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INTRODUCTION

The set union problem has been widely

studied during the past decades. The

problem consists of maintaining a collec-

tion of disjoint sets under the operation

of union. More precisely, the problem is
to perform a sequence of operations of

the following two kinds on disjoint sets:

union( A, B): Combine the two sets A

and B into a new set named A.

find(x): Return the name of the unique

set containing the element x.

The operations are presented on line;

namely, each operation must be per-

formed before the next one is known.

Initially, the collection consists of n sin-

gleton sets {1}, {2}, . . . . {n}. The name

of set { i} is i. The input to the set union

problem is therefore the initial collection

of disjoint sets and the sequence of opera-

tions to be processed on line; the output

of the problem consists of the answers to

find operations. Figure 1 shows examples

of union and find operations.
The set union problem has many ap-

plications in a wide range of areas. In

the following we mention some of them,

but the list is by no means exhaustive.
Main applications of the set union prob-

lem include handling COMMON and

EQUIVALENCE statements in FOR-

TRAN compilers [Arden et al. 1961;

Galler and Fischer 19641, implementing

property grammars [Stearns and Lewis
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solving off-line minimum problems

[Gabow and Tarjan 1985; Hopcroft and
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{1} {2} {3} {4} {5} {6}

(a) The initial collection of dlsjomt sets Find(Z) re -

turns L,l<i=6

[1,3} {2,5} {4} {6}

(b) The dmjoint sets of (a) after performmg union(l, 3)

and union(5, 2) Fred(l) and find(3) return 1, find(2)

and find(5) return 5, find(4) returns 4, and find(6)

returns 6

{1,3,4} {2,5} {6}

(c) The disjoint sets of (b) after performmg union(4. 1)

Fred(l), find(3), and find(4) return 4, find(2) and f,nd(5)

return 5, and find(6) returns 6

{1,3,4,2,5} {6}

(d) The d]sjoint sets of (c) after performmg union(4, 5)

Fred(l), find(2), find(3), find(4), and find(5) return 4,

and find(6) returns 6

Figure 1. Examples of union and find operations.

graphs [Tarjan 19741, and checking flow

graph reducibility [Tarjan 19731.

Recently, many variants of this prob-

lem have been introduced in which the

possibility of backtracking over the se-

quences of unions was taken into account

[Apostolic et al. 1989; Gambosi et al.

1988, 1989, 1991; Mannila and Ukkonen

1986a, 1988; Westbrook and Tarjan

1989al. This was motivated by problems

arising in logic programming interpreter

memory management [Hogger 1984;

Mannila and Ukkonen 1986b, 1986c;

Warren and Pereira 1977], in incremen-

tal execution of logic programs [Mannila

and Ukkonen 19881, and in implementa-

tion of search heuristics for resolution

[Ibaraki 1978; Pearl 19841.
In this paper we survey the most effi-

cient algorithms known for set union

problems and some of their variants. We

present the algorithms and discuss some
of their applications.

Preliminaries

Although the problems discussed in this

paper have wide practical applications,

we consider the analysis of the algo-
rithms for their solution from the per-

spective of theoretical computer science.

We concentrate on the ways in which

resource usage (computing time, memory

ACM Computing Surveys, Vol 23, No 3, September 1991
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space) grows with increasing problem

size. Therefore, we compare the merit of

different algorithms based on formulas

for their resource usage rather than on

experimental information. Further, we

ignore, for the most part, the constant

factors in these formulas giving only or-

der of magnitude evaluations. That is,

we concentrate on asymptotic growth

rates rather than on exact mathematical

expressions.

We use the notation 0( f( n)) (capital

oh notation) to describe the set of func-

tions that grow asymptotically no faster

than f(n). The notation !J( f( n)) de-

scribes the set of functions that gp-ow

asymptotically at least as fast as ~(n).

Functions that grow asymptotically at

the same rate as f(n) are expressed by

@( f( n)). Formally the definitions for O,
0, and @ are as follows [Knuth 19761:

g(n) e 0( f( n)) if there exists constants

no >0 and c >0 such that g(n) s cf(n)

for all n > no

g(n) e 0( f(n) if there exists constants no

> 0 and c > 0 such that g(n) > cf( n) for

all n > no

g(n) e @(;(n) if there exists constants no

> 0 and c > 0 such that g(n) = cf(n) for

all n a no

Sometimes it is useful to say that one

function has strictly smaller asymptotic

growth than another. The lowercase oh

notation is defined as follows:

g(n) eo(f[n)) ifand only if

That is, O( f( n)) is the set of functions

with order strictly smaller than f(n).

We consider the analysis of algorithms

from two different points of view. In one
we analyze the time complexity of a se-

quence of operations; in the other we

analyze the time complexity of a single

operation. When we consider a sequence
of operations, we estimate either the

worst case of the algorithm (i. e., we con-

sider those input instances of that size on

which the algorithm takes the most time)

or the auerage case of the algorithm (i. e.,

we average the execution times on in-

stances of a certain size). When we con-

sider a single operation, we estimate the

amortized complexity [Tarjan 19851
(namely, we average the running time

per operation over a worst-case sequence

of operations) or the worst-case complex-
ity. In case of the single operation com-

plexity (either amortized or worst case),

we sometimes give different bounds for

the different operations (in our case

unions and finds). Note that unless we

give different bounds for the different

operations, the worst-case complexity of

a sequence of operations determines the

amortized complexity of single opera-

tions and vice versa.

ModeLs of Computation

Different models of computation have

been developed for analyzing algorithms

that solve set union problems. The main

model of computation considered is the

pointer machine [Ben-Araram and Galil

1988; Knuth 1968; Kolmogorov 1953;

Schonage 1980; Tarjan 1979a]. Its stor-

age consists of an unbended collection of
registers (or records) connected by point-

ers. Each register can contain an arbi-

trary amount of additional information,

and no arithmetic is allowed to compute

the address of a register. In this model

two classes of algorithms were defined:

separable pointer algorithms [Tarjan

1979a] and nonseparable pointer algo-

rithms [Mehlhorn et al. 1988].

Separable pointer algorithms run on a

pointer machine and satisfy the separa-

bility assumption as defined in Tarjan

[1979al (see below). A separable pointer
algorithm makes use of a linked data

structure, namely a collection of records

and pointers that can be thought of as a
directed graph: Each record is repre-

sented by a node, and each pointer is
represented by an edge of the graph. The

algorithm solves the set union problem
according to the following rules [Blum

1986; Tarjan 1979al:

(i) The operations must be performed

on line; that is, each operation must
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(ii)

(iii)

(iv)

(v)
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be executed before the next one is

known.

Each element of each set is a node of’

the data structure. There can be also

additional (working) nodes.

(Separability). After each operation,

the data structure can be parti-

tioned into disjoint subgraphs such

that each subgraph corresponds to

exactly one current set. The name of
the set occurs in exactly one node in

the subgraph. No edge leads from

one subgraph to another.

To perform find(x), the algorithm

obtains the node u corresponding to

element x and follows paths start-

ing from u until it reaches the node

that contains the name of the corre-

sponding set.

During any operation, the algorithm

may insert or delete any number of

edges. The only restriction is that

rule iii must hold after each opera-

tion.

The class of nonseparable pointer algo-

rithms [Mehlhorn et al. 19881 does not

require the separability assumption. The

only requirement is that the number of

edges leaving each node must be bounded
by some constant c >0. More formally,

rule iii is replaced by the following

rule, while the other four rules are left

unchanged:

(iii) There exists a constant c >0 such

that there are at most c edges leav-

ing a node.

Often these two classes of pointer algo-

rithms admit quite different upper and
lower bounds for the same problem~.

A second model of computation consid-

ered in this paper is the random access

machine, whose memory consists of an

unbounded sequence of registers, each of

which is capable of holding an arbitrary
integer. The main difference with pointer

machines is that in random access ma-

chines the use of address arithmetic tech-

niques is permitted. To make the various

lower and upper bounds meaningful, it is

usually assumed that the size of a regis-

ter is bounded by O(log n)l bits. A for-

mal definition of random access ma-

chines can be found in Aho et al. [1974,

pp. 5-141.

A third model of computation, known

as the cell probe model of computation,

was introduced by Yao [1981]. In this

model, the cost of computation is mea-

sured by the total number of memory

accesses to a random access memory with

rlog nl bits cell size. All other compu-

tations are considered to be free.

Organization of the Paper

The remainder of the paper consists of

six sections. Section 1 surveys the most

efficient algorithms known for solving the

set union problem. Section 2 deals with

the set union problem on adjacent inter-

vals. Section 3 presents data structures

that allow us to undo the last union per-

formed. This result has been recently

generalized in several directions, which

are dealt with in Section 4. Section 5

shows some of the techniques used to

obtain persistent data structures, as de-

fined in Driscoll et al. [1989], for the set

union problem. Finally, Section 6 lists

some open problems and presents con-

cluding remarks.

1. SET UNION PROBLEM

The set union problem consists of per-
forming a sequence of union and find

operations, starting from a collection of n

singleton sets {l}, {2}, ., {n}. The ini-

tial name of set {i} is i, The number of
unions in any sequence of operations is

bounded above by n – 1. Due to the defi-

nition of the union and find operations,
there are two ifivariants that hold at any

time. First, the sets are always dis-

joint and define a partition of the set
{1, 2,. ... n}. Second, the name of each

set corresponds to one of the items con-

tained in the set itself. The set union

lThroughout this paper all logarithms are assumed

to be to the base 2 unless explicitly specified as

otherwise.
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problem requires developing data struc-

tures and algorithms that are efficient

for both union and find operations since

the applications use both operations.

A different version of this problem con-

siders the following operation instead of

union:

unite( A, l?): Combine the two sets A and

B into a new set, whose name is either A

or B.

Unite allows the name of the new set

to be arbitrarily chosen. This is not a

significant restriction in many applica-

tions, where one is mostly concerned with

testing whether two elements belong to

the same set, no matter what the name

of the set can be. Some extensions of the

set union problem have quite different

time bounds depending on whether

unions or unites are considered. In the
following, we will deal with unions un-

less otherwise specified.

1.1 Worst-Case Complexity

In this section, we describe algorithms

for the set union problem [Tarjan 1975;

Tarjan and van Leeuwen 1984], giving

the optimal worst-case time complexity

for a sequence of operations (and thus

the amortized time complexity per op-

eration). For the sake of completeness,

we first survey some basic algorithms

that have been proposed in the literature

[Aho et al. 19’74; Fischer 1972; Galler

and Fischer 1964], These are the quick-

flnd, the weighted quick-find, the quick-

union, and the weighted quick-union

algorithms,

The quick-find algorithms allow one

to perform find operations quickly; the
quick-union algorithms allow one to per-

form union operations quickly. Their

weighted counterparts speed these

computations up by introducing some

weighting rules.

Most of these algorithms represent sets

as rooted trees, following a technique in-
troduced by Galler and Fischer [19641.

Each tree corresponds to a set. Nodes of

the tree correspond to elements of the

corresponding set. The name of the set is

Disjoint Set Union Problems ● 323

stored in the root of the tree. Each tree

node has a pointer to its parent. We refer

to P(x) as the parent of node x.

The quick-find algorithm can be de-

scribed as follows. Each set is repre-

sented by a tree of height 1. Elements of
the set are the leaves of the tree. The

root of the tree is a special node that

contains the name of the set. Initially,

singleton set { i}, 1 s i S n, is repre-

sented by a tree of height 1 composed of

one leaf and one root. To perform a

union( A, B), all the leaves of the tree

corresponding to B are made children of

the root of the tree corresponding to A.

The old root of B is deleted. This main-

tains the invariant that each tree is of

height 1 and can be performed in 0( I B /)

time, where I B I denotes the total num-

ber of elements in set B. Since a set can

have as many as 0(n) elements, this

gives an 0(n) time complexity in the

worst case for each union. To perform a

find(x), return the name stored in the

parent of x, Since all trees are main-

tained of height 1, the parent of x is a

tree root. Consequently a find requires

O(1) time. The same algorithm can be

described by using an array instead of

trees [Aho et al. 19741.

A more efficient variant attributed to

McIlroy and Morris by Aho et al. [19741

and known as weighted quick-find uses
the freedom implicit in each union opera-

tion according to the following weighting

rule.

Union by size: Make the children of the

root of the smaller tree point to the root

of the larger, arbitrarily breaking a tie.

This requires that the size of each tree is
maintained throughout any sequence of

operations.

Although this rule does not improve

the worst-case time complexity of each

operation it improves to O(log n) the

amortized bound of unions [Aho et al.

19741, as the following lemma shows.

Lemma 1.1.1

The weighted quick-find algorithm is able

to perform each find operation in O(1)

ACM Computmg Surveys, Vol. 23, No. 3, September 1991
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time. The total time required to perform

n – 1 union operations is O(n log n).

Proofi Each find operation is imple-

mented as in the quick-find algorithm

and therefore requires O(1) time. Denote

by N, the total number of times a node i

is moved from a set to another because of

a union operation. The total time re -

quired to perform n – 1 union operations

is

If the union by size rule is used, each

time node i is moved from a set SI to

another set Sz because of a union

(Sz, S1), the size of the new set Sz after
this operation is at least twice the size of

the set S’l in which i was before. As

a consequence, N,~logn for i=

1,2, . . ..n. Therefore, the total time

needed to perform n – 1 unions is

The quick-union algorithm [Galler and

Fischer 19641 can be described as follows.

Again, each set is represented by a tree.

There are, however, two main differences

with the data structure used by the

quick-find algorithm. The first is that

the height of a tree can be greater than

1. The second is that each node of each

tree corresponds to an element of a set,
and therefore there is no need for special

nodes. Once again, the root of each tree

contains the name of the corresponding

set. A union (A, 1?) is performed by mak-
ing the tree root of set B a child of the

tree root of set A. A find(x) is performed

by starting from the node x and follow-
ing the pointer to the parent until the

tree root is reached. The name of the set

stored in the tree root is then returned.

As a result, the quick-union algorithm is
able to support each union in O(1) time

and each find in 0(n) time.
The time bound can be improved by

using the freedom implicit in each union

operation according to one of the follow-

ing two union rules. This gives rise to

two weighted quick-union algorithms.

union by size: Make the root of the

smaller tree point to the root of the
larger, arbitrarily breaking a tie. This

requires maintaining the number of de-

scendants for each node, in the following

referred to as the size of a node, through-

out all the sequence of operations.

union by rank [Tarjan and van Leeuwen

19841: Make the root of the shallower

tree point to the root of the other, arbi-

trarily breaking a tie. This requires
maintaining the height of the subtree

rooted at each node, in the following re-

ferred to as the rank of a node, through-

out all the sequences of operations.

After a union( A, B), the name of the

new tree root is set to A.

Lemma 1.1.2

If either union rule is used, any tree

of height h must contain at least 2 h

elements.

Proof We prove only the case where

the union by size rule is used. The case

of union by rank can be proved in a

similar fashion. We proceed by induction

on the number of union operations. Be-

fore the first union, the lemma is clearly

true since each set is of height O and

contains at least 20 = 1 element. As-

sume that the lemma is true before a

union( A, B). Assume without loss of
generality that I A I = I 1?I so the root of
B will be made a child of the root of A.

Denote by h(A) and h(~) the heights of

A and B before the union operation and

by h( A U II) the height of the com-
bined tree A U Il. Clearly, h(A U El) =

max{ h(A), h(l?) + 1}.We have

lAUBl>max{ lAl,21 B\}

~ max{2~(A),2~@)+l}

—— 2max{h(A), h(B)+l} = 2h(AuB)

0

As a consequence of the above lemma,

the height of the trees achieved with ei-

ther the union by size or the union by

ACM Computing Surveys, Vol. 23, No. 3, September 1991
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v

x&Yzwu

A

[b)

(c)

Figure 2. Path compaction techniques.

compression; (c) path splittin~ (d) path halving.

L!K
(d)

(a) The tree before performing a find(x) operation; (b) path

rank rule is never more than Flogl n.

Henceforth, with either rule each union

can be performed in 0(1) time and each

find in O(log n) time.

A better amortized bound can be ob-

tained if one of the following compaction

rules is applied to the find path (see
Figure 2).

path compression [Hopcroft and Unman

19731: Make every encountered node

point to the tree root.

path splitting [van der Weide 1980;

van Leeuwen and van der Weide 1977]:

Make every encountered node (except the

last and the next to last) point to its
grandparent.

path halving [van der Weide 1980;

van Leeuwen and van der Weide 1977]:

Make every other encountered node

(except the last and the next to last)

point to its grandparent.

Combining the two choices of a union
rule and the three choices of a com-
paction rule, six possible algorithms are

obtained. They all have an O(a( m +

n, n)) amortized time complexity, where

a is a very slowly growing function, a
functional inverse of Ackermann’s [1928]

function.

Theorem 1.1.1

[Tarjan and van Leeuwen 1984] The algo-

rithms with either union rule com-

bined with either compaction rule run in

ACM Computmg Surveys, Vol. 23, No 3, September 1991
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O(n + ma (m + n, n)) time on a sequence

of at most n – 1 unions and m finds.

No better amortized bound is possible

for separable and nonseparable pointer

algorithms or in the cell probe model of

computation.

Theorem 1.1.2

[Banachowski 1980; Tarjan 1979a;

Tarjan and van Leeuwen 1984] Any sepa-

rable pointer algorithm requires Q(n +

ma(m + n, n)) worst-case time for process-

ing a sequence of n – 1 unions and m

finds.

Theorem 1.1.3

[Fredman 1989; Fredman and Saks 1989]

The set union problem requires

L?(n + ma(m + n, n)) worst-case time in

the cell probe model of computation.

Theorem 1.1.4

[La Poutr~ 1990b] Any nonseparable

pointer algorithm requires L’(n + ma(m

+ n, n)) worst-case time for processing a

sequence of n – 1 unions and m finds.

Although the six algorithms given

above are all asymptotically optimal,

there are certain differences of practical

importance among the various union and

compaction rules. First, union by rank

seems preferable to union by size since it

requires less storage. Indeed, it needs

only O(log log n) bits per node to store a
rank in the range [0, flog nl ], whereas

union by size needs O(log n) bits per node
to store a size in the range [1, n]. Second,

path halving seems to be preferable

among the three compaction rules. Path
compression requires two passes over the

find path, whereas path halving and path

splitting can be implemented in only one

pass. Furthermore, path halving has the
advantage over path splitting in that it
requires nearly as many as half pointer
updates along the find path. Indeed, path

halving needs to update every other node

instead of every node in the find path.
An algorithm that performs find opera-

tions more efficiently has been recently

proposed by La Poutr6 [1990a]. Following

a technique first introduced by Gabow

[1985], he showed how to support the ith

find operation in 0( a( i, n)) time in the

worst case, while still solving the set

union problem in a total of 0( n +

ma( m + n, n)) worst-case time.

We conclude this section by mention-

ing that the trade-off between union and

find operations has been recently studied

by Ben-Amran and Galil [1990]. They

gave an algorithm that for any integer

k > O; supports unions in O(a(h, n))

amortized time and finds in 0(k) amor-
tized time, where a( k, n) is a row inverse

of Ackermann’s function [Tarjan 1983].

1.2 Single Operation Worst-Case Time

Complexity

The algorithms that use any union and

any compaction rule still have single-

operation worst-case time complexity

O(log n) [Tarjan and van Leeuwen 1984]

since the trees created by any of the
union rules can have a height as large as

O(log n). Blum [1986] proposed a data

structure for the set union problem that

supports each union and find in

O(log n/log log n) time in the worst case.

The data structure used to establish

the upper bound is called k- UF tree. For

any k > 2, a k-UF tree is a rooted tree

such that

(i) the root has at least two children,

(ii) each internal node has at least k

children,

(iii) all leaves are at the same level.

As a consequence of this definition, the

height of a k- UF tree with n leaves is not

greater than [log ~ n 1. We refer to the
root of a k- UF tree as fat if it has more

than k children and as slim otherwise.

A k- UF tree is said to be fat if its root is

fat; otherwise it is referred to as slim.

Disjoint sets can be represented by

k- UF trees as follows. The elements of
the set are stored in the leaves, and the

name of the set is stored in the root.

Furthermore, the root also contains the

height of the tree and a bit specifying

whether it is fat or slim.

ACM Computmg Surveys, Vol 23, No 3, September 1991



A find(x) is performed as described in

the previous section by starting from the

leaf containing x and returning the name

stored in the root. This can be accom-

plished in O(log~ n) worst-case time.

A union( A, B) is performed by first

accessing the roots r~ and r~ of the cor-

responding k- UF trees T~ and TB. Blum

assumed that his algorithm obtained in

constant time r~ and r~ before perform-

ing a union( A, B). If this is not the case,

r* and r~ can be obtained by means of

two finds [i.e., find(A) and find(B)] due

to the property that the name of each set

corresponds to one of the items contained

in the set itself.

We now show how to unite the two

k- UF trees TA and TB. Assume without

loss of generality that height(l’~) s

height(T~). Let u be the node on the path

from the leftmost leaf of TA to r~ with

the same height as TB. Clearly, u can be
located by following the leftmost path

starting from the root r~ for exactly

height(T~) – height(T~) steps. When im-

planting TB and TA, only three cases are

possible, which gives rise to three differ-

ent types of unions.

Type 1: Root rB is fat (i.e., it has more

than k children), and u is not the root of

T~. Then r~ is made a sibling of U.

Type 2: Root rB is fat and u is fat and

equal to r~ (the root of T~). A new (slim)

root r is created, and both r* and r~ are

made children of r.

Type 3: This deals with the remaining

cases, that is, either root rB is slim or u

is equal to r~ and slim. If root r~ is slim,

all the children of rB are made the right-

most children of U. Otherwise, v is equal

to r~ and is slim. In this case, all the

children of u = r* are made the right-
most children of r~.

Theorem 1.2.1

[Blum 1986] k-UF trees can support each

union and find in O(log n / log log n) time

in the worst case. Their space complexity

is O(n).

Proofi Each find can be performed in

O(log~ n) time. Each union( A, B) can
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require at most O(logh n) time to locate

the nodes r*, rB, and v as defined above.

Both type 1 and type 2 unions can be

performed in constant time, whereas type

3 unions require at most 0(k) time due

to the definition of a slim root. Choosing

k = Flog n/log log nl yields the claimed

time bound. The space complexity is de-
rived easily from the fact that a k- UF

tree with ~ leaves has at most 2 ~– 1

nodes. Henceforth the forest of k- UF trees

that store the disjoint sets requires the

most a total of 0(n) space. ❑

Blum also showed that this bound is

tight for the class of separable pointer

algorithms.

Theorem 1.2.2

[Blum 1986] Every separable pointer algo-

rithm for the disjoint set union problem

has single-operation worst-case time com-

plexity at least L?(log n / log log n).

Recently, Fredman and Saks [19891

showed that the same lower bound holds

in the cell probe model of computation.

Theorem 1.2.3

[Fredman and Saks 1989] Any algorithm

for the set union problem requires

Q(log n / log log n) single-operation worst-

time case in the cell probe model of

computation.

1.3 Average Case Complexity

The average running time of the quick

union, quick-find, and weighted quick-

find algorithms described in Section 1.1

has been investigated [BollobA and

Simon 1985; Doyle and Rivest 1976;
Knuth and Sch6nage 1978; Yao 19761
under different assumptions on the dis-

tribution of the input sequence.
In the rest of this section, we assume

0(n) union and find instructions are be-

ing performed. This is not a significant

restriction for the asymptotic time com-
plexity as shown, for instance, by Hart

and Sharir [19861. We denote by E[ t~QF)l,

E[ t~wQ~)l, and E[ t~Qu)l the average run-
ning time of quick-find, weighted quick-
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find, and quick-union algorithms, re-

spectively, which perform 0(n) set union

operations on n elements. Three models

of random input sequences have been

considered in the literature: the random

graph model, the random spanning tree

model, and the random components

model.

1.3.1 Random Graph Model

The random graph model was proposed

by Yao [19761 based upon the random

graph model by Erdos and R6nyi [1960].

Each of the (j) undirected edges between

two vertices of an n-vertices graph is

chosen independently according to a

Poisson process. When an edge (x, y) is

chosen, a union( x, y) is executed if x

and y are in different sets.

Theorem 1.3.1

[Bollobks and Simon 1985; Knuth and

Schonage 1978] The average running time

of quick-find and weighted quick-find al-

gorithms in the random graph model is

E[t~QF)] = ~ + o(n(log n)’);

()E[p’Q~’] =c!rz + o n
log n ‘

where c = 2.0847 . . . .

1.3.2 Random Spanning Tree Model

Each sequence of union operations corre-

sponds to a “union tree” in which the
edge (x, y) means that the set containing

x is merged into the set containing y. In

the random spanning tree model, all pos-

sible union trees are equally likely; there

are nn–’ possible unoriented trees and

(n-l)! ways of choosing edges in each tree.

Theorem 1.3.2

[Knuth and Schonage 1978; Yao 1976]

The average running time of quick-find

and weighted quick-find algorithms in the

random spanning tree model is

E [ t~QF)]=[ !! n3/’2 + O(nlOg n);

8

E(t~wQ~)] = ~nlog n + O(n).
ii’

1.3.3 Random Components Model

In the simplest model, it is assumed that

at any given time each pair of sets is

equally likely to be merged by a union

operation. This is also the least realistic

model. Indeed, this assumption does not

apply when one is interested in joining

sets containing two elements chosen in-

dependently with uniform probability.

Theorem 1.3.3

[Doyle and Rivest 19761 The average run-

ning time of the quick-union algorithm in

the random components model is

The reader is referred to the original

papers [Bollobas and Simon 1985; Doyle

and Rivest 1976; Knuth and Schonage

1978; Yao 1976] for details concerning

the analysis of the expected behavior of

these algorithms. Besides the signifi-

cance of the three random input models

chosen, these results underline that

weighted quick-find algorithms are much

faster than quick-find algorithms not

only in the worst case but also in the
average.

1.4 Special Linear Cases

The six algorithms using either union
rule and either compaction rule as de-

scribed in Section 1.1 run in 0( n +

ma( m, n)) time on a sequence of at most

n – 1 union and m find operations. No

better amortized bound is possible for

separable and nonseparable pointer algo-
rithms or in the cell probe model of com-

putation. As a consequence, to get a bet-
ter bound, we must consider a special

case of set union. Gabow and Tarjan

[1985] used this idea to devise one ran-
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dom access machine algorithm that runs

in linear time for a special case in which

the structure of the unions is known in

advance, Interestingly, Tarjan’s lower

bound for separable pointer algorithms

also applies to this restricted problem.

This result is of theoretical interest and

is significant in many applications, such

as scheduling problems, the off-line min

problem, finding maximum matching on

graphs, VLSI channel routing, finding

nearest common ancestors in trees, and
flow graph reducibility [Gabow and

Tarjan 19851.

The problem can be formalized as fol-

lows. We are given a tree T containing n

nodes that correspond to the initial n

singleton sets. Denoting by parent(U) the

parent of the node u in T, we have to

perform a sequence of union and find
operations such that each union can be

only of the form union( parent(u), u). For

such a reason, T is called the static union

tree and the problem will be referred to

as the static tree set union. Also, the case

in which the union tree can dynamically

grow by means of new node insertions

(referred to as incremental tree set union)

can be solved in linear time. We first

briefly sketch the solution of the static

tree set union problem.

Gabow and Tarjan’s static tree algo-

rithm partitions the nodes of T in suit-

ably chosen small sets, called microsets.

Each microset contains less than b nodes

[where b is such that b = !J(log log n)

and b = O(log n/log log n)], and there

are at most 0( n / b) microsets. To each

microset S a node r # S is associated,

referred to as the root of S, such that

S U {r} induces a subtree of T with root
r.

The roots of the microsets are main-

tained as a collection of disjoint sets,

called macrosets. Macrosets facilitate ac-

cess to and manipulation of microsets.
The basic ideas underlying the algo-

rithm are the following. First, a priori
knowledge about the d~tic union tree

can be used to precompute the answers to

the operations performed in microsets us-
ing a table look up. Second, any one of

the six optimal algorithms described in

Section 1.1 can be used to maintain the

macrosets. By combining these two tech-

niques, a linear-time algorithm for this

special case of the set union problem can

be obtained.

Theorem 1.4.1

[Gabow and Tarjan 1985] If the knowl-

edge about the union tree is available in

advance, each union and find operation

can be supported in O(1) amortized time.

The total space required is O(n).

The same algorithm given for the static

tree set union can be extended to the

incremental tree set union problem. For

this problem, the union tree is not known

in advance but is allowed to grow only

one node at the time during the sequence

of union and find operations performed.

This problem has application in several

algorithms for finding maximum match-
ing in general graphs. The incremental

tree set union algorithm is similar to the

algorithm for static tree set union. The

only difference is in the construction of

microsets, which now might change over

time because of new node insertions in

the union tree T. The basic idea is to

start with only one microset, the root of
T. When a new node w is inserted to T,

say as a child of u, w is put in the same
microset as v. If the size of this microset

does not exceed b, nothing need be done.

Otherwise, the microset is split into two

new microsets. It can be proved that this

split can be performed in 0(b) time and

the total number of such splits is at most

0( n / b). Therefore, the incremental tree

set union problem can also be solved in

linear time.

Theorem 1.4.2

[Gabow and Tarjan 1985] The algorithm

for incremental tree set union runs in a

total of O(m + n) time and requires O(n)

preprocessing time and space.

Loebl and Ne5ietfil [19881 presented a

linear-time algorithm for another special

case of the set union problem. They con-

sidered sequences of unions and finds
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with a constraint on the subsequence of

finds. Namely, the finds are listed in a

postorder fashion, where a postorder is

a linear ordering of the leaves induced by

a drawing of the tree in the plane. In this

framework, they proved that such se-

quences of union and find operations can

be performed in linear time, thus getting

O(1) amortized time per operation. A

slightly more general class of input se-

quences, denoted by local postorder, was

proved not to be linear, but its rate of

growth is not provable in the theory of

finite sets. A preliminary version of these

results was reported in Loebl and NeEetiil

[1988].

1.5 Applications of Set Union

In this section, we list a few applications

of the set union problem coming from

areas such as combinatorial optimiza-

tion, graph algorithms, and theorem

proving. We describe how to take advan-

tage of set union algorithms for finding

minimum spanning trees [Aho et al.

1974; Kerschenbaum and van Slyke

1972], for maintaining on-line connected

components of undirected graphs [Even

and Shiloach 1981], and for performing

unification of first-order terms [Alt-Kaci

1986; Alt-Kaci and Nasr 1986; Huet 1976;

Vitter and Simons 19861.

A spanning tree S = (X, T) of a graph

G = (V, E) is a tree that has the same
vertex set G (i.e., X = V) and that con-

tains only edges of G (i.e., T z E). If

each edge (i, J“) of G is assigned a cost

C(i, j), then the cost of spanning tree is

defined as

c(s) = E C(i>j).
(i,J)e T

A minimum spanning tree of G is a

spanning tree of minimum cost. This
problem arises naturally in many appli-
cations, including communication net-

works and distributed computation. Aho

et al. [1974] give the following algorithm

to compute the minimum spanning tree

of a graph, which was first developed by

Kruskal [19561:

begin

S+g;
for each vertex

initialize a singleton set {U};

while there is more than one set left
do begin

choose the cheapest edge (u, u) c E;

delete (u, u) from E;

A + F~~~( ~);

B + FIND(U);

if A # B then begin

UNION( A, B);

add (u, U)to S
end;

end;

end

The algorithm starts with a spanning

forest of n singleton trees and examines

all the edges of the graph in order of

increasing costs. When an edge (u, U) is

examined, the algorithm checks whether

(u, v) connects two trees of the spanning
forest. This is done by checking whether

vertices u and v are in different trees of

the spanning forest. If so, the trees are

combined and (u, U) is inserted into the

spanning tree. As shown in the above

pseudocode, this algorithm can be effi-

ciently implemented if the trees of the

spanning forest are represented as

disjoint sets subject to union and find

operations.

There are numerous spanning tree

problems that also benefit from ideas be-

hind the set union algorithms. Among

them are testing whether a given span-

ning tree is minimum [Tarjan 1979b],

performing sensitivity y analysis on mini-
mum spanning trees [Tarjan 1982], and

finding edge replacements in minimum

spanning trees [Tarjan 1979bl.
Another application of set union algo-

rithms is the on-line maintenance of the

connected components of an undirected

graph. Namely, we are given an undi-
rected graph in which edges can be in-

serted one at a time and for which con-

nectivity questions, such as “Are vertices

u and v in the same connected compo-
nent?” must be answered at any time in

an on-line fashion. As noted by Even and

Shiloach [19811, this problem can be
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solved by maintaining the connected

components of the graph as disjoint sets

subject to union and find operations.

Checking whether two vertices u and u

are in the same connected component can

be performed by testing whether find(u)

= find(v). The insertion of a new edge

(x, y) can be accomplished by first check-
ing whether x and y are already in the

same connected component by means of

two find operations. If so, the representa-

tion of disjoint sets need not be changed.

Otherwise, x and y are in two different

connected components and therefore in
two different sets, say A and B. As a

result of the insertion of edge (x, y), A

and B are combined through a union

operation. By using the set union algo-

rithms with any union rule and path

compaction, the total time required to

maintain an n-vertices graph under m

edge insertions and k connectivity ques-

tion is O(n -1-ka(k, n)).

A third application of set union algo-
rithms is the unification problem. Infor-

mally, the unification problem can be

stated as follows: “Given two different

descriptions, can an object fitting both

descriptions be found?” More formally, a

description is an expression in logic com-

posed of function symbols, variables, and

constants. Finding value of variables that

make two expressions equal is an impor-

tant process in logic and deduction called

unification. The reader is referred to the

excellent survey of Knight [19891 for a

more precise definition of the unification

problem and its significance in different

interdisciplinary areas.

Many algorithms proposed to solve the

unification problem exploit the efficiency

of set union algorithms [Ait-Kaci 1986;
Huet 1976; Vitter and Simons 19861. The

main idea behind those algorithms is to

use a graph representation for terms to

be unified, where function symbols, vari-

ables, and constants are the vertices of

the graph. Initially, each node is in a
singleton class. Throughout the execu-
tion of the algorithm, equivalence classes

of vertices are maintained. If two ver-

tices u and u belong to the same equiva-
lence class, they have been unified by the

algorithm. As the unification proceeds,

different equivalence classes are com-

bined together. If at the end of this algo-

rithm a class contains different function
symbols, the two original terms were not

unifiable. For more details see Huet

[19761 and Vitter and Simons [1986]. We

note that these algorithms resemble an-

other algorithm (again based upon set

union data structures) required to solve

equivalence of finite state machines

[Hopcroft and Karp 19711 (see Aho et al.
[1974, pp. 143-145]).

Another interesting application of set

union algorithms is the depth determina-

tion problem. In this problem, one is in-

terested in maintaining information

about the depth of vertices in a forest of

trees subject to update operations, such

as linking two trees by inserting a new

edge. Details can be found in Aho et al.

[1974, pp. 141-1421.

2. SET UNION PROBLEM ON INTERVALS

In this section, we describe efficient solu-

tions to the set union problem on inter-

vals, which can be defined as follows.
Informally, we would like to maintain a

partition of a list {1, 2,. ... n} in adja-

cent intervals. A union operation joins

two adjacent intervals, a find returns the

name of the interval containing x, and a

split divides the interval containing x

(at x itself). More formally, at any time

we maintain a collection of disjoint sets

A, with the following properties. The

A ,’s, 1 s i s k, are disjoint sets whose

members are ordered by the relation s

and such that

~AL={l,2,..,, n}.
i=l

Furthermore, every item in A, is less

than or equal to all the items in A,+ ~,

for i=l,2,. . ., n – 1. In other words,

the intervals A, partition the interval
[1, n]. Set A, is said to be adjacent to
sets A,_ ~ and A,+ ~. The set union prob-
lem on intervals consists of performing a

sequence of the following operations:
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AA

s, S2

x

uniOn(Sl, SZ, S)

1

AS3 AS4

t
Split (S,S1, S2, z)

Figure 3. Union and spht operations

union(Sl, Sz, S): Given the adjacent sets

S’l and Sz, combine them into a new set
S= S1L)S2.

find(x): Given the item x, return the

name of the set containing x.

split(S, SI, Sz, x): Partition S into two

sets Sl={a~Sla <x} and S2={ae

S I a ~ x}. Figure 3 shows examples of

union and split operations.

Adopting the same terminology used

in Mehlhorn et al. [1988], we will refer to

the set union problem on intervals as the

interval union-split-find problem. After

discussing this problem, we consider two

particular cases: the interval union-find

problem and the interval split-find prob-

lem, where only union-find and split-find
operations are allowed, respectively.

The interval union-split-find problem

and its subproblems have applications in

a wide range of areas, including prob-

lems in computational geometry such as

dynamic segment intersection [Imai and
Asano 1987; Mehlhorn 1984c; Mehlhorn

and Naher 1990], shortest paths prob-
lems [Ahuja et al. 1990; Mehlhorn 1984b],

and the longest common subsequence

problem [Aho et al. 1983; Hunt and

Szymanski 1977].

2.1 Interval Union-Split-Find

In this section, we will describe optimal

separable and nonseparable pointer algo-
rithms for the interval union-split-find

problem. The best separable algorithm

for this problem runs in O(log n) worst-

case time for each operation, whereas

nonseparable pointer algorithms require

only O(log log n) worst-case time for each

operation. In both cases, no better bound

is possible.
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The upper bound for separable point-

er algorithms can be easily obtained

by means of balanced trees [Aho et al.
1974; Adelson-Velskii and Landis

1962; Mehlhorn 1984a; Nievergelt and

Reingold 1973], whereas the following

lower bound holds.

Theorem 2.1.1

[Mehlhorn et al. 19881 For any separable

pointer algorithm, both the worst-case per

operation time complexity of the interval

split-find problem and the amortized time

complexity of the interval union-split-find

problem are LK?og n).

Turning to nonseparable pointer algo-

rithms, the upper bound can be found in

Karlsson [19841, Mehlhorn and Naher

[1990], van Erode Boas [1977], and van

Erode Boas et al. [19771. In particular,

van Erode Boas et al. [1977] introduced a
priority queue that supports among other

operations insert, delete, and successor

on a set with elements belonging to a

fixed universe S = {1,2, . . . . n}. The

time required by each of those operation

is O(log log n). Originally, the space was

0( n log log n) but later was improved to

0(n). It can be shown [Mehlhorn et al.

1988] that the above operations corre-

spond to union, split, and find, respec-
tively, and therefore the following

theorem holds.

Theorem 2.1.2

[van Erode Boas 1977] There exists a data

structure supporting each union, find, and

split in O(log log n) worst-case time. The

space required is O(n).

No better bound can be achieved for

nonseparable pointer algorithms.

Theorem 2.1.3

[Mehlhorn et al. 1988] For any nonsepa-

rable pointer algorithm, both the worst-

ca.se pev operation time complexity of the

interval split-find problem and the amor-

tized time complexity of the interval

union-split-find problem are L?(log log n).

Notice that this implies that for the
interval union-split-find problem the sep -

arability assumption causes an exponen-

tial loss of efficiency.

2.2 Interval Union-Find

The interval union-find problem is a re-

striction of the set union problem de-

scribed in Section 1, where only adjacent

intervals are allowed to be joined. Hence-

forth, both the O(a(m + n, n) amortized

bound given in Theorem 1.1.1 and

the O(log n/log log n) single-operation

worst-case bound given in Theorem 1.2.1

still hold.

Whereas Tarjan’s proof of the fl(a( m

+ n, n)) amortized lower bound also holds
for the interval union-find problem,

Blum’s proof does not seem to be easily

adaptable to the new problem. Hence, it

remains an open problem whether a bet-

ter bound than O(log n /log log n) is pos-

sible for the single-operation worst-case

time complexity of separable pointer

algorithms.

It is also open whether less than

O(log log n) worst-case per operation time

can be achieved for nonseparable pointer
algorithms. Gabow and Tarjan [19851

used the data structure described in Sec-

tion 1.4 to obtain an 0(1) amortized time

on a random access machine.

2.3 Interval Split-Find

According to Theorems 2.1.1, 2.1.2 and

2.1.3, the two algorithms given for the

more general interval union-split find

problem are still optimal for the single-

operation worst-case time complexity of
the interval split-find problem. As a re-

sult, each split and find operation can be

supported in @(log n) and in @(log log n)

time, respectively, in the separable and
nonseparable pointer machine model.

The amortized complexity of this prob-

lem can be reduced to O(log* n), where

log* n is the iterated logarithm function,z

as shown by Hopcroft and Unman
[19’73]. Their algorithm is based upon an

extension of an idea by Stearns and

‘log* n = min{z Ilog[’] n s 1}, where log”] n =

log log”- 1’ n for i > 0 and log ‘0] n = n. Informally,

it is the number of times the logarithm must be

taken to obtain a number less than 1.
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Rosenkrantz [19691. The basic data struc-
ture is a tree for which each node at level

i, i ~ 1, has at most 2 ~(z– 1) children,

where F(i) = F(i – 1)2 F(’–1), for i > 1,

and F(0) = 1. A node is said to be com-

plete either if it is at level O or if it is at
level i >1 and has 2‘(’ -1) children, all of

which are complete. The invariant main-

tained for the data structure is that no

node has more than two incomplete chil-

dren. Moreover, the incomplete children

(if any) will be leftmost and rightmost.

As in the usual tree data structures for

set union, the name of a set is stored in
the tree root.

Initially, such a tree with n leaves is

created. Its height is O(log* n), and

therefore a find(x) will require O(log* n)

time to return the name of the set. To

perform a split(x), we start at the leaf
corresponding to x and traverse the path

to the root to partition the tree into two
trees. It is possible to show that using

this data structure, the amortized cost of

a split is O(log* n) [Hopcroft and Unman

19731.

This bound can be further improved to

O(a(m, n)) as shown by Gabow [19851.

The algorithm used to establish this up-

per bound relies on a sophisticated parti-
tion of the items contained in each set.

Theorem 2.3.1

[Gabow 1985] There exists a data struc-

ture supporting a sequence of m find and

split operations in O(ma(m, n)) worst-case

time. The space required is O(n).

Very recently, La Poutr& [1990bl

proved that this bound is tight for (both

separable and nonseparable) pointer
algorithms.

Theorem 2.3.2

[La Poutrk 1990b] Any pointer algorithm

requires LYn + m a(m, n)) time to perform

n – 1 split and m find operations.

Using the power of a random access

machine, Gabow and Tarjan [19851 were
able to achieve El(l) amortized time for

the interval split-find problem. This

bound is obtained by using a slight vari-

ant of the data structure sketched in

Section 1.4.

2.4 Applications of Set Union on Intervals

The problem of determining the longest

common subsequence of two input se-

quences is an application of set union on

intervals. This problem has many appli-

cations, including sequence comparison

in molecular biology and the widely used

cliff file comparison program [Aho et al.
1983]. The problem can be defined as

follows. A subsequence of a sequence x is

obtained by removing elements from x.

The elements removed need not neces-

sarily be contiguous. The longest com-

mon subsequence of two sequences x and

y is a longest sequence that is a subse-

quence of both x and y.

Hunt and Szymanski [1977] devised

a solution to this problem based upon

set union on intervals, Denote by x =

x~, x~, . . ..xm andy=yl, yz, ..., y. the

two sequences whose longest common

subsequence we would like to compute.

Without loss of generality, assume m < n

(otherwise exchange the role of the two

sequences in what follows). For each

symbol a of the alphabet over which the

two sequences are defined, compute

OCCURRENCES(a) = { i I y, = a}. This

gives us all the positions of the sequence

y at which symbol a appears.
For the sake of simplicity, we only

mention how to find the length of the

longest common subsequence of x and y.

The longest common subsequence itself

can be found with some additional book-

keeping. The algorithm considers each

symbol XJ, 1 s j s n-z, and computes, for
O s i < n, the length of the longest com-

mon subsequence of the two prefixes

X1, X2,..., xl and yl, yz, . . ., y,. To ac-
complish this task efficiently, for a fixed

j we define sets Ak of indexes as follows.

Ak consists of all the integers i such that

the longest common subsequence of

xl, X29. . , XJ. and yl, yz, . . ., y, has
length k. NotIce that the sets Ak parti-

tion {1, 2, . . . . n} into adjacent intervals

since each Ah contains consecutive inte -

ACM Computing Surveys, VOI 23, No 3, September 1991



Disjoint Set Union Problems ● 335

gers and items in A~+ ~ are larger than
those in Ah for any k. Assume we have

already computed the sets Ah up to posi-

tion j – 1 of the string x. We show how

to update them to apply the position j.

For each r in OCCURRENCES( x~), we

consider whether we can add the match

between x~ and y, to the longest common

subsequence of whether we can

add the match between x~ and yr to

the longest common subsequence of

X1, X2,..., x~. and yl, yz, . . . , Yr. The

crucial point M that if both r – 1 and r

are in A~, then all the indexes s > r

belong to A~~ ~ when x~ is considered.

The following pseudocode describes this
algorithm. The reader is referred to Hunt

and Szymanski [1977] for details.

begin

initialize A = {O, 1,....n};

fori+l tondo

A, G ~;

forj+l tondo

for r E OCCURRENCES( XJ) do begin

k + ~zN~(r);

if k = FZND(r – 1)then begin

SPLIT(Ah, Ah, AL, r);

UNION(A~, A~+l, ‘k)

end;

end,

return( FIND( n))

end

We conclude this section by mention-

ing that Hunt and Szymanski’s algo-

rithm has been recently improved by

Apostolic and Guerra [19871 and by
Eppstein et al. [1990]. Both these algo-

rithms use similar paradigms but more
sophisticated data structures.

3. SET UNION PROBLEM WITH DEUNIONS

Mannila and Ukkonen [1986al defined a

generalization of the set union problem,

referred to as set union with deunions. In

addition to union and find, the following

operation is allowed:

denunion: Undo the most recently per-
formed union operation not yet undone.

Motivations for studying this problem

arise in logic programming interpreter
memory management without function

symbols [Hogger 1984; Mannila and

Ukkonen 1986b, 1986c; Warren and

Pereira 1977]. In Prolog, for example,

variables of clauses correspond to the ele-
ments of the sets, unifications correspond

to unions, and backtracking corresponds

to deunions [Mannila and Ukkonen

1986bl.

3.1 Algorithms for Set Union with Deunions

Recently, the amortized complexity of set

union with deunions was characterized

by Westbrook and Tarjan [1989al, who

derived a @(log n/log log n) upper and
lower bound. The upper bound is ob-

tained by extending the path compaction

techniques described in the previous sec-

tions in order to deal with deunions. The

lower bound holds for separable pointer

algorithms. The same upper and lower

bounds also hold for the single-operation

worst-case time complexity of the

problem.

We now describe @(log n/log log n)

amortized algorithms for the set union

problem with deunions [Mannila and

Ukkonen 1987; Westbrook and Tarjan

1989a]. They all use one of the union

rules combined with path splitting and

path halving. Path compression with any

one of the union rules leads to an O(log n)

amortized algorithm, since it can be seen

by first performing n – 1 unions that

build a binomial tree (as defined, for in-

stance, in Tarjan and van Leeuwen

[1984]) of depth O(log n) and then by

repeatedly carrying out a find on the

deepest leaf, a deunion, and a redo of

that union.

In the following, a union operation not
yet undone will be referred to as live and

otherwise as dead. To handle deunions, a

union stack is maintained, which con-

tains the roots made nonroots by live

unions. Furthermore, for each node x a

node stack P(x) is maintained, which

contains the pointers leaving x created
either by unions or by finds. During a
path compaction caused by a find, the old

pointer leaving x is left in P(x) and
each newly created pointer (x, y) is
pushed onto P(x), The bottommost
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pointer on these stacks is created by a

union and will be referred to as a union

pointer. The other pointers are created

by the path compaction performed during

the find operations and are called find

pointers. Each of these pointers is associ-

ated with a unique union operation, the

one whose undoing would invalidate the
pointer. The pointer is said to be live if

the associated union operation is live and
it is said to be dead otherwise.

Unions are performed as in the set

union problem, except for each union a

new item is pushed onto the union stack

containing the tree root made nonroot

and some bookkeeping information about

the set name and either size or rank. To

perform a deunion, the top element is

popped from the union stack, and the

pointer leaving that node is deleted. The
extra information stored in the union

stack is used to maintain set names and

either sizes or ranks.

There are actually two versions of these

algorithms, depending on when dead

pointers are removed from the data

structure. Eager algorithms pop pointers

from the node stacks as soon as they

become dead (i.e., after a deunion opera-

tion). On the other hand, lazy algorithms

remove dead pointers in a lazy fashion

while performing subsequent union and
find operations. Combined with the al-

lowed union and compaction rules, this

gives a total of eight algorithms. They

all have the same time and space com-

plexity, as the following theorem shows.

Theorem 3.1.1

Either union by size or union by rank in

combination with either path splitting or

path halving gives both eager and lazy

algorithms that run in O(log n / log log n)

amortized time for operation. The space

required by all these algorithms is O(n).

Proofi The time bounds for the eager

and lazy algorithms follow from Theorem

1 and Theorem 2 in Westbrook and

Tarjan [1989 al. The space bound for the

eager algorithms is 0(n). The space com-
plexity of the lazy algorithms can be

shown to be 0(n) by following the stamp-

ing technique introduced by Gambosi et

al. [1989b], which establishes that the

lazy algorithms require no more space

than their eager counterparts. n

This bound is tight for separable

pointer algorithms.

Theorem 3.1.2

[Westbrook and Tarjan 1989al Every sep-

arable pointer algorithm for the set union

problem with deunions requires at least

tl(log n / log log n) amortized time per

operation.

As for the single-operation worst-case

time complexity of set union with deu-
nions, an extension of Blum’s data struc-

ture described in Section 1.2 can also

support deunions. As a result, the aug-

mented data structure will support each

union, find, and deunion in O(log n/log

log n) time in the worst case, with an

0(n) space usage.

3.2 Applications of Set Unions with Deunions

The main application of set union with

deunions arise in logic programming in-

terpreter memory management without

function symbols [Mannila and Ukkonen

1986b]. Indeed, the most popular logic

programming language, Prolog, uses uni-

fication and backtracking as crucial op-

erations [Warren and Pereira 1977]. We

now consider the following example, bor-
rowed from Clocksin and Mellish [19811

to show how unification and backtrack-

ing work in Prolog.

Consider a database consisting of the

following assertions

likes(mary, food)

likes(mary, wine)

likes(john, wine)

likes(john, mary)

whose meaning is representing the facts

that Mary likes food, Mary and John like

wine, and John likes Mary. The ques-
tion, “Is there anything John and Mary
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both like?” is phrased in Prolog as

follows:

?- likes(mary, X), likes(john, X).

Prolog answers this question by first
attempting to unify the first term of

the query with some assertion in

the database. The first matching fact

found is likes(mary, food). As a result,

the terms likes(mary, food) and

likes(mary, X) are unified and Prolog in-

stantiates X to food everywhere X ap-

pears in the query. Now the database is

searched for the second term in the query,

which is likes(john, food) because of the

above substitution. But these term fails
to unify with any other term in the

database.

Then Prolog backtracks, that is, it

“undoes” the last unification per-
formed: It undoes the unification of

likes(mary, food) with Iikes(mary, X).

As a result, the variable X becomes non-

instantiated again. Then Prolog tries to

reunify the first term of the query with

another term in the database. The next

matching fact is likes(mary, wine), and
therefore the variable X is instantiated

to wine everywhere X appears. As be-

fore, Prolog now tries to unify the sec-

ond term, searching this time for

Iikes(john, wine). This can be unified

with the third assertion in the database

and Prolog notifies the user with the

answer

X = wine.

Consequently, the execution of a Pro-
log program without function symbols

can be seen as a sequence of unifications

and deunifications. Therefore, data
structures for the set union problems with

deunions can be effectively used for this
problem. More details on this application

can be found in Mannila and Ukkonen

[1986bl.

4. EXTENSIONS OF THE SET UNION

PROBLEM WITH DEUNIONS

Recently, other variants of the set union
problem with deunions have been consid-

ered, such as set union with arbitrary

deunions [Mannila and Ukkonen 19881,

set union with dynamic weighted back-
tracking [Gambosi et al. 1991c], and set

union with unlimited backtracking

[Apostolic et al. 19891. In the following
sections, we will discuss these problems

and give the best algorithms known for

their solutions.

4.1 Set Union with Arbitrary Deunions

Mannila and Ukkonen [1988] introduced

a variant of the set union problem called

set union problem with arbitrary deu -

nions. This problem consists of maintain-

ing a collection of disjoint sets under an
intermixed sequence of the following

operations:

uniorz( x, y, A): Combine the sets con-

taining elements x and y into a new set

named A.

find(x): Output the name of the set that

currently contains element x.

deunion( i): Undo the ith union so far

performed.

After a deunion( i), the name of the sets

are as if the ith union has never oc-

curred.

Motivations for studying this problem

arise in the incremental execution of logic

programs [Mannila and Ukkonen 1988].

The following lower bound can be ob-

tained by reduction to the interval

union-find-split problem [Mehlhorn et al.

19881, as characterized in Theorems 2.1.1

and 2.1.3.

Theorem 4.1.1

[Mannila and Ukkonen 1988] The amor-

tized complexity of the set union prob-

lem with arbitrary deunions is tl(log n)

for separable pointer algorithms and

~(log log n) for nonseparable pointer

algorithms.

There is actually an O(log n) time al-

gorithm matching this lower bound, as
the following theorem st~te~.

Theorem 4.1.2

[G’alil and Italiano 1991] There exists a

data structure that supports each union,
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find, anddeunion(i) in O(logn) time and

O(n) space.

4.2 Set Union with Dynamic Weighted

Backtracking

Gambosi et al. [19911 considered a fur-
ther extension of the set union problem

with deunions by assigning weights to
each union and by allowing backtracking

either to the union of maximal weight or

to a generic union so far performed. They

refer to this problem as the set union

problem with dynamic weighted back-

tracking. The problem consists of sup-

porting the following operations.

union( A, B, w): Combine sets A, B into

a new set named A and assign weight w

to the operation.

firzd( x): Return the name of the set con-

taining element x.

increase– weight( i, A): increase by A the

weight of the ith union performed, A >0.

decrease_ weight(i, A): decrease by A the

weight of the ith union performed, A > 0.

backweight: Undo all the unions per-

formed after the one with maximal

weight.

backtrack(i): Undo all the unions per-

formed after the ith one.

Motivations for the study of the set

union problem with dynamic weighted

backtracking arise in the implementa-
tion of search heuristics in the frame-

work of Prolog environment design

[Hogger 1984; Warren and Pereira 1977].
In such a context, a sequence of union

operations models a sequence of uni-

fications between terms [Mannila and
Ukkonen 1986b], whereas the weight as.

sociated with a union is used to evaluate
the goodness of the state resulting from
the unification to which the union is as-

sociated. Thus, backtracking corresponds

to returning to the most promising state
examined so far in the case of a failure of

the current path of search. Furthermore,
the repertoire of operations is enhanced

by allowing the weight associated with

each union already performed to be up-
dated (both increased and decreased).

This operation adds more heuristic power

to the algorithms for logic programming

interpreter memory management and

therefore improves the practical perfor -
mance of the previous known “blind”

uniform-cost algorithms. Backtracking
to the state just before any union is

performed is implemented by the back-
track(i) operation. This makes it possible

to implement several hybrid strategies

based on best-first search combined with

backtracking [Ibaraki 1978; Pearl 1984].

Theorem 4.2.1

[Gambosi et al. 1991] It is possible to

perform each union, find, increase_

weight, decrease– weight, back weight, and

backtrack in O(log n) time. The space re-

quired is O(n). This bound is the best

possible for any nonseparable pointer

algorithm.

Better amortized bounds can be

achieved. Indeed, it is possible to perform

each backweight, backtrack, and

increase– weight in O(1) amortized time

and decrease–weight and union in

O(log n) amortized time. Finds can

be supported in O(log n /max{l,
log(y log n)}) amortized time, where y is

the ratio of the number of finds to the

number of unions and backtracks in the

sequence. This can be obtained by using

the data structure described in West-
brook and Tarjan [1989al in combina-

tion with Fibonacci heaps [Fredman and

Tarjan 1987]. The space required is

O(n).

4.3 Set Union with Unlimited Backtracking

A further generalization of the set union
problem with deunions was considered in

Apostolic et al. [1989]. This generaliza-

tion is called the set union problem with

unlimited backtracking since the limita-

tion that at most one union could be

undone per operation was removed.

As before, we denote a union not yet

undone by live and otherwise by dead. In

the set union problem with unlimited

backtracking, deunions are replaced by
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the following more general operation:

backtrack(i): Undo the last i live unions

performed for any integer i >0.

Note that this problem lies between set

union with deunions and set union with

weighted backtracking. In fact, as pre-
viously noted, it is more general than

the set union problem with deunions,

since a deunion can be implemented as

backtrack(l). On the other hand, it is a

particular case of the set union with

weighted backtracking, where only un-

weighed union, find, and backtrack op -

erations are considered. As a conse-

quence, its time complexity should be

between O(log n./log log n) and O(log n).

Apostolic et al. [1989] showed that the

time complexity of this problem is

O(log n /log log n) for separable pointer

algorithms when unites instead of unions

are performed (i. e., when the name of the

new set can be arbitrarily chosen).

There is a strict relationship between

backtracks and deunions. We already
noted that a backtrack(1) is simply a

deunion operation. Furthermore, a back-

track (i) can be implemented by perform-

ing exactly i deunions. Hence, a se-

quence of ml unions, mz finds, and m~

backtracks can be carried out by simply

performing at most ml deunions instead

of the backtracks. Applying Westbrook

and Tarjan’s algorithms to the sequence

of union, find, and deunion operations,

a total of 0(( ml + mz)log n/log log n)

worst-case running time will result. As a

consequence, the set union problem with

unlimited backtracking can be solved in

O(log n/log log n) amortized time per op-

eration. Since backtracks contain de-
unions as a particular case, this bound is

tight for the class of separable pointer

algorithms.

Using either Westbrook and Tarjan’s

algorithms or Blum’s augmented data

structure, each backtrack(i) can require

0( i log n/log log n) in the worst case.
Also note that the worst-case time com-

plexity of backtrack(i) is at least Q(i) as
long as one insists on deleting pointers

as soon as they are invalidated by back-
tracking (as in the eager methods de-

scribed in Section 3.1). This is so, since

in this case at least one pointer must be

removed for each erased union. This is

clearly undesirable, since i can be as
large as n – 1. To overcome this diffi-

culty, dead pointers must be removed in

a lazy fashion.

The following theorem holds for the set
unions with unlimited backtracking

when union operations are taken into

account.

Theorem 4.3.1

It is possible to perform each union, find,

and backtrack(i) in O(log n) time in the

worst case. This bound is tight for non-

separable pointer algorithms.

Proofi The upper bound is a straight-

forward consequence of Theorem 4.2.1

since unlimited backtracking is a partic-

ular case of weighted backtracking. Fur-

thermore, the proof of the lower bound

for set union with weighted backtracking

can be adapted for the new problem. ❑

If unite operations (instead of unions)

are performed, the upper bound re-

duces to O(log n/log log n). No better

bound is possible for separable pointer

algorithms.

Theorem 4.3.2

[Apostolic et al. 1989] There exists a data

structure that supports each unite and

find operation in O(log n / log log n) time,

each backtrack in O(1) time, and requires

O(n) space.

No better bound is possible for any

separable pointer algorithm or in the cell
probe model of the computation.

Theorem 4.3.3

For any n, any separable pointer algo-

rithm for the set union with unlimited

backtracking has single-operation time

complexity at least Q(log n J log log n) in

the worst case. The same lower bound

holds also in the cell probe model of

computation.

Proofi It is a trivial extension of

Theorems 1.2.2 and 1.2.3, which state
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that it suffices to consider only unite and

find operations. ❑

It is somewhat surprising that the two

versions of the set union problem with

unlimited backtracking have such a dif-

ferent time complexity and that the ver-

sion with unites can be solved more effi-

ciently than the version with unions. We

recall here that after a unite (A, B), the

name of the newly created set is either A

or B. This is not significant restriction in

many applications, where one is mostly

concerned with testing whether two ele

ments belong to the same equivalence

class, no matter what the name of the

class. The lower bound of fl(log n) is a

consequence of Theorem 2 in Mannila
and Ukkonen [1988], which depends

heavily on the fact that a union cannot

arbitrarily choose a new name. The cru-

cial idea behind the proof of Theorem 2

in Mannila and Ukkonen [1988] is that

at some point we may have to choose

among @(n) different names of a set con-

taining any given element in order to

output a correct answer. But if a new

name can be arbitrarily chosen after

performing a union, the inherent com-

plexity of the set union problem with

unlimited backtracking reduces to

fl(log n /log log n). Hence, the constraint

on the choice of a new name is responsi-

ble for the gap between ~(log n/log log n)

and fl(log n).

5. PERSISTENT DATA STRUCTURES FOR SET

UNION

In this section we describe persistent data

structures for the set union problem

[Driscoll et al. 1989; Overmars 19831.
Following Driscoll et al. [1989], we define
a data structure to be ephemeral when

an update destroys the previous version.
A partially persistent data structure sup-

ports access to multiple versions, but only

the most recent version can be modified.

A data structure is said to be fully per-

sistent if every version can be both ac-

cessed and modified.

The fully persistent disjoint set union

problem can be defined as follows.

Throughout any sequence of operations,

multiple versions of a set union data

structure are maintained (i. e., multiple

versions of the partition are maintained).

Union operations are updates, whereas

find operations are accesses. If the jth

union operation applies to version u, u <

j, the result of the update is a new

version j. The operations on the fully

persistent data structure can be defined

as follows (we use uppercase initials

to distinguish them from the correspond-

ing operations on the ephemeral data

structure).

Union( x, y, u): Denote by X and Y the

two sets in version u containing, respec-

tively, x and y. If X = Y, do nothing.

Otherwise, create a new version in which
X and Y are combined into a new set,

The new set gets the same name as X.

Find( x, u): Return the name of the set

containing element x in version U.

Initially the partition consists of n sin-

gleton sets {1}, {2}, . . . ,{n}, and the

name of set {i} is i. This is version O of

the set union data structure. The re-

stricted case in which union operations

are allowed to modify only the most re -

cent version defines the partially persis-

tent disjoint set union problem.

We first consider the partially persis-

tent disjoint set union problem. As in the

case of the set union problem with un-

limited backtracking, we have two ver-

sions of this problem, depending on

whether union or unite operations are

performed. The time complexity of the

two versions is quite different, as shown

in the following two theorems.

Theorem 5.1

[Mannila and Ukkonen 1988] There

exists a data structure that solves the

partial l-~ persistent disjoint set union

problem in O(log n) worst-case time per

operation with an O(n) space usage. No

better bound is possible for pointer based

algorithms.

The amortized time of a union can be
further reduced to O(1) by using the data

structures introduced in Brown and

ACM Computmg Surveys, Vol 23, No 3, September 1991



Disjoint Set Union Problems 9 341

Tarjan [1980] and Huddleston and

Mehlhorn [1982]. Different data struc-

tures can be also used to establish the

previous upper bound, as shown for

instance in Gaibisso et al. [1990] and

Mannila and Ukkonen [1988]. Further-

more, if we perform unites instead of

unions, a better algorithm can be found.

Theorem 5.2

[Apostolic et al. 1989] If unites instead of

un~ons have to performed, the partially

persistent disjoint set union problem can

be solved in O(log n /log log n) time per

operation with an O(n) space usage. No

better bound is possible for separable

pointer algorithms and in the cell probe

model of computation.

As in the case of the set union problem

with unlimited backtracking, the con-

straint on the choice of a new name
is responsible for the gap between

O(log n /log log n) and fl(log n).

Turning to the fully persistent disjoint

set union problem, Italiano and Sarnak

[19911 gave an efficient data structure for
this problem that achieves the following

bounds.

Theorem 5.3

[Italiano and Sarnak 1991] The fully per-

sistent disjoint set union problem can be

solved in O@g n) worst-case time per op-

eration and in O(1) amortized space per

update. No better pointer based algorithm

is possible.

6. CONCLUSIONS AND OPEN PROBLEMS

In this paper we described the most effi-

cient known algorithms for solving the

set union problem and some of this prob -

lem variants. Most of the algorithms we

described are optimal with respect to a

certain model of computation (e. g.,

pointer machines with or without the
separ-ability assumption, random access
machines). There are still several intrigu-

ing problems in all the models of com-
putation we have considered. Fredman

and Saks’ lower bound analysis

[Fredman 1989; Fredman and Saks 19891
settled both the amortized time complex-

ity and the single operation worst-case

time complexity of the set union problem

in the cell probe model of computation.

La Poutr6 [1990b] settled the amortized

time complexity of the set union problem

for nonseparable pointer algorithms. It is

still open, however, as to whether in these

models the amortized and the single op-

eration worst-case complexity of the set

union problems with deunions or back-
tracking can be improved. Furthermore,

there are no lower bounds for some of the

set union problems on intervals. In the

pointer machine model with the separa-

bility assumption, there is no lower bound

for the amortized nor is there one for the

worst-case complexity of interval union-

find. In the realm of nonseparable pointer

algorithms, it remains open whether the

O(log n /log log n) worst-case bound

[Blum 1986] for interval union-find is

tight. This problem requires E)(l) amor-

tized time on a random access machine

as shown by Gabow and Tarjan [19851.
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