
Data Structures and Data Structures and
AlgorithmsAlgorithms

Luciano Bononi
Computer Science Engineering
University of Bologna

bononi@cs.unibo.it
http://www.cs.unibo.it/~bononi/

Slide credits: these slides have been translated from slides created by Moreno Marzolla

Data Structures and Algorithms 2

Copyright © 2011, Luciano Bononi and Moreno Marzolla,
Università di Bologna, Italy

This work is licensed under the Creative Commons Attribution-ShareAlike License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/ or send a
letter to Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California,
94105, USA.

Data Structures and Algorithms 3

Course information
● Luciano Bononi
bononi@cs.unibo.it
http://www.cs.unibo.it/~bononi/

● Lessons
– Monday 9.00-13.00
– Friday 9.00-13.00
– Some variations scheduled (see detailed calendar)

● To talk with me
– Always drop me an email before to define a date/hour.
– My office: Mura Anteo Zamboni 7, office T08

Data Structures and Algorithms 4

General information

Data Structures and Algorithms 5

Course website
● http://www.cs.unibo.it/~bononi/

– > Courses > Data Structures and Algorithms A.A. 2011/2012
● Will find:

– General information
– Lesson slides
– exercises
– Links and recommended readings
– Exam preparation material

● Also check RSS and news on the website:
http://www.unibo.it/SitoWebDocente/default.htm?upn=luciano.bononi%40unibo.it

http://www.unibo.it/SitoWebDocente/default.htm?upn=luciano.bononi%40unibo.it&TabControl1=TabAvvisi
Today I will collect your names for a mailing list

http://www.cs.unibo.it/~bononi/
http://www.unibo.it/SitoWebDocente/default.htm?upn=luciano.bononi%40unibo.it&TabControl1=TabAvvisi

Data Structures and Algorithms 6

Recommended readings
Alfred V. Aho, Jeffrey D. Ullman, John E. Hopcroft, Data Structures and
Algorithms, Addison Wesley, 1983.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford
Stein, Introduction to Algorithms, McGraw-Hill, 2001.

Donald E. Knuth, The Art of Computer Programming, Volumes 1-3,
Addison-Wesley Professional, 1998.

S.B. Kishor, Data Structures, Edition 3, Das Ganu Prakashan, Nagpur,
2008.

Further information, books, and material will be provided as a Web
reference.

Data Structures and Algorithms 7

Exam
● Written exam
● Oral exam
●

● Dates will be agreed by using the mailing list.

Data Structures and Algorithms 8

Algorithms and Data Structures

Data Structures and Algorithms 9

What is an algorithm?
● A algorithm is a procedure to resolve a

problem by means of a finite sequence
of basic atomic steps.

● The procedure must be defined in a
not ambiguous and accurate way to be
executed automatically

● The name comes from a Persian
mathematician Abu Ja'far Muhammad
ibn Musa Khwarizmi
– Author of the first reference

algebraic text
– A Moon crater is dedicated to him

Data Structures and Algorithms 10

Algorithm vs Program
● A algorithm describes (at high level) a computation

procedure which when executed produces a result.
● A program is the implementation of a algorithm by means

of a programming language
– A program can be executed on a computer (creating a process

under execution); an algorithm cannot be executed as is in a
natural form.

Data Structures and Algorithms 11

Algorithms are everywhere!
● Internet. Web search, packet routing, distributed file sharing.
● Biology. Human genome project, protein folding.
● Computers. Circuit layout, file system, compilers.
● Computer graphics. Movies, video games, virtual reality.
● Security. Cell phones, e-commerce, voting machines.
● Multimedia. CD player, DVD, MP3, JPG, DivX, HDTV.
● Transportation. Airline crew scheduling, map routing.
● Physics. N-body simulation, particle collision simulation.
● ...

Data Structures and Algorithms 12

Why we're studying algorithms?

Data Structures and Algorithms 13

Why WE're studying algorithms?
● e.g. A protein 3D structure is determined by interactions of

aminoacids.
● Some health issues generated by wrong folding, to be studied.
● Folding@Home

http://en.wikipedia.org/wiki/Protein_folding

Data Structures and Algorithms 14

Algorithms again?
● Hide rendering surfaces, gaming, physical simulation, etc.

Data Structures and Algorithms 15

Why to care about algorithms?
● Algorithms provide advantages

– An efficient algorithm is often the difference between being or
being not able to solve a problem with the given resources

● Many algorithms we will see were invented by students!
● Algorithms are fun. :-)... yes they are. No, seriously.

Data Structures and Algorithms 16

Where do we start from?
● There are some classical algs to resolve common

problems
– Ordering, searching, visit of graphs...

● How could we evaluate the efficiency of an algorithm?
● How to derive or invent new algorithms that better exploit

the resources tradeoffs (and the opportune data
structures)?

Data Structures and Algorithms 17

Warmup: Fibonacci numbers
● The Fibonacci sequence

F
1
, F

2
, ... F

n
, ... is defined as:

Leonardo Fibonacci
(Pisa, 1170—Pisa, 1250)

http://it.wikipedia.org/wiki/Leonardo_Fibonacci

F 1=1
F 2=1
F n=F n−1F n−2 , n2

Data Structures and Algorithms 18

Closed form
● Good news: a close form exists for F

n

where
●

● Bad news: to evaluate this formula errors are introduced
due to need to compute floating point aritmetics

F n=
1
5

n− n

=15
2

≈1.618 =1−5
2

≈−0.618

Data Structures and Algorithms 19

The trivial Fibonacci algorithm
● Let's define an algorithm to compute Fn based on a trivial

recursive function:

● We will use pseudo-code description of algorithms. The
translation in programming languages is quite straight-
forward.

algorithm Fibonacci2(int n) → int
if (n==1 || n==2) then

return 1;
else

return Fibonacci2(n-1)+Fibonacci2(n-2);
endif

Data Structures and Algorithms 20

Recursion tree

F(4)

F(3) F(2)

F(2) F(1)

F(5)

F(3)

F(2) F(1)

F(4)=3

F(3)=2 F(2)=1

F(2)=1 F(1)=1

F(6)=8

F(4)=3

F(3)=2 F(2)=1

F(2)=1 F(1)=1

F(5)=5

F(3)=2

F(2)=1 F(1)=1

F(4)

F(3) F(2)

F(2) F(1)

F(5)

F(3)

F(2) F(1)

F(4)=3

F(3)=2 F(2)=1

F(2)=1 F(1)=1

F(5)=5

F(3)=2

F(2)=1 F(1)=1

F(7)=13

Data Structures and Algorithms 21

So far so good... but...
● Time needed to compute F

n
 grows too much as a function

of n

D'oh!

Data Structures and Algorithms 22

How to estimate the execution time?
● In seconds?

– … will depend on the computer executing the program
● Number of machine language instructions executed per

second?
– Hard to estimate from pseudo-code, and also still depends on

the computer executing the program
● We estimate the execution time by calculating the number

of basic operations executed in the pseudo-code.

Data Structures and Algorithms 23

Where is the efficiency problem?
● Intermediate values are often re-calculated again and

again...

F(4)

F(3) F(2)

F(2) F(1)

F(5)

F(3)

F(2) F(1)

F(4)

F(3) F(2)

F(2) F(1)

F(6)

F(4)

F(3) F(2)

F(2) F(1)

F(5)

F(3)

F(2) F(1)

F(4)

F(3) F(2)

F(2) F(1)

F(5)

F(3)

F(2) F(1)

F(4)

F(3) F(2)

F(2) F(1)

F(5)

F(3)

F(2) F(1)

F(7)

Data Structures and Algorithms 24

Estimation of execution time
● let T(n) be the time needed to compuet the n-th Fibonacci

number.
● We estimate T(n) as the number of nodes of the recursion

tree of F
n

– Question: how to obtain the recursive expression of T(n) as the
number of recursive nodes in the tree for calculating F

n

Data Structures and Algorithms 25

Estimation of execution time
● We can demonstrate (by induction) that:

T(n) = 2F
n
 – 1

– Question: demonstrate that.
● By remembering the close form for F

n
 we conclude that

T(n) grows exponentially
● We can calculate a lower bound for T(n)

– See next page

Data Structures and Algorithms 26

Estimation of execution time

● let T(n) be the number of nodes of the recursive tree
for calculating F

n
– T(1) = T(2) = 1;
– T(n) = T(n-1) + T(n-2) + 1 (se n>2)
– It is similar to the recurrence that defines F

n

algorithm Fibonacci2(int n) → int
if (n==1 || n==2) then

return 1;
else

return Fibonacci2(n-1)+Fibonacci2(n-2);
endif

Data Structures and Algorithms 27

Lower bound of the execution time

T n  = T n−1 T n−2 1
≥ 2T n−2 1
≥ 4T n−4 21
≥ 8T n−6 2221
≥ ...

≥ 2k T n−2 k ∑
i=0

k −1

2 i

≥ ...

≥ 2 ⌊n /2 ⌋  2 ⌊n /2 ⌋−1
2−1

≥ 2 ⌊n /2 ⌋

We exploit the fact that
T(n) is monotone
increasing

Recursion ends
when k=n/2

Data Structures and Algorithms 28

Can we do it better?
● Let's use a vector of size n to compute and store the

values of F
1
, F

2
, ... F

n

algorithm Fibonacci3(int n) → int
let Fib[1..n] be an array of n ints
Fib[1] := 1;
Fib[2] := 1;
for i:=3 to n do

Fib[i] := Fib[i-1] + Fib[i-2];
endfor
return Fib[n];

Data Structures and Algorithms 29

How much does it cost?
● Let's estimate the cost of Fibonacci3 by counting the

number of pseudocode operations executed

algorithm Fibonacci3(int n) → int
let Fib[1..n] be an array of n integers
Fib[1] := 1; // 1 time
Fib[2] := 1; // 1 time
for i:=3 to n do // (n-1) times

Fib[i] := Fib[i-1] + Fib[i-2]; // (n-2) times
endfor
return Fib[n]; // 1 time

// Total............ 2n

- Time is proportional to n
- Space is proportional to n

Data Structures and Algorithms 30

Can we do it even better?
● Memory usage of Fibonacci3 is proportional to n. Can we

use less memory?
● Yes, because to calculate F

n
 we simply need F

n-1
 e F

n-2

algorithm Fibonacci4(int n) → int
if (n==1 || n==2) then

return 1;
else

F_nm1 := 1;
F_nm2 := 1;
for i:=3 to n do

F_n := F_nm1 + F_nm2;
F_nm2 := F_nm1;
F_nm1 := F_n;

endfor
return F_n;

endif

Data Structures and Algorithms 31

How much does it cost?
● let's count the number of operations executed

algorithm Fibonacci4(int n) → int
if (n==1 || n==2) then

return 1;
else

F_nm1 := 1; // 1 time
F_nm2 := 1; // 1 time
for i:=3 to n do // (n-1) times

F_n := F_nm1 + F_nm2; // . (n-2) times
F_nm2 := F_nm1; // (n-2) times
F_nm1 := F_n; // (n-2) times

endfor
return F_n; // 1 time

endif
// Total......... 4n-4

- Time is proportional to n
- Space (memory) is constant!

Data Structures and Algorithms 32

That's all folks! Or not?
● Let's consider the matrix A:

● Theorem: for any n≥2, we have:

(demonstrable by induction)

A=1 1
1 0

An−1=1 1
1 0

n−1

= F n F n−1

F n−1 F n−2

Data Structures and Algorithms 33

Idea! Algorithm Fibonacci6
● We exploit the previous theorem to define algorithm

Fibonacci6 as follows

algorithm Fibonacci6(int n) : int

M = MatPow(A, n-1);
return M[1][1];

A=1 1
1 0

M[1][1] is the first
item of the row

Data Structures and Algorithms 34

Yes but...Algorithm MatPow?
● To compute the k-th power of a matrix A, we exploit the

fact that, for even K, Ak = (Ak/2)2

algorithm MatPow(Matrix A, int k) → Matrix
if (k==0) then

else
if (k is even) then

tmp := MatPow(A,k/2)
M := tmp '*' tmp;

else
tmp := MatPow(A,(k-1)/2);
M := tmp '*' tmp '*' A;

endif
endif
return M;

M=1 0
0 1

operator '*' computes the
product of matrices

Data Structures and Algorithms 35

To sum up

Fibonacci2

Fibonacci3

Fibonacci4

Fibonacc6

Ω(2n/2)

O(n)

O(n)

O(log n)

O(n)

O(n)

O(1)

O(log n)

Algorithm Time Memory

Exponential time

Logaritmic time

Data Structures and Algorithms 36

Lessons learned?
● For a given problem, we started from a inefficient

algorithm (exponential cost) to reach a very efficient
algorithm (logaritmic cost).

● The choice of the good algorithm makes the difference
between being able to solve a problem or NOT.

Data Structures and Algorithms 37

Warmup exercise
● Given an array A[1..n-1] containing a permutation of all

values 1 - n (extremes included) but one; values in A can
be in any order
– Eg: A = [1, 3, 4, 5] is a permutation of 1..5 without the value 2
– Eg: A = [7, 1, 3, 5, 4, 2] is a permutation of 1..7 without the value

6
● Let's write an algorithm which takes A[1..n-1], and returns

the value in the interval 1..n which is not in A.

	Pagina 1
	Pagina 2
	Pagina 3
	Pagina 4
	Pagina 5
	Pagina 6
	Pagina 7
	Pagina 8
	Pagina 9
	Pagina 10
	Pagina 11
	Pagina 12
	Pagina 13
	Pagina 14
	Pagina 15
	Pagina 16
	Pagina 17
	Pagina 18
	Pagina 19
	Pagina 20
	Pagina 21
	Pagina 22
	Pagina 23
	Pagina 24
	Pagina 25
	Pagina 26
	Pagina 27
	Pagina 28
	Pagina 29
	Pagina 30
	Pagina 31
	Pagina 32
	Pagina 33
	Pagina 34
	Pagina 35
	Pagina 36
	Pagina 37

