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Abstract 
We consider the computational problem of finding nearest 
neighbors in general metric spaces. Of particular interest are 
spaces that may not be conveniently embedded or approxi- 
mated in Euclidian space, or where the dimensionality of a 
Euclidian representation 1s very high. 

Also relevant are high-dimensional Euclidian settings in 
which the distribution of data is in some sense of lower di- 
mension and embedded in the space. 

The up-tree (vantage point tree) is introduced in several 
forms, together‘ with &&ciated algorithms, as an improved 
method for these difficult search nroblems. Tree construc- 

I 

tion executes in O(nlog(n 
i 

) time, and search is under certain 
circumstances and in the imit, O(log(n)) expected time. 

The theoretical basis for this approach is developed and 
the results of several experiments are reported. In Euclidian 
cases, kd-tree performance is compared. 

Keywords - Metric Space, Nearest Neighbor, Computa- 

tional Geometry, Associative Memory, Randomized Methods, 

Pattern Recognition, Clustering. 

1 Introduction. 

Nearest neighbor analysis is a well established technique 
for non-parametric density estimation, pattern recogni- 
tion, memory-based reasoning, and vector quantization. 
It is also highly intuitive notion that seems to correspond 
in some way with the kind of inexact associative recall 
that is clearly a component of biological intelligence. 

One useful abstraction of nearness is provided by the 

classical notion of a mathematical metric space [l]. Eu- 
clidian n-space is but one example of a metric space. 

The Nearest Neighbor field includes the study of de- 
cision making and learning based on neighborhoods, the 
underlying metrics and spaces, and the matter of com- 
puting/searching for the neighborhood about a point. 
See [2] for a recent survey. Our focus is on search, and, 
for simplicity, on locating any single nearest neighbor. 

Given a fixed finite subset of the space and calling it 
the.database, our task is then to locate for each new query 

drawn from the space, a database element nearest to it. 

As the database is finite, we might search by consid- 
ering every member. But in a somewhat analogous set- 
ting, binary search can locate a queries position within a 
finite ordered database while considering only log(n) ele- 
ments. Moreover, binary search proceeds given only ordi- 

*NEC Research Institute, 4 Independence Way, Princeton, New 
Jersey 08540, pny@research.nj.nec.coru 

nal knowledge. I.e., it doesn’t matter what the database 
objects are. 

So while the notions of ordering and metric-distance 
are only loosely analogous, we are nevertheless motivated 
to look for improved search methods that depend only 
on the information received through metric evaluation. 

Now binary search presumes that the database has 
been sorted - an nlog(n) process. We then seek to or- 
ganize our database in as much time so that under some 
circumstances, logarithmic time search is possible. 

We introduce the vp-tree (vantage point tree) in several 
forms as one solution. This data structure and the al- 
gorithms to build and search it were first discovered and 
implemented by the author during 1986:87l in conjunc- 

tion with the development of improved retrieval tech- 
niques relating to the PF474 device [3]. Motivation was 
provided by the fact that this chip’s notion of string dis- 
tance is non-Euclidian. Here elements of the metric space 
are strings, E.g., a database of city names and associated 
postal codes. This early work was described in [4]. 

Independently, Uhlmann has reported the same basic 
structure [5, 61 calling it a metric tree. 

There is a sizable Nearest Neighbor Search literature, 

and the vp-tree should properly be viewed as related to 
and descended from many earlier contributions which we 
now proceed to summarize. 

Burkhard and Keller in [7] present three file structures 
for nearest neighbor retrieval. All three involve picking 
distinguished elements, and structuring according to dis- 
tance from these members. Their techniques are coordi- 
nate free. The data structures amount to multi-way trees 
corresponding to integral valued metrics only. 

F’ukunaga in [8,9] exploits the triangle inequality to re- 
duce distance computations searching a hierarchical de- 
composition of Euclidian Space. His methods are re- 
stricted to a Euclidian setting only by his use of a com- 
puted mean point for each subset. However this is not an 
essential component of his approach - at least concep- 
tually. He recursively employs standard clustering [lo] 
techniques to effect the decomposition and then branch- 

and-bound searches the resulting data structure. Dur- 

‘First coded and tested in July of 1987 during a Proximity 
Technology Inc. company workshop in Sunnyvale California. Par- 
ticipants in addition to the author were Samuel Buss (then at U.C. 
Berkeley/Mathematics), Mark Todorovich, and Mark Heising. 
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ing search, the triangle inequality implies that a clus- 
ter need not be explored if the query is far enough out- 
side of it. While exploring a cluster at the lowest level, 
Fukunaga further points out that the triangle inequality 
may be used to eliminate additional distance computa- 
tions. A key point apparently overlooked, is that when 
the query is well inside of a cluster, the exterior need not 
be searched. 

Collections of graphs are considered in [ll] as an ab- 
stract metric space with a metric assuming discrete val- 
ues only. This work is thus highly related to the con- 
structions of [7]. In their concluding remarks the au- 
thors correctly anticipate generalization to more contin- 
uous settings such as Iw”. 

The k&tree of Friedman and Bentley [12, 13, 14, 151 
has emerged as a useful tool in Euclidian spaces of 
moderate dimension. Improvements relating to high- 
dimensional settings, distribution adaptation, and incre- 
mental searches, are described in [16], [17], and [18] re- 
spectively. 

A kd-tree is built by recursively bisecting the database 
using single coordinate position cuts. For a given coordi- 
nate, the database is cut at the median of the distribution 
generated by projection onto that coordinate. An opti- 
mized kd-tree results by choosing the cutting coordinate 
to be that whose distribution exhibits the most spread. 

In addition to various vp-tree forms, we have imple- 
mented optimized kd-tree software so that experimental 
comparisons can be made operating on identical spaces 
and given identical query sequences. 

Like the kd-tree, each vp-tree node cuts/divides the 
space. But rather than using coordinate values, a vp- 
tree node employs distance from a selected vantage point. 
Near points make up the left/inside subspace while the 
right/outside subspace consists of far points. Proceeding 
recursively, a binary tree is formed. Each of its nodes 
identifies a vantage point, and for its children (left/right), 
the node contains bounds of their associated subspace 
as seen by the vantage point. Other forms of the vp- 
tree include additional subspace bounds and may employ 

buckets near leaf level. 

To build these structures, the metric space is decom- 
posed using large spherical cuts centered in a sense at 

elements near the corners of the space. This contrasts 
with the coordinate aligned hyperplanar cuts of the kd- 
tree (See Figures 1 & 2), and the use of computed Eu- 
clidian cluster centroids in [8]. Randomized algorithms 
for vp-tree construction execute in O(n.log(n)) time and 
the resulting tree occupies linear space. 

For completeness, early work dealing with two special 
cases should be mentioned. Retrieval of similar binary 
keys is considered by Rivest in [19] and the L, (max) 
metric setting is the focus of [20]. 

More recently, the Voronoi digram [21] has provided a 
useful tool in low- dimensional Euclidian settings - and 

Figure 1: vp-tree decomposition 

Figure 2: kd-tree decomposition 

the overall field and outlook of Computational Geometry 
has yielded many interesting results such as those of [22, 
23, 24, 251 and earlier [26]. 

Unfortunately neither the kd-tree, or the constructions 
of computational geometry, seem to provide a practical 
solution for high dimensions. As dimension increases, the 
kd-tree soon visits nearly every database element while 
other constructions rapidly consume storage space. 

Furthermore, even if the database is in some sense of 
only moderately high dimension, it may not be possible 

or convenient to fmd or implement a dimension reducing 
transformation. So it is important that we develop tech- 
niques that can deal with raw untransformed data, and 
exhibit behavior as close as possible to intrinsic rather 
than representational dimension. 

So despite considerable progress for Euclidian space, 
the development of more general techniques is important; 
not just because of the problems with high dimension, 
but also because there is no a priori reason to believe 
that all or even most useful metrics are Euclidian. 

In the sections that follow we will consider a probabilis- 
tic formulation of the problem and obtain certain theo- 
retical results, present the algorithms and data struc- 
tures for the vp-tree in several forms, and report on a 
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number of experiments. These experiments include Eu- Definition 1 Let (S, d) be a [0, l] bounded metric space. 

clidian cases with side-by-side kd-tree comparisons, non- Given a distinguished element p E S, we make the fol- 

Euclidian spaces, and the difficult real-world problem of lowing definitions for all a, b E S: 

image fragment retrieval. Here fragments as large as 
50 x 50 pixels are treated corresponding to representa- I. HP : S + [0, l] is given by: l’&(a) = d(a,p). 

tional dimension 2,500. 
2. dp : S x S + [0, l] is given by: dP(a, b) = &,(a) - 

2 Theoretical Insight and Basic Results. II,(b)1 = Id(a,p) - d(hp)l. 

In this section we develop a simple but fairly general 
result which says that under certain circumstances, one 
may organize a database so that expected search time 
is logarithmic. It should be thought of as justifying in 
the limit the algorithms and data structures presented 
later. Only elementary concepts from General Topology 
and Measure/Probability Theory are employed. 

2.1 Notation. Given a metric space (S, d) and some 
finite subset SD C S representing the database against 
which nearest neighbor queries are to be made, our objec- 
tive is to somehow organize SD so that nearest neighbors 
may be more efficiently located. 

For a query q E S, t,he nearest neighbor problem then 
consists of finding a single minimally distant member of 

SD. We may write NN(q, SD) to stand for this operation 
where the space may be omitted for brevity. 

Now the element nearest to q may be quite far, and 
for a particular problem it may be reasonable to impose 
a distance threshold T, at or beyond which one is unin- 
terested in the existence of neighbors. Also observe that 
while computing NN(q), one may by reduce r as ever 
nearer neighbors are encountered. We write NNJ,(q, SD) 

to denote this important notion of r restricted search. 

Next we will assume that the range of the space’s dis- 
tance distance function is [0, 11. Since any metric’s range 
may be compressed to this interval without affecting the 
nearest-neighbor relation2, this restriction may be made 
without loss of generality3. 

2.2 Vantage Points. Each element of a metric space 
has in a sense a perspective on the entire space; formed 
by considering its distances to every other element. This 
perspective need not however contain any information. 

Consider the pathological case of the discrete metric in 
which the distance between any pair of distinct points is 
one. Here, full-space search is unavoidable. However, to 
the extent that information is present, we will see that 
nearest neighbor search may benefit. 

We begin by formalizing this notion of perspective and 
defining a related pseudo-distance function: 

2Bounded metrics may simply be scaled. Unbounded metrics 

may be adjusted using the well known formula: ~?((a, b) = a. 

3The method of compression may affect search efficiency/time, 
but not the result. 

Function II, is best thought of as a projection of S into 
[0, 11, from the perspective of p. I.e. it is S as seen by 
p, via d. Function dP is not in general a metric since if 
a and b are distinct but equidistant from p, dp(a, b) = 0. 

It is however a clearly symmetric function and satisfies 
the triangle inequality, making it a pseudo-metric. 

Now since d is a metric we may rely on symmetry and 
the triangle inequality to arrive at: 

d(a, b) 1 Id(a,p) - d(b,p)l = &(a, b> 

Hence, distances shrink when measured by dP so that 
d in a sense dominates it. One useful consequence of this 
behavior is given by the following obvious implication: 

dp(a, b) 2 T + d(a, b) 2 T (2.1) 

So if during a search we’ve already encountered a 
database element x at distance r from q, then as our 
search progresses, we need not consider any element for 
which dP(q,z) 2 7. Thus, in the absence of coordi- 
nates or Euclidian structure, we can begin to see how 
query’s distance to a distinguished vantage point may be 
exploited to effectively direct and limit the search. 

For some p E SD consider now the image II, of 
SD in [0, 11. Next denote by ,U the median of I&(SD) 
thus dividing [0, l] into [0, /J) and b, 11. The first of 
these intervals contains points from the inside the sphere 
S(p, ,u), while th e second consists of points from outside 

and on the surface. We denote the inverse images of 
these S,, and S,, respectively; and imagine that SD is 

divided in this way into left and right subspaces. 

Now NL = IS,,I counts the points of SD mapped left 
to [0, /.J), while NR = IS,,] counts those sent right to 
b, 11. We can say little in general about the compara- 
tive sizes of NL and NR since nothing has been assumed 
about the nature of the metric space. In particular if 
there are many points of SD exactly distance /J from p, 

then NR may be much larger than NL. 

But if spheres in (SD, ,u) typically have on their sur- 
face relatively few members of SD, then we can say that 
NL M NR, i.e, we have partitioned SD into two subsets 
of roughly equal size. 

Now suppose for a given q, that our objective is 
NN17(q), and that H,(q) >_ p + 7. Then it follows from 
EQ- 2.1 that S,, may be excluded from consideration. 
Similarly if II,(q) 5 p- V-, we may ignore S,,. In both 
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cases then, roughly half the space is excluded from con- 
sideration. Thus, the information gleaned from a single 
point’s perspective is sometimes sufficient to significantly 
prune the search. However ifp-T < IQ,(q) < P-/-T, then 
no such reduction is possible. 

So it is clear that our ability to prune is dependent on 
a fortuitous choice of p and q, on r, and on our ability 
to choose NL M NR. We will succeed to the extent that 
it is improbable that II,(q) E (p - 7,~ + r) (Figure 3). 

If our probability distribution is in some sense nice (see 
§2.3), then we can make this probability approach zero 
as 7 does. So that for 7 sufficiently small, we will with 
high probability exclude approximately half of the space 
from consideration. 

Figure 3: A continuous rendering of the density of 

IIIp(Sn) in [O,l] - and a r neighborhood of median ,u 

It is easy now to see how we may recursively proceed 
to form a binary tree. This then forms the most basic 
vp-tree. Specific construction and search algorithms are 
presented in $3. 

2.3 A Probabilistic Viewpoint. Since individual in- 
stances of finite metric spaces (databases) may be patho- 
logical for nearest neighbor search, we are led to formu- 
late the problem in probabilistic terms and seek expected 
time results. 

We therefore define probability measure P which 
we assume reflects the distribution from which both 
database elements and queries are drawn4. It is worth- 
while noting that the arguments that follow may be gen- 
eralized to deal with separate distributions. 

Now from EQ- 2.1 it is clear that mapping II, is uni- 

formly continuous, from which it follows that the inverse 
images of any point or interval (whether open, closed, or 
half-open) must have defined probability. 

Thus, given some such point or interval X, we may for 
the sake of notational simplicity refer to P(X) which is 
understood to mean P(lI;l(X)). So if 2 E [O,l], then 
P(x) is the probability of the surface of sphere S(p, z). 

4We can do this in general by choosing the smallest sigma- 
algebra containing the space’s metric topology, and defining a mea- 
sure on it. 

Now in the case of the discrete metric, there is about 
every point a spherical surface of probability one. This is 
in stark contrast to Euclidian settings where any volume 
related probability measure results in zero probability 
spherical surfaces. Remembering that the discrete metric 
is pathological to nearest neighbor schemes, we are led 
to consider metrics which share this property. 

Definition 2 Let (S, d, P) be a metric space with as- 

sociated probability measure P, the combination is said 
to have the ZPS (Zero Probability Spheres) property if 
and only if: P(S,(x,r)) = 0,Vx E S, r > 0, where 

&(x, 7) = {Y E WY, x) = r}. 

The discrete metric is thus excluded along with many 
other cases. This is however a very strong condition. We 
assume it for simplicity’s sake but comment that there 
are several ways to weaken it while preserving the essence 
of the arguments that follow. 

2.4 Basic Results. The probability of a countable in- 
tersection of nested sets, is just the limit of the individual 
probabilities. This and ZPS then imply that about any 
z E [0, I], there exists an interval of arbitrarily small 

probability. Nothing more than this basic observation is 
necessary to establish the two simple theorems that fol- 
low. It is however worth remarking that uniform conver- 
gence to zero probability can be established. I.e., given 
E > 0, there exists N sufficiently large, so that every 
interval of the canonical [0, l] N-partitioning, has prob- 
ability less than E. 

We now make more rigorous our earlier comments re- 
garding procedures for recursive space bisection. 

Theorem 1 Let (S,d, P), be a [0, l] bounded metric 

space with the ZPS property under probability measure 
P. Then except for cases of probability zero, every size n 

database SD C S drawn from P, may be organized into a 

binary tree; so that given M > 1, and queries ‘q’ drawn 

from P, 3 r > 0 such that Nqr(q,S~) may be computed 
using at most M. [log2(n) + lj metric evaluations on an 

expected basis. 

Proof: Let d = [log(n)+lJ and if n < Zd- 1 draw additional 
elements until equality. 

Pick some pl E So and consider II,(Sp - {pl} 
j 

. Set value 
~1 so that equally many image points are to its le t and right. 
Continue recursively bisecting the space - forming a binary 
tree and establishing ,Ui for each non-leaf element of SD. By 
ZPS this is almost always possible (failure probability zero). 

Define e = (ikfll(d-‘) - 1)/2 so M = (1+ 2e 

1 

d--l. 
Associate with pl values 1/l~~ = P([O,pl) 

I, 

and $nl = 
P( /.JI, I]). NOW by our earlier comments we may choose rl 
sue that P([til - rl, ~1 + rl]) < E. 

In what follows we will oroceed recursively to associate 11 
and r values to each non-leaf node. 

The root’s probability function is just P. We define that 
of its left child to be essentially PL = Pl[O, p1 + rl) but more 

for-b h(X) = P(X n II,-,‘([O, PI + n)))/P([o, i.h + ~~1)). 
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To understand this observe that NN(,, search will explore 
leftward only if II(q) E [O,pr + ~1). An alternative view is 
that the left subtree is only concerned with the subspace 
II,-([0, ~1 + r-1)) and Sees it as the entire space. In a similar 
way we associate a new probability function with the right 
child. Now it must be noted that these modified functions 
remain probability measures, and inherit ZPS. 

Having done this,. II, and r values may be associated with 
the left and rieht child. This enables the orocess to continue 
down the treeintil all non-leaf nodes have values. Finally set 
7 = minri. 

For a query q drawn by P, We compute NNJ,(q) starting at 
the root. Thus a single metric evaluation is always performed. 
Then with probability of no more than $Q. + r, we will be 
required to explore leftward. The probabihty of rightward 
exploration is similarly bounded by tin1 +E. In both cases the 
subtrees will see the query as random within their subspaces 
of interest. 

If leaf level is reached, a single evaluation is always per- 
formed. It then follows that the overall cost (metric evalua- 
tions) of the search is on an expected basis is the value F(d) 
where F(1) = 1 and F(i) = 1 + (1 + 2c)F(i - 1). This re- 

cursion evaluates to P(d) = c,“-‘(1+2~)~ which is bounded 

above by (1+ 2~)~-‘d = M. Ilog, + 11 0 

A result similar in flavor may be proven in which a tree 

is built and used to classify additional members of the 

space so that all buckets (leaf levels) have equal probabil- 

ity. Each of these leaves then correspond to a subspace 
of the metric space and we have in effect then equipar- 
titioned the space with respect to the probability distri- 
bution. This is analogous to vector quantization in Eu- 
clidian space. Thinking of the root-leaf path as a binary 
code, we might also interpret it as metric space hashing. 

Theorem 2 Let (S,d,P), be a [0, l] bounded metric 
space with the ZPS property under probability measure 
P. Then for any fixed database size n, and M > 1, 3 

r > 0 such that we may compute NNj,(q,Sn) with at 
most M . Fog,(n) + 11 expected metric evaluations; as 
databases SD 5 S and queries ‘q’ are drawn from P. 

Proof: For brevity’s sake assume n is a power of 2. As in 
the previous theorem we will build a binary tree. Before we 
were forced to bisect a particular finite database at each level 
so that in general 4~ # $R. Here we begin by building a 
balanced binary tree so that its initial /log*(n) + 11 levels 
have $ri = $n; = l/2. We may do this by picking for the 
root an arbitrary element, then setting the root’s p so that 
$r. = $n. Having done this we may pick a vantage point for 
the left and right children from the associated subspaces and 
proceed recursively to the required depth. 

Observe that the leaf level subsoaces have eaual orobabilitv 
of l/n. As for theorem- 1 we ma; find r for this tiee so tha*t 
we expect to visit at most M. pig,(n) + 1 

1 
nodes. So clearly 

no more than this number of leaf nodes wi 1 be visited on an 
expected basis. 

Now each element of a particular drawn database may be 
classified and then attached to this tree by first identifying 
which of the l/n leaf partitions it belongs to, and adding it 
to an initially empty list rooted at and replacing the corre- 
soondine: leaf node. The exoected size of each list is clearlv 
one. So the final expected number of metric evaluations re- 
mains M . peg,(a) + 11. 0 

These theorems describe binary constructions to mo- 
tivate the algorithms and experiments which follow; but 
higher degree trees may be built by further partitioning 

[0, 11. In the extreme case the root has degree n and 
only three metric evaluations are expected. As a practi- 
cal matter however, the r values necessary to approach 
even log2(n) search are so small as to be of little practical 
value. So the basic theorems presented are best thought 
of as existence results which establish a theoretical foun- 
dation while motivating algorithm development. 

2.5 Corners of the Space. Now it is fairly clear that 
we’d like r as large as possible; and its value depends 
on II, and hence on p. This then suggests that some 
elements of the space may be better vantage points than 
others. We are thus lead to consider the problem of se- 
lecting a vantage point. 

As an example consider the unit square with uniform 
probability distribution. Here we must choose p so that 
two regions of area 0.5 result. Three natural choices for 
p consist of the square’s midpoint (denoted pm), a corner 
(denoted pe), and the midpoint of an edge (denoted pe). 
These along with their associated division boundaries are 
illustrated in Figure 4. 

., 

. 

1 

PC 
Go.5225 
bd.3338 

0 

Figure 4: Natural choices for p to divide the unit square 

To choose among them, notice that for small r the 
length of the boundary will be proportional in the limit 
to the probability that no pruning takes place. Thus min- 
imizing these boundary lengths (denoted b in the figure) 
is the obvious strategy. 

Observe that p, is by far the worst choice as its bound- 
ary length is double that of p,. Choice pe is also much 
better than p,,, , but not quite as good asp,. It is interest- 
ing to note that from a traditional clustering viewpoint, 
p, is the natural centroid. But we have seen that it is 
far from the best choice. From this example we draw 
the intuition that points near the corners of the space 
make the best vantage points. (See again the vp-tree 
decomposition of Figure- 1). 

These simple results then suggest a strategy for van- 
tage point selection, and given a particular distribution, 
provide a framework for drawing more conclusions. The 
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ZPS distribution restriction is key to achieving them; 
and our overall outlook in which finite cases are imag- 

ined to be drawn from a larger more continuous space, 
distinguishes in part this work from the discrete distance 
setting of [7, 111. 

2.6 Set Perspectives. We have seen that a single dis- 
tinguished element p, induces a pseudo-metric dp, which 
is always dominated by d. More generally, we observe 

that each size n finite subset P of a metric space, consid- 
ered as vantage points, induces a natural mapping into 
Euclidian n-space. I.e. the i-th coordinate of the image 
of 22, is just II,,(z). 

Under L, then, distances in the Euclidian range space 
are always dominated by distances in the domain. This 
amounts to Euclidian approximation of the original met- 
ric. This mapping and elementary observation will help 
us later define enhanced forms of the vp-tree. 

3 Algorithms and Data Structures. 

3.1 The Simplest vp-tree. We begin by presenting a 
simple algorithm for vp-tree construction. The root cor- 

responds to the entire space. Its distinguished vantage 
point then splits the space into left and right subspaces 
corresponding to the root’s left and right tree descen- 
dants. Similarly, each node is thought of as correspond- 
ing to an ever smaller subset of the database. 

An optimized tree results because function Select-vp 
endevours to pick better than random vantage points. 
Replacing it with a simple random selection generates a 
valid and effective tree; but experiments have shown that 
some effort towards making better choices, results in non- 
trivial search-time savings. Our algorithm constructs a 
set of vantage point candidates by random sampling, and 
then evaluates each of them. Evaluation is accomplished 
by extracting another sample, from which the median 
of II,(S), and a corresponding moment are estimated. 
Finally, based on these statistical images, the candidate 
with the largest moment is chosen. Given constant size 

samples, execution time is O(n log(n)). Our experimen- 
tal implementation includes several sampling and evalu- 

ation parameters. 

Algorithm 1 Given set S of metric space elements; re- 
turns pointer to the root of an optimized vp-tree. 

function Make-VP-tree(S) 

if S = 0 then return 0 
new(node); 
nodef.p := Select-VP(S); 

nodefmu := Median,es d(p, 8); 
L := (8 E S-{p}ld(p,s) <mu}; 

R := (8 E S-{p}ld(p, s) 2 mu}; 
nodef.left := Make-VP-tree(L); 
nodefright := Make-VP-tree(R); 
return node; 

function Select-vp(S) 

P := Random sample of S; 

bestspread := 0; 

forpEP 
D := Random sample of S; 

mu := Mediandeo d(p, d); 

spread := Lnd-Momentdeo (d(p, d) - mu); 
if spread > best-spread 

best-spread := spread; best-p := p; 

return best-p; 

In the simple construction above, only mu is retained 
in a node to describe the metric relationship of the 
left/right subspaces to the node’s vantage point. At the 
expense of storage space, one may retain instead four val- 
ues representing lower/upper bounds of each subspace as 
seen by the vantage point. It is this form of tree that is 
actually used in the experiments we later report. 

3.2 The vps-tree. Now notice that in the course of 
execution, an element of S is compared with the vantage 
point belonging to each of its ancestors in the tree. This 

information is also not captured in the simple tree de- 
scribed above. Retaining it in a particular way results in 
a vps-tree - the construction of which we now describe. 

The central working structure employed consists of a 
database element identifier ‘id’, and a list ‘hist’ of dis- 
tances from the item to each vantage point tracing back 
to the root. A list of these structures is initialized from 
the entire database, with the history set to null. The 
algorithm then recursively splits the list into two lists L 
and R, while adding to the history of each item. Each re- 
sulting tree node then contains a list ‘bnds’ giving lower 
and upper bounds (a range interval) for its corresponding 
subspace as seen by each ancestral vantage point. 

Execution time remains 0( n log(n)) . Assuming fixed 
precision is used to represent the bounds, the tree occu- 

pies linear space. But this is an asymptotic statement, 
and over the practical range of n, and given fixed machine 

word sizes, the space is better described by O(nlog(n)). 

Algorithm 2 Given set S of metric space elements; re- 

turns pointer to the root of an optimized vps-tree. 

function Make-vpsfree(S) 
list = 0; 
for 8 E s 

new(item); itemf.id := ts; itemf.hist := 0; 

add item to list; 
return Recurse-vps-tree&St); 

function Recurse-vpsfree(list) 

if list = 0 then return 0 

new(node); nodef.p := Select-vp(list); 
delete nodef.p from list; 

for item E list 

append d(p,itemf.id) to itemf.hist; 

mu := Medianitemelist tail(itemf.hist); 
L := 0; R := 0; 

for item E list 
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if tail(itemf.hist) < mu then 

add item to L, delete from list; 

else 

add item to R, delete from list; 

nodef.left := Make-VP-tree(L); 

nodef.right := Make-VP-tree(R); 

nodef.bnds := Merge(nodef.leftf.bnds, 

nodef.rightf.bnds,nodef.pf.hist); 

return node; 

function Merge(rangelistl,rangelist&vaIuelist) 
“The two range lists are combined with 
the value list to yield a single range list 

which is returned.“5 

There’s no guaranty that these algorithms build a bal- 
anced tree7 - for in practice, the ZPS assumption may 

not hold. Furthermore, even if it does, we may draw a 
rather pathological database. So in the end, the balance 
achieved is problem dependent. 

3.3 The vpSb -tree. Our constructions so far have in- 

volved a single node structure. We now consider one way 
to form buckets of leaves in order to save space while 
preserving the notion of ancestral history present in the 
vps-tree. Buckets are formed by collapsing subtrees near 
leaf level into a flat structure. Each bucket contains say 
nb element records. Each record must specify an id, and 
in addition holds distance entries for every ancestor. We 
call the resulting structure a vpsb-tree. In our implemen- 
tation the bucket distance values are quantized so as to 
occupy only P-bytes. 

One may think of these vectors of distances, as the 
image of an element under the set perspective mapping 
defined by the ordered set of its ancestors. ($2.6) 

The data structures corresponding to these three tree 
types are depicted in Figure- 5. Database elements are 
represented by a 4-byte integer, real values by a 4-byte 
float, and bucket distances by a 2-byte integer. These 
correspond closely to our experimental implementation; 
except that the vp-tree we implement contains subspace 
bounds rather than the single value mu. 

3.4 Searching the tree. We present a single search 
algorithm which describes search in a vp-tree where a 
node contains subspace bounds for each child. The algo- 
rithm is easily generalized to the other tree forms. It is a 
straightforward recursive branch-and-bound tree search 
in which variable tau keeps track of the closest neigh- 

bor yet encountered. Subtrees are then pruned when the 
metric information stored in the tree suffices to prove 
that further consideration is futile. I.e., cannot yield a 
strictly closer neighbor. 

5The length of the third argument value-list determines the 

length of list returned By combined we mean the production for 
each ancestral vantage point, of a single lower/upper bound based 
on the corresponding info-tion within the three arguments. 

‘And we’ve not considered the issue of median ambiguity. 

. ..’ 

\ bucket structure 
,---------------------------------------------------------, 

j ml ;P’ID ’ 1 d(x,a) 1 d(x.b) 1 d(w) 1 d(x,d) 1-c j 

I \ f , 
I record for element ‘x’ 

I 
I 

‘-______________________________________------------------. 

Figure 5: Sample 32-bit machine data structure imple- 
mentations for the most basic vp-tree, the vps-tree, and 

the vpsb-tree. 

Algorithm 3 Called with query ‘q’ and the root of a 
vp-tree; returns the ‘id’ of a nearest neighbor in global 

variable ‘best’. Before calling, global variable ‘tau’ is set 

to the desired search radius and ‘best’ should be set to 

8. Setting tau to 1 then searches without constraint. On 

return Yau’ is the distance to ‘best’. We denote by IL 

the open interval whose left endpoint is nf.lefLbnd[low]- 

tau and right endpoint is nf.lefibnd[high]+tau. Open 

interval IR is defined similarly. 

procedure Search(n) 
if n = 0 then return ; 
x := d(q,nf.id); 

if x < tau then 
tau := x; 

best := nf.id; 

middle := (nf.left-bnd[high] + nf.right-bnd[low])/2; 

if x < middle then 
if x E 1~ then 

Search(nf.left); 

if x E IR then 

Search(nf.right); 
else 

if x E IR then 

Search(nf.right); 

if x E 1~ then 
Search(nf.left); 

Notice that the order of exploration is determined by 
comparison with the middle value computed. This is 
properly viewed as a heuristic. In high dimensions this 
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may not be the best choice and branching order repre- 
sents an interesting area for future work. 

Actual databases, particularly those consisting of sig- 
nals or images, frequently contain large clusters of very 
similar items. In these cases one may find that search 
rapidly locates a very near neighbor, and then performs 
much more work which yields only a very slightly nearer 
item. Because of this problem, our implementation in- 
cludes an error tolerance setting which in effect narrows 
intervals 1~ and In. E.g. Given tolerance 0.01, the pro- 
cedure will return a neighbor which is guaranteed to be 
at most 0.01 more distant from the query than its true 
nearest neighbor. 

lOOOO0 
kd-tree. - I 

1 ’ I 
0 2 4 6 8 10 12 14 16 

Dimension 

Now having summarized and sketched our algorithms 
and data structures, we turn to experimental results. 

4 Selected Experimental Results. 

Figure 6: Search Cost vs. Dimension Comparison For 
Lz Metric and Based on Nodes Visited 

A modular software system was built with plug-in met- 
ric spaces and search routines. Two basic metric space 
settings were implemented: hypercubes, and image frag- 
ments. Both support various metrics including the stan- 
dard Minkowski family. 

vp-tree. Examining CPU time, the same is true although 
the differences are smaller. In dimensions 2 and 4, the 
performance ordering from best to worst is vps-tree, vp- 
tree, then kd-tree for all database sizes. 

4.1 Hypercubes. We very nearly reproduce certain of 
the experimental settings from [13] and use them to begin 
our process of evaluation. Hypercubes of increasing di- 
mension are first considered, each containing a database 
consisting of 8,192 coordinate-wise normally distributed 
pseudorandom points. 

2ooo( 

The VP-tree8 and kd-tree are compared for the L1, La, 
and L, metrics a.s dimension ranges from 2 to 14. Since 
interior vp-tree nodes contain data elements while the 
kd-tree contains data elements at its leaf level only, we 
use total nodes visited to measure complexity. The re- 
sulting statistics were observed to agree well with actual 
CPU time used. 

1800 - 
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Figure 6 demonstrates the remarkable agreement be- 
tween these two methods for the Lz metric. Similar 
agreement is found for the L, metric, while for LI, the 
vp-tree maintains a small constant advantage. Detailed 

examination of the results does however reveal one qual- 
itative difference which increases with dimension. By di- 
mension 14, the kd-tree visits roughly 5.7 times as many 
nodes under L1 versus L,. The ratio for vp-tree search 
is only 1.7. This suggests that vp-tree performance may 
be flatter with respect to choice of metric. 

1000 1000 
Database Size Database Size 

Figure 7: Search Cost vs. Database Size - Dimension 8 

If dimension is fixed and database size grows, we 
expect and find asymptotically logarithmic growth in 
search time. For dimension 8 (Figure 7), kd-tree per- 
formance is in the limit between that of the vps-tree and 

The kd-tree does however eventually catch up in this 
random hypercube environment. By dimension 12 for 
example, it visits fewer nodes than vps-tree search once 
database size grows beyond 30,000. By this point how- 
ever, neither perform very well - visiting roughly 25% of 
the nodes. 

sin all of our experiments, fixed sample sizes are employed to 
choose and evaluate vantage points. In hypercube settings, we 
evaluate 100 random vantage point candidates by computing their 
distance to 100 random database elements. For image experiments, 
only 10 candidates are drawn. 

So despite their ignorance of the coordinate structure 
of the space, and randomized construction, vp-trees com- 
pare well in this setting with the kd-tree. 

Comparisons with the experiments of [8] are more dif- 
ficult because leaf level buckets are employed. Neverthe- 
less, based purely on metric evaluations, the kd-tree and 
vp/vps-tree methods produce superior results. 
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4.2 Random Linear Embedding. As a simple em- 
bedding model, we construct random linear rotation ma- 
trices which correspond to isometric embeddings of IWm 
into Iw” where n > m. 

Pseudorandom databases are then drawn in a 
coordinate-wise uniform fashion within IV’ and mapped 
to the longer vectors of Rn. 

To study this setting we define three types of query 
distribution - all pseudo-random but confined to differ- 
ent subspaces: 

Tl: Drawn in Iw” and then mapped to Iw”. 

T2: Drawn in 1w”. 

T3: Drawn in IW*, mapped, and then combined with Iw” 
noise having maximum amplitude CY. 

The first two of these are fairly clear; the third requires 
explanation. It is proposed as a better model for the 
independent effects of subspace and observational error. 

We first embed a plane into lo-dimensional space 
(n = 10, m = 2) and draw a 2,000 element database. Ta- 
ble 1 contains the results. The values shown are average 
nodes visited. Its first and last columns contain for com- 
parison purposes, performance for fully- random 2 and 
10 dimensional hypercubes. The ‘Iw2 H Iwl” columns 
contain results for a 2-dimensional space embedded in 
lo-space given types 1 and 2 queries. 

All trees perform well given type 1 queries and de- 

grade for type 2. But notice that the kd-tree searches 

Table 1: Basic Embedding Search Example 

nearly every node y when presented with type 2 queries. 
In fact, its performance is markedly worse that in the 
fully random lo-dimensional setting. This illustrates the 
weakness of coordinate-based schemes and the pitfalls of 
assuming that random cases are indicative in any way of 
overall performance. 

If this same database is now embedded into ever higher 
dimensions (3 through 50) and type 3 queries presented, 
Figure 8 results. In this graph, cr (the amplitude of added 
noise) is expressed on the horizontal axis in normalized 
units.1° The bottom group of six curves corresponds to 
vp-tree performance for range spaces of increasing di- 
mension. The upper group provides kd-tree results. It 

sThere are 4,000 total. 
“The unit consists of the average distance from a type 1 query 

to its nearest neighbor. So a = 1 then corresponds to added R” 
noise of comparable amplitude. 
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is apparent that vp-tree performance degrades in a more 
reasonable fashion for queries increasingly distant from 
the data plane. 

10 20 30 40 50 60 70 80 90 100 
Multiples of Average Subspace Spacing 

Figure 8: Off Data Plane Queries for Range Spaces of 
Increasing Dimension. 

Similar results are obtained given much larger 

databases and given databases as simple as a mere line 
embedded in Iw”. 

These results suggest that if one is given a database of 
unknown internal structure, the vp-tree may represent 
a better approach to organization for nearest neighbor 
retrieval. 

4.3 Image Retrieval. To test the method on a dif- 
ficult real-world problem, a library of 16 B&W digital 
images measuring 604 x 486 pixels was built. Our met- 
ric space is the set of all fixed size subimages (windows). 
Sizes 4 x 4,8 x 8, 16 x 16,32 x 32, and, 50 x 50 are consid- 
ered. So for example, a single library image corresponds 

to 260,715 metric space elements of size 32 x 32. 

The Euclidian metric is then applied and nearest 
neighbor retrieval effectiveness studied. The vp-trees 
built were very nearly balanced although large uniform 
regions (e.g. the sky) represent pathological subspaces 
creating occasional deep subtrees. Databases built from 
as many as 8 library images were considered correspond- 
ing to a metric space and vp-tree having over two million 
members. 

For queries from the database, our depth-first branch 
and bound search reduces to standard binary tree search 
and the query is located without backtracking. Exactly 
d node visits are then required where this refers to the 
depth in the tree of the element matching the query. 

For queries even slightly distant from a database mem- 
ber, considerably more work is necessary. For window 
size 32 x 32 and trees of roughly one million elements, 
5% of the nodes are visited on average to satisfy very 
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near queries while 15% are visited in the general case. 

In one series of experiments we choose subsets of four 
images each, and formed VP-trees. Searches were then 
performed using two query sources. The first source 
(general) consisted of a subset of six images different 
from each of the database images. The second source 
(similar) consisted of a pair of images captured so as 
to correspond very closely to a database image in each 
of the subsets. The results are summarized in table- 2 
where the percentages shown are averages over the two 
databases.ll 

Q ueries 4x4 8x8 16x16 32x32 50x50 
Similar 1.0% 3.4% 4.5% 4.5% 5.2% 

General 1.4% 5.7% 10.7% 15.7% 19.3% 

Table 2: Image Search Results 

Figures 9 and 10 depict 32 x 32-pixel query/nearest- 
neighbor pairs for the similar and general cases 
respectively.12 

0.080362 

Figure 9: A query (left) nearest neighbor pair where the 
query is drawn from an image very similar to one in the 
database. 

Limited experiments with vpsb-tree trees result in per- 
formance improvements that vary greatly, but seem to 
fall in the 15 - 30% range. 

We do not expect the kd-tree to perform well for large 
windows but perform experiments to verify our intuition. 
Indeed, little advantage is gained over exhaustive search 
for window sizes as small as 16 x 16. 

Reducing search radius r does decrease vp-tree search 
time but significant savings are achieved only at the ex- 
pense of search effectiveness. In one experiment r was 

“Our use of a pair of databases represents a crude statistical 
precaution necessary due to the small number of images we can 
computationally afford to deal with. Despite this measure, and our 
careful attempts to build a varied image set, we are mindful of the 
fact that the entire space of naturally occurring images is immense 
indeed in comparison with our experiments. One should therefore 
not conclude that the statistics we report are representative of the 
fully general case. 

12The value displayed in these figures represents Euchdian dis 
tame between the query/database-element pair. 

Figure 10: A query (left) nearest neighbor pair where 
the query is drawn from an image entirely different from 
anything in the database. 

reduced until search time was roughly halved. At this 
radius however, a nearest neighbor was located for only 
half of the queries. In another radius related experiment 
using single queries, we reduced Q- to only slightly more 
than the known distance to their nearest neighbor - thus 
insuring search success. In one case, the nearest neigh- 
bor was located after only 1200 node visits, with an ad- 
ditional 13,799 required to complete the search. We offer 
this as illustration that finding a nearest neighbor and be- 

ing sure are two separate matters - with the latter often 
dominating total cost. 

This and other experiments suggest that heuristic 
search techniques represent an interesting area for fur- 
ther investigation. Indeed, independent of its ability to 
find nearest neighbors and prove it, the vp-tree method 
using only the simple search technique described, seems 
to very rapidly locate highly similar database elements. 
In some applications this may suffice. 

Image searches with error tolerance ($3.4) also result in 
reduced work. Our limited experiments suggest however 
that reasonable tolerance values provide savings of at 
most perhaps a factor of two. 

Finally, independent of search-time refinements, better 
data structures and construction techniques, represent a 
clear opportunity for future work. 

4.4 Non-Euclidian Examples. To illustrate the 
promised generality of our methods, two non-Euclidian 
cases are considered: 1) the pseudometrici3 that arises 
from normalized correlation. It measures the angle that 
two points form with the origin. and, 2) the ordi- 
nary Euclidian vector distance d(X, Y) normalized by 

Wll + IIYII>* That th e result is a metric follows from a 

tedious argument provided in [27]. In both cases the vp- 
tree is applied to randomly constructed databases and 
exhibits search performance that corresponds well qual- 
itatively to a standard Euclidian setting. 

130ur methods have been presented for metric spaces only but 
may be generalized to pseudo-metric spaces. 
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5 Concluding Remarks. 

We have come to view the vp-tree construction and 
search processes as somewhat analogous to standard 
sort and binary search in one dimension - first because 
of their complexity, but perhaps more importantly be- 
cause both primarily exploit ordinal rather than cardi- 
nal/representational information. 

One may sort a file or build a binary tree of arbitrary 
objects given only an appropriate comparison function. 
By analogy, we have shown that a metric space may be 
organized for nearest neighbor retrieval given only the 
metric - without consideration of any particular repre- 
sentation such as a coordinate form. So for example, we 
will build the same vp-tree for a database in Euclidian 
space, independent of coordinate system. 

We propose that techniques such as those of this pa- 
per should be used to develop application portable utility 
software for dynamic organization of and nearest neigh- 
bor retrieval from databases under application specific 
metrics. 

Finally we observe that both kd-trees and vp-trees may 
be viewed as very special cases arising from particular 
uniformly continuous functionals and lying within the 
divide-and-conquer algorithmic paradigm. In one case 
coordinate projection, and in the other, distance from 
distinguished elements is used to hierarchically decom- 

pose space. 
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