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We :introduce the concept of soft objects 

whose shape changes in response to their 

surroundings. Established geometric 

modelling techniques exist to handle most 
engineering components, including 'free 

form' shapes such as car bodies and tele- 

phones. More recently, there has been a 

lot of interest in modelling natural pheo- 

mena such as smoke, clouds, mountains 

and coastlines where the shapes are 

described stochastically, or as fractals. 

None of these techniques lends itself to 

the description of soft objects. This class 

of objects includes fabrics, cushions, living 

forms, mud and water. In this paper, we 

describe a method of modelling such 

objects and discuss its uses in animation. 

Our method is to represent a soft object, 
or collection of objects, as a surface of 

constant value in a scalar field over three 

dimensions. The main technical problem 

is to avoid calculating the field value at 

too many points. We do this with a com- 

bination of data structures at some cost 

in internal memory usage. 
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he Graphicsland project group (Wyvill 

1985a) at the University of Calgary has 

developed an organised collection of soft- 

ware tools for producing animation from 

models in three dimensions. The system allows the 

combination of several different kinds of model- 

ling primitive (Wyvill et al. 1985b). Thus polygon 

based models can be mixed freely with fractals 

(Mandelbrot 1983, Fournier 1982) and particles 

(Reeve 1983) in a scene. Motion and camera paths 

can be described, and animation generated. Note 

that we do not include the use of a two dimen- 

sional 'paint '  system. Our objective is always to 

construct views of a full three dimensional model. 

An important class of objects in the everyday 

world is soft. That is, the shape of the object var- 

ies constantly because of the forces imposed on 

it by its surroundings. A bouncing ball is a simple 

example: as it strikes the ground, it flattens. The 

smoothly covered joints of animals change shape 

with seamless continuity, and liquids mould them- 

selves to their surroundings and even break into 

separate droplets. Even apparently rigid objects 

deform in some circumstances. Trees, for example, 

bend in the wind. 
To date, there seem to have been few attempts to 

model soft objects for computer graphics. Pos- 

sibly, this is because soft objects are less important 

in engineering. But it is also true that much effort 

in computer graphics has been directed to produc- 

ing still pictures and you cannot tell that an 

object is soft until it moves. Clouds (Gardner 

1985) and particles (Reeve 1983) come close, but 
there is nothing in either of these papers which 

deals with the interaction of particles with sur- 

rounding objects. 

We have been experimenting with a general model 

for soft objects which represents an object or col- 

lection of objects by a scalar field. That is a math- 

ematical function defined over a volume of space. 

The object is considered to occupy the space over 

which the function has a value greater than some 

threshold so the surface of the object is an iso- 

surface of the field function. That is a surface of 

constant function value within the space consid- 

ered. 

This is not a new idea. The technique is described 

by James Blinn, and used to create models of mol- 

ecules (Blinn 1982). He also suggests other appli- 

cations and describes a direct rendering technique 

using an elegant set of sorted lists. A similar tech- 

nique has been used for some years in the LINKS 

project at the University of Osaka (Nishimura 

1985). Ken Perlin has used a modification of 

Blinn's method to represent 'stochastic' shapes 
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(Perlin 1985). We, however, are interested in 

simpler shapes which we can move convincingly. 
By suitable choice of field function, we can repre- 

sent a wide variety of shapes conveniently and in 

principle, any shape somehow. For this paper we 

concentrate on simple functions based on proxim- 

ity to given data points. We achieve animation 

by specifying the motion of these key points, with- 

out otherwise altering our function. 

Strictly speaking, the word 'field' refers to a par- 

ticular set of values distributed across space at 

some time. Thus the value of 'field' at some point 

( x , y , z )  is found by evaluating the function 

f(x, y, z). In what follows we use the words "func- 

tion" and "field" more or less interchangeably. 

In this paper we describe our choice of function 

and the data structure which enables us to con- 

struct the surface quickly. In the companion arti- 

cle in this issue of the Visual Computer (Wyvill 

1986a), we describe some of the techniques for 

controlling the animation. This article is a revised 

version of a paper presented at the CG Tokyo 

conference (Wyvill 1986b). The only substantial 

revision concerns the data structure for the field 

calculation which has been improved. This article 

stands alone and can be undestood without refer- 

ence to the earlier version. 

2 Space function or field 

We want to construct a function which will enable 

us to represent arbitrary shapes when we plot the 

iso-surfaces. The function is therefore going to 

depend on a set of given key points. We assume 

that the key points are independent. That is, we 

treat them like particles in a cloud. They are all 

alike and the field value at a point in space 

depends only on the proximity of key points. 

(These assumptions are arbitrary. One can easily 

imagine a function of key points which includes 

some knowledge about  relations between points. 

The points could be ordered, for example, and a 

function value calculated by interpolation be- 

tween adjacent point values.) 

For  our models we want the field to be continu- 

ous. For  some models, we may use hundreds, 

thousands or even tens of thousands of key 

points. So it is important that we do not have 

to inspect every key point whenever we wish to 

calculate a field value. Therefore we use a function 

which is not influenced by any point beyond a 

certain distance away. This distance is known as 

the radius of influence, R. Again, arbitrarily, we 

make the field value due to several nearby points 

equal to the sum of the values due to each point. 

This is the very simplest way to combine the effect 

of many points and it seems to work well enough. 

By definition, the contribution to the field made 

by any key point beyond its radius of influence, 

R, is zero. The contribution at the position of the 

point itself will be some maximum value (We use 

1.0) and we would like to arrange that the field 

drops smoothly to zero at R. If we express this 

contribution to the field as a function C of r, the 

distance from the key point, these requirements 

can be expressed in terms of the values of the 

function at the point, r=0.0,  and at the radius 

of influence r = R. 

C(0.0) = 1.0 C'(0.0) = 0.0 

C(R) =0.0 C'(R) = 0  (1) 

where C' is the derivative of C with respect to 

r. These conditions are sufficient to define a 

unique cubic function for C: 

r 3 r 2 

C (r) = 2 ~ -  3 ~ -  + 1 (2) 

The field at any point (x, y, z) is then the sum 

of C(r) calculated for each key point within R. 

This field function turns out to be quite satisfacto- 

ry but a little slow because calculation of r 

requires a square root. We eliminate the need for 

this by using a cubic in r squared and adjusting 

the coefficients to make it approximate the origi- 

nal function C. A cubic in r squared is guaranteed 

to have C'(0.0)= 0.0, so we can add another con- 

dition: C(r)=f,  for some chosen values r , f  We use 

r=R/2 and f = 0 . 5  and this is close enough to the 

original function to make no difference in prac- 

tice. Our field function is thus: 

r 6 r 4 r 2 

C(r) = a  ~6-+b  Ra-+c ~2-+ 1 (3) 

where the values of a, b, c are found by solving 

Eq. (1) together with the condition C(R/2)=0.5. 
Approximately: 

a = - 0.444444 

b =  1.888889 

c = - 2.444444 (4) 

This function is shown graphically in Fig. 1. 

Blinn used an exponential function for his field 

based on the known field of electron density 
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Fig. 1. F ie ld  con t r ibu t ion  as a funct ion of d is tance  

around an atom (Blinn 1982). Our function is sim- 

ilarly shaped and has the desirable property of 

dropping to zero at the radius of influence, R. It 

is also very cheap to calculate, needing only three 

additions and five multiplications. 

3 Defining the iso-surface 

Having established a definition of the field we 

must choose a field value for the iso-surface. 

Clearly the field due to a single key point will 

be symmetrical about  the point and any iso-sur- 

face in that field will be a sphere. Suppose we 

choose a function value, magic, and plot the iso- 

surface ,connecting all points whose field value 

equals magic. Now consider the field due to two 

key points in the same place. It is still symmetrical 

and an iso-surface for value magic in this field will 

be a sphere of larger radius than the iso-surface 

in the field due to one point. We have chosen 

magic so that this larger sphere has exactly twice 

the volume of the other. 

This choice is intended to suit the modelling of 

liquids, to provide a reasonable effect when two 

droplets merge. Other choices are possible as are 

other functions for the field. Finding functions 

appropriate to particular applications is a 

research project in its own right. For our pur- 

poses, the above is used throughout. 

4 Producing the surface 

The surface defined in this way, by a collection 

of data points is very general. It is not even neces- 

sarily connected and in order to make a picture, 

we first convert it to a more tractable form. We 

have chosen to use a simple polygon mesh for this 

purpose. 

We construct the mesh in two distinct stages. 

Imagine that the part of space occupied by the 

surface is divided by a three dimensional grid into 

small cubes. First we find all the cubes which are 

intersected by the surface and then we construct 

the polygons in each cube. 

To find the cubes intersected by the surface with- 

out scanning the whole of a large three dimen- 

sional grid, we take advantage of the knowledge 

that all our key points are enclosed by some part 

of the surface. For  each key point, starting at the 

nearest grid point, we calculate the field at a suc- 

cession of adjacent grid points along one axis 

until we encounter a point whose field value is 

less than magic. This point and the previous one 

form the endpoints of one edge of a cube which 

is intersected by the surface. This process gives 

us a set of 'seed'  cubes such that every discon- 

nected component of the surface intersects at least 

one seed cube. 

Each seed cube shares faces with six neighbours. 

Starting at the seed cubes, we examine each cube's 

neighbours to see whether or not it is intersected 

by the surface. If a neighbour is intersected then 

we look at its neighbours and so on until all of 

the cubes intersected by the surface have been 

found. This completes the first stage. 

In the second stage, we have only to deal with 

cubes which are intersected by the surface. For  

each cube we have eight values which are the field 

values at its vertices. From these we construct a 

set of polygons which are part of the iso-surface. 

The previous stage has sorted out all the cubes 

intersected by the surface, so when we put these 

polygons together we have a representation of the 

surface. 

To complete the description we must explain the 

data structure used in the first stage and the logic 

used in the second. 

5 Data structure 

There are two distinct problems each handled by 

a structure using a hash table. 

5.1 Fast evaluation of f ield values 

The first problem is to be able to calculate the 

field value at any point efficiently. This is solved 

using the structure shown in Fig. 2. 
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Data  structure for efficient calculation of field value 

The volume of space which represents the whole 

scene is divided into cubes of side S. Each of these 

cubes is represented by a record which heads a 
linked list of pointers to key points. The list has 

pointers to just those key points close enough to 

the cube to affect the field within it. Thus there 

can be many pointers to a given key point, 

especially if it has a large radius of influence R. 

The key points themselves are represented by tri- 

ples of floating point values, (x, y, z) together 

with the cubic coefficients for fast evaluation of 

the field function. These coefficients are calculated 

from the radius of influence during setting up. 

Other properties related to colour and texture are 

also stored here. 
Only non-empty cubes are represented and they 

are accessed by means of a hash table. The table 

entries are pointers to cube records. Each record 

contains a triple (l, m, n), where ( l .S ,  re.S, n . S )  
represents the ' low' vertex of the cube. The ' low' 

vertex is the bottom-south-west corner, or, more 

formally, the vertex of lowest (x, y, z). 

The hash address is calculated from the (l, rn, n)  

triple. This is used as an index in the table. The 

table entry contains a pointer to a linked list of 

cube records. To access all the key points in a 

given cube, we first find the list of records from 

the hash table. Then we search down the list until 

we find a cube which matches our values of 

(l, m, n). This group contains the pointer to the 

appropriate list of key points. The majority of 
hash table entries are empty or point to a list of 

length one. In practice, there is very little search- 

ing down these lists. 
The choice of S depends on the expected density 

of key points. If S is too large, many unnecessary 
points may be inspected when we calculate the 

field. If it is too small, the data structure gets too 

big. Ideally the program itself ought to find the 

optimal value. At present we set it by hand. In 

the case where there are many key points with 

the same radius R, we set S = R. Please note that 

the cubes referred to in this section are not the 

same as the little cubes used to build the polygon 

mesh. 

5.2 The cubic net 

Our second problem is to avoid recalculating field 

values as we find the cubes which intersect the 

surface. This is done with a second hash table, 

Fig. 3. We are only interested in calculating the 

field at grid points which are the vertices of our 

little cubes. It is convenient, therefore, to represent 
these points by integers i, j, k where i .  d, j* d, k* d 

are the actual co-ordinates of the point and d is 

the grid spacing. Each vertex is represented by a 

quintuple (i, k, j, f, done)  and these are linked 

in a list for access through the hash table. ' f  is 

the field value for the vertex and the meaning 

'done '  is explained below. 

To access the quintuple representing a given ver- 

tex a hash code is calculated from its i, j, k values. 

This is used as an index in the table and the table 

entry contains a pointer to a linked list of vertices. 

This list must be searched to find the particular 
vertex. When a vertex is referred to for the first 

time, the search fails. In this case the field value, 

f is calculated and a new vertex is linked in to 

the list. Each vertex is shared by as many as eight 

cubes but its field value need be calculated only 

once. Subsequent references will find it stored in 

the structure. 

To trace all the cubes intersected by the iso-sur- 

face, it is necessary to mark those cubes which 

have already been processed. For this purpose, 

Hash Table Ver tex Quintuples 

<t,j,k,f,done> 

*) 

~{<l..i.l<.f.,,0,,~> o ) 

Fig. 3. Data  structure for cube vertices 
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cube <i- l.j.k> 

Fig. 4. N e i g h b o u r i n g  cubes 

each vertex is also considered to represent the 

cube of which it is the ' low'  vertex. The flag 

'done '  within the vertex is made true to indicate 

that this cube has been dealt with. 

The algorithm for finding all cubes on the surface 

from a seed cube can now be described. Observe 

the numbering of the cube vertices in Fig. 4. The 

low vertex of the cube is numbered 0 and this 

is the vertex (i, j, k). Consider the four vertices 

0, 4, 6, 2. These are shared by the cube ( i - l ,  j, 

k). If the field values of these vertices are all 

greater than the iso-surface value or if they are 

all less, then the surface does not pass through 

the face 0, 4, 6, 2. If some of the values are greater 

and some less than the iso-surface value, the sur- 

face does pass through the face and the cube ( i - l ,  

j, k)  must be processed if this has not already been 

done. To process a cube, first its 'done '  flag is made 

true and then a pointer to the low vertex of the 

cube is entered in a queue. More precisely: 

begin Set seed cube's done flag to true. 

Add seed cube to the queue. 

while, queue is not empty do 

begin Remove one cube from the queue. 

for each face of cube do 

begin if surface intersects face then 

begin select neighbour cube for that face. 

if neighbour's done flag is not true then 

begin Set neighbour's done flag to true. 

Add neighbour to queue. 

end 

end 

end 

Pass vertices and values for cube to second stage. 

eud 

end 

5.3 The hash functions 

Most  of the space is empty. That is to say that 

the cubes which intersect our soft object's surface 

represent a small fraction of the total. Similarly, 

of the group cubes described in 5.1, those which 

contain key points are few compared with the 

number of such cubes in the region of space we 

are dealing with. If this were not so, we would 

find no advantage in using a hash table. We 

would simply store points in an array. So our 

hash function must have an even distribution for 

points which are geometrically close together. In 

both of our tables, the hash function maps a trip- 

let to an address. For  a table of size l*m*n we 

map (i, j, k)  to: 

(rem (i, l) �9 m + rem (j, m)) �9 n + rem (k, n) (5) 

where rein(x, y) is the remainder when x is 

divided by y. We use l=m=n= 16 and the func- 

tion is calculated quickly by logical operations. A 

more sophisticated function might be appropriate 

for some applications but we have found no reason 

to change it. 

6 Generating the polygons 

In this part of the process, we are given the field 

values at the vertices of a cube in the mesh and 

we must construct polygons which represent the 

part of the iso-surface which intersects that cube. 

Firstly we find points which approximate the 

intersection of the iso-surface with the edges of 

the cube. Then we connect these to make the 

polygons. To avoid ambiguity we refer to these 

points as 'intersections'. The word 'vertex'  is 

reserved for vertices of the cube. A vertex whose 

function value is greater than magic, we call hot, 

and a vertex whose function value is less than or 

equal to magic we call cold. Vertices whose field 

value is exactly magic present minor complica- 

tions. (We have to take special action to avoid 

generating polygons of zero size.) 

Suppose two adjacent vertices p, q have field 

valuesfp,f~. I fq  is hot and p is cold, then: 

magic-fp 

fq _fp (6) 

is taken as the distance from p to the intersection 

of the iso-surface with pq. Although this 'linear 

interpolation' is not the true intersection, it is 
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much cheaper to calculate and, provided the 

cubes are small enough that the polygonal 

approximation to the surface is reasonable, it is 

good enough. Note that this calculation is consis- 

tent across adjacent cubes which share edges. 

The process by which we connect these points is 

fairly complex, so we start with an example. 

Figure "5 A shows a cube with only one hot vertex. 

Clearly the intersecting iso-surface is approximat- 

ed by a single triangle. In Fig. 5 B, there are two 

adjacent hot vertices and we have a quadrilateral. 

In Fig. 5C, there are two non-adjacent hot ver- 

tices and the polygon is a hexagon which encloses 

both of them. Why do we choose this hexagon 

rather than two triangles (Fig. 5D)? In effect we 

are electing to link the two hot vertices and sepa- 

rate the two cold ones. Whether to link the hot 

or cold vertices in this case is decided by examin- 

ing the values of the field. The value at the centre 

of the face is approximately the mean of the four 

vertex values. If this value is greater than magic 

we link the hot vertices. 

Each intersection is uniquely associated with one 

edge of the cube. So we can label an intersection 

by the pair of vertices (p, q)  between which it lies. 

The possible configurations of one face of the 

cube are shown in Fig. 6. When the number of 

hot vertices in this face is four or zero, no polygon 

edges are created: cases A, B. When the number 

of hot vertices is one or three, a single edge is 

created: cases C, D. For two hot vertices we have 

c c 

c 

c 

c 

c 

c 

c 

h c 

c c 

Fig. 5 A - D .  Cubes with one and  two hot  vertices 

hi cl jh 
h c ,, c 

Fig. 6 A - G .  The seven different cases for connect ing 

intersections 

case E: create one edge; case F: create two edges 

linking hot vertices; and case G: create two edges 

linking cold vertices. These created polygon edges 

are represented by ordered pairs of intersections. 

That is pairs of vertex pairs. In Fig. 6, the order 

is indicated by the arrows. 

These polygon edges are stored in an array, 

indexed by the first intersection. The second inter- 

section is always the same as the first intersection 

of some other edge, so we can form a polygon 

by tracing the natural successors of each edge 

until we return to the edge we started at. 

The algorithm follows: 

for each edge of cube, <p,q> do 

i fp is hot and q is cold or p is cold and q is hot 

then create intersection <p,q>; 

for each face of cube do create edges according to Fig. 6; 

while edges remain do 

begin start:=any edge; 

polygon:= { start}; 

remove start from edge array; 

next:=successor of start; 

while next <> start do 

begin polygon := polygon + {next}; 

remove next from edge array 

end; 

output polygon 

end 

The polygons are not, in general, planar. So we 

divide them into triangles by connecting each 

intersection to a centroid as follows: 
Given an ordered set of points (polygon vertices): 

Pi = <xi, Yi, zi>, 0 <_ i < n (8) 
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The centroid is: 

i i = 0  

For n> 3 we can divide the polygon into trian- 
gles: 

(Pi-l,Pi, C), 0 < i _ < n - 1  

and 

(P , - t ,  Po, C) (10) 

This method of triangulation doesn't work for 
polygons; in general but it seems to be alright for 
polygons generated by this algorithm. 

7 Aninnating the objects 

The shape of a soft object is entirely determined 
by the positions of the key points. So we describe 
its motion and shape changes by moving key 

points only. This is discussed in more detail in the 
companion article (Wyvill 1986a). Here we 
describe only a few examples. 

7.1 Examples of application 

Figure 7 shows two droplets merging i n  stages. 
This is quite pleasing in animation. The droplets 
are modelled by single key points with R=2.0. 
The distance, r, between the two key points is 
shown for each stage. 
Figures 8-10 are frames from an animation of a 
soft object sliding down steps. The object is 
roughly shaped as the letters "Soft" and these dis- 
tort smoothly as they slide down. 
Figures 11 and 12 show the letters "Soft" rising 
from a trough of bubbling soft material. The 
background in Fig. 11 features fractal mountains 
and rolling hills. These are part of the solid scene 
and show how the soft objects have been incorpo- 
rated into the Graphicsland system. 

Figs. 7-12.  Fo r  exp lana t ion  see text  
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8 Discussion 

Our modelling technique has proved to be a con- 

venient tool in computer animation. So far, we 

have concentrated on one very simple method of 

making our field functions and there are many 

other possibilities which are worthy of investiga- 

tion. The field can be generated by arbitrary func- 

tions permitting the modelling of mathematical 

surfaces. Our field function can be modified by 

extra terms which are not related to the key 

points. This can be used to make objects deform 

in special ways. For example, if we add a surface 

held to a negative field value, objects can be made 

to vanish bit by bit as they approach the surface, 

and to reappear on the other side. If we make 

a 'hole'  in the surface, an object approaching the 

hole, appears to squeeze through it. 

We have represented our surfaces by polygon 

patches. This is because the Graphicsland system 

already offered us versatile display tools for this 

kind of model. It would clearly be a good idea 

to use bicubic or conic patches instead and we 

are planning some experiments to do this. We 

have not followed Blinn's technique (Blinn 1982) 

of rendering the surface directly, because we 

wanted to produce objects which we could easily 

incorporate into Graphicsland. Also, our models 

can contain a very large number of key points 

and most of them are not near to any surface. 

This is particularly true of models of liquids. The 

polygon generating algorithm is particularly effi- 

cient in this case because the 'hidden'  key points 

do not have to be known to the rendering algo- 
rithm. 

We are, however, experimenting with a ray-tracer 

which renders the field directly. In this case we 

use our surface following algorithm to construct 

a boundary of cubes which contains the iso-sur- 
face. 

Even when we have a superior rendering tech- 

nique for these surfaces, an efficient generator of 

polygon patches will be useful. Graphicsland does 

not yet offer interactive graphical development of 

animation, because it takes too long to render the 

scenes. We are introducing a new feature to pro- 

duce very fast rendering of scenes at greatly 

reduced quality. For this purpose we expect to 

continue to need a polygonal representation. 

Our soft objects are reasonably quickly generated. 

The letters and contents of the trough in Fig. 11 

took about 8 rain per frame on a VAKl l /780  

computer to generate the polygons. This is much 

less than the rendering time for 512 by 512 pixels 

using a z-buffer algorithm. 
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