction. The total number of bits stored is no more than 2logn.
This is nearly optimal because Carole needs at least logn bits in the

1

Full text available at: http://dx.doi.org/10.1561/0400000002

2 Introduction

worst case since she needs to output the missing integer. (In fact, there
exists the following optimal algorithm for Carole using logn bits. For
each i, store the parity sum of the ith bits of all numbers seen thus
far. The final parity sum bits are the bits of the missing number.) A
similar solution will work even if n is unknown, for example by letting
n = maxj≤iπ−1[j] each time.

Paul and Carole have a history. It started with the “twenty ques-
tions” problem solved in [200]. Paul, which stood for Paul Erdos, was
the one who asked questions. Carole is an anagram for Oracle. Aptly,
she was the one who answered questions. Joel Spencer and Peter Win-
kler used Paul and Carole to coincide with Pusher and Chooser respec-
tively in studying certain chip games in which Carole chose which
groups the chips falls into and Paul determined which group of chips
to push. In the puzzle above, Paul permutes and Carole cumulates.

Generalizing the puzzle a little further, let π−2 be π with two
elements missing. The natural solution would be for Carole to store
s = n(n+1)

2 −∑j≤iπ−2[j] and p = n! − ∏j≤iπ−2[j], giving two equa-
tions with two unknown numbers, but this will result in storing large
number of bits since n! is large. Instead, Carole can use far fewer bits
tracking

s =
n(n + 1)

2
−
∑
j≤i

π−2[j] and ss =
n(n + 1)(2n + 1)

6
−
∑
j≤i

(π−2[j])2

In general, what is the smallest number of bits needed to identify the
k missing numbers in π−k? Following the approach above, the solution
is to maintain power sums

sp(x1, . . . ,xk) =
k∑

i=1

(xi)p,

for p = 1, . . . ,k and solving for xi’s. A different method uses elementary
symmetric polynomials [169]. The ith such polynomial σi(x1, . . . ,xk) is
the sum of all possible i term products of the parameters, i.e.,

σi(x1, . . . ,xk) =
∑

j1<···<ji

xj1 · · ·xji .

Carole continuously maintains σi’s for the missing k items in field Fq

for some prime n ≤ q ≤ 2n, as Paul presents the numbers one after the

Full text available at: http://dx.doi.org/10.1561/0400000002

1.2. Puzzle 2: Fishing 3

other (the details are in [169]). Since

∏
i=1,...,k

(z − xi) =
k∑

i=0

(−1)iσi(x1, . . . ,xk)zk−i,

Carole needs to factor this polynomial in Fq to determine the missing
numbers. No deterministic algorithms are known for the factoring prob-
lem, but there are randomized algorithms take roughly O(k2 logn) bits
and time [213]. The elementary symmetric polynomial approach above
comes from [169] where the authors solve the set reconciliation prob-
lem in the communication complexity model. The subset reconciliation
problem is related to our puzzle.

Generalizing the puzzle, Paul may present a multiset of elements in
{1, . . . ,n} with a single missing integer, i.e., he is allowed to re-present
integers he showed before; Paul may present updates showing which
integers to insert and which to delete, and Carole’s task is to find
the integers that are no longer present; etc. All of these problems are
no longer (mere) puzzles; they are derived from motivating data stream
applications.

1.2 Puzzle 2: Fishing

Say Paul goes fishing. There are many different fish species U =
{1, . . . ,u}. Paul catches one fish at a time, at ∈ U being the fish species
he catches at time t. ct[j] = |{ai | ai = j, i ≤ t}| is the number of times
he catches the species j up to time t. Species j is rare at time t if it
appears precisely once in his catch up to time t. The rarity ρ[t] of his
catch at time t is the ratio of the number of rare j’s to u:

ρ[t] =
|{j | ct[j] = 1}|

u
.

Paul can calculate ρ[t] precisely with a 2u-bit vector and a counter for
the current number of rare species, updating the data structure in O(1)
operations per fish caught. However, Paul wants to store only as many
bits as will fit his tiny suitcase, i.e., o(u), preferably O(1) bits.

Suppose Paul has a deterministic algorithm to compute ρ[t] pre-
cisely. Feed Paul any set S ⊂ U of fish species, and say Paul’s algorithm

Full text available at: http://dx.doi.org/10.1561/0400000002

4 Introduction

stores only o(u) bits in his suitcase. Now we can check if any i ∈ S by
simply feeding Paul i and checking ρ[t + 1]: the number of rare items
decreases by one if and only if i ∈ S. This way we can recover entire S
from his suitcase by feeding different i’s one at a time, which is impos-
sible in general if Paul had only stored o(|S|) bits. Therefore, if Paul
wishes to work out of his one suitcase, he can not compute ρ[t] exactly.
This argument has elements of lower bound proofs found in the area of
data streams.

However, proceeding to the task at hand, Paul can approximate ρ[t].
Paul picks k random fish species each independently, randomly with
probability 1/u at the beginning and maintains the number of times
each of these fish types appear in his bounty, as he catches fish one
after another. Say X1[t], . . . ,Xk[t] are these counts after time t. Paul
outputs ρ̂[t] = |{i |Xi[t]=1}|

k as an estimator for ρ. We have,

Pr(Xi[t] = 1) =
|{j | ct[j] = 1}|

u
= ρ[t],

for any fixed i and the probability is over the fish type Xi. If ρ[t] is
large, say at least 1/k, ρ̂[t] is a good estimator for ρ[t] with arbitrarily
small ε and significant probability.

However, typically, ρ is unlikely to be large because presumably u

is much larger than the species found at any spot Paul fishes. Choosing
a random species from {1, . . . ,u} and waiting for it to be caught is
ineffective. We can make it more realistic by redefining rarity with
respect to the species Paul in fact sees in his catch. Let

γ[t] =
|{j | ct[j] = 1}|
|{j | ct[j] �= 0}| .

As before, Paul would have to approximate γ[t] because he can not
compute it exactly using a small number of bits. Following [28], define
a family of hash functions H ⊂ [n]→ [n] (where [n] = {1, . . . ,n}) to be
min-wise independent if for any X ⊂ [n] and x ∈ X, we have

Prh∈H[h(x) = min h(X)] =
1
|X| ,

where, h(X) = {h(x): x ∈ X}. Paul chooses k min-wise independent
hash functions h1,h2, . . . ,hk for some parameter k to be determined

Full text available at: http://dx.doi.org/10.1561/0400000002

1.2. Puzzle 2: Fishing 5

later and maintains h∗
i (t) = minj≤t hi(aj) at each time t, that is, min

hash value of the multi-set {. . . ,at−2,at−1,at}. He also maintain k coun-
ters C1(t),C2(t), . . . ,Ck(t); Ci(t) counts an item with (the current value
of) hash value h∗

i (t) in {. . . ,at−2,at−1,at}. It is trivial to maintain both
h∗

i (t) and Ci(t) as t progresses and new items are seen. Let

γ̂[t] =
|{i | 1 ≤ i ≤ k, Ci(t) = 1}|

k
.

Notice that Pr(Ci(t) = 1) is the probability that hi(t) is the hash value
of one of the items that appeared precisely once in a1, . . . ,at which
equals |{j |c[j]=1}|

|{j |c[j]�=0}| = γ[t]. Hence, γ̂[t] is a good estimator for γ[t] provided
γ[t] is large, say at least 1/k. That completes the sketch of the Paul’s
algorithm.

The remaining detail is that Paul needs to pick hi’s. If Paul resorts
to his tendency to permute, i.e., if he picks a randomly chosen permuta-
tion π over [u] = {1, . . . ,u}, then hi’s will be min-wise hash functions.
However, it requires Θ(u logu) bits to represent a random permuta-
tion from the set of all permutations over [u]. Thus the number of bits
needed to store the hash function will be close to u which is prohibitive!

To overcome this problem, Paul picks a family of approximate min-
hash functions. A family of hash functions, H ⊂ [n]→ [n] is called ε-
min-wise independent if for any X ⊂ [n] and x ∈ X, we have

Prh∈H [h(x) = min h(X)] =
1
|X|(1 ± ε).

Indyk [135] presents a family of ε-min-wise independent hash func-
tions such that any function from this family can be represented using
O(logu log(1/ε)) bits only and each hash function can be computed
efficiently in O(log(1/ε)) time. This family is a set of polynomials over
GF (u) of degree O(log(1/ε)). Plugging this result into the solution
above, Paul uses O(k logu log(1/ε)) bits and estimates γ̂[t] ∈ (1 ± ε)γ[t],
provided γ[t] is large, that is, at least 1/k. It will turn out that in appli-
cations of streaming interest, we need to only determine if γ[t] is large,
so this solution will do.

As an aside, the problem of estimating the rarity is related to a
different problem. Consider fishing again and think of it as a random
sampling process. There is an unknown probability distribution P on

Full text available at: http://dx.doi.org/10.1561/0400000002

6 Introduction

the countable set of fish types with pt being the probability associated
with fish type t. A catch is a sample S fishes drawn independently
from fish types according to the distribution P . Let c[t] be the num-
ber of times fish type t appears in S. The problem is to estimate the
probability of fish type t being the next catch. Elementary reasoning
would indicate that this probability is c[t]/|S|. However, it is unlikely
that all (of the large number of) fish types in the ocean are seen in
Paul’s catch, or even impossible if the number of fish types is infinite.
Hence, there are fish types t∗ that do not appear in the sample (i.e.,
c[t∗] = 0) and the elementary reasoning above would indicate that they
have probability 0 of being caught next. This is a conundrum in the
elementary reasoning since t∗ is indeed present in the ocean and has
nonzero probability of being caught in a given probability distribution
P . Let m =

∑
t∗ �∈S p

∗
t . The problem of estimating m is called the miss-

ing mass problem. In a classical work by Good (attributed to Turing
too) [113], it is shown that m is estimated by s[1]/|S|, where s[k] is
the number of fish types that appear k times in S, provably with small
bias; recall that our rarity γ is closely related to s[1]/|S|. Hence, our
result here on estimating rarity in data streams is of independent inter-
est in estimating the missing mass. See recent work on Turing-Good
estimators in [185].

Once we generalize the fishing puzzle – letting the numerator be
more generally |{j | ct[j] ≤ α}| for some α, letting Carole go fishing too,
or letting Paul and Carole throw fish back into the Ocean as needed –
there are some real data streaming applications [71]. In the reality of
data streams, one is confronted with fishing in a far larger domain, that
is, u is typically very large.

1.3 Puzzle 3: Pointer and Chaser

We study yet another game between Paul and Carole. There are n + 1
positions numbered 1, . . . ,n + 1 and for each position i, Paul points to
some position given by P [i] ∈ {1,2, . . . ,n}. By the Pigeonhole principle,
there must exist at least two positions i, j such that P [i] = P [j] = D

say, for a duplicate. Several different duplicates may exist, and the same
duplicate may appear many times since P is an arbitrary many-to-one

Full text available at: http://dx.doi.org/10.1561/0400000002

1.3. Puzzle 3: Pointer and Chaser 7

function. Carole’s goal is to find any one duplicate using O(logn) bits
of storage and using no more than O(n) queries to Paul.

The trivial solution to this problem is to take each item i ∈ {1, . . . ,n}
in turn and count how many positions j have P [j] = i by querying
P [1],P [2], . . . ,P [n + 1] in turn. This solution takesO(logn) bits of extra
storage but needs Θ(n) queries per i in the worst case for a total of
O(n2) queries in all. One of the interesting aspects of this solution is
that P is accessed in passes, that is, we query P [1],P [2], . . . ,P [n + 1]
in order and repeat that many times.

One suspects that this problem should be solvable along the lines
in Section 1.1 using a few passes. The only such solution we know
is not optimally efficient and works as follows. In the first pass by
querying P [1],P [2], . . . ,P [n + 1] in order, Carole counts the number of
items below n/2 and those above n/2. Whichever counter is strictly
larger than n/2 (one such counter exists) shows a range of size n/2
with a duplicate. Now we recurse on the range with a duplicate in the
next pass and so on. This method uses only O(logn) bits of storage
(2 counters together with the endpoints of the range of interest in the
current pass), but needs O(n) queries per pass, taking O(n logn) queries
in all. Further, this solution uses O(logn) passes. This solution can be
generalized to use O(k logn) bits of storage and use only O(logkn)
passes. As it is, this approach similar to Section 1.1 does not meet the
desired bound of O(n) queries.

Jun Tarui [204] has presented a lower bound on the number of
passes needed to solve this problem. Consider odd n and a restricted
class of inputs such that the numbers in the first half (and likewise the
second half) are distinct. Hence the duplicate item must appear once
in the first half and once in the second half. A solution with s bits of
memory and r passes implies a two-party protocol with r rounds and s
communication bits in each round for the game where Paul and Carole
get (n + 1)/2-sized subsets PA and CA respectively of {1, . . . ,n} and
the task is to find and agree on some w that is in the intersection of PA
and CA. Such a protocol corresponds to a monotone (i.e., AND/OR)
circuit computing the Majority function with depth at most r and fan-
in at most 2s. This leads to a lower bound of Ω(logn/ log logn) passes
for s = O(logn).

Full text available at: http://dx.doi.org/10.1561/0400000002

8 Introduction

In the final solution, Carole does not count, but chases pointers.
Start chasing the pointers from X = n + 1 going successively to the
location pointed to by P [X] for current X. Now the problem of finding
a duplicate is the same as that of finding if a “linked list” has a loop
not containing the start “node” n + 1. This is easy to solve in O(n)
queries to P with 2 pointers. Notice that this solution makes use of the
random access given by P [X]. (As an aside, the problem is interesting
if P [i] ∈ S where S is some set of size n, not necessarily {1,2, . . . ,n}.
Then, we do not know of an algorithm that takes less than O(n2) time
within our space constraints.)

This puzzle is related to Pollard’s rho method for determining the
greatest common divisor between integers [4]. The primary focus here
is on separating the complexity of the problem using passes vs using
random accesses.

1.4 Lessons

The missing-number puzzle in Section 1.1 shows the case of a data
stream problem that can be deterministically solved precisely with
O(logn) bits (when k = 1,2, etc.). Such algorithms – deterministic and
exact – are uncommon in data stream processing. In contrast, the puz-
zle in Section 1.2 is solved only up to an approximation using a ran-
domized algorithm in polylog bits. This – randomized and approximate
solution – is more representative of currently known data stream algo-
rithms. Further, the estimation of γ in Section 1.2 is accurate only when
it is large; for small γ, the estimate γ̂ is arbitrarily bad. This points
to a feature that generally underlies data stream algorithmics. Such
features – which applied algorithmicists need to keep in mind while
formulating problems to address data stream issues – will be discussed
in more detail later. In Section 1.3, the puzzle demonstrates the differ-
ence between passes (the best known solution using only passes takes
O(n logn) time) and random access (solution takes O(n) time using
random access).

Full text available at: http://dx.doi.org/10.1561/0400000002

References

[1] http://www.tpc.org/. Details of transactions testing at http://www.tpc
.org/tpcc/detail.asp.

[2] http://www2.ece.rice.edu/˜duarte/compsense/.
[3] http://www7.nationalacademies.org/bms/Massive Data Workshop.html.
[4] “Lance Fortnow,” Blog on 03/2005.
[5] D. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee,

M. Stonebraker, N. Tatbul, and S. Zdonik, “Aurora: A new model and archi-
tecture for data stream management,” VLDB Journal, vol. 12, no. 2, pp. 120–
139, 2003. See also: “Aurora: A data stream management system”, Proc. ACM
SIGMOD 2003, Demo.

[6] A. Aboulnaga and S. Chaudhuri, “Self-tuning histograms: Building histograms
without looking at data,” Proc. ACM SIGMOD, pp. 181–192, 1998.

[7] D. Achlioptas and F. McSherry, “Fast computation of low rank approxima-
tion,” Proc. ACM STOC, pp. 611–618, 2001.

[8] L. Adamic, “Zipf,” power-law, pareto – a ranking tutorial, http://www.hpl.hp
.com/research/idl/papers/ranking/, 2000.

[9] P. K. Agarwal, S. Har-Peled, and K. Varadarajan, “Geometric Approxi-
mation via Coresets,” Survey. Available at http://valis.cs.uiuc.edu/˜sariel/
papers/04/survey/.

[10] G. Aggarwal, N. Mishra, and B. Pinkas, “Secure computation of the K’th-
ranked element,” Advances in Cryptology – Eurocrypt, LNCS 3027, Springer-
Verlag, pp. 40–55, May 2004.

[11] M. Ajtai, T. Jayram, S. R. Kumar, and D. Sivakumar, “Counting inversions
in a data stream,” Proc. ACM STOC, pp. 370–379, 2002.

115

Full text available at: http://dx.doi.org/10.1561/0400000002

116 References

[12] N. Alon, N. Duffield, C. Lund, and M. Thorup, “Estimating sums of arbitrary
selections with few probes,” Proc. ACM PODS, 2005.

[13] N. Alon, P. Gibbons, Y. Matias, and M. Szegedy, “Tracking join and self-join
sizes in limited storage,” Proc. ACM PODS, pp. 10–20, 1999.

[14] N. Alon, Y. Matias, and M. Szegedy, “The space complexity of approximating
the frequency moments,” Proc. ACM STOC, pp. 20–29, 1996.

[15] A. Arasu, B. Babcock, S. Babu, M. Datar, K. Ito, I. Nishizawa, J. Rosenstein,
and J. Widom, “STREAM: The stanford stream data manager,” Proc. ACM
SIGMOD, 2003, Demo.

[16] A. Arasu and G. Manku, “Approximate Counts and Quantiles over Sliding
Windows,” Proc. ACM PODS, pp. 286–296, 2004.

[17] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom, “Models and
issues in data stream systems,” Proc. ACM PODS, pp. 1–16, 2002.

[18] A. Bagchi, A. Chaudhary, D. Eppstein, and M. Goodrich, “Deterministic sam-
pling and range counting in geometric data streams,” Proc. ACM SOCG,
pp. 144–151, 2004.

[19] S. Balakrishnan and D. Madigan, “A one-pass sequential Monte Carlo method
for Bayesian analysis of massive datasets,” Manuscript, 2004.

[20] M. Balazinska, H. Balakrishnan, and M. Stonebraker, “Load management and
high availability in the Medusa distributed stream processing system,” Proc.
ACM SIGMOD, pp. 929–930, 2004.

[21] Z. Bar-yossef, T. Jayram, R. Kumar, and D. Sivakumar, “Information statis-
tics approach to data stream and communication complexity,” Proc. IEEE
FOCS, pp. 209–218, 2002.

[22] Z. Bar-Yossef, T. Jayram, R. Kumar, D. Sivakumar, and L. Trevisan, “Count-
ing distinct elements in a data stream,” Proc. RANDOM, pp. 1–10, 2000.

[23] Z. Bar-Yossef, R. Kumar, and D. Sivakumar, “Reductions in streaming algo-
rithms, with an application to counting triangles in graphs,” Proc. ACM-SIAM
SODA, pp. 623–632, 2002.

[24] T. Batu, S. Guha, and S. Kannan, “Inferring mixtures of markov chains,”
Proc. COLT, pp. 186–199, 2004.

[25] K. Beauchamp, “Walsh functions and their applications,” 1975.
[26] M. Bender, A. Fernandez, D. Ron, A. Sahai, and S. Vadhan, “The power of a

pebble: Exploring and mapping directed graphs,” Proc. ACM STOC, pp. 269–
278, 1998.

[27] G. Blelloch, B. Maggs, S. Leung, and M. Woo, “Space efficient finger search on
degree-balanced search trees,” Proc. ACM-SIAM SODA, pp. 374–383, 2003.

[28] A. Broder, M. Charikar, A. Freize, and M. Mitzenmacher, “Min-wise indepen-
dent permutations,” Proc. ACM STOC, pp. 327–336, 1998.

[29] L. Buriol, D. Donato, S. Leonardi, and T. Matzner, “Using data stream algo-
rithms for computing properties of large graphs,” Workshop on Massive Geo-
metric Datasets, With ACM SoCG 2005, Pisa.

[30] A. R. Calderbank, A. Gilbert, K. Levchenko, S. Muthukrishnan, and
M. Strauss, “Improved range-summable random variable construction algo-
rithms,” Proc. ACM-SIAM SODA, pp. 840–849, 2005.

Full text available at: http://dx.doi.org/10.1561/0400000002

References 117

[31] A. Chakrabarti, S. Khot, and X. Sun, “Near-optimal lower bounds on the
multi-party communication complexity of set disjointness,” IEEE Conference
on Computational Complexity, pp. 107–117, 2003.

[32] J. Chambers, C. Mallows, , and B. Stuck, “A method for simulating stable
random variables,” Journal of the American Statistical Association, vol. 71,
no. 354, pp. 340–344, 1976.

[33] T. Chan, “Data stream algorithms in Computational Geometry,” Workshop
on New Horizons in Computing (Kyoto), 2005.

[34] T. Chan and E. Chen, “Multi-pass geometric algorithms,” Proc. ACM SoCG,
pp. 180–189, 2005.

[35] M. Charikar, C. Chekuri, T. Feder, and R. Motwani, “Incremental clustering
and dynamic information retrieval,” Proc. ACM STOC, pp. 626–635, 1997.

[36] M. Charikar, K. Chen, and M. Farach-Colton, “Finding frequent items in data
streams,” Proc. ICALP, pp. 693–703, 2002.

[37] M. Charikar, L. O’Callaghan, and R. Panigrahy, “Better streaming algorithms
for clustering problems,” Proc. ACM STOC, pp. 693–703, 2003.

[38] S. Chaudhuri, R. Motwani, and V. Narasayya, “Random sampling for his-
togram construction: How much is enough?,” Proc. SIGMOD, pp. 436–447,
1998.

[39] J. Chen, D. DeWitt, F. Tian, , and Y. Wang, “NiagaraCQ: A scalable continu-
ous query system for internet databases,” Proc. ACM SIGMOD, pp. 379–390,
2000.

[40] S. Chen, A. Gaur, S. Muthukrishnan, and D. Rosenbluth, “Wireless in loco
sensor data collection and applications,” Workshop on Mobile Data Access
(MOBEA) II, Held with WWW Conf, 2004.

[41] S. Chien, L. Rasmussen, and A. Sinclair, “Clifford algebras and approximating
the permanent,” Proc. ACM STOC, pp. 222–231, 2002.

[42] E. Cohen and H. Kaplan, “Spatially-decaying aggregation over a network:
Model and algorithms,” Proc. ACM SIGMOD, pp. 707–718, 2004.

[43] R. Cole, “On the dynamic finger conjecture for splay trees, part II, The proof,”
Technical Report TR1995-701, Courant Institute, NYU, 1995.

[44] R. Cole and U. Vishkin, “Deterministic coin tossing and accelerating cascades:
micro and macro techniques for designing parallel algorithms,” Proc. ACM
STOC, pp. 206–219, 1986.

[45] D. Coppersmith and R. Kumar, “An improved data stream algorithm for
frequency moments,” Proc. ACM-SIAM SODA, pp. 151–156, 2004.

[46] G. Cormode, “Stable distributions for stream computations: It’s as easy as
0,1,2,” Workshop on Management and Processing of Massive Data Streams
(MPDS) at FCRC, 2003.

[47] G. Cormode, M. Datar, P. Indyk, and S. Muthukrishnan, “Comparing data
streams using hamming norms (How to zero in),” Proc. VLDB, pp. 335–345,
2002.

[48] G. Cormode and M. Garofalakis, “Sketching streams through the net: Dis-
tributed approximate query tracking,” Proc. VLDB, pp. 13–24, 2005.

Full text available at: http://dx.doi.org/10.1561/0400000002

118 References

[49] G. Cormode, M. Garofalakis, S. Muthukrishnan, and R. Rastogi, “Holistic
aggregates in a networked world: Distributed tracking of approximate quan-
tiles,” Proc. ACM SIGMOD, pp. 25–36, 2005.

[50] G. Cormode, T. Johnson, F. Korn, S. Muthukrishnan, O. Spatscheck, and
D. Srivastava, “Holistic UDAFs at streaming speeds,” Proc. ACM SIGMOD,
pp. 35–46, 2004.

[51] G. Cormode, F. Korn, S. Muthukrishnan, and D. Srivastava, “Finding hierar-
chical heavy hitters in data streams,” Proc. VLDB, pp. 464–475, 2003.

[52] G. Cormode, F. Korn, S. Muthukrishnan, and D. Srivastava, “Diamond in the
rough: Finding hierarchical heavy hitters in multi-dimensional data,” Proc.
ACM SIGMOD, pp. 155–166, 2004.

[53] G. Cormode and S. Muthukrishnan, “The string edit distance matching prob-
lem with moves,” Proc. ACM-SIAM SODA, pp. 667–676, 2002.

[54] G. Cormode and S. Muthukrishnan, “Estimating dominance norms on multi-
ple data streams,” Proc. ESA, pp. 148–160, 2003.

[55] G. Cormode and S. Muthukrishnan, “What is hot and what is not: Tracking
most frequent items dynamically,” Proc. ACM PODS, pp. 296–306, 2003.

[56] G. Cormode and S. Muthukrishnan, “Radial histograms for spatial streams,”
DIMACS Technical Report, 2003-11.

[57] G. Cormode and S. Muthukrishnan, “What is new: Finding significant differ-
ences in network data streams,” Proc. INFOCOM, 2004.

[58] G. Cormode and S. Muthukrishnan, “Space efficient mining of multigraph
streams,” Proc. ACM PODS, 2005.

[59] G. Cormode and S. Muthukrishnan, “Summarizing and mining skewed data
streams,” Proc. SIAM SDM, 2005.

[60] G. Cormode and S. Muthukrishnan, “An improved data stream summary: The
count-min sketch and its applications,” J. Algorithms, vol. 55, no. 1, pp. 58–75,
April 2005.

[61] G. Cormode, S. Muthukrishnan, and I. Rozenbaum, “Summarizing and mining
inverse distributions on data streams via dynamic inverse sampling,” Proc.
VLDB, pp. 25–36, 2005.

[62] G. Cormode, S. Muthukrishnan, and C. Sahinalp, “Permutation editing and
matching via embeddings,” Proc. ICALP, pp. 481–492, 2001.

[63] G. Cormode, M. Paterson, S. S. ahinalp, and U. Vishkin, “Communication
complexity of document exchange,” Proc. ACM-SIAM SODA, pp. 197–206,
2000.

[64] C. Cortes, K. Fisher, D. Pregibon, and A. Rogers, “Hancock: A language for
extracting signatures from data streams,” Proc. KDD, pp. 9–17, 2000.

[65] C. Cortes and D. Pregibon, “Signature-based methods for data streams,” Data
Mining and Knowledge Discovery, vol. 5, no. 3, pp. 167–182, 2001.

[66] C. Cortes, D. Pregibon, and C. Volinsky, “Communities of interest,” Proc. of
Intelligent Data Analysis, pp. 105–114, 2001.

[67] C. Cranor, T. Johnson, V. Shkapenyuk, and O. Spatscheck, “The gigascope
stream database,” IEEE Data Engineering Bulletin, vol. 26, no. 1, pp. 27–
32, 2003. See also: C. Cranor, Y. Gao, T. Johnson, V. Shkapenyuk and

Full text available at: http://dx.doi.org/10.1561/0400000002

References 119

O. Spatscheck, “Gigsacope: High performance network monitoring with an
SQL interface,” ACM SIGMOD 2002, Demo.

[68] T. Dasu and T. Johnson, Exploratory Data Mining and Data Quality.
Vol. ISBN: 0-471-26851-8, Wiley, May 2003.

[69] T. Dasu, T. Johnson, S. Muthukrishnan, and V. Shkapenyuk, “Mining
database structure or how to build a data quality browser,” Proc. ACM SIG-
MOD, pp. 240–251, 2002.

[70] M. Datar, A. Gionis, P. Indyk, and R. Motwani, “Maintaining stream statistics
over sliding windows,” Proc. ACM-SIAM SODA, pp. 635–644, 2002.

[71] M. Datar and S. Muthukrishnan, “Estimating rarity and similarity in window
streams,” Proc. ESA, pp. 323–334, 2002.

[72] G. Davis, S. Mallat, and M. Avellaneda, “Greedy adaptive approximation,”
Journal of Constructive Approximation, vol. 13, pp. 57–98, 1997.

[73] R. DeVore and G. Lorentz, Constructive Approximation. New York: Springer-
Verlag, 1993.

[74] D. Donoho, “High-dimensional data analysis: The curses and blessings of
dimensionality,” Manuscript, 2000. http://www-stat.stanford.edu/˜donoho/.

[75] D. Donoho, “Compressed sensing,” Manuscript, 2004. http://www-stat
.stanford.edu/˜donoho/Reports/2004/CompressedSensing091604.pdf.

[76] P. Drineas and R. Kannan, “Pass efficient algorithms for approximating large
matrices,” Proc. ACM-SIAM SODA, pp. 223–232, 2003.

[77] P. Drineas, R. Kannan, and M. Mahoney, “Fast Monte Carlo algorithms
for matrices I: Approximating matrix multiplication,” Yale Technical Report
YALEU/DCS/TR-1269, 2004. To appear in SIAM J. Computing.

[78] P. Drineas, R. Kannan, and M. Mahoney, “Fast Monte Carlo algorithms for
matrices II: Computing low-rank approximations to a matrix,” Yale Technical
Report YALEU/DCS/TR-1270, 2004. To appear in SIAM J. Computing.

[79] P. Drineas, R. Kannan, and M. Mahoney, “Fast Monte Carlo algorithms for
matrices III: Computing an efficient approximate decomposition of a matrix,”
Yale Technical Report YALEU/DCS/TR-1271, To appear in SIAM J. Com-
puting, 2004.

[80] D. Du and F. Hwang, Combinatorial Group Testing and Its Applications. 2nd
ed., World Scientific Singapore, 2000.

[81] N. Duffield, C. Lund, and M. Thorup, “Flow sampling under hard resource
constraints,” Sigmetrics, pp. 85–96, 2004.

[82] M. Elkin and J. Zhang, “Efficient algorithms for constructing (1 + ε,β)-
spanners in the distributed and streaming models,” Proc. ACM PODC,
pp. 160–168, 2004.

[83] C. Estan, S. Savage, and G. Varghese, “Automatically inferring patterns of
resource consumption in network traffic,” Proc. SIGCOMM, pp. 137–148,
2003.

[84] C. Estan and G. Varghese, “New directions in traffic measurement and
accounting: Focusing on the elephants, ignoring the mice,” ACM Transactions
on Computer System, vol. 21, no. 3, pp. 270–313, 2003.

Full text available at: http://dx.doi.org/10.1561/0400000002

120 References

[85] R. Fagin, M. Naor, and P. Winkler, “Comparing information without leaking
it: Simple solutions,” Communications of the ACM, vol. 39, no. 5, pp. 77–85,
1996.

[86] U. Feige, “A threshold of ln n for approximating set cover,” Journal of ACM,
vol. 45, no. 4, pp. 634–652, 1998.

[87] J. Feigenbaum, “Massive graphs: Algorithms, applications, and open prob-
lems,” Invited Lecture, Combinatorial Pattern Matching, 1999.

[88] J. Feigenbaum, Y. Ishai, T. Malkin, K. Nissim, M. Strauss, and R. Wright,
“Secure multiparty computation of approximations,” Proc. ICALP, pp. 927–
938, 2001.

[89] J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, and J. Zhang, “On graph
problems in a semi-streaming model,” Proc of ICALP, pp. 531–543, 2004.

[90] J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, and J. Zhang, “Graph dis-
tances in the streaming model: The value of space,” Proc. ACM-SIAM SODA,
pp. 745–754, 2005.

[91] J. Feigenbaum, S. Kannan, M. Strauss, and M. Viswanathan, “An approxi-
mate L1 difference algorithm for massive data streams,” Proc. IEEE FOCS,
pp. 501–511, 1999.

[92] J. Feigenbaum, S. Kannan, and J. Ziang, “Computing diameter in the stream-
ing and sliding window models,” Algorithmica, vol. 41, no. 1, pp. 25–41, 2004.

[93] M. Fischer and S. Salzberg, “Finding a majority among N votes: Solution to
problem 81-5,” J. Algorithms, vol. 3, pp. 376–379, 1982.

[94] P. Flajolet and G. Martin, “Probabilistic counting,” Proc. FOCS, pp. 76–82,
1983.

[95] G. Frahling, P. Indyk, and C. Sohler, “Sampling in dynamic data streams and
applications,” Proc. ACM SoCG, pp. 142–149, 2005.

[96] G. Frahling and C. Sohler, “Coresets in dynamic geometric data streams,”
Proc. ACM STOC, pp. 209–217, 2005.

[97] M. Freedman, K. Nissim, and B. Pinkas, “Efficient private matching and
set intersection,” Advances in Cryptology – Eurocrypt, LNCS 3027, Springer-
Verlag, pp. 1–19, May 2004.

[98] S. Ganguly, M. Garofalakis, and R. Rastogi, “Tracking set-expression car-
dinalities over continuous update streams,” VLDB Journal, vol. 13, no. 4,
pp. 354–369, 2004.

[99] M. Garey and D. Johnson, Computers and Intractability: A Guide to the The-
ory of NP-Completeness. W. H. Freeman, 1979.

[100] M. Garofalakis and A. Kumar, “Deterministic wavelet thresholding for
maximum-error metrics,” Proc. ACM PODS, pp. 166–176, 2004.

[101] L. Gasieniec and S. Muthukrishnan, “Determinsitic algorithms for estimating
heavy-hitters on Turnstile data streams,” Manuscript, 2005.

[102] D. Geiger, V. Karamcheti, Z. Kedem, and S. Muthukrishnan, “Detecting mali-
cious network traffic using inverse distributions of packet contents,” Proc.
MineNet, 2005, Held with Proc. ACM SIGCOMM, 2005.

[103] P. Gibbons and S. Trithapura, “Estimating simple functions on the union of
data streams,” Proc. ACM SPAA, pp. 281–291, 2001.

Full text available at: http://dx.doi.org/10.1561/0400000002

References 121

[104] A. Gilbert, S. Guha, Y. Kotidis, P. Indyk, S. Muthukrishnan, and M. Strauss,
“Fast, small space algorithm for approximate histogram maintenance,” Proc.
ACM STOC, pp. 389–398, 2002.

[105] A. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. Strauss, “Surfing wavelets
on streams: One pass summaries for approximate aggregate queries,” VLDB
Journal, pp. 79–88, 2001.

[106] A. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. Strauss, “QuickSAND:
Quick summary and analysis of network data,” DIMACS Technical Report,
2001-43.

[107] A. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. Strauss, “How to summarize
the universe: Dynamic maintenance of quantiles,” Proc. VLDB, pp. 454–465,
2002.

[108] A. Gilbert, S. Muthukrishnan, and M. Strauss, “Approximation of func-
tions over redundant dictionaries using coherence,” Proc. ACM-SIAM SODA,
pp. 243–252, 2003.

[109] A. Gilbert, S. Muthukrishnan, and M. Strauss, “Improved time bounds for
near-optimal sparse Fourier representations,” SPIE Conf, Wavelets, 2005,
See also: A. Gilbert and S. Guha and P. Indyk and S. Muthukrishnan and
M. Strauss, “Near-optimal sparse fourier estimation via sampling”, Proc. ACM
STOC, 152–161, 2002.

[110] A. Gilbert, S. Muthukrishnan, M. Strauss, and J. Tropp, “Improved sparse
approximation over quasi-coherent dictionaries,” Intl Conf on Image Process-
ing (ICIP), pp. 37–40, 2003.

[111] L. Golab, D. DeHaan, E. Demaine, A. Lopez-Ortiz, and I. Munro, “Identify-
ing frequent items in sliding windows over on-line packet streams,” Internet
Measurement Conference, pp. 173–178, 2003.

[112] O. Goldreich, “Secure multiparty computation,” Book at http://philby.ucsd
.edu/cryptolib/BOOKS/oded-sc.html, 1998.

[113] I. Good, “The population frequencies of species and the estimation of popu-
lation parameters,” Biometrika, vol. 40, no. 16, pp. 237–264, 1953.

[114] J. Gray and T. Hey, “In search of petabyte databases,” http://www.research
.microsoft.com/˜Gray/talks/.

[115] J. Gray, P. Sundaresan, S. Eggert, K. Baclawski, and P. Weinberger, “Quickly
generating billion-record synthetic databases,” Proc. ACM SIGMOD, pp. 243–
252, 1994.

[116] M. Greenwald and S. Khanna, “Space-efficient online computation of quantile
summaries,” Proc. ACM SIGMOD, 2001.

[117] S. Guha, “Space efficiency in synopsis construction algorithms,” Proc. VLDB,
2005.

[118] S. Guha and B. Harb, “Waveletssynopsis for data streams: Minimizing non-
euclidean error,” Proc. ACM KDD, 2005.

[119] S. Guha, P. Indyk, S. Muthukrishnan, and M. Strauss, “Histogramming data
streams with fast per-item processing,” Proc. ICALP, pp. 681–692, 2002.

[120] S. Guha, N. Koudas, and K. Shim, “Approximation and streaming algorithms
for histogram construction problems,” Journal version.

Full text available at: http://dx.doi.org/10.1561/0400000002

122 References

[121] S. Guha, N. Koudas, and K. Shim, “Data streams and histograms,” Proc.
ACM STOC, pp. 471–475, 2001.

[122] S. Guha, N. Mishra, R. Motwani, and L. O’Callaghan, “Clustering data
streams,” Proc. IEEE FOCS, pp. 359–366, 2000.

[123] S. Guha, K. Mungala, K. Shankar, and S. Venkatasubramanian, “Application
of the two-sided depth test to CSG rendering,” Proc. I3d, ACM Interactive
3D graphics, 2003.

[124] A. Gupta and F. Zane, “Counting inversions in lists,” ACM-SIAM SODA,
pp. 253–254, 2003.

[125] A. Haar, “Zur theorie der orthogonalen functionsysteme,” Math Annal.,
vol. 69, pp. 331–371, 1910.

[126] M. Hansen, “Slogging,” Keynote plenary talk at SIAM Conf. Data Mining,
2005.

[127] M. Henzinger, P. Raghavan, and S. Rajagopalan, “Computing on data
stream,” Technical Note 1998-011, Digital systems research center, Palo Alto,
May 1998.

[128] J. Hershberger, N. Shrivastava, S. Suri, and C. Toth, “Space complexity of
hierarchical heavy hitters in multi-dimensional data streams,” Proc. ACM
PODS, 2005.

[129] J. Hershberger and S. Suri, “Adaptive sampling for geometric problems over
data streams,” Proc. ACM PODS, pp. 252–262, 2004.

[130] D. Hirschberg, “A linear space algorithm for computing maximal common
subsequences,” Comm. ACM, vol. 18, no. 6, pp. 341–343, 1975.

[131] M. Hoffman, S. Muthukrishnan, and R. Raman, “Location streams: Models
and Algorithms,” DIMACS TR, 2004-28.

[132] G. Humphreys, M. Houston, Y. Ng, R. Frank, S. Ahern, P. Kirchner, and
J. Klosowski, “Chromium: A stream processing framework for interactive ren-
dering on clusters,” Proc. ACM SIGGRAPH, pp. 693–702, 2002.

[133] P. Indyk, “Streaming Algorithms for Geometric Problems,” Invited talk at
CCCG’04.

[134] P. Indyk, “Stable distributions, pseudorandom generators, embeddings and
data stream computation,” Proc. IEEE FOCS, pp. 189–197, 2000.

[135] P. Indyk, “A small approximately min-wise independent family of hash func-
tions,” Journal of Algorithms, vol. 38, no. 1, pp. 84–90, 2001.

[136] P. Indyk, “Better algorithms for high dimensional proximity problems via
asymmetric embeddings,” Proc. ACM-SIAM SODA, pp. 539–545, 2003.

[137] P. Indyk, “Stream-based geometric algorithms,” Proc. ACM/DIMACS Work-
shop on Management and Processing of Data Streams (MPDS), 2003.

[138] P. Indyk, “Algorithms for dynamic geometric problems over data streams,”
Proc. ACM STOC, pp. 373–380, 2004.

[139] P. Indyk and D. Woodruff, “Tight lower bounds for the distinct elements
problem,” Proc. IEEE FOCS, 2003.

[140] P. Indyk and D. Woodruff, “Optimal approximations of the frequency
moments of data streams,” Proc. ACM STOC, pp. 202–208, 2005.

[141] G. Jagannathan and R. Wright, “Privacy-preserving distributed k-means clus-
tering over arbitrarily partitioned data,” Proc. ACM KDD, 2005.

Full text available at: http://dx.doi.org/10.1561/0400000002

References 123

[142] T. Johnson, S. Muthukrishnan, and I. Rozenbaum, “Sampling algorithms in
a stream operator,” Proc. ACM SIGMOD, pp. 1–12, 2005.

[143] T. Johnson, S. Muthukrishnan, O. Spatscheck, and D. Srivastava, “Streams,
security and scalability,” Keynote talk, appears in Proc.of 19th Annual IFIP
Conference on Data and Applications Security, Lecture Notes in Computer
Science 3654, Springer-Verlag, pp. 1–15, 2005.

[144] P. Juang, H. Oki, Y. Wang, M. Martonosi, L. Peh, and D. Rubenstein,
“Energy-efficient computing for wildlife tracking: Design tradeoffs and early
experiences with ZebraNet,” ASPLOS-X Conference, pp. 96–107, 2002.

[145] S. Kannan, “Open problems in streaming,” Ppt slides. Personal communica-
tion.

[146] R. Karp, C. Papadimitriou, , and S. Shenker, “A simple algorithm for finding
frequent elements in sets and bags,” ACM Transactions on Database Systems,
pp. 51–55, 2003.

[147] J. Kleinberg, “Bursty and hierarchical structure in streams,” Proc. ACM
KDD, pp. 91–101, 2002.

[148] D. Knuth, The art of computer programming, Volume III: Sorting and search-
ing. Addison-Wesley, 1973.

[149] E. Kohler, J. Li, V. Paxson, and S. Shenker, “Observed structure of addresses
in IP traffic,” Internet Measurement Workshop, pp. 253–266, 2002.

[150] F. Korn, J. Gehrke, and D. Srivastava, “On computing correlated aggregates
over continual data streams,” Proc. ACM SIGMOD, pp. 13–24, 2001.

[151] F. Korn, S. Muthukrishnan, and D. Srivastava, “Reverse nearest neighbor
aggregates over data streams,” Proc. VLDB, pp. 814–825, 2002.

[152] F. Korn, S. Muthukrishnan, and Y. Wu, “Model fitting of IP network traffic
at streaming speeds,” Manuscript, 2005.

[153] F. Korn, S. Muthukrishnan, and Y.Zhu, “Checks and balances: Monitoring
data quality in network traffic databases,” Proc. VLDB, pp. 536–547, 2003.

[154] B. Krishnamurthy, S. Sen, Y. Zhang, and Y. Chen, “Sketch-based change
detection: Methods, evaluation, and applications,” Proc. ACM SIGCOMM
Internet Measurement Conference, pp. 234–247, 2003.

[155] S. Krishnamurthy, S. Chandrasekaran, O. Cooper, A. Deshpande, M. Franklin,
J. Hellerstein, W. Hong, S. Madden, F. Reiss, and M. Shah, “TelegraphCQ:
An Architectural Status Report,” IEEE Data Engineering Bulletin, vol. 26,
no. 1, pp. 11–18, 2003.

[156] R. Kumar and R. Rubinfeld, “Sublinear time algorithms,” Algorithms column
in SIGACT News 2003.

[157] E. Kushilevitz and N. Nisan, Communication Complexity. Cambridge Univer-
sity Press, 1997.

[158] K. Levchenko and Y. Liu, “Counting solutions of polynomial equations,”
Manuscript, 2005.

[159] K. Levchenko, R. Paturi, and G. Varghese, “On the difficulty of scalably
detecting network attacks,” ACM Conference on Computer and Communi-
cations Security, pp. 12–20, 2004.

[160] C. Lund and M. Yannakakis, “On the hardness of approximating minimization
problems,” Journal of ACM, vol. 41, pp. 960–981, 1994.

Full text available at: http://dx.doi.org/10.1561/0400000002

124 References

[161] M. Magdon-Ismail, M. Goldberg, W. Wallace, and D. Siebecker, “Locating
hidden groups in communication networks using hidden Markov models,”
Proc. ISI, pp. 126–137, 2003.

[162] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J. Anderson, “Wire-
less sensor networks for habitat monitoring,” Proc. WSNA, pp. 88–97, 2002.

[163] A. Manjhi, V. Shkapenyuk, K. Dhamdhere, and C. Olston, “Finding (recently)
frequent items in distributed data streams,” Proc. ICDE, pp. 767–778, 2005.

[164] G. Manku and R. Motwani, “Approximate frequency counts over data
streams,” Proc. VLDB, pp. 346–357, 2002.

[165] G. Manku, S. Rajagopalan, and B. Lindsay, “Random sampling techniques for
space efficient online computation of order statistics of large datasets,” Proc.
ACM SIGMOD, pp. 251–262, 1999.

[166] D. Manocha, “Interactive geometric computations using graphics hardware.
Course,” ACM SIGGRAPH, 2002.

[167] Y. Matias and D. Urieli, “Optimal workload-based wavelet synopses,” Proc.
ICDT, pp. 368–382, 2005.

[168] A. Metwally, D. Agrawal, and A. E. Abbadi, “Efficient computation of frequent
and top-k elements in data stream,” Proc. ICDT, pp. 398–412, 2005.

[169] Y. Minsky, A. Trachtenberg, and R. Zippel, “Set reconciliation with nearly
optimal communication complexity,” Technical Report 2000-1796, Cornell
Univ.

[170] N. Mishra, D. Oblinger, and L. Pitt, “Sublinear time approximate clustering,”
Proc. ACM-SIAM SODA, pp. 439–447, 2001.

[171] J. Misra and D. Gries, “Finding repeated elements,” Science of Computer
Programming, pp. 143–152, 1982.

[172] R. Motwani and P. Raghavan, Randomized Algorithms. Cambridge University
Press, 1995.

[173] K. Mulmuley, Computational Geometry: An Introduction through Randomized
Algorithms. Prentice Hall, 1993.

[174] I. Munro and M. Paterson, “Selection and sorting with limited storage,” Proc.
IEEE FOCS, pp. 253–258, 1978, Also, Theoretical Computer Science, vol. 12,
pp. 315–323, 1980.

[175] S. Muthukrishnan, “Nonuniform sparse approximation with Haar wavelet
basis,” DIMACS TR, 2004–42.

[176] S. Muthukrishnan, V. Poosala, and T. Suel, “On rectangular partitionings
in two dimensions: Algorithms, complexity and applications,” Proc. ICDT,
pp. 236–256, 1999.

[177] S. Muthukrishnan and S. S. ahinalp, “Approximate nearest neighbors and
sequence comparison with block operations,” Proc. STOC, pp. 416–424, 2000.

[178] S. Muthukrishnan, R. Shah, and J. Vitter, “Finding deviants on data streams,”
Proc. SSDBM, pp. 41–50, 2004.

[179] S. Muthukrishnan and M. Strauss, “Approximate histogram and wavelet sum-
maries of streaming data,” DIMACS TR 2004-52, Survey.

[180] S. Muthukrishnan and M. Strauss, “Maintenance of multidimensional his-
tograms,” Proc. FSTTCS, pp. 352–362, 2003.

Full text available at: http://dx.doi.org/10.1561/0400000002

References 125

[181] S. Muthukrishnan and M. Strauss, “Rangesum histograms,” ACM-SIAM
SODA, pp. 233–242, 2003.

[182] S. Muthukrishnan, M. Strauss, and X. Zheng, “Workload-optimal histograms
on streams,” Proc. ESA, 2005.

[183] B. Natarajan, “Sparse approximate solutions to linear systems,” SIAM J.
Computing, vol. 25, no. 2, pp. 227–234, 1995.

[184] S. Nath, H. Yu, P. Gibbons, and S. Seshan, “Synopsis diffusion for robust
aggregation in sensor networks,” Intel Tech Report, IRP-TR-04-13, 2004.

[185] A. Orlitsky, N. Santhanam, and J. Zhang, “Always good turing: Asymptoti-
cally optimal probability estimation,” Proc. IEEE FOCS, pp. 179–188, 2003.

[186] M. Parseval http://encyclopedia.thefreedictionary.com/Parseval’s+theorem
1799.

[187] B. Pinkas, “Cryptographic techniques for privacy-preserving data mining,”
SIGKDD Explorations, the newsletter of the ACM Special Interest Group on
Knowledge Discovery and Data Mining, January 2003.

[188] I. Pohl, “A minimum storage algorithm for computing the median,” IBM TR
12713, 1969.

[189] P. Raghavan, “Graph structure of the web: A survey,” Proc. LATIN, pp. 123–
125, 2000.

[190] A. Razborov, A. Wigderson, and A. Yao, “Read-once branching programs,
rectangular proofs of the pigeonhole principle and the transversal calculus,”
Proc. STOC, pp. 739–748, 1997.

[191] O. Reingold, “Undirected ST-connectivity in logspace,” Proc. STOC, pp. 376–
385, 2005.

[192] S. S. ahinalp and U. Vishkin, “Symmetry breaking for suffix tree construction,”
Proc. of 26th Symposium on Theory of Computing, pp. 300–309, 1994.

[193] S. S. ahinalp and U. Vishkin, “Data compression using locally consistent pars-
ing,” Technical Report, University of Maryland Department of Computer Sci-
ence, 1995.

[194] S. S. ahinalp and U. Vishkin, “Efficient approximate and dynamic matching of
patterns using a labeling paradigm,” Proc. IEEE FOCS, pp. 320–328, 1996.

[195] M. Saks and X. Sun, “Space lower bounds for distance approximation in the
data stream model,” Proc. ACM STOC, pp. 360–369, 2002.

[196] S. Sarawagi, “Query processing in tertiary memory databases,” Proc. VLDB,
pp. 585–596, 1995.

[197] R. Seidel and C. Aragon, “Randomized search trees,” Algorithmica, vol. 16,
pp. 464–497, 1996.

[198] D. Shah, S. Iyer, B. Prabhakar, and N. McKeown, “Maintaining statistics
counters in router line cards,” IEEE Micro, pp. 76–81, 2002.

[199] N. Shrivastava, C. Buragohain, D. Agrawal, and S. Suri, “Medians and beyond:
New aggregation techniques for sensor networks,” Proc. ACM SenSys, 2004.

[200] J. Spencer and P. Winkler, “Three thresholds for a liar,” Combinatorics, Prob-
ability and Computing, vol. 1, no. 1, pp. 81–93, 1992.

[201] H. Subramaniam, R. Wright, and Z. Yang, “Experimental analysis of privacy-
preserving statistics computation,” Proc. of the Workshop on Secure Data
Management (held in conjunction with VLDB), Springer, LNCS 3178, 2004.

Full text available at: http://dx.doi.org/10.1561/0400000002

126 References

[202] S. Suri, C. Toth, and Y. Zhou, “Range counting over multidimensional data
streams,” Proc. ACM SoCG, pp. 160–169, 2004.

[203] M. Szegedy, “Naer optimality of the priority sampling procedure,” ECCC
TR05-001, 2005.

[204] J. Tarui Finding duplicates in passes. Personal Communication and
http://weblog.fortnow.com/2005/03/finding-duplicates.html#comments.

[205] V. Temlyakov, “The best m-term approximation and greedy algorithms,”
Advances in Computational Math., vol. 8, pp. 249–265, 1998.

[206] N. Thaper, S. Guha, P. Indyk, and N. Koudas, “Dynamic multidimensional
histograms,” Proc. ACM SIGMOD, pp. 428–439, 2002.

[207] J. Tropp, “Greed is good: Algorithmic results for sparse approximation,” IEEE
Trans. Inform. Theory, vol. 50, no. 10, pp. 2231–2242, 2004.

[208] G. Varghese Detecting packet patterns at high speeds. Tutorial at ACM SIG-
COMM, 2002.

[209] S. Venkataraman, D. Song, P. Gibbons, and A. Blum, “New streaming algo-
rithms for superspreader detection,” Network and Distributed Systems Secu-
rity Symposium, 2005.

[210] S. Venkatasubramanian, “The graphics card as a stream computer,” Proc.
ACM/DIMACS Workshop on Management and Processing of Data Streams
(MPDS), 2003, See also: http://www.research.att.com/˜suresh/papers/
mpds/index.html.

[211] L. Villemoes, “Best approximation with walsh atoms,” Constructive Approx-
imation, vol. 133, pp. 329–355, 1997.

[212] J. Vitter, “External memory algorithms and data structures: Dealing with
massive data,” ACM Computing Surveys, vol. 33, no. 2, pp. 209–271, 2001.

[213] J. von zur Gathen and J. Gerhard, Modern Computer Algebra. Cambridge
University Press, 1999.

[214] A. Wong, L. Wu, P. Gibbons, and C. Faloutsos, “Fast estimation of fractal
dimension and correlation integral on stream data,” Inf. Process. Lett., vol. 93,
no. 2, pp. 91–97, 2005.

[215] D. Woodruff, “Optimal space lower bounds for all frequency moments,” Proc.
ACM-SIAM SODA, pp. 167–175, 2004.

[216] A. Yao, “Protocols for secure computations,” Proc. IEEE FOCS, pp. 160–164,
1982.

[217] Y. Zhang, S. Singh, S. Sen, N. Duffield, and C. Lund, “Online identification
of hierarchical heavy hitters: Algorithms, evaluation, and applications,” Proc.
of the Internet Measurement Conference (IMC), pp. 101–114, 2004.

[218] G. Zipf, Human Behavior and the Principle of Least Effort: An Introduction
to Human Ecology. Addison Wesley, 1949.

Full text available at: http://dx.doi.org/10.1561/0400000002

