
Data structure
for soft objects

G e o f f W y v i l l 1, C r a i g M c P h e e t e r s 2,

a n d B r i a n W y v i l l 2

1 Department of Computer Science,

University of Otago,
Box 56, Dunedin, New Zealand

2 Department of Computer Science,

University of Calgary,
2500 University Drive N.W. Calgary, Alberta,
Canada, T2N 1N4

We :introduce the concept of soft objects

whose shape changes in response to their

surroundings. Established geometric

modelling techniques exist to handle most
engineering components, including 'free

form' shapes such as car bodies and tele-

phones. More recently, there has been a

lot of interest in modelling natural pheo-

mena such as smoke, clouds, mountains

and coastlines where the shapes are

described stochastically, or as fractals.

None of these techniques lends itself to

the description of soft objects. This class

of objects includes fabrics, cushions, living

forms, mud and water. In this paper, we

describe a method of modelling such

objects and discuss its uses in animation.

Our method is to represent a soft object,
or collection of objects, as a surface of

constant value in a scalar field over three

dimensions. The main technical problem

is to avoid calculating the field value at

too many points. We do this with a com-

bination of data structures at some cost

in internal memory usage.

Key words: Soft objects - Geometric

modelling Computer animation

he Graphicsland project group (Wyvill

1985a) at the University of Calgary has

developed an organised collection of soft-

ware tools for producing animation from

models in three dimensions. The system allows the

combination of several different kinds of model-

ling primitive (Wyvill et al. 1985b). Thus polygon

based models can be mixed freely with fractals

(Mandelbrot 1983, Fournier 1982) and particles

(Reeve 1983) in a scene. Motion and camera paths

can be described, and animation generated. Note

that we do not include the use of a two dimen-

sional 'paint ' system. Our objective is always to

construct views of a full three dimensional model.

An important class of objects in the everyday

world is soft. That is, the shape of the object var-

ies constantly because of the forces imposed on

it by its surroundings. A bouncing ball is a simple

example: as it strikes the ground, it flattens. The

smoothly covered joints of animals change shape

with seamless continuity, and liquids mould them-

selves to their surroundings and even break into

separate droplets. Even apparently rigid objects

deform in some circumstances. Trees, for example,

bend in the wind.
To date, there seem to have been few attempts to

model soft objects for computer graphics. Pos-

sibly, this is because soft objects are less important

in engineering. But it is also true that much effort

in computer graphics has been directed to produc-

ing still pictures and you cannot tell that an

object is soft until it moves. Clouds (Gardner

1985) and particles (Reeve 1983) come close, but
there is nothing in either of these papers which

deals with the interaction of particles with sur-

rounding objects.

We have been experimenting with a general model

for soft objects which represents an object or col-

lection of objects by a scalar field. That is a math-

ematical function defined over a volume of space.

The object is considered to occupy the space over

which the function has a value greater than some

threshold so the surface of the object is an iso-

surface of the field function. That is a surface of

constant function value within the space consid-

ered.

This is not a new idea. The technique is described

by James Blinn, and used to create models of mol-

ecules (Blinn 1982). He also suggests other appli-

cations and describes a direct rendering technique

using an elegant set of sorted lists. A similar tech-

nique has been used for some years in the LINKS

project at the University of Osaka (Nishimura

1985). Ken Perlin has used a modification of

Blinn's method to represent 'stochastic' shapes

The Visual Computer (1986) 2:222234 2 2 7
�9 Springer-Verlag 1986

(Perlin 1985). We, however, are interested in

simpler shapes which we can move convincingly.
By suitable choice of field function, we can repre-

sent a wide variety of shapes conveniently and in

principle, any shape somehow. For this paper we

concentrate on simple functions based on proxim-

ity to given data points. We achieve animation

by specifying the motion of these key points, with-

out otherwise altering our function.

Strictly speaking, the word 'field' refers to a par-

ticular set of values distributed across space at

some time. Thus the value of 'field' at some point

(x , y , z) is found by evaluating the function

f(x, y, z). In what follows we use the words "func-

tion" and "field" more or less interchangeably.

In this paper we describe our choice of function

and the data structure which enables us to con-

struct the surface quickly. In the companion arti-

cle in this issue of the Visual Computer (Wyvill

1986a), we describe some of the techniques for

controlling the animation. This article is a revised

version of a paper presented at the CG Tokyo

conference (Wyvill 1986b). The only substantial

revision concerns the data structure for the field

calculation which has been improved. This article

stands alone and can be undestood without refer-

ence to the earlier version.

2 Space function or field

We want to construct a function which will enable

us to represent arbitrary shapes when we plot the

iso-surfaces. The function is therefore going to

depend on a set of given key points. We assume

that the key points are independent. That is, we

treat them like particles in a cloud. They are all

alike and the field value at a point in space

depends only on the proximity of key points.

(These assumptions are arbitrary. One can easily

imagine a function of key points which includes

some knowledge about relations between points.

The points could be ordered, for example, and a

function value calculated by interpolation be-

tween adjacent point values.)

For our models we want the field to be continu-

ous. For some models, we may use hundreds,

thousands or even tens of thousands of key

points. So it is important that we do not have

to inspect every key point whenever we wish to

calculate a field value. Therefore we use a function

which is not influenced by any point beyond a

certain distance away. This distance is known as

the radius of influence, R. Again, arbitrarily, we

make the field value due to several nearby points

equal to the sum of the values due to each point.

This is the very simplest way to combine the effect

of many points and it seems to work well enough.

By definition, the contribution to the field made

by any key point beyond its radius of influence,

R, is zero. The contribution at the position of the

point itself will be some maximum value (We use

1.0) and we would like to arrange that the field

drops smoothly to zero at R. If we express this

contribution to the field as a function C of r, the

distance from the key point, these requirements

can be expressed in terms of the values of the

function at the point, r=0.0, and at the radius

of influence r = R.

C(0.0) = 1.0 C'(0.0) = 0.0

C(R) =0.0 C'(R) = 0 (1)

where C' is the derivative of C with respect to

r. These conditions are sufficient to define a

unique cubic function for C:

r 3 r 2

C (r) = 2 ~ - 3 ~ - + 1 (2)

The field at any point (x, y, z) is then the sum

of C(r) calculated for each key point within R.

This field function turns out to be quite satisfacto-

ry but a little slow because calculation of r

requires a square root. We eliminate the need for

this by using a cubic in r squared and adjusting

the coefficients to make it approximate the origi-

nal function C. A cubic in r squared is guaranteed

to have C'(0.0)= 0.0, so we can add another con-

dition: C(r)=f, for some chosen values r , f We use

r=R/2 and f = 0 . 5 and this is close enough to the

original function to make no difference in prac-

tice. Our field function is thus:

r 6 r 4 r 2

C(r) = a ~6-+b Ra-+c ~2-+ 1 (3)

where the values of a, b, c are found by solving

Eq. (1) together with the condition C(R/2)=0.5.
Approximately:

a = - 0.444444

b = 1.888889

c = - 2.444444 (4)

This function is shown graphically in Fig. 1.

Blinn used an exponential function for his field

based on the known field of electron density

228

Contribution
to field

c

0
r ~ R

Distance from key point

Fig. 1. F ie ld con t r ibu t ion as a funct ion of d is tance

around an atom (Blinn 1982). Our function is sim-

ilarly shaped and has the desirable property of

dropping to zero at the radius of influence, R. It

is also very cheap to calculate, needing only three

additions and five multiplications.

3 Defining the iso-surface

Having established a definition of the field we

must choose a field value for the iso-surface.

Clearly the field due to a single key point will

be symmetrical about the point and any iso-sur-

face in that field will be a sphere. Suppose we

choose a function value, magic, and plot the iso-

surface ,connecting all points whose field value

equals magic. Now consider the field due to two

key points in the same place. It is still symmetrical

and an iso-surface for value magic in this field will

be a sphere of larger radius than the iso-surface

in the field due to one point. We have chosen

magic so that this larger sphere has exactly twice

the volume of the other.

This choice is intended to suit the modelling of

liquids, to provide a reasonable effect when two

droplets merge. Other choices are possible as are

other functions for the field. Finding functions

appropriate to particular applications is a

research project in its own right. For our pur-

poses, the above is used throughout.

4 Producing the surface

The surface defined in this way, by a collection

of data points is very general. It is not even neces-

sarily connected and in order to make a picture,

we first convert it to a more tractable form. We

have chosen to use a simple polygon mesh for this

purpose.

We construct the mesh in two distinct stages.

Imagine that the part of space occupied by the

surface is divided by a three dimensional grid into

small cubes. First we find all the cubes which are

intersected by the surface and then we construct

the polygons in each cube.

To find the cubes intersected by the surface with-

out scanning the whole of a large three dimen-

sional grid, we take advantage of the knowledge

that all our key points are enclosed by some part

of the surface. For each key point, starting at the

nearest grid point, we calculate the field at a suc-

cession of adjacent grid points along one axis

until we encounter a point whose field value is

less than magic. This point and the previous one

form the endpoints of one edge of a cube which

is intersected by the surface. This process gives

us a set of 'seed' cubes such that every discon-

nected component of the surface intersects at least

one seed cube.

Each seed cube shares faces with six neighbours.

Starting at the seed cubes, we examine each cube's

neighbours to see whether or not it is intersected

by the surface. If a neighbour is intersected then

we look at its neighbours and so on until all of

the cubes intersected by the surface have been

found. This completes the first stage.

In the second stage, we have only to deal with

cubes which are intersected by the surface. For

each cube we have eight values which are the field

values at its vertices. From these we construct a

set of polygons which are part of the iso-surface.

The previous stage has sorted out all the cubes

intersected by the surface, so when we put these

polygons together we have a representation of the

surface.

To complete the description we must explain the

data structure used in the first stage and the logic

used in the second.

5 Data structure

There are two distinct problems each handled by

a structure using a hash table.

5.1 Fast evaluation of f ield values

The first problem is to be able to calculate the

field value at any point efficiently. This is solved

using the structure shown in Fig. 2.

229

Hash table

[]

[]

[]

[]
Q.

[]

Fig. 2.

Cubes Point lists Key Points

[]

[]

[]

Data structure for efficient calculation of field value

The volume of space which represents the whole

scene is divided into cubes of side S. Each of these

cubes is represented by a record which heads a
linked list of pointers to key points. The list has

pointers to just those key points close enough to

the cube to affect the field within it. Thus there

can be many pointers to a given key point,

especially if it has a large radius of influence R.

The key points themselves are represented by tri-

ples of floating point values, (x, y, z) together

with the cubic coefficients for fast evaluation of

the field function. These coefficients are calculated

from the radius of influence during setting up.

Other properties related to colour and texture are

also stored here.
Only non-empty cubes are represented and they

are accessed by means of a hash table. The table

entries are pointers to cube records. Each record

contains a triple (l, m, n), where (l .S , re.S, n . S)
represents the ' low' vertex of the cube. The ' low'

vertex is the bottom-south-west corner, or, more

formally, the vertex of lowest (x, y, z).

The hash address is calculated from the (l, rn, n)

triple. This is used as an index in the table. The

table entry contains a pointer to a linked list of

cube records. To access all the key points in a

given cube, we first find the list of records from

the hash table. Then we search down the list until

we find a cube which matches our values of

(l, m, n). This group contains the pointer to the

appropriate list of key points. The majority of
hash table entries are empty or point to a list of

length one. In practice, there is very little search-

ing down these lists.
The choice of S depends on the expected density

of key points. If S is too large, many unnecessary
points may be inspected when we calculate the

field. If it is too small, the data structure gets too

big. Ideally the program itself ought to find the

optimal value. At present we set it by hand. In

the case where there are many key points with

the same radius R, we set S = R. Please note that

the cubes referred to in this section are not the

same as the little cubes used to build the polygon

mesh.

5.2 The cubic net

Our second problem is to avoid recalculating field

values as we find the cubes which intersect the

surface. This is done with a second hash table,

Fig. 3. We are only interested in calculating the

field at grid points which are the vertices of our

little cubes. It is convenient, therefore, to represent
these points by integers i, j, k where i . d, j* d, k* d

are the actual co-ordinates of the point and d is

the grid spacing. Each vertex is represented by a

quintuple (i, k, j, f, done) and these are linked

in a list for access through the hash table. ' f is

the field value for the vertex and the meaning

'done ' is explained below.

To access the quintuple representing a given ver-

tex a hash code is calculated from its i, j, k values.

This is used as an index in the table and the table

entry contains a pointer to a linked list of vertices.

This list must be searched to find the particular
vertex. When a vertex is referred to for the first

time, the search fails. In this case the field value,

f is calculated and a new vertex is linked in to

the list. Each vertex is shared by as many as eight

cubes but its field value need be calculated only

once. Subsequent references will find it stored in

the structure.

To trace all the cubes intersected by the iso-sur-

face, it is necessary to mark those cubes which

have already been processed. For this purpose,

Hash Table Ver tex Quintuples

<t,j,k,f,done>

*)

~{<l..i.l<.f.,,0,,~> o)

Fig. 3. Data structure for cube vertices

230

l.omp er

7
6

2 5

Z

cube <i,j.k>

cube <i- l.j.k>

Fig. 4. N e i g h b o u r i n g cubes

each vertex is also considered to represent the

cube of which it is the ' low' vertex. The flag

'done ' within the vertex is made true to indicate

that this cube has been dealt with.

The algorithm for finding all cubes on the surface

from a seed cube can now be described. Observe

the numbering of the cube vertices in Fig. 4. The

low vertex of the cube is numbered 0 and this

is the vertex (i, j, k). Consider the four vertices

0, 4, 6, 2. These are shared by the cube (i - l , j,

k). If the field values of these vertices are all

greater than the iso-surface value or if they are

all less, then the surface does not pass through

the face 0, 4, 6, 2. If some of the values are greater

and some less than the iso-surface value, the sur-

face does pass through the face and the cube (i - l ,

j, k) must be processed if this has not already been

done. To process a cube, first its 'done ' flag is made

true and then a pointer to the low vertex of the

cube is entered in a queue. More precisely:

begin Set seed cube's done flag to true.

Add seed cube to the queue.

while, queue is not empty do

begin Remove one cube from the queue.

for each face of cube do

begin if surface intersects face then

begin select neighbour cube for that face.

if neighbour's done flag is not true then

begin Set neighbour's done flag to true.

Add neighbour to queue.

end

end

end

Pass vertices and values for cube to second stage.

eud

end

5.3 The hash functions

Most of the space is empty. That is to say that

the cubes which intersect our soft object's surface

represent a small fraction of the total. Similarly,

of the group cubes described in 5.1, those which

contain key points are few compared with the

number of such cubes in the region of space we

are dealing with. If this were not so, we would

find no advantage in using a hash table. We

would simply store points in an array. So our

hash function must have an even distribution for

points which are geometrically close together. In

both of our tables, the hash function maps a trip-

let to an address. For a table of size l*m*n we

map (i, j, k) to:

(rem (i, l) �9 m + rem (j, m)) �9 n + rem (k, n) (5)

where rein(x, y) is the remainder when x is

divided by y. We use l=m=n= 16 and the func-

tion is calculated quickly by logical operations. A

more sophisticated function might be appropriate

for some applications but we have found no reason

to change it.

6 Generating the polygons

In this part of the process, we are given the field

values at the vertices of a cube in the mesh and

we must construct polygons which represent the

part of the iso-surface which intersects that cube.

Firstly we find points which approximate the

intersection of the iso-surface with the edges of

the cube. Then we connect these to make the

polygons. To avoid ambiguity we refer to these

points as 'intersections'. The word 'vertex' is

reserved for vertices of the cube. A vertex whose

function value is greater than magic, we call hot,

and a vertex whose function value is less than or

equal to magic we call cold. Vertices whose field

value is exactly magic present minor complica-

tions. (We have to take special action to avoid

generating polygons of zero size.)

Suppose two adjacent vertices p, q have field

valuesfp,f~. I fq is hot and p is cold, then:

magic-fp

fq _fp (6)

is taken as the distance from p to the intersection

of the iso-surface with pq. Although this 'linear

interpolation' is not the true intersection, it is

231

much cheaper to calculate and, provided the

cubes are small enough that the polygonal

approximation to the surface is reasonable, it is

good enough. Note that this calculation is consis-

tent across adjacent cubes which share edges.

The process by which we connect these points is

fairly complex, so we start with an example.

Figure "5 A shows a cube with only one hot vertex.

Clearly the intersecting iso-surface is approximat-

ed by a single triangle. In Fig. 5 B, there are two

adjacent hot vertices and we have a quadrilateral.

In Fig. 5C, there are two non-adjacent hot ver-

tices and the polygon is a hexagon which encloses

both of them. Why do we choose this hexagon

rather than two triangles (Fig. 5D)? In effect we

are electing to link the two hot vertices and sepa-

rate the two cold ones. Whether to link the hot

or cold vertices in this case is decided by examin-

ing the values of the field. The value at the centre

of the face is approximately the mean of the four

vertex values. If this value is greater than magic

we link the hot vertices.

Each intersection is uniquely associated with one

edge of the cube. So we can label an intersection

by the pair of vertices (p, q) between which it lies.

The possible configurations of one face of the

cube are shown in Fig. 6. When the number of

hot vertices in this face is four or zero, no polygon

edges are created: cases A, B. When the number

of hot vertices is one or three, a single edge is

created: cases C, D. For two hot vertices we have

c c

c

c

c

c

c

c

h c

c c

Fig. 5 A - D . Cubes with one and two hot vertices

hi cl jh
h c ,, c

Fig. 6 A - G . The seven different cases for connect ing

intersections

case E: create one edge; case F: create two edges

linking hot vertices; and case G: create two edges

linking cold vertices. These created polygon edges

are represented by ordered pairs of intersections.

That is pairs of vertex pairs. In Fig. 6, the order

is indicated by the arrows.

These polygon edges are stored in an array,

indexed by the first intersection. The second inter-

section is always the same as the first intersection

of some other edge, so we can form a polygon

by tracing the natural successors of each edge

until we return to the edge we started at.

The algorithm follows:

for each edge of cube, <p,q> do

i fp is hot and q is cold or p is cold and q is hot

then create intersection <p,q>;

for each face of cube do create edges according to Fig. 6;

while edges remain do

begin start:=any edge;

polygon:= { start};

remove start from edge array;

next:=successor of start;

while next <> start do

begin polygon := polygon + {next};

remove next from edge array

end;

output polygon

end

The polygons are not, in general, planar. So we

divide them into triangles by connecting each

intersection to a centroid as follows:
Given an ordered set of points (polygon vertices):

Pi = <xi, Yi, zi>, 0 <_ i < n (8)

232

The centroid is:

i i = 0

For n> 3 we can divide the polygon into trian-
gles:

(Pi-l,Pi, C), 0 < i _ < n - 1

and

(P , - t , Po, C) (10)

This method of triangulation doesn't work for
polygons; in general but it seems to be alright for
polygons generated by this algorithm.

7 Aninnating the objects

The shape of a soft object is entirely determined
by the positions of the key points. So we describe
its motion and shape changes by moving key

points only. This is discussed in more detail in the
companion article (Wyvill 1986a). Here we
describe only a few examples.

7.1 Examples of application

Figure 7 shows two droplets merging i n stages.
This is quite pleasing in animation. The droplets
are modelled by single key points with R=2.0.
The distance, r, between the two key points is
shown for each stage.
Figures 8-10 are frames from an animation of a
soft object sliding down steps. The object is
roughly shaped as the letters "Soft" and these dis-
tort smoothly as they slide down.
Figures 11 and 12 show the letters "Soft" rising
from a trough of bubbling soft material. The
background in Fig. 11 features fractal mountains
and rolling hills. These are part of the solid scene
and show how the soft objects have been incorpo-
rated into the Graphicsland system.

Figs. 7-12. Fo r exp lana t ion see text

233

(omp lter
8 Discussion

Our modelling technique has proved to be a con-

venient tool in computer animation. So far, we

have concentrated on one very simple method of

making our field functions and there are many

other possibilities which are worthy of investiga-

tion. The field can be generated by arbitrary func-

tions permitting the modelling of mathematical

surfaces. Our field function can be modified by

extra terms which are not related to the key

points. This can be used to make objects deform

in special ways. For example, if we add a surface

held to a negative field value, objects can be made

to vanish bit by bit as they approach the surface,

and to reappear on the other side. If we make

a 'hole' in the surface, an object approaching the

hole, appears to squeeze through it.

We have represented our surfaces by polygon

patches. This is because the Graphicsland system

already offered us versatile display tools for this

kind of model. It would clearly be a good idea

to use bicubic or conic patches instead and we

are planning some experiments to do this. We

have not followed Blinn's technique (Blinn 1982)

of rendering the surface directly, because we

wanted to produce objects which we could easily

incorporate into Graphicsland. Also, our models

can contain a very large number of key points

and most of them are not near to any surface.

This is particularly true of models of liquids. The

polygon generating algorithm is particularly effi-

cient in this case because the 'hidden' key points

do not have to be known to the rendering algo-
rithm.

We are, however, experimenting with a ray-tracer

which renders the field directly. In this case we

use our surface following algorithm to construct

a boundary of cubes which contains the iso-sur-
face.

Even when we have a superior rendering tech-

nique for these surfaces, an efficient generator of

polygon patches will be useful. Graphicsland does

not yet offer interactive graphical development of

animation, because it takes too long to render the

scenes. We are introducing a new feature to pro-

duce very fast rendering of scenes at greatly

reduced quality. For this purpose we expect to

continue to need a polygonal representation.

Our soft objects are reasonably quickly generated.

The letters and contents of the trough in Fig. 11

took about 8 rain per frame on a VAKl l /780

computer to generate the polygons. This is much

less than the rendering time for 512 by 512 pixels

using a z-buffer algorithm.

Acknowledgements. The JADE project at the University of
Calgary has been particularly supportive. This work and
JADE is supported by the Natural Science and Engineering
Research Council of Canada.

References

Blinn J (1982) A Generalization of Algebraic Surface Drawing.
ACM Transactions on Graphics 1:235-256

Fournier A, Fussel D, Carpenter L (1982) Computer Render-
ing of Stochastic Models. CACM 25:371-384

Gardner G (1985) Visual Simulation of Clouds. SIGGRAPH
85 Computer Graphics 19 (3):297-303

Nishimura H, Hirai M, Kawai T, Kawata T, Shirakawa I,
Omura K (1985) Object Modeling by Distribution Function
and a Method of Image Generation. Journal of papers given
at the Electronics Communication Conference '85, vol. J 68-
D No 4 (in Japanese)

Mandelbrot B (1982) The Fractal Geometry of Nature. W.H.
Freeman, San Francisco

Perlin K (1985) An Image Synthesizer. SIGGRAPH 85 Com-
puter Graphics 19 (3):287-296

Reeves W (1983) Particle Systems A Technique for Modeling
a Class of Fuzzy Objects. ACM Transactions on Graphics
2:91-108

Wyvill BLM, McPheeters C, Garbutt R (1985a) A Practical
3D Computer Animation System. The BKSTS Journal
67: 328-332

Wyvill BLM, McPheeters C, Novacek M (1985b) Specifying
Stochastic Objects in a Hierarchical Graphics System. Pro-
ceedings of Graphics Interface 85, Montreal, pp 17 20

Wyvill BLM, McPheeters C, Wyvill G (1986a) Animating Soft

Objects. The Visual Computer 2:235 242
Wyvill G, McPheeters C, Wyvill BLM (1986b) Soft Objects.

Advanced Computer Graphics. Proceedings of Computer
Graphics Tokyo 86, pp 113-128

234

