
THÈSE / UNIVERSITÉ DE RENNES 1
sous le sceau de l’Université Européenne de Bretagne

pour le grade de

DOCTEUR DE L’UNIVERSITÉ DE RENNES 1

Mention : Informatique

École doctorale Matisse

présentée par

Eleni KANELLOU

préparée à l’unité de recherche IRISA
Institut de Recherche en Informatique et Système Aléatoires

Université de Rennes 1

Data Structures for

Current Multi-core

and Future Many-

core Architectures

Thèse à soutenir à Rennes
le 14 Décembre 2015

devant le jury composé de :

Prof. Petr KUZNETSOV

INFRES, Telecom ParisTech / Rapporteur

Prof. Achour MOSTÉFAOUI
LINA - UFR Sciences et Techniques / Rapporteur

Prof. Panagiota FATOUROU
ICS-FORTH & University of Crete / Examinatrice

Prof. Hugues FAUCONNIER
LIAFA Paris 7 Denis Diderot / Examinateur

Prof. François TAÏANI
IRISA, Université de Rennes 1 / Examinateur

Prof. Michel RAYNAL
IRISA, Université de Rennes 1 / Directeur de thèse

“No man is an island, entire of itself;
every man is a piece of the continent, a part of the main.”
John Donne, Devotions upon Emergent Occasions (1624)

Acknowledgments

I would like to express my deepest gratitude to my thesis director Prof. Michel Raynal, who
kindly supervised my PhD process, and to Prof. Panagiota Fatourou, who acted as mentor,
guide and co-supervisor. Without their valuable guidance, the elaboration of the present work
would not have been possible.

I would like to thank the esteemed members of the jury that agreed to examine my work
and provided input and corrections.

I would also like to thank my co-authors in the publications that were elaborated during
this thesis, for their fruitful collaboration and inspiring input.

Special thanks goes to my dear colleagues and co-authors Nikos Kallimanis and Christi
Symeonidou. Nikos generously shared his ideas and expertise with me and always provided a
light-hearted view on the life of the researcher. Christi shared with me both pleasant as well as
difficult work moments with enormous empathy. She is a work companion whose attention to
detail and perseverance are an inspiring example. Thank you both for our collaborations and
the amusing nights spent on paper submissions.

During my work in the TransForm project, I had the chance to meet or work with people
that provided interesting conversations and furthered my education in concurrent computing.
I would like to thank all members of TransForm and in particular, Prof. Hagit Attiya, Prof.
Petr Kuznetsov, and Dr. Sandeep Hans for their kind and helpful interactions with me.

Many thanks go also to the members of the ASAP team at INRIA, with which I spent a
very enjoyable part of the PhD time.

I would like to thank my immediate and not-so-immediate family for their support, making a
particular mention to my brother, Ilias, an inexhaustible source of unlikely humor and intelligent
conversation.

My very tender gratitude is reserved for my parents, Yannis and Eva. They showed unques-
tioning endurance in the face of each of the decisions that led me to pursuing a PhD degree;
they provided loving moral and emotional support and an eager and patient ear during all the
times when I thought I would not be able to overcome difficulties and complete a thesis; and,
maybe more importantly, they provided vital material support that made practical aspects of
everyday life easier for me, allowing me to concentrate on my work. This thesis is dedicated to
them and their efforts.

Last, but very far from least, I would like to thank Arnaud. Not only was he a cherished
companion and caring colleague during the time this thesis was elaborated, but he also had
the kindness of agreeing to assist me in several of the administrative procedures that had to be
taken care of for this thesis. I would not have been able to organize the defense without his
invaluable practical help. Arnaud, thank you for spiking the hardship of studying for a doctoral
degree with so many happy moments!

Contents

Table of Contents i

1 Introduction 1

1.1 Motivation . 1

1.2 Contributions of this thesis . 4

1.2.1 List of Publications . 8

1.3 Roadmap . 9

2 System Model and Definitions 11

2.1 Shared Memory Systems . 11

2.2 Correctness . 16

2.3 Progress . 17

2.4 Message-Passing . 18

2.5 Conventions for Algorithm Presentation . 20

3 Data Structures for Multi-core Architectures Supporting Cache-coherence 21

3.1 Case Study I: WFR-TM, A TM Algorithm . 21

3.1.1 Overview and Main Ideas . 22

3.1.2 Algorithm Description . 24

3.1.3 Proof of Correctness . 29

3.1.4 Proof of Progress. 41

3.2 Case Study II: Dense, A Concurrent Graph Algorithm 44

3.2.1 Overview and Main Ideas . 44

3.2.2 Algorithm Description . 46

3.2.3 Proof of Correctness . 52

3.2.4 Proof of Progress . 63

3.3 Related Work . 64

4 Data Structures for Many-core Architectures without Cache-coherence Support 69

4.1 Design Paradigm I: Directory-based Data Structures 70

4.1.1 The Directory . 70

4.1.2 A Directory-based Stack . 71

4.1.2.1 Algorithm Description . 71

4.1.2.2 Proof of Correctness . 72

4.1.3 A Directory-based Queue . 76

4.1.3.1 Algorithm Description . 77

i

4.1.3.2 Proof of Correctness . 78

4.2 Design Paradigm II: Token-based Data Structures 83

4.2.1 A Token-based Stack . 84

4.2.1.1 Algorithm Description . 84

4.2.1.2 Proof of Correctness . 86

4.2.2 A Token-based Queue . 89

4.2.2.1 Algorithm Description . 89

4.2.2.2 Proof of Correctness . 93

4.2.3 A Token-based Unsorted List . 97

4.2.3.1 Algorithm Description . 97

4.2.3.2 Proof of Correctness . 100

4.2.4 A variation on the Unsorted List . 105

4.3 A Distributed Sorted List . 105

4.3.1 Algorithm Description . 107

4.4 Hierarchical Approaches and Experimental Evaluation 110

4.5 Related Work . 113

5 Conclusion and Open Problems 117

5.1 Perspectives on Presented Algorithms . 117

5.2 Future Prospects . 118

Bibliography 131

List of algorithms 133

List of tables 133

ii

Chapter 1

Introduction

1.1 Motivation

Much like the proverbial pebble dropped into the pond, the effects of developments observed in

transistor integration during the past decade have rippled through the layers that comprise a

computing system, permeating several of its aspects. As such, the increasing number of tran-

sistors per area led to the stagnation of the frequency and performance increase of a single

processor core, which in turn led to an important paradigm shift in chip design: that of in-

creasing computing power and speed not by diminishing transistor distance on a die, but by

including more than one processor core in it.

This trend is so pervasive that it does not sound unreasonable to imagine that soon, one will

be hard-pressed to find electronic devices that in fact rely on a single-core processor. Already

the range of devices that incorporate multiple processor cores on a chip is broad enough to

include devices as mundane as mobile phones [vB09], as critical as big data servers [Hew13],

and as innocuous as video gaming platforms [KBLD08]. The multi-core era is indubitably here.

More processors imply more processes running in parallel and the continuing advances of

technology mean that the potential number of these processes keeps increasing. Following in the

spirit of the observation commonly known as ‘Moore’s law’ – i.e. that the number of transistors

that can be fit on a chip doubles roughly every two years –, a ‘new Moore’s law’ [Vaj11] predicts

that the number of processor cores that are included in a chip will double roughly every two

years. While it remains to be seen if this exact formulation will prove accurate, it nevertheless

seems that these technology advances will usher in the many-core era.

As these advances of technology become more and more integrated into aspects of everyday

use, the need arises to program them appropriately. This rippling effect then, initiated in

hardware and reaching the software, thrusts concurrent reasoning into the spotlight. Although

commonly perceived as a field restricted to a “select few” experts, it is becoming urgent to make

it more accessible to the “average programmer”. While it is uncertain whether expertise in it will

become the additional skill of any software developer, it is nevertheless steadily emerging as an

almost necessary tool in exploiting the capabilities that the new hardware has to offer, in order

1

to obtain the desired performance increase that it has been created to provide. Thus, in order

to use multi- and many-core architectures, programmers no longer only have to worry about

understanding the effects that, for instance, out-of-order execution or the different speed of

memory response have on the correctness of their programs. Instead, more and more they have

to be aware of competing, concurrent accesses to shared resources and the possibly hazardous

effects of asynchrony among processes running in parallel.

Since a typical shared resource of software is the memory, the competition for accessing

shared data emerges as the new performance hindrance. On one hand, the speed of access to

shared memory does not keep up with the corresponding trends of increase of computing power.

On the other hand, as a shared resource between a multitude of processes, it acts as a significant

bottleneck. The extent to which these characteristics, if neglected, can exacerbate performance

problems in multi- and many-core settings, becomes more apparent, if one considers the cost of

maintaining cache coherence. While computing power can be amplified by sharing a workload

between several cores, the performance of hardware cache coherence does not keep up with

this trend, i.e. does not scale, as the number of cores is increasing. Furthermore, as the only

communication medium in such a setting, memory is not only accessed for storing and retrieving

raw data and computation results, but it is also accessed in order to set or read meta-data that

serve as means of inter-process coordination.

As the aforementioned trends have influenced the perceived upper layer of computing – the

software–, the effects of the paradigm shift towards multi- and many-cores seem to have rippled

up to the edge of the metaphorical pond, and to rebound again towards their hardware origin:

Indeed, there is notable industry momentum supporting the partial or entire abandoning of

cache coherence in the near future. A first approach consists in many-core architectures that

are composed of so-called coherence islands, i.e. settings in which processor cores within the

same island are provided with hardware cache coherence, but where this cache coherence is

not ensured across islands. Taking this a step further, prototypes have already been proposed,

in which no cache coherence at all is provided [GHKR11, CAB+13, LKL+12]. Furthermore,

the network-on-chip (NoC) [DT01] interconnect infrastructure proposes the on-chip routing of

messages among cores in such settings, eschewing the reliance on a shared memory or a common

bus. In such architectures, communication and coordination among processes must be explicitly

carried out. This means that the programmer must bear the additional burden of coding the

message sending, handling message reception, and reasoning about load balancing and data

distribution among processors.

The picture that is slowly forming, is that of a drastically changing status quo. However,

one aspect remains unaffected and this aspect is the inherent difficulty in reasoning about

concurrency. This difficulty is not necessarily something subjective that can simply be traced

back to the talents – or lack thereof – of the individual programmer. Instead, it stems from

the sheer complexity of having to consider so many possible interleavings of accesses to shared

resources as may occur in a concurrent environment. Even though the increase of performance

is a common goal, the challenges may differ in character, depending on whether one works

2

in a shared memory or message-passing context. As such, in a shared memory environment,

one might be more concerned with e.g. avoiding overwhelming cache effects, coping with crash

failures, or handling locks correctly. In a message-passing context, it might be more important to

e.g. minimize communication overhead, or to tailor it to the underlying architecture. However,

concerns in either context originate in the fundamental necessity of providing consistency of

data and ensuring an acceptable level of progress.

In view of the fast spreading of multi-core systems, numerous new programming solutions

have risen, which not only aim at exploiting the available hardware capabilities but which also

aim at providing an easier-to-use abstraction, so that the programming of new machines may

be more accessible to the average developer. Software libraries are a notable example. High-

productivity languages such as Java provide libraries of concurrent data structures that can be

used as black boxes. The programmer can simply invoke the methods of the data structure

implementation without needing to worry about explicitly coding the process synchronization

that is required for the correct execution of the data structure’s operations. Another notable

example is transactional memory (TM) [HM93, ST95]. This paradigm is more general-purpose

than that of data structure libraries. It consists of modeling the shared memory as a collection

of transactional data items and in providing the programmer with the transaction abstraction.

Accesses to data items that are enclosed in a transaction are guaranteed to happen atomically if

the transaction commits; and to not be reflected on the shared memory at all if the transaction

aborts. A transactional memory implementation is used by a programmer for this purpose.

This implementation includes routines that provide algorithms for initiating and terminating

a transaction as well as for accessing the data items. The programmer uses the transactional

memory simply by enhancing the sequential code with the transactional routines. The correct

handling of concurrency is a task that is taken care of by an expert TM designer, who is in

charge of coming up with correct TM routine implementations that, when executed, synchronize

the access to data items in a way that does not violate data consistency.

Practices such as these allow a programmer to exploit current and up-coming architecture

without having to reason in depth about concurrency. Using such implementations or libraries

means that she can develop software without intimate knowledge of the intricacies of process

concurrency and communication or, in some cases, the technical details of the particular ar-

chitecture on which an application will be run. The correctness of the resulting applications

depends on whether the TM or library on which it is based, is correctly implemented. While

an expert may chose to create from scratch software that is specifically tailored to extensively

exploit the characteristics of an architecture, tools like the aforementioned ones are an impor-

tant asset when it comes to fully using the parallelism that is available, because they make it

accessible to the average programmer, because they can be used to create portable applications

that do not depend vitally on the underlying architecture, and because they can in many cases

facilitate the porting of legacy code from the sequential to the concurrent environment.

3

1.2 Contributions of this thesis

Section 1.1 describes the context in which the present thesis was elaborated. Our aim was to

contribute to a layer of software, which abstracts the hardware to the programmer and facil-

itates the use of what we consider to be up-and-coming architectures. When designing such

algorithms, two fundamental aspects that should be considered are consistency and progress.

A consistency condition delimits what are the correct responses for the simulated operations

on the shared data. In the spirit of facilitating the use of current architectures to programmers

that are used to sequential reasoning, we are interested in consistency conditions that emulate

it. Such conditions are usually considered as strong or strict, since they impose important re-

strictions on what responses are acceptable, given an interleaving of accesses to shared data.

Such a strong condition that concerns concurrent data structure implementations is lineariz-

ability [HW90], while the popular consistency condition in the context of transactional memory

is opacity [GK08]. Those conditions require that the responses to concurrent accesses to shared

data are equivalent to some sequential execution.

Progress, on the other hand, is concerned with the termination of routines or data struc-

ture operations that a process invokes and executes in a concurrent environment. A progress

property, then, defines under which circumstances this termination can be provided. By circum-

stances, we understand factors such as whether processes are prone to failures, i.e. to sudden

and unexpected cessation of their execution, or what hardware means they use in order to

communicate. A programmer working in a sequential setting may expect from her programs

to terminate in any circumstance, provided that the process does not suffer any failure. A

strong progress property mimicking this sequential behavior in a concurrent setting, is wait-

freedom [Her91]. This property ensures that when a process initiates an operation, it can finish

it, independently of the speed or possible failure of other processes in the same system.

While aiming to move along those lines of correctness and progress, we considered approaches

for making concurrent programming more accessible. We first focused on those architectures

that are currently in wide-spread use, namely multi-cores. Assuming that they rely on cache-

coherent shared memory, we have elaborated both a transactional memory and a concurrent

data structure approach, which provide strong correctness and progress properties.

A TM algorithm with wait-free read-only transactions. A versatile tool, transactional

memory can both be used to transform sequential data structure implementations into concur-

rent ones – by wrapping their operations inside transactions – and to write more generalized

concurrent applications, liberating programmers from having to reason about means such as

locks in order to implement process synchronization.

A common STM research concern regards the avoidance of transaction aborts. Typically, a

transaction may abort in scenarios in which it conflicts with another transaction while accessing

a data item. A conflict between two transactions occurs when they both access the same data

item and at least one of those accesses attempts to update it. The abort mechanism aims at

preserving data consistency. However, it may result in performance degradation since it trans-

4

lates to “wasted” computation effort. While, ideally, we would like to have TM implementations

that guarantee that all transactions commit, recent research [BGK12a] provides an impossibility

result which implies that no TM algorithm can achieve this property. This is especially unfortu-

nate when it affects read-only transactions, i.e. transactions which only contain read accesses to

data items. Transactions of this type do not modify the shared memory and, as related research

shows [GKV07], they represent an important part of transactions in many applications. This

includes applications where transactions are used in order to implement concurrent data struc-

tures from sequential ones. Ideally, read-only transactions should be as light-weight as possible

in terms of synchronization overhead and meta-data that is used for managing the concurrent

access of transactions to data items. Attempting to provide this and to favor the committing

of read-only transactions, pessimistic TM algorithms [AMS12, MS12] use locks. In a pessimistic

TM, no transaction ever aborts; However, pessimistic TM decrease parallelism by having update

transactions, i.e. those that perform updates to transactional variables, execute one after the

other. On the other hand, in optimistic TM transactions are executed concurrently and they

commit only if they have not encountered any conflict during their execution.

In order to address the drawbacks of those approaches, we introduce WFR-TM, a TM algo-

rithm that attempts to combine desirable characteristics of both optimistic and pessimistic TM

implementations. In WFR-TM, read-only transactions are wait-free, i.e. they always commit

within a finite number of their own steps. In the interest of being light-weight, they never

execute expensive synchronization operations (such as CAS, etc.). These desirable characteris-

tics of read-only transactions are achieved without sacrificing the parallelism between update

transactions. Update transactions “pessimistically” synchronize with concurrently executed

read-only transactions, in that they wait for such transactions to complete. However, they

behave “optimistically” when they coordinate with each other: they are executed concurrently

in a speculative way, and they commit if they have not encountered any conflict with other

update transactions during their execution. In the spirit of providing the programmer with a

correct STM implementation, we formally prove that WFR-TM satisfies opacity and provides

wait-freedom for read-only transactions, while ensuring that update transactions deadlock-free.

Wait-free concurrent data structure with complex operations. In a related avenue,

we further delved into providing ease of programmability for multi-cores through the use of

concurrent data structure implementations. Specifically, we studied concurrent data structures

that support enhanced functionality by providing complex read-only operations. Contrary to

a data structure’s traditional operations, complex read-only operations are useful for obtaining

a partial or total consistent view of it, i.e. a reading of the state of the data structure –

either in its entirety or only a subset of it – at a particular moment. Obtaining such a view

is trivial in the sequential setting, since a single process accesses the data structure. In the

concurrent setting, however, an operation trying to obtain that view, also sometimes referred

to as iterator or snapshot, may run in parallel with other operations by other processes that

update it. Currently, several concurrent implementations of well-studied data structures, such

as lists, queues, stacks, trees, or skip-lists are provided in the literature and research in this

5

direction continues to emerge. Such a concurrent implementation provides the data structure’s

basic operations through algorithms which take into account that multiple processes may be

accessing it, and therefore, take care of their synchronization.

Consider such a concurrent implementation that provides the structure’s basic operations

but that does not provide one for obtaining a consistent view. In case a programmer requires

to implement this operation herself, the desired effect of facilitating concurrent programming

is negated: The programmer suddenly has to delve into the synchronization details of the

structure and explicitly code them in her implementation. So, more and more effort is devoted

to enhancing concurrent data structures with such an operation. Implementations of such data

structures can be included in programming language libraries and be used for synchronization,

once more without requiring high concurrency expertise from the programmer. Although the

functionality is more restricted, their design thus faces similar challenges as those met when

designing TM algorithms. However, it also provides similar benefits.

We take on this challenge by addressing the problem of designing a complicated concurrent

data structure: We present Dense, a concurrent, edge-oriented, weighted graph implementation.

Dense incorporates the capability of taking dynamic, partial snapshots of the edges of the graph.

We provide this capability by introducing a novel model for the graph data structure, which

defines the following two functionalities: An update to the graph adds or removes an edge, or

modifies an edge’s weight. A dynamic traversal takes a snapshot of a subset of the graph’s

edges, exhibiting the particular characteristic that this subset can be determined dynamically

while the traversal is taking place. Updates and dynamic traversals can run concurrent to each

other. By exhibiting transaction-like behavior, our dynamic traversal is a versatile function

that can implement a variety of different graph traversal patterns. At the same time, despite

the similarity to STM, the model is restricted enough to avoid the abort semantics associated

with transactions. This is important because it helps ensure that graph operations are both

linearizable and wait-free.

Distributed Data Structures for non-cache coherent architectures. Having provided

solutions for architectures that are currently in use, we tackle similar issues for many-cores,

i.e. architectures that we expect to be dominant in the future. Since cache-coherence does not

scale well as the number of cores increases [NDB+14], future many-core architectures, which

will offer hundreds or even thousands of cores, are expected to substitute full cache-coherence

with multiple coherence islands, each comprised of several cores sharing a part of the memory,

without, however, providing hardware cache coherence among cores of different islands. Instead,

the coherence islands will be interconnected using fast communication channels. This trend is

expected to go as far as to forgo cache coherence all together – this is the case in fully non cache-

coherent architecture prototypes, such as the SCC [HDH+10] and the Runnemede [CAB+13].

Thus, while the previous two thesis contributions that we presented concern architectures re-

lying on shared memory, the final approach pursued by this thesis assumes a message-passing

communication infrastructure.

Just as the shared memory context, however, message-passing is considered difficult to

6

program, as it often requires highly skilled and experienced programmers to reason about load

balancing, distributing data among processors, explicit communication and synchronization, not

only to achieve the best of performance, but even to ensure simple correctness of a program. In

the interest of helping software developers to overcome these difficulties, we consider that in this

setting also, the design of effective distributed data structures is crucial for many applications.

In the context of this thesis, we study general techniques for implementing distributed

versions of data structures intended for many-core architectures with non- or partially cache-

coherent memory and we highlight how they can be applied by providing implementations of

essential data structures such as stacks, queues, and lists.

Once more, we aim at leaving the habitual paradigm on the programmer’s side intact. A

programmer using these algorithms should be able to just invoke operations without having to

be concerned about the communication infrastructure. On the contrary, the implementations

of the data structure operations that we provide are meant to be tailored to suit the available

hardware – e.g. the communication or connectivity characteristics of the cores that comprise

it, etc. – or the expected workload – e.g. the estimated locality of the data, whether the

operations on the data structure are mostly reads or updates, etc. Thus, the techniques that

these algorithms are based on exhibit different properties because they are meant to serve

different purposes, such as addressing different workloads, or exploiting the communication

characteristics of a given architecture.

We focus on two techniques. We first present a directory-based approach, where the elements

that comprise the data structure are stored in a distributed directory. In this technique, a

synchronizing server acts as the coordinator that indicates where those elements should be

stored or retrieved from. This approach achieves load-balancing in situations where the data

structure is large. However, the manner in which the elements of the data structure are handled,

remains “hidden” from the programmer. The same is true for the token-based approach, the

second design technique that we present. In our token-based algorithms, elements that comprise

the data structure are stored in a designated set of cores, which furthermore form a ring. One of

them acts as the token-server so that storing and retrieving data structure elements takes place

on its memory module. If the memory module of this core fills up, but the core receives requests

to store more elements, then it forwards the token to the next core in the ring. Similarly, if the

requested operations on the data structure have emptied the token server’s memory module of

data structure elements, but the core receives requests to remove more, then it forwards the

token to the previous core in the ring. This approach exploits data locality and is better suited

for cases where the data structure size is moderate.

Apart from aiding in making many-core architectures more accessible to programmers that

are accustomed to sequential programming, an added benefit of our implementations is that

they can facilitate the re-use of applications designed for shared memory. The algorithms we

present are intended as a step towards providing libraries of data structures adapted to message-

passing infrastructures. Shared-memory applications that rely on equivalent data structure

libraries could then be ported to a message-passing setting by substituting one library for

7

another. Notably, research effort has been devoted [ABH+01, MS10, NGF08, YC97, ZWL02]

into implementing distributed run-time environments for high-productivity languages such as

Java. While these implementations assume non-cache-coherence, they nevertheless maintain

the shared-memory abstraction towards the programmer. The data structures that we provide

correspond to several of the data structures that are included in the Java concurrency utilities

package [Lea06, Ora] and could be used to substitute it.

Our implementations and their claimed performance properties have been experimentally

tested on a non cache-coherent 512-core architecture, built using the FORMIC hardware pro-

totype boards [LKL+12]. Furthermore, in the interest of providing a basis on which to create

correct software applications, we provide proofs that our data structure implementations are

linearizable.

1.2.1 List of Publications

In the process of elaborating the present thesis, the following publications were produced.

1. Tyler Crain, Eleni Kanellou, Michel Raynal. STM Systems: Enforcing Strong Isolation

between Transactions and Non-transactional Code. 12th International Conference on

Algorithms and Architectures for Parallel Processing - ICA3PP 2012.

2. Panagiota Fatourou, Eleni Kanellou, Eleftherios Kosmas, Md Forhad Rabbi. WFR-TM:

Wait-free Readers without Sacrificing Speculation of Writers. 18th International Confer-

ence on Principles of Distributed Systems - OPODIS 2014.

3. Dmytro Dziuma, Panagiota Fatourou, and Eleni Kanellou. ”Consistency for Transactional

Memory Computing”. In ”Transactional Memory: Foundations, Algorithms, Tools and

Applications” (COST Action Euro-TM Book, page 3).

4. Panagiota Fatourou, Mykhailo Iaremko, Eleni Kanellou, and Eleftherios Kosmas. ”Al-

gorithmic Techniques in STM Design”. In ”Transactional Memory: Foundations, Algo-

rithms, Tools and Applications” (COST Action Euro-TM Book, page 101).

5. Dmytro Dziuma, Panagiota Fatourou, and Eleni Kanellou. ”Consistency for Transactional

Memory Computing”. Bulletin of the EATCS, No. 113, June 2014

(http://bulletin.eatcs.org/index.php/beatcs/article/view/288)

6. Panagiota Fatourou, Nikolaos D. Kallimanis, Eleni Kanellou, Odysseas Makridakis, Christi

Symeonidou. Distributed Data Structures for Future Many-core Architectures. FORTH-

ICS Technical Report TR-447.

7. Nikolaos D. Kallimanis, Eleni Kanellou. Wait-free Concurrent Graph Objects with Dy-

namic Traversals. 19th International Conference on Principles of Distributed Systems -

OPODIS 2015.

Contents that concern publications 2 to 7 comprise the body of this thesis.

8

1.3 Roadmap

The chapters that follow provide details on the work that was elaborated for this thesis. Chap-

ter 2 introduces the formal model under which we view the two architecture paradigms and

details the hardware assumptions that we make. Furthermore, it provides the definitions of

the theoretical concepts that we employ in designing the presented algorithms and in proving

their correctness. Chapter 3 then presents our solutions for current multi-core architectures.

Specifically, Section 3.1 introduces transactional memory and WFR-TM, the TM implementation

that we propose. Section 3.2 then presents the data structure model and the implementation of

Dense, a wait-free concurrent graph with complex read-only operations. Section 3.3 concludes

this chapter by reviewing state-of-the-art literature relevant to transactional memory and data

structure implementations for the shared memory context, i.e. what we perceive as the commu-

nication paradigm of current multi-core machines. The data structure implementations that we

propose for the many-core setting are detailed in Chapter 4. Specifically, the directory-based

approach is explored in Section 4.1, while the token-based approach is presented in Section 4.2.

Although our focus through-out this thesis is mostly on correctness, we dedicate Section 4.4

to providing a summary of the experimental evaluation of the data structure implementations,

exposed in of some design techniques that are meant to exploit many-core hardware characteris-

tics even deeper, in the interest of achieving higher performance. Section 4.5 reviews the related

literature in distributed data structure design. Chapter 5 concludes this work by summarizing

the main contributions, discussing their implications, and sketching out possible directions for

future work.

9

10

Chapter 2

System Model and Definitions

In this chapter, we provide a formal model for the shared memory and the message-passing

systems that we target and elaborate on our view of the hardware where necessary. The as-

sumptions presented here will serve as basis for the algorithms presented in subsequent chapters.

These assumptions aim at reflecting the communication reality of current, cache-coherent multi-

core architectures and the communication expectation for future, non-cache-coherent many-core

architectures. In either of the communication paradigms that we consider, we assume a system of

n asynchronous processes, i.e. processes that execute at arbitrary speeds. We denote processes

as pi, i ∈ {1, 2, . . . , n}. We consider that each process acts as a state machine, i.e. it executes

a single sequential program. However, multiple different processes can execute concurrently.

The following sections further elaborate on how we model the two communication paradigms

and highlight their differences. Section 2.1 details our shared memory model, in which we also

provide definitions for the transactional memory abstraction. Section 2.2 and Section 2.3 provide

definitions of consistency and progress properties, respectively. Our message-passing model is

described in Section 2.4. Finally, Section 2.5 provides an overview of pseudocode conventions

that are employed throughout this work.

2.1 Shared Memory Systems

Hardware assumptions. In this paradigm, all processors are integrated onto a single chip.

We do not make an explicit assumption of homogeneity of those processors, although we have

to at least assume that even in the case of heterogeneity, the instruction sets of the different

types of cores overlap into a subset that contains all those primitives that are used in our

algorithms. We assume input and output devices through which the processes communicate with

the environment but are not further concerned with modeling them. Processes communicate

via a shared memory. We make no further assumptions about memory, i.e. whether it is on-chip

or not, whether processors have their individual cache or not, etc., other than that processes

operate in a system that provides full cache coherence.

11

Base objects. We model the shared memory as a finite collection of base objects, which we

consider that are provided by the system hardware. A base object has a state and supports a

set of operations, called primitives, to read or update its state. In this work, we make use of

the objects detailed below and consider that the execution of a primitive by a process occurs

atomically.

- A read/write object O stores a value v from some set S and supports two atomic primitives

read and write; read(O) returns the current value of O without changing it, and write(O, v)

writes the value v into O and returns an acknowledgement.

- A CAS object O stores a value v from some set S and supports, in addition to read, the atomic

primitive CAS(O, v′, v) which checks whether the value of O is v′ and, if so, it sets the value of

O to v and returns true, otherwise, it returns false and the value of O remains unchanged.

- An Add object O has a state that takes values out of some set of integers S and supports,

in addition to read, the atomic primitive Add(O, v), v ∈ S, which (arithmetically) adds the

value v to the state of O.

- An LL/SC object O has a state that takes values out of some set S. It provides the primitives

LL(O) and SC(O, v), v ∈ S. LL(O) returns the current state of O. SC(O, v), executed by a

process pi, i ∈ {1, 2, . . . , n}, must follow an execution of LL(O) also by pi. It changes the state

of O to v if O has not changed since the last execution of LL(O) by pi.

Concurrent data structures. A concurrent data structure also has a state, which is stored

in shared base objects. Furthermore, for each process, it provides algorithms for each operation

the data structure supports. A process executes an operation by issuing an invocation for it

and an operation terminates by returning a response to the process.

Transactions, t-operations, histories. A transaction executes a piece of sequential code

which accesses (reads or writes) pieces of data, called data items. A data item may be accessed

by several processes simultaneously when a transaction is executed in a concurrent environment.

A transaction may commit, in which case all its updates to data items take effect, or abort, in

which case all its updates are discarded.

A software transactional memory (STM) algorithm uses a collection of base objects to store

the state of data items and data (referred to as meta-data) used to manipulate transactions.

In order to facilitate their concurrent access, data items have a shared representation, which

is referred to as a transactional variable, or t-variable. In the remainder of this work, we may

abuse terminology and use t-variable in order to refer to both the shared representation and the

data item itself. For the purposes of this work, we consider that accesses to data items consist

in reads and writes. The data items that a transaction reads are referred to as its read-set. The

data items a transaction writes to are referred to as its write-set. The union of read-set and

write-set is referred to as the data-set.

12

Processes can access the transactional memory through a collection of operation that it

offers, which we refer to as transactional operations or t-operations. An STM algorithm provides

implementations for t-operations. In this work, we are concerned with implementations for the

following t-operations:

- BeginTx. It initiates a transaction T and returns either a reference to T or a special value

AT indicating that T has to abort;

- CreateTvar. It creates the shared representation of a newly allocated data item and either

returns a reference to that shared representation or AT ;

- ReadTvar. It receives as argument the t-variable x to be accessed (and possibly the process p

invoking ReadTvar and the transaction T for which p invokes ReadTvar) and returns either

a value v for x or AT .

- WriteTvar. It receives as arguments the t-variable x to be modified, a value v (and possibly

the process p invoking WriteTvar and the transaction T for which p invokes WriteTvar), and

returns either an acknowledgment or AT .

- CommitTx. It is invoked after all t-variable accesses of a transaction have been performed,

in order to attempt to effectuate the transaction’s changes: if it finds that the execution of

the transaction is correct, then the transaction commits, and a special value CT is returned;

otherwise the transaction aborts and AT is returned.

- AbortTx. It is invoked in order to abort a transaction and it always returns AT .

A t-operation starts its execution when the process executing it issues an invocation for it;

the t-operation completes its execution when the process executing it receives a response. If

the t-operations are invoked by the process while it is executing transaction T , we may say for

simplicity that T invokes the operations. We refer to CT as the commit response and to AT as

the abort response. Either of CT and AT may be referred to as the response of T .

Notice that although the transaction abstraction gives the illusion of atomicity, nevertheless,

the execution of a t-operation op is not atomic, i.e. the process executing it may perform a

sequence of primitives on base objects in order to complete it. We remark that these invocations

and responses are considered atomic. We refer to t-operation invocations and responses as

events.

A history is a finite sequence of t-operation invocations and responses. Given some history

H, we say that a transaction T (executed by a process p) is in H or H contains T , if there are

invocations and responses of t-operations in H that are issued (or received) by p for T . The

transaction subhistory of H for T , denoted by H|T , is the subsequence of all events in H issued

by p for T . The process subhistory of H for a process p, denoted by H|p, is the subsequence of

all events in H issued by p. We say that a response res in some history H matches an invocation

inv of a t-operation op in H, if they are both by the same process p, res follows inv in H, res

is a response for op, and there is no other event by p between inv and res in H.

13

A history H is well-formed if, for each transaction T in H, H|T is an alternating sequence

of invocations and matching responses, starting with an invocation of BeginTx, such that the

following hold: (1) no event in H|T follows CT or AT ; (2) if T
′ is some transaction in H that is

also executed by the same process that executes T , then either the last event of H|T precedes

in H the first event of H|T ′ or the last event of H|T ′ precedes in H the first event of H|T .

For the remainder of this work, we focus on well-formed histories. Consider such a history H.

A t-operation is complete in H, if there is a response for it in H; otherwise, the t-operation is

pending. A transaction T is committed in H, if H|T includes CT ; a transaction T is aborted in

H, if H|T includes AT . A transaction is complete in H, if it is either committed or aborted in H,

otherwise it is live. A transaction T is commit-pending in H if T is live in H and H|T includes

an invocation to CommitTx for T . If H|T contains at least one invocation of WriteTvar, T is

called an update transaction; otherwise, T is read-only. We denote by comm(H) the subsequence

of all events in H issued and received for committed transactions.

For each process p, we denote by H|p the subsequence of H containing all invocations and

responses of t-operations issued or received by p. Two histories H and H ′ are equivalent, if

for each process p, H|p = H ′|p. This means that H and H ′ are equivalent if they contain the

same set of transactions, and each t-operation invoked in H is also invoked in H ′ and receives

the same response in both H and H ′. Then, even though the order of invocation and response

events may be different in H ′ compared to H, nevertheless the orders of invocation and response

events are the same in H|p and H ′|p for each process p.

We denote by Complete(H) a set of histories that extend H. Specifically, a history H ′ is in

Complete(H) if and only if, all of the following hold:

1. H ′ is well-formed, H is a prefix of H ′, and H and H ′ contain the same set of transactions;

2. for every live transaction1 T in H:

(a) if H|T ends with an invocation of CommitTx, H ′ contains either CT or AT ;

(b) if H|T ends with an invocation other than CommitTx, H ′ contains AT ;

(c) if H|T ends with a response, H ′ contains AbortT and AT .

3. H ′ does not contain any other additional events.

Roughly speaking, each history in Complete(H) is an extension of H where some of the commit-

pending transactions in H appear as committed and all other live transactions appear as

aborted. We say that H is complete if all transactions in H are complete. Each history in

Complete(H) is complete.

Executions. Each process has an internal state. A configuration C is a vector that describes

the system at some point in time, i.e. it provides information about the state of each process

1We remark that the order in which the live transactions of H are inspected to form H ′ is immaterial, i.e. all
histories that result by processing the live transactions in any possible such order are added in Complete(H).

14

and the state of each base object. In an initial configuration, the states in which processes and

base objects are in are referred to as initial states. We denote an initial configuration by C0.

A step of a process consists of applying a single primitive on some base object, the response to

that primitive, and zero or more local computation performed by the process; local computation

accesses only local variables of the process, so it may cause the internal state of the process

to change but it does not change the state of any base object. As a step, we also consider

the invocation of a routine or of a data structure operation, as well as the response to such an

invocation. We consider that each step is executed atomically. A step is also considered as an

event.

A (possibly infinite) sequence C0, φ1, C1, . . . , Ci−1, φi, Ci, . . ., of alternating configurations

(Ck) and events (φk), starting from C0, where for each k ≥ 0, Ck+1 results from applying event

φk+1 to configuration Ck, is referred to as an execution. A subsequence of an execution α in the

form Ci, φi+1, Ci+1, . . . , Cj , φj+1, Cj+1, of alternating configurations and events, starting from

some configuration Ck, k > 0, is referred to as an execution interval of α.

If some configuration C occurs before some configuration C ′, C 6= C ′, in an execution α,

then we say that C precedes C ′ in α and denote it as C < C ′. Conversely, we say that C ′ follows

C in α. Using the same terminology and operator, we also denote the precedence relation

that α imposes between an event φi and an event φj , or precedence among an event φi and

a configuration Cj . Notice that for the remainder of this thesis, we only consider executions

where the invocation of an operation precedes its response.

Let α1 and α2 be two execution intervals of some execution α. If the last configuration of

α1 precedes or is the same with the first configuration in α2, then we say that α1 precedes α2

and denote it α1 < α2. In that case we also say that α2 follows α1. If neither α1 < α2 nor

α2 < α1 are the case, then we say that α1 and α2 overlap.

Given the instance of some operation op for which the invocation and response events are

included in α, we define αop, the execution interval of op, as that subsequence of α which starts

with the configuration in which op is invoked and ends with the configuration that results from

the response of op. We refer to such an operation as completed. If only the invocation of an

operation op is included in α, then the execution interval of op is the suffix of α that starts with

the configuration in which op is invoked. In that case, we say that op is incomplete. If there are

no two operation instances op1, op2 in α for which the execution intervals overlap, then we say

that α is a sequential execution, or that operations in α are executed sequentially.

Given an execution α, the history of α, denoted by Hα, is the subsequence of α that only

consists of the invocations and the responses of t-operations. Given a complete transaction T

in α, we define the execution interval of T as the subsequence of consecutive steps of α starting

with the configuration in which T is invoked and ending with the configuration that results

from the response of T . The execution interval of a transaction T that does not complete in α

is the suffix of α starting with with the configuration in which T is invoked. A t-operation is

complete in α if it is complete in Hα; otherwise it is pending. A transaction T is committed

(res. live, commit-pending) in α if it is committed (res. live, commit-pending) in Hα.

15

A well-formed history imposes a partial order, referred to as real-time order, on the set of

transactions it contains. We denote the real-time order as <H and defined as that partial order,

for which it holds that for any two transactions T1 and T2 in H, if T1 is complete in H and the

last event of H|T1 precedes the first event of H|T2 in H, then T1 <H T2. Transactions T1 and

T2 are concurrent in H, if neither T1 <H T2 nor T2 <H T1. Similarly, T1 and T2 are concurrent

in an execution α, if neither T1 <Hα T2 nor T2 <Hα T1. A history H is sequential if no two

transactions in H are concurrent. Given two well-formed histories H1 and H2 which contain

the same set of transactions, we say that H2 respects the real-time order of H1, if for any two

transactions T1 and T2 that are both in H1 and in H2, it holds that if T1 <H1
T2, then also

T1 <H2
T2.

2.2 Correctness

Legality. A transaction T in a sequential history S is legal if for every invocation inv of

ReadTvar on each data item x that T performs, whose response is res 6= AT , the following

hold: (i) T contains an invocation of WriteTvar for x by T that precedes inv, in which case

res is the value used as argument of the last such invocation; or in case (i) does not hold, if

(ii) S contains a committed transaction T ′, which contains an invocation of WriteTvar for x,

in which case res is the value used as argument of the last such t-operation invocation by a

committed transaction that precedes T inS; or in case neither (i) nor (ii) hold, if (iii) res is the

initial value for x. A complete sequential history S is legal if every transaction in S is legal.

Consistency conditions. Strict serializability is traditionally considered a basic consistency

condition for concurrent transaction execution. Although it originates in database systems, we

reformulate it for transactional memory.

Definition 2.1 (Strict Serializabiltiy [Pap79]). A history H is strictly serializable, if there

exist a history H ′ ∈ Complete(H) and a legal sequential history S such that S is equivalent to

comm(H ′) and S respects <comm(H′). An execution α is strictly serializable, if Hα is strictly

serializable. An STM algorithm is strictly serializable, if each execution α it produces is strictly

serializable.

In order to define correctness for concurrent data structures, we need to reason about op-

erations. A condition that is reminiscent to strict serializability, but applies to data structure

operations, is linearizability. Roughly speaking, if transactions were restricted to containing

only one access to a data item, then strict serializability and linearizability would be equivalent.

Definition 2.2 (Linearizability [HW90]). An execution α is linearizable if it is possible to assign

a linearization point inside the execution interval of each completed operation in α and possibly

some of the incomplete operations in α, so that the result of each of those operations is the same

as it would be, if they had been performed sequentially in the order dictated by their linearization

points.

16

A concurrent data structure is linearizable if all its executions are linearizable.

Given the particularities of STM algorithms when compared to databases, currently a con-

dition derivative of but stricter than strict serializability is commonly used in the TM context.

Definition 2.3 (Opacity [GK08]). A history H is opaque if there exists some history H ′ in

Complete(H), and a legal sequential history S such that S is equivalent to H ′ and S respects

the real-time order of H ′. An execution α is opaque if Hα is opaque and a TM algorithm is

opaque if all executions that it produces are opaque.

In contrast to strict serializability, opacity does not only impose restrictions on transactions

that are committed or commit-pending, but what is more, it implies restrictions for transactions

that are live or aborted.

2.3 Progress

Liveness assumptions. In this work, we consider that processes that participate in an exe-

cution α may suffer from crash failures, i.e. we consider that a process may unexpectedly stop

taking steps in α after some configuration C.

Progress properties. We say that a process p executes solo in some execution interval α′

of some execution α it participates in, if during that interval, the only process that takes steps

is p. We say that a process suffers from starvation in an infinite execution α if after some

configuration C it does not receive a response to an operation it has invoked before C, even

though it keeps taking steps after C. We say that a system suffers from deadlock if in an infinite

execution α, there is a configuration C after which no process receives a response to an operation

that it has invoked, even though the process continues taking steps after C.

In this context, we consider that a liveness condition concerns completion of operations or

of transactions. With this criterion, the following definitions list some progress properties from

weakest to strongest.

Definition 2.4 (Obstruction-freedom [HLM03]). A data structure implementation or STM

is obstruction-free if in any execution α that it produces, each process can finish the execution

of its operation, provided that it can run solo after some configuration C for a sufficient number

of steps.

The following definition refers to what is also known as the non-blocking property.

Definition 2.5 (Lock-freedom). A data structure implementation or STM is lock-free if in

any execution α that it produces, then starting from any configuration C in α, some process that

does not suffer a crash failure is able to terminate within a finite number of steps, the operation

it was executing at C or an operation it invokes after C, if at C it wasn’t executing any.

The above definition implies that in case α is an infinite execution, then infinitely many

invoked operations finish their execution, each within a finite number of steps independently of

the speed or the failure of other processes.

17

Definition 2.6 (Wait-freedom [Her91]). A data structure implementation or STM is wait-

free if in any execution α that it produces, each participating process that does not suffer a crash

failure finishes the execution of every operation or t-operation that it initiates within a finite

number of steps, independently of the speed or the failure of other processes.

2.4 Message-Passing

We consider that this model corresponds to many-core architectures and use the following para-

graphs in order to outline the important differences to the shared memory model. Nevertheless,

several of those definitions as well as consistency and progress conditions apply to both contexts.

Hardware assumptions. Inspired by the characteristics of non cache-coherent architec-

tures [CAB+13] and prototypes [LKL+12], we consider an architecture which features m islands

(or clusters), each comprised of c cores (located in one or more processors). The main memory

is split into modules, with each module associated to a distinct island (or core). A fast cache

memory is located close to each core. No hardware cache-coherence is provided among cores

of different islands: different copies of the same variable residing on caches of different islands

may be inconsistent. The islands are interconnected with fast communication channels. The

architecture may provide cache-coherence for the memory modules of an island to processes

executing on the cores of the island, i.e. the cores of the same island may see the memory mod-

ules of the island as cache-coherent shared memory. If this is so, we say that the architecture

is partially non cache-coherent; otherwise, it is fully non cache-coherent.

Messages. We consider that each process has a mailbox, implemented as a hardware FIFO

queue. A process can send messages to other processes by invoking send and it can receive

messages from other processes by invoking receive. We further assume that messages are not

lost and that they are delivered in order. An invocation of receive blocks until the requested

message arrives. The first parameter of an invocation to send determines the core identifier

to which the message is sent. We assume that the maximum message size supported by an

architecture is generally either equal to a few memory words or a cache line.

Additional communication mechanisms. In order to facilitate communication that in-

volves data that exceeds the maximum message size, we assume that Direct Memory Access

(DMA) is available. A DMA engine allows certain hardware subsystems to access the sys-

tem’s memory without any interference with the CPU. We assume that each core can perform

Dma(A,B, d) to copy a memory chunk of size d from memory address A to memory address

B using a DMA (where A and B may be addresses in local or a remote memory module).

We remark that DMA is not executed atomically. To model a DMA, we can assume that it

consists of a sequence of atomic reads of smaller parts (e.g. one or more words) of the memory

chunk to be transferred, and atomic writes of each of these parts to the other memory module.

18

Remote DMA transfers can be used as a performance optimization mechanism: once the size of

the memory chunk to be transferred becomes larger (by a small multiplicative factor) than the

maximum message size supported by the architecture, it is more efficient to realize the transfer

using DMA (in comparison to sending messages).

Distributed data structures. An implementation of a data structure (DS) stores its state

in the memory modules and provides an algorithm, for each process, to implement each oper-

ation supported by the DS. For correctness, we consider linearizability. We aim at designing

algorithms that always terminate, i.e. reach a state where all messages sent have been delivered

and no step is enabled. In this work, we do not cope with message or process failures in the

message-passing context.

Executions, steps, events. We model the submission and delivery of messages sent by

processes by including incoming and outgoing message buffers in the state of each process (as

described in distributed computing books [AW04, Lyn96]). As in the shared memory case, a

configuration is a vector describing the state of each process. In addition to the shared memory

definition, however, the state includes the message buffers,the state of the caches (or the shared

variables in case shared memory is supported among the cores of each island) and the states of

the memory modules. In an initial configuration, each process is in an initial state, the shared

variables and the memory modules are in initial states and all message buffers are empty.

An event can be either a step by some process, or the delivery of a message; in one step,

a process may either transmit exactly one message to some process and at least one message

to every other process, or access (read or write) exactly one shared variable. An execution is

an alternating sequence of configurations and steps, starting with an initial configuration. A

step is enabled at a configuration C, if the process will execute this step next time it will be

scheduled. Execution intervals are defined as in the shared memory context.

Communication Complexity. Communication between the cores of the same island is usu-

ally faster than that across islands. Thus, the communication complexity of an algorithm for

a non cache-coherent architecture must be measured in two different levels, namely the intra-

island communication and the inter-island communication. The intra-island communication

complexity of an operation op in an implementation I is the maximum, over all executions of

I and over all instances of op in each execution, of the total number of messages sent by every

core to cores residing on different islands for executing this instance of op. If the architecture is

fully non cache-coherent, then the inter-island communication complexity of an operation op in

I is the maximum, over all executions of I, over all instances of op in each execution and over

all islands, of the total number of messages sent by every core of the island to cores residing

on the same island for executing this instance of op; in case of a partially non cache-coherent

architecture, it is the maximum, over all executions, over all instances of op in each execution

and over all islands, of the total number of cache-misses that the cores of the island experience

to execute this instance of op (this is known as the cache-coherence (CC) model [HS08, MCS91]).

19

Time complexity. We define the time complexity of an operation in an implementation I

based on timed versions [Lyn96] of executions of I, where times are assigned to events as follows:

(1) the times must start at 0, (2) must be strictly increasing for each individual process, (3)

must increase without bound if the execution is infinite, (4) the timestamps of two subsequent

events by the same process must differ by at most 1, and (4) the delay of each message sent

must be no more than one time unit.

2.5 Conventions for Algorithm Presentation

The algorithms contained in this work are expressed by means of C-like pseudocode. Statements

terminate by a new line, thus rescinding of semi-colons. Scope is indicated through indentation

and rescinds of the use of brackets. We use the symbol = in order to indicate value assign-

ment, while we use the symbol == to indicate equality check (as in conditional statements).

Conversely, the symbol 6= indicates check for inequality. We further adopt the C-like operators

−− and ++ in order to indicate that a variable is decremented or incremented by 1, respec-

tively. Operations and procedures that might be explicitly written out as a small algorithm in

an actual programming language are abstracted in our case, for ease of presentation. Instead,

we use common mathematical symbols (such as ∪, ∈, 6∈, etc) to indicate them. The symbol ∅

denotes an empty set. Pseudocode may be annotated with comments. In this case, those are

indicated by preceding them with // if they span no more than one text line, or by including

them between / ∗ . . . ∗ /, if they span several lines.

20

Chapter 3

Data Structures for Multi-core

Architectures Supporting

Cache-coherence

In this chapter, we focus on current, cache-coherent architectures.

In Section 3.1, we presentWFR-TM, an opaque transactional memory algorithm that ensures

that read-only transactions execute exactly once and finish by committing. WFR-TM combines

desirable characteristics of the optimistic and the pessimistic concept.

In Section 3.2, we present Dense, a concurrent graph implementation with linearizable and

wait-free operations. An interesting feature of this graph is that it provides the capability of

performing traversals that are dynamically defined. In those dynamic traversals, the subset

of the graph that is to be visited can be defined at runtime by a process. Nevertheless, a

consistent snapshot of the subgraph that was visited is returned. In this aspect, this graph

implementation exhibits transaction-like characteristics, where the dynamic traversals resemble

memory transactions that can however not be aborted.

Finally, a review of related transactional memory and concurrent data structure literature

is presented in Section 3.3.

3.1 Case Study I: WFR-TM, A TM Algorithm

In WFR-TM, a read-only transaction Tr announces itself so that update transactions are aware

of its existence. If Tw is an update transaction that updates t-variable x after Tr announced

itself, then Tw can only commit after Tr does. This prevents Tw from updating x after Tr has

read it. Update transactions may execute in parallel to each other, but may have to abort

if they encounter conflicts. In order to detect those, update transactions employ fine-grained

locking on the t-variables that they access. A read-only transaction that accesses a locked t-

variable can read its value by snooping into the write-set of the transaction that has locked it.

We remark that it is not necessary to know in advance whether a transaction is read-only; any

21

transaction is read-only when it is initiated and becomes an update transaction the first time it

accesses a t-variable for write. WFR-TM satisfies opacity and provides wait-free read-only and

deadlock-free update transactions.

In the following, we provide a detailed description of WFR-TM and a formal proof of the

properties we claim for it. In order to do so, throughout this section we rely on the theoretical

transactional memory model that is presented in Section 2.1.

Author’s contribution. The contents of this section have been published in [FKKR14] and

are a joint work. The author contributed to the algorithm design and proof of correctness of

the algorithm presented in this section.

3.1.1 Overview and Main Ideas

Each transaction starts by announcing itself into an appropriate element of an announce array.

This array has size n, with one entry for each process, used by the corresponding process to

announce its transactions.

Update transactions execute speculatively and employ fine-grained locking to ensure consis-

tency when updating t-variables. Specifically, each transaction T keeps track of the t-variables

that it accesses by maintaining a read-set and a write-set. The read-set contains an entry for

each t-variable that T reads, where the value read from the t-variable is stored. Similarly, for

each t-variable that T writes, the write-set contains an associated entry which stores the value

that T wants to write to the t-variable. At commit time, T attempts to obtain the locks that

are associated with each t-variable in its read-set and its write-set.

In order to avoid deadlocks, the locks are acquired in ascending order based on the address

of the t-variables. Once T acquires the lock for some t-variable x in its write-set, it maintains

in the corresponding entry of its write-set, the value that x had at the time that T acquired the

lock for it. Once T acquires all required locks, it enters its updating phase, where it actually

updates the t-variables recorded in its write-set, and then enters its waiting phase, where it

waits for active announced read-only transactions to commit. T finally releases all the acquired

locks and commits. We remark that WFR-TM guarantees that if T enters its updating phase,

then T will commit within a finite number of steps.

For each transaction T , WFR-TM maintains a record for it. The record for T contains

T ’s status, a variable that represents the current state of T and can take the values simulating,

updating, waiting, committed or aborted. Each transaction starts by speculatively executing its

code during its simulating phase. An update transaction (that does not abort early) additionally

executes an updating phase and a waiting phase. This last phase is needed to ensure wait-

freedom for read-only transactions. The record for T also contains the read-set and write-set of

T , as well as a set called beforeMe of active transactions that will be linearized before T . This

set is needed in order to ensure consistency of reads.

For each t-variable x, WFR-TM maintains a record containing the current value of x, its

version which is a strictly increasing sequential number, and a pointer owner to some transac-

22

tion’s record which indicates whether x is locked. An update transaction Tw acquires the lock

for x each time it successfully executes a CAS to identify itself as the owner of x; x is considered

to be unlocked if either the owner field of its record is null or the status of the transaction that

it points to is aborted or committed. Tw releases all the locks it has acquired by successfully

changing its status to either committed or aborted (i.e. in one atomic step).

WFR-TM provides wait-freedom for any read-only transaction T by ensuring that Tr reads

consistent values independently of whether the transactional variables that it accesses are locked,

as follows. When a t-variable x is unlocked, Tr reads its value from x’s record. Suppose that

x is locked by some update transaction Tw at some point. We define an old value and a new

value for x at that point. The old value for x is the value stored in x’s record at the moment

that it was locked by Tw, whereas the new value for x is the value that Tw wants to write to

x. Notice that the old value of x is contained it its record until Tw writes the new value for it

during its updating phase. Afterwards, the old value is recorded in the write-set of Tw.

During its initialization, each transaction T takes a snapshot of the announce array, i.e. a

consistent view of the announced transactions together with their statuses. We remark that

taking this snapshot is easier than in the standard wait-free implementations of snapshot ob-

jects presented in the literature [AAD+93, And94, And93, AR93], since, in WFR-TM, update

transactions are waiting for read-only transactions to commit. Using this snapshot, T decides

whether it must read or ignore the values written by update transactions that are active during

T ’s execution. Specifically, while T is taking the snapshot of the announce array, it adds into the

beforeMe set all those announced transactions whose status is either waiting or committed. If

T reads from x and finds that it is locked by an update transaction Tw, then it checks if Tw is

in T ’s beforeMe set. If this is so, T reads directly from the record of x. Since Tw’s status was

waiting or committed when it was recorded by T , during T ’s initialization this value was the

new value of Tw. If Tw is not in T ’s beforeMe set, T ignores the value that Tw want to write

on x and decides which value to read for x based on the status of Tw. If Tw is in its simulating

phase, T returns the value found in x’s record (and thus ignores the value that Tw wants to

write since Tw has not yet started updating its t-variables). If Tw is in its updating phase, T

reads the old value for x from Tw’s write-set. This is necessary because in this case, Tw is in the

process of updating the t-variables contained in its write-set, so some of them may contain the

new values and some of them may still contain the old values. For instance, if the read-set of T

contains two t-variables x and y updated by Tw, and T reads both of them from their records,

it may read the old value for x and the new value for y, which would be inconsistent. The

same action is taken by T if Tw is either in its waiting phase or it is committed, since similar

consistency problems could appear if T has read other t-variables written by Tw while Tw was

in earlier phases of its execution. In all these cases, if T is a read-only transaction, then during

its commit time, Tw will wait for T to commit before committing itself. This procedure ensures

consistency of the values read for the t-variables by read-only transactions.

Before committing, each update transaction reads all entries of the announce array and waits

for the completion of each announced read-only transaction that it encounters. By incorporating

23

Algorithm 1 Data structures of WFR-TM.

1 typedef statval {SIMULATING, UPDATING, WAITING, COMMITTED, ABORTED}

2 type txrec

3 uint pid
4 statval status
5 set of wnode elements wset
6 set of pointers to

txrec elements beforeMe

7 type tvarrec

8 value val
9 uint ver
10 txrec *owner

11 type rnode

12 tvarrec *tvar
13 value val
14 uint ver

15 type wnode

16 tvarrec *tvar
17 value oldval
18 uint oldver
19 value newval

// Shared variable

20 shared txrec *A[1..n]

// Persistent local variable for process p

21 set of rnode elements rsp

this waiting mechanism, WFR-TM ensures that if a read-only transaction Tr ignores the value

written to a t-variable by an update transaction Tw, then Tw does not commit before Tr has

committed. This is necessary to argue that at the time that Tr commits, it will not have read

an inconsistent set of values. It is also necessary for guaranteeing the progress properties of the

algorithm.

For each t-variable x, there is a version associated to it whose value is unique for each

value stored in x. An update transaction Tw performs its reads by executing the same actions

described above for read-only transactions. Additionally, since the waiting mechanism is not

employed between update transactions, in order to ensure opacity, Tw must validate its read-

set whenever it reads a t-variable for the first time, as well as a final time before it starts its

updating phase. Specifically, Tw validates the read-set by comparing the current version of each

t-variable contained there in, against the version that Tw last read for this t-variable (which is

contained in its read-set). Tw aborts if a mismatch is found for some t-variable. We remark

that Tw performs the final validation in an indirect way by acquiring the lock for each t-variable

contained in its read-set. If a version mismatch is found, the CAS used to acquire the lock for

the corresponding t-variable, fails, and Tw aborts.

3.1.2 Algorithm Description

Data Structures. Algorithm 1 presents the data structures ofWFR-TM. For each transaction

T , WFR-TM stores a record of type txrec that contains: 1) the identifier pid of the process

that initiated T , 2) a three-bit variable status, storing the status of T , 3) a set wset of elements

of type wnode, implementing the write-set of T , and 4) a set beforeMe of pointers to elements

of type txrec. Also, each process p maintains a local set rsp of elements of type rnode,

implementing the read-set of each transaction it initiates.

For each t-variable x, WFR-TM stores a CAS object of type tvarrec, containing: i) the

value val of x which we assume to be of type value, ii) the version number ver of x which is

an unsigned integer, and iii) a pointer owner to a txrec record. To implement WFR-TM with

single-word CAS objects, indirection can be used as in [HLMS03, TMG+09].

We remark that an element of type rnode, maintained for a t-variable x, contains: i) a

24

pointer tvar to the tvarrec record of x, ii) the value val of x read by T , and iii) an unsigned

integer value ver representing the version number of x read by T . Moreover, an element of type

wnode, maintained for a t-variable x, contains: i) a pointer tvar to the tvarrec record of x, ii)

the (old) value oldval of x, iii) an unsigned integer oldver representing the (old) version number

of x, and iv) the value newval that T will store into x.

Finally, A is the announce array maintained by WFR-TM. Initially, each entry of A points

to a dummy txrec record whose status is equal to COMMITTED and wset is the empty set. Also,

for each t-variable x, the fields of the tvarrec record of x have the following values: i) val

contains an initial value, ii) ver is equal to 0, and iii) owner points to a dummy txrec record

whose status field is equal to COMMITTED.

Pseudocode Description. The pseudocode of WFR-TM is provided in Algorithms 2 and 3.

We remark that in the pseudocode, the commit and abort responses are modeled with the

boolean values true and false, respectively. We continue to present detailed descriptions for

the implementations of the transactional routines (as well for the routines that each of them

calls).

BeginTx When called by process p for transaction T , it creates (line 23) and initializes

(lines 24 - 28) the txrec record of T , and then announces T in A[p] (line 29). Finally, it calls

CheckIfPerformed to appropriately initialize the beforeMe set of T (line 30).

Each iteration of the while loop of CheckIfPerformed, reads all elements of A (lines 34 - 35)

and adds to the beforeMe set of T (line 37) new update transactions (i.e. those that are not

already in beforeMe) whose status is either waiting or committed (line 36). A new iteration

will start if some transaction is added to beforeMe in the current iteration. This procedure

guarantees that at the beginning of the last iteration of that execution of the for of line 34

that is executed during the last iteration of the do while of lines 33 to 38, beforeMe contains

a consistent snapshot of the announced transactions that have entered their waiting phase (or

are committed).

We now explain why CheckIfPerformed terminates within a finite number of steps. Any

update transaction Tw that is announced after the announcement of T cannot commit before

CheckIfPerformed completes. This is so because even if Tw reaches its commit phase, Tw will

consider T as a read-only transaction (since T has an empty write-set as long as it executes

CheckIfPerformed), so Tw will wait for T to either terminate or become an update transaction.

This ensures that only a limited number of new update transactions can appear while CheckIf-

Performed is executed, which in turn ensures that CheckIfPerformed returns in a finite number

of steps.

CreateTvar When called by process p for transaction T , it creates, initializes (line 40),

and returns (line 41) a new tvarrec record for the newly allocated t-variable.

25

Algorithm 2 Pseudocode for BeginTx, CheckIfPerformed, CreateTvar, ReadTvar,
and Validate of WFR-TM.
22 txrec *BeginTx() by process p:
23 txrec *newTx = new txrec

24 newTx → pid = p
25 newTx → status = SIMULATING

26 newTx → wset = empty set of wnode elements
27 newTx → beforeMe = empty set of pointers to txrec elements
28 rsp = empty set of rnode elements

29 A[p] = newTx // T announces itself

30 CheckIfPerformed(newTx) // T initializes its beforeMe set

31 return (newTx)

32 CheckIfPerformed(txrec *newTx) by process p:
33 do

34 for i = 1 up to n, excluding p, do
35 tran = A[i]

// check if tran is an update transaction not in newTx’s beforeMe set that has entered its waiting phase,

36 if (tran /∈ newTx → beforeMe AND tran → wset 6= ∅ AND
tran → status ∈ {WAITING, COMMITTED}) then

37 add tran in newTx → beforeMe
38 while a new element is added in newTx → beforeMe

39 tvarrec *CreateTvar(txrec *tx) by process p:
40 tvarrec newTvar = new tvarrec 〈⊥, 0, tx〉
41 return (newTvar)

42 〈boolean, value〉 *ReadTvar(txrec *tx, tvarrec *tvar) by process p:
43 if an element el with el.tvar = tvar exists in tx → wset then
44 return 〈true, el.newval〉
45 if an element el with el.tvar == tvar exists in rsp then

46 return 〈true, el.val〉

47 〈val, ver, owner〉 = *tvar
48 status = owner → status

// if tvar is locked by a transaction Tw that is not to be linearized before tx and Tw

// is in its updating or waiting phase, then read the old value of tvar from Tw’s write-set

49 if (an element el with el.tvar == tvar ∈ owner → wset AND
owner /∈ tx → beforeMe AND status 6= SIMULATING) then

50 〈val, ver〉 = 〈el.oldval, el.oldver〉

51 add 〈tvar, val, ver〉 in rsp

52 if (tx → wset 6= ∅ AND Validate(tx) = false) then // call Validate to ensure opacity

53 tx → status = ABORTED

54 return 〈false,⊥〉

55 return 〈true, val〉

56 boolean Validate(txrec *tx) by process p:
57 for each element el in rsp
58 〈val, ver, owner〉 = *el.tvar
59 if (ver 6= el.ver) then return false

60 return true

26

Algorithm 3 Pseudocode for WriteTvar, CommitTx, LockDataSet, and WaitReaders

of WFR-TM.
61 boolean WriteTvar(txrec *tx, tvarrec *tvar, value val) by process p:
62 if an element el with el.tvar == tvar exists in tx → wset then
63 update el.newval with val
64 else add 〈tvar,⊥,⊥, val〉 in tx → wset
65 return true

66 boolean CommitTx(txrec *tx)by process p:
67 if (tx → wset == null) then // if tx is read-only, commit

68 tx → status = COMMITTED

69 return true

70 if (LockDataSet(tx) == false) then // if locking of some t-variable fails, abort

71 tx → status = ABORTED

72 return false

73 tx → status = UPDATING // tx enters updating phase

74 for each element el in tx → wset do
// u-cas: write here would also do; we use CAS to be coherent with our model

75 CAS(*el.tvar,*el.tvar, 〈el.newval, el.tvar → ver + 1, tx〉)

76 tx → status = WAITING // tx enters waiting phase

77 WaitReaders(tx) // tx waits announced read-only transactions

78 tx → status = COMMITTED // tx commits

79 return true

80 boolean LockDataSet(txrec *tx) by process p:
81 for each element el in tx → wset ∪ rsp, in ascending order (based on tvar field)
82 if ∃ an element el′ ∈ rsp with el′.tvar == el.tvar then

// if tx has read the tvar before, use this old value for consistency

83 〈val, ver, owner〉 = 〈el′.val, el′.ver, el′.tvar → owner〉
// otherwise, if the tvar was not read before, use the current value as old value

84 else 〈val, ver, owner〉 = *(el.tvar)

85 if (owner → status /∈ {COMMITTED, ABORTED}) // el.tvar is locked

86 if ∃ an element el′′ ∈ owner → wset with el′′.tvar == el.tvar then

// if it is in the write-set of owner, locking fails

87 return false

// otherwise, wait until it is unlocked

88 else wait until owner → status ∈ {COMMITTED, ABORTED}

89 if (CAS(*el.tvar, 〈val, ver, owner〉, 〈val, ver, tx〉) == false) then // l-cas: try to lock el.tvar

90 return false

// if el is written by tx, then maintain the old value of el.tvar

91 if (el ∈ tx → wset) then update 〈el.oldval, el.oldver〉 with 〈val, ver〉

92 return true

93 void WaitReaders(txrec *tx) by process p:
94 for i = 1 up to n, excluding p, do
95 tran = A[i]
96 if (tran 6= null AND tran → wset == null) then
97 wait until (tran → status == COMMITTED OR tran → wset 6= null)

27

ReadTvar When called by T to read the value of some t-variable x, ReadTvar first checks

if there is an entry for x in the write-set (lines 43 - 44) or in the read-set of T (lines 45 - 46).

If this is the case, it returns the value from there (to ensure opacity). Otherwise, the value of

x is determined on lines 47 - 50.

Initially, the value 〈val , ver , owner〉 of x’s tvarrec record (line 47) and the status of x’s

owner (line 48) are read. If the status of x’s owner is SIMULATING, then the value for x that T

returns is val, as read on line 47. Otherwise, the first and third condition of line 49 evaluate to

true. Recall that x has an old value and a new value which are stored in Tw’s write-set entry

for x (specifically, in fields oldval and newval of this entry, respectively). If Tw is contained in

T ’s beforeMe set, i.e. the second condition of line 49 evaluates to false, then Tw’s update on x

has already been performed before the beginning of T . Therefore, again the value for x that T

should read is val. However, if Tw is not contained in T ’s beforeMe set, then T should not read

Tw’s update on x, i.e. the new value of x, and should instead read the old value of x; this value

is read on line 50.

After T determines the value to read for x, it adds it together with its corresponding version

number in its read-set (line 51). In case T is an update transaction, then its read-set is validated

by calling Validate (line 52); Validate (lines 57 - 60) returns true when no version number of

the elements in T ’s read-set has changed; it returns false otherwise.

WriteTvar When called by Tw to update some t-variable x with value val, Tw first checks

whether it has previously invoked WriteTvar to modify x. If this is so, then there is already an

element for x in Tw’s write-set (line 62) and WriteTvar updates the newval field of this element

to val (line 63). Otherwise, a new wnode element for x is added in Tw’s write-set (line 64).

Recall that when Tw enters its updating phase, the oldval and oldver fields of x’s wnode

must contain the value and version number, respectively, written by the transaction for which

it holds that it had x in its write-set and was the last to commit before Tw’s acquisition of the

lock of x (or the initial values if such a transaction does not exist). WFR-TM allows another

transaction T ′ to snoop into Tw’s write-set (line 50) in order to read the old value of some

t-variable contained there. Therefore, Tw’s write-set must offer a way to T ′ to read values that

are mutually consistent. To achieve this, WriteTvar sets the oldval and oldver fields of new

wnode elements that are added in a write-set to be equal to ⊥ (line 64). This is necessary for

avoiding bad scenarios such as the following: In addition to x, assume that Tw wants to write

another t-variable y and let C be a configuration at which Tw has called WriteTvar for x but

not yet for y. Thus, Tw has created a write set entry for x, but there is no such entry in Tw’s

write-set for y. To see what might go wrong, assume that Tw has also read (before C) the

contents of x’s tvarrec and stored them in the oldval and oldver fields of x’s wnode. Now,

let another transaction T ′′ lock and update both x and y, and commit. Then, Tw continues by

invoking WriteTvar for y. So, it places an entry in its write-set for y and reads the contents of

y’s tvarrec to store in the oldval and oldver fields of this entry. Then, Tw acquires the locks

of both x and y. If T ′ snoops both x and y from Tw’s write-set, it will read inconsistent values.

28

CommitTx If T is a read-only transaction (i.e. its write-set is empty), CommitTx changes

T ’s status to committed and returns true (lines 67 - 69). If T is an update transaction, it

attempts to acquire the required locks by calling LockDataSet (line 70), which is described

in the next paragraphs. If it fails to acquire some lock, LockDataSet returns false and T is

aborted (lines 70 - 72). Otherwise, all the required locks have been acquired and LockDataSet

returns true. Then, T enters its updating phase (lines 73 - 75) and updates the t-variables in

its write-set (line 75). Notice that it also increments the version number of each t-variable by

one. Afterwards, T enters its waiting phase (line 76) and waits until all announced read-only

transactions commit. This is done by calling WaitReaders (line 77). WaitReaders goes through

the announce array A, and waits until each active read-only transaction (line 96) either commits

or turns out to be an update transaction (line 97).

LockDataSet is called by T to lock each t-variable in its read-set and write-set. Deadlocks

are avoided by acquiring the locks in (ascending) order (based on the tvar pointer contained in

each rnode or wnode element). Initially, LockDataSet determines the value and version number

of each t-variable x that it wants to lock, as follows: If x exists in T ’s read-set, these values

are taken from the corresponding read-set entry (line 83). Otherwise, they are read from x’s

tvarrec record (line 84).

LockDataSet tries to lock x using a CAS primitive which stores a pointer to T ’s txrec record

into the owner field of x’s tvarrec record (line 90). Notice that this CAS also serves as a final

validation of the value of x read by T (in case x is in T ’s read-set). LockDataSet returns true

only if it successfully locks all the t-variables in T ’s read-set and write-set (line 92). If x is

already locked by some transaction T ′ (lines 85 to 86), LockDataSet by T returns false. If x

is locked by some transaction that does not intend to update it, LockDataSet waits until this

transaction completes (line 88). Finally, recall that when LockDataSet is invoked, the contents

of the oldval and oldver fields of x’s element in T ’s write-set are ⊥. In case x is locked, these

fields are updated with the determined current values for x (line 91), so that if T enters its

updating phase these fields are appropriately set in each element of T ’s write-set.

3.1.3 Proof of Correctness

In this section, we prove that WFR-TM is opaque. We also study the progress properties

of WFR-TM. In Section 3.1.3, we provide some preliminaries including useful notation. In

Section 3.1.3, we argue about the correctness of read-only transactions, and in Section 3.1.3 we

prove correctness for update transactions. The progress properties of WFR-TM are studied in

Section 3.1.4.

Preliminaries Consider any execution α of WFR-TM and let T be any transaction in α. The

execution interval of T is denoted by αT . The process p that initiates T is its initiator. We

denote by CET the last configuration of αT (if it exists). We say that T announces itself when

it executes the write to A[p] on line 29.

By inspection of the code of WriteTvar (lines 62 - 64), T adds a unique record for each

29

t-variable that it writes in its write-set. Moreover, by inspection of the code of ReadTvar

(lines 43 - 55), for each t-variable x read by T , T executes lines 47 - 55 during the first instance

of ReadTvar for x executed by T ; we denote by RTx,T this instance. We remark that each

subsequent instance of ReadTvar executed by T for x returns either on line 44 or on line 46.

So, by inspection of the code, T maintains a unique record for each t-variable it reads in its

read-set.

Observation 1. Consider any transaction T in an execution α and let C be any configuration.

Then,

1. if T has executed at least one instance of WriteTvar for some t-variable x by C, there

is a unique record for x in T ’s write set at C;

2. if T has executed RTx,T for some t-variable x by C, there is a unique record for x in T ’s

read set at C; any instance of ReadTvar for x by T following RTx,T does not execute

lines 47 - 55.

Each time T successfully executes the CAS primitive of line 89 for some t-variable x, we say

that T becomes the owner of x or acquires the lock for x. We call the CAS primitive of line 89,

l-cas. Since LockDataSet is executed at most once (line 70) by T , by inspection of the code

(lines 81 - 90) it follows that at most one l-cas is executed for each t-variable in the data-set

of T . Assume that T acquires the lock for x. We denote by CLx,T the configuration after the

successful execution of the l-cas for x by T . Each time T executes the CAS primitive of line 75

for some t-variable x with values 〈v, d〉, we say that T updates the value and the version number

of x with v and d, respectively, or writes the value v and version number d for x. We call the

CAS of line 75, u-cas. Notice that this CAS is always successful and thus it could be replaced by

a simple write. However, that would result in a version of WFR-TM which uses objects that

support all three primitives read, write, and CAS.

By inspection of the code (line 23), each transaction is associated with a unique txrec

record. Recall that the status of T is the value of the field status in this record. For simplicity,

throughout this proof we abuse notation and we use the same notation to refer to the name of

some transaction and to its txrec record.

By inspection of the code (line 25), T.status is initially SIMULATING. Notice that no transac-

tion other than T can update T ’s status. If T is read-only, by inspection of the code (lines 52, 55,

and 67 - 69), it follows that its status can only change from SIMULATING to COMMITTED (line 68).

If T is an update transaction, then by inspection of the code (lines 52 - 54 and 71 - 72), its

status may change from SIMULATING to ABORTED. Also, by inspection of the code (lines 73, 76,

and 78), its status may change from SIMULATING to UPDATING, from UPDATING to WAITING, and

from WAITING to COMMITTED. As long as its status is SIMULATING, UPDATING, or WAITING, we

say that T is in its simulating, updating, or waiting phase, respectively.

Observation 2. The following hold for each transaction T and each configuration C in α:

30

1. if T is a read-only transaction and T ’s status is SIMULATING at C, T ’s status can only

change to COMMITTED after C;

2. if T is an update transaction and T ’s status is SIMULATING at C, T ’s status can change

from SIMULATING either to ABORTED or to UPDATING after C;

3. if T ’s status is ABORTED at C, T does not execute lines 73 - 79 of CommitTx after C;

4. if T ’s status is UPDATING at C, T ’s status can change from UPDATING to WAITING after C;

5. if T ’s status is WAITING at C, T ’s status can only change to COMMITTED after C.

If the status of T becomes COMMITTED or ABORTED, then it never changes again. Recall that

in this case we say that T completes (commits or aborts, respectively). Notice that a committed

transaction returns true, whereas an aborted transaction returns false. If T commits in α,

we denote by CMT the configuration after the execution of line 68 or line 78 which changes T ’s

status to COMMITTED. If T aborts in α, we denote by CAT the configuration after the execution

of line 53 or line 71 that changes the status of T to ABORTED. Notice that if T completes, then

either CET = CMT or CET = CAT , depending on whether T commits or aborts, respectively.

Consider any update transaction Tw. If Tw enters its waiting phase in α, we denote by CUTw

and CWTw the configurations after the execution of lines 73 and 76, respectively, which change

Tw’s status to UPDATING and WAITING, respectively. By inspection of the code (lines 70, 73,

and 76), Tw calls LockDataSet before CUTw and this call returns true (i.e. it is successful).

Thus, by inspection of the code (lines 51, 64, 81, 89, and 92), Tw has acquired the locks for all

t-variables accessed by Tw before CUTw .

If Tw acquires the lock for some t-variable x, by inspection of the code (lines 70-79), it

follows that at CLx,Tw the status of Tw is equal to SIMULATING. We say that Tw maintains

the lock for x, or x is locked by Tw, in each configuration following CLx,Tw (including it) in

which the status of Tw is neither COMMITTED nor ABORTED. The change of the status of Tw to

COMMITTED or ABORTED, indicates that Tw releases all locks it has acquired. We denote by αx,Tw

the execution interval of αTw during which Tw maintains the lock for x. We remark that αx,Tw

starts with CLx,Tw and, in case Tw completes in α, it ends with the configuration preceding

CMTw or CATw (depending on whether Tw commits or aborts, respectively). If Tw does not

complete in α, αx,Tw is the suffix of α, starting at CLx,Tw . Table 3.1 briefly summarizes the

notation introduced thus far, as well as some notation that will be introduced later. Note that

notation that refers to some configuration starts with the letter C.

By inspection of the code (lines 70 - 76) and by the definition of αx,Tw , we derive the following

observation.

Observation 3. Consider any update transaction Tw. Then,

1. Tw has acquired the locks for all t-variables accessed by Tw before CUTw ;

2. for each t-variable x accessed by Tw,

31

αT the execution interval of T

RTx,T the (first and) unique instance of ReadTvar for x by T during which T executes
lines 47 - 55 for x

CET the last configuration of αT

CLx,T the configuration after the successful execution of the l-cas for x by T (line 89)

CUT the configuration after the execution of line 73 that changes the status of T to
UPDATING

CWT the configuration after the execution of line 76 that changes the status of T to
WAITING

CMT the configuration after the execution of line 78, that changes the status of T to
COMMITTED

CAT the configuration after the execution of line 53 or line 71 that changes the status
of T to ABORTED.

αx,T the execution interval of αT during which T maintains the lock for x

CRT the configuration at the beginning of the last execution of the for of line 34 in
CheckIfPerformed by T

RST (C) the set containing each triple 〈x, v, d〉 added to the set rsp (of the process p exe-
cuting T) from the beginning of the execution of T until configuration C

RST RST (CET)

ℓC the sequence of transactions of α that have been serialized before or at C

T ′
x the sequence of update transactions (in order) that acquire the lock for a fixed

t-variable x in α

Tx the subsequence of T ′
x containing those transactions that update t-variable x

Table 3.1: Notation used during the proof of WFR-TM.

❼ at CLx,Tw , the status of Tw is equal to SIMULATING;

❼ CUTw and CWTw occur in αx,Tw ;

3. CUTw < CWTW
;

4. for each t-variable x updated by Tw, Tw updates x during αx,Tw , after CUTw and before

CWTw .

We continue to prove that, during αx,Tw , Tw is the owner of x.

Lemma 4. Consider any update transaction Tw that acquires the lock for some t-variable x.

During αx,Tw , the owner field of the tvarrec record of x contains a pointer to the txrec record

of Tw.

Proof. By inspection of the code (line 89) and by the definition of CLx,Tw , the claim holds

at CLx,Tw . Assume, by the way of contradiction, that there is some configuration in αx,Tw in

which the owner field of the tvarrec record of x contains a pointer to the txrec record of a

transaction T ′
w 6= Tw. Let C be the first such configuration. By inspection of the code, it follows

that T ′
w acquires the lock for x at the step executed before C. Let lCAS be the successful l-cas

that T ′
w executed in order to acquire the lock for x. Before executing lCAS , T

′
w reads the value

32

〈−,−, owner〉 either on line 83 or on line 84; let rx be this read. Notice that rx is executed

before the end of αx,Tw .

To derive a contradiction, we consider the following cases. Assume first that rx reads a

pointer to the txrec record of Tw. By inspection of the code (line 89), the owner field of the

tvarrec of x changes only when a transaction T executes a successful l-cas for x and it is only

T that may write a pointer to its txrec in this field. Thus, it follows that rx is performed

after CLx,Tw . By definition of αx,Tw , Tw.status /∈ {COMMITTED, ABORTED} during αx,Tw . So, by

inspection of the code (lines 85 - 86), the instance of LockDataSet executed by T ′
w returns

false. Then, by inspection of the code (lines 70 - 72), T ′
w aborts, so it does not attempt to

lock x. This contradicts the assumption that T ′
w has acquired the lock for x at C.

Assume now that rx returns owner = T ′′
w with T ′′

w 6= Tw. By inspection of the code

(lines 83, 84, and 89), lCAS can only succeed if the owner field of the tvarrec record of x

contains a pointer to the txrec record of T ′′
w. However, since lCAS is the first successful CAS for

x executed after CLx,Tw , the owner field of the tvarrec of x contains a pointer to the txrec

of Tw when lCAS is executed (and not to T ′′
w). It follows that lCAS does not succeed. This

contradicts the definition of lCAS .

Fix any t-variable x. Let T ′
x = T ′

0, T
′
1, T

′
2, . . . be the sequence of update transactions (in

order) that acquire the lock for x in α; let T ′
0 = T0 be the dummy txrec to which the owner

field of the tvarrec of x initially points. We remark that some transactions in T ′
x may not

invoke WriteTvar for x although they access x by invoking ReadTvar for it. Notice also that

some transactions in T ′
x may abort.

Lemma 5. For each integer d > 1, the following hold:

1. for each configuration C between CLx,T ′

d−1
(inclusive) and CLx,T ′

d
(exclusive), the owner

field of the tvarrec of x is equal to T ′
d−1 at C;

2. αx,T ′

d−1
< αx,T ′

d
.

Proof. Fix any integer d > 1 and let C be any configuration between CLx,T ′

d−1
(inclusive) and

CLx,T ′

d
(exclusive). By inspection of the code (line 75, line 89), the owner field of the tvarrec

of x changes only when a transaction T executes a successful l-cas for x and this l-cas writes

a pointer to T in the owner field of the tvarrec of x. Thus, the l-cas by T ′
d−1 and T ′

d write a

pointer to T ′
d and a pointer to T ′

d−1, respectively, in the owner field of the tvarrec of x. By

the definition of T ′
x, no other successful l-cas for x is executed between the l-cas by T ′

d−1 and

the l-cas by T ′
d. Since C is a configuration between CLx,T ′

d−1
and CLx,T ′

d
, by the definitions of

CLx,T ′

d−1
and CLx,T ′

d
, it follows that the owner field of the tvarrec of x is equal to T ′

d−1 at C.

So, claim 1 follows.

Claim 2 immediately follows by Lemma 4 and the definition of T ′
x.

Let Tx = T1, T2, . . . be the subsequence of T ′
x containing those transactions that update

t-variable x in α.

33

Lemma 6. For each integer d > 0, the following hold:

1. the u-cas for x executed by Td changes the ver field of the tvarrec of x from the value

d−1 to the value d; at each configuration between the u-cas of Td−1 (or from the beginning

of the execution, if d = 1) and the u-cas of Td, the ver field of the tvarrec of x has the

value d− 1;

2. Td has a wnode element for x in its write set with value d− 1 stored in its oldver field;

3. each transaction T between Td−1 and Td in T ′
x that invokes WriteTvar for x, has a

wnode element for x in its write set with value d− 1 stored in its oldver field.

Proof. The proof is by induction on d. Fix any d > 0 and assume that the claim holds for d−1.

We prove that the claim holds for d.

Since Td updates x, Observation 3 (claims 1 and 4) implies that Td acquires the lock for x

by successfully executing an l-cas for x (line 89) before CUTd
; moreover, Td updates x during

αx,Td
. By Lemma 5 (claim 2), αx,Td

and αx,Td′
, d′ 6= d, do not overlap.

Assume that T is either Td or any transaction between Td−1 and Td in T ′
x that invokes

WriteTvar for x. By definition of T ′
x, T successfully executes an l-cas for x. Moreover, T

has invoked WriteTvar for x and, therefore, Observation 1 implies that T has added x in its

write set.

Assume first that d = 1. By inspection of the code, it follows that the value and the

version number of x change only when a successful u-cas for x (line 75) is executed, i.e. when

a transaction updates x. Thus, up until the time that T1 successfully executes its u-cas for x,

the ver field of the tvarrec of x has its initial value (i.e. it has the value 0). Since T precedes

T1 in T ′
x, Lemma 5 (claim 2) implies that when T successfully executes its l-cas for x, the ver

field of the tvarrec of x has the value 0.

Assume now that d > 1. By the induction hypothesis (claim 1), Td−1 executes the CAS of

line 75 for x and this CAS changes the ver field of the tvarrec of x to the value d − 1. By

Observation 3 (claim 4), the update of x by Td−1 occurs during αx,Td−1
. By definition of Tx, it

follows that Td is the first transaction to successfully execute a u-cas for x after the successful

u-cas for x executed by Td−1. Since T is between Td−1 and Td in T ′
x, Lemma 5 (claim 2) implies

that, when T successfully executes its l-cas for x, the ver field of the tvarrec of x has the value

written there by Td−1. By induction hypothesis (claim 1), this value is d−1; moreover, up until

the time that Td executes its u-cas for x, the ver field of the tvarrec of x has the value d− 1.

In either case, when the successful l-cas of T is executed, the value of the ver field of the

tvarrec of x is equal to d− 1. Moreover, when Td executes the u-cas for x, the ver field of the

tvarrec of x has the value d− 1. By inspection of the code (line 75), it follows that Td changes

the version number of x from d − 1 to d. Since the version number of x changes only when a

successful u-cas for x is executed, by the definition of Tx, it follows that claim 1 holds.

Since the value of the ver field of the tvarrec of x is equal to d − 1 when T successfully

executes the l-cas for x, by inspection of the code (line 89), it follows that T uses 〈−, d−1,−〉 as

34

the old value for its l-cas. Since T executes the l-cas for x successfully, T also executes line 91.

Recall that T has added x in its write-set. Thus, the condition of the if statement of line 91

evaluates to true. By inspection of the code (line 91), it follows that T stores the value d − 1

in the oldver field in the wnode for x in its write set. So, claims 2 and 3 hold.

We continue to assign a point, called serialization point, to every read-only transaction that

commits in α and to every update transaction that enters its waiting phase in α.

Consider any transaction T in α. Let CRT be the configuration at the beginning of the last

execution of the for of line 34 in CheckIfPerformed by T . Notice that CRT is the configuration

where the first iteration of the for of line 34 starts executing during the execution of last iteration

of the do while of lines 33 - 38. If T is a read-only transaction that commits in α, we place

its serialization point at CRT . If T is an update transaction that enters its waiting phase in

α, we place its serialization point at CWT . By the way serialization points are assigned, the

serialization point of each transaction is placed in its execution interval.

Lemma 7. For each transaction T that is assigned a serialization point in α, the serialization

point of T is placed in its execution interval.

By the way serialization points are assigned, at each configuration C, there is a sequence of

transactions of α that have been serialized before or at C. Let ℓC denote this sequence.

Consider any transaction T in α, let p be the process executing T , and let C be any configu-

ration. Let RST (C) be the set containing each triple 〈x, v, d〉 that has been added into rsp from

the beginning of the execution of T until C. If T completes, let RST = RST (CET). Consider

any triple 〈x,−, d〉 ∈ RST (C). We say that d is consistent at C, if it is the version number

written by the last transaction in ℓC that updates x. RST (C) is consistent at C, if for each

triple 〈x,−, d〉 ∈ RST (C) the version number d of x is consistent at C. RST is consistent at C,

if for each triple 〈x,−, d〉 ∈ RST the version number d of x is consistent at C.

Consider a transaction T that adds a triple with version number d for some t-variable x

in its read-set during RTx,T . Lemma 6 implies that Td and Td+1 are the update transactions

that write version numbers d and d+1, respectively, for x. The next lemma proves that during

RTx,T , T reads on line 47, as the owner for x, either Td, or Td+1, or any transaction between

Td and Td+1 in T ′
x that invokes WriteTvar for x; moreover, if it reads Td, then T has included

Td in its beforeMe set.

Lemma 8. Let T be any transaction and let C be a configuration such that 〈x,−, d〉 ∈ RST (C).

Let r and r′ be the reads of line 47 and line 48, respectively, executed by T in RTx,T and let Tw

be the value returned by r for x → owner. Then, either Tw = Td and Td ∈ T → beforeMe, or

Tw = Td+1, or Tw is any transaction between Td and Td+1 in T ′
x that invokes WriteTvar for

x.

Proof. Since 〈x,−, d〉 ∈ RST (C), Observation 1 implies that T adds 〈x,−, d〉 in its read-set

during RTx,T . By inspection of the code (lines 47, 50, and 51), T reads d during RTx,T either

on line 47 or on line 50.

35

Let B be the set of transactions that are between Td and Td+1 in T ′
x and invoke WriteTvar

for x, and let A = B ∪ {Td+1}. We first argue that if T reads d on line 50, then Tw ∈ A. This

is so since then, by inspection of the code (lines 47 and 49), T reads x’s version number in the

oldver field of some element e for x in the write-set of Tw. Thus, Lemma 6 (claims 2 and 3)

implies that Tw = Td+1, or Tw is any transaction between Td and Td+1 in T ′
x that invokes

WriteTvar for x. Thus, Tw ∈ A.

Notice that if T reads d on line 47, then Lemma 6 (claim 1) implies that when r is performed,

Td has successfully executed the u-cas for x, whereas Td+1 has not.

To obtain a contradiction, assume that either Tw /∈ A, or Tw = Td and Td /∈ T → beforeMe.

Assume first that Tw /∈ A. Then, it follows that T does not read d on line 50. Thus, T reads d

on line 47. Recall that r occurs between the execution of the u-cas for x by Td and the u-cas

for x by Td+1. By Observation 3 (claim 4), the u-cas primitives for x by Td and by Td+1 are

performed within αx,Td
and αx,Td+1

, respectively. Since the owner field of x can only change

when a transaction executes a successful l-cas for x, the definition of T ′
x implies that r reads, as

the owner for x, some transaction in A. This contradicts the assumption that Tw /∈ A.

Assume now that Tw = Td and Td /∈ T → beforeMe. Since Tw 6∈ A, it follows that T does

not read d on line 50. Thus, T reads d on line 47.

Notice that the value for the status of Td returned by r′ cannot be ABORTED since Td enters

its updating phase. Since Td updates x and acquires the lock for x, Observation 1 implies that

Td adds an element for x in its write-set. Recall that r occurs between the execution of the

u-cas for x by Td and the u-cas for x by Td+1. Since r′ follows r, it follows that r′ is performed

after the execution of the u-cas for x by Td. Thus, Observation 3 (claim 4) implies that r′ occurs

after CUTd
and therefore it must return a value other than SIMULATING for the status of Td.

Since r′ occurs after CUTd
, by definition of αx,Td

, it follows that r′ occurs after CLx,Td
.

Observation 1 (claim 1) implies that an element e with e.tvar = x exists in the write set of Td

when r′ occurs. So, during the execution of RTx,T , the first condition of the if statement of

line 49 evaluates to true. Since, by assumption, Td /∈ T → beforeMe, and r′ returns a value

other than SIMULATING, it follows that all the conditions of the if statement of line 49 evaluate

to true. Thus, T executes line 50 to read d. This is a contradiction.

Lemma 9. Consider any transaction T and let C be a configuration such that 〈x,−, d〉 ∈

RST (C). Then, it holds that Td enters its waiting phase in α and CWTd
< C.

Proof. Let p be the process that executes Td. During the execution of CheckIfPerformed

by T , T (possibly repeatedly) reads, on line 35, the transaction that is announced in A[p] and,

on line 36, the status of this transaction. Let r1 and r2 be these two reads, as performed by

T during the execution of the last iteration of the do while loop of lines 33 - 38. Moreover,

during the execution of RTx,T , T reads the tvarrec for x (line 47) and the status (line 48) of

the transaction that it read as the owner of x on line 47. Let r3 and r4 be these reads.

To obtain a contradiction, suppose that either Td does not enter its waiting phase or

CWTd
> C; let C ′ be either the configuration following the last step taken by Td in α, or

36

CWTd
, respectively. We first argue that Td /∈ T → beforeMe. T reads d for x by executing

either line 47 or line 50 during RTx,T . If T executes line 50, let r5 be this read. Notice that by

inspection of the code, r1 < r2 < r3 < r4 < r5 < C, and by assumption, C < C ′. Thus, the

definitions of r1 and r2 imply that in the instance of its CheckIfPerformed, either T does

not read Td in A[p] whenever it executes line 35, or if it reads Td in A[p], it does not read a

value equal to WAITING or COMMITTED for the status of Td on line 36. Therefore, by inspection

of the code (lines 35-37), Td /∈ T → beforeMe.

Since 〈x,−, d〉 ∈ RST (C) and Td /∈ T → beforeMe, Lemma 8 implies that r3 returns a

transaction T ′ that is either Td+1, or a transaction between Td and Td+1 in T ′
x which invokes

WriteTvar for x. Lemma 5 (claim 2) implies that αx,Td
< αx,T ′ . Observation 3 implies that

if CWTd
occurs, then it occurs in αx,Td

. Since r3 < C ′ and the owner field of the tvarrec of x

changes only when a successful l-cas for x is executed, by the definition of T ′
x, it follows that r3

cannot return T ′. This is a contradiction.

Correctness of read-only transactions. Consider any execution α of WFR-TM. Through-

out this section, we consider a read-only transaction Tr that commits in α.

Consider any update transaction Tw that enters its waiting phase in α. Then, by inspection

of the code (lines 76 and 77), it follows that if Tw calls WaitReaders, it does so after CWTw . By

inspection of the code (lines 29, 76 - 77, and 94 - 97), if Tr performs its announcement before

CWTw , Tw will wait (line 97) for Tr to commit. Therefore, in this case, Tr commits before the

completion of Tw.

Lemma 10. Consider any update transaction Tw that enters its waiting phase in α. If Tr

performs its announcement before CWTw , then Tr commits before the completion of the waiting

phase of Tw in α.

Assume that Tr reads version number d for t-variable x. Lemma 6 (claim 1) implies that the

update transaction that writes the version number d for x is Td. Lemma 9 implies that Td enters

its waiting phase in α, so Td is assigned a serialization point in α which is placed at CWTd
. The

next lemma shows that the serialization point of Td is placed before the serialization point of

Tr.

Lemma 11. Consider any triple 〈x,−, d〉 ∈ RSTr . Then, CWTd
< CRTr .

Proof. To obtain a contradiction, suppose that CWTd
> CRTr . Let r and r′ be the reads on

lines 47 and 48, respectively, executed during RTx,T . Let Tw be the transaction returned by r as

the owner of x. Lemma 8 implies that either Tw = Td and Td ∈ Tr → beforeMe, or Tw = Td+1,

or Tw is a transaction between Td and Td+1 in T ′
x which invokes WriteTvar for x.

Assume first that Tw = Td and Td ∈ Tr → beforeMe. By inspection of the code (lines 36

and 37), Td can be added in the beforeMe set of Tr only after CWTd
. Since CRTr < CWTd

,

this addition occurs after CRTr . By inspection of the code (line 38), it follows that an iteration

of the do-while loop of lines 35 to 37 is initiated after CRTr . This is a contradiction to the

definition of CRTr .

37

We next assume that Tw = Td+1 or Tw is any transaction between Td and Td+1 in T ′
x which

invokes WriteTvar for x. Since Tr reads version number d for x, Observation 3 (claim 4)

and Lemma 6 (claim 1) implies that r > CLx,Td
. Since we have assumed that CWTd

> CRTr ,

Lemma 10 implies that Tr commits before Td completes its waiting phase. So, r occurs in αx,Td
.

Lemma 5 (claim 2) implies that αx,Td
< αx,Tw . Since r occurs in αx,Td

, Lemma 6 (claim 1)

implies that r cannot return Tw as the owner for x. This is a contradiction.

We are now ready to prove that the read-set of every read-only transaction that commits is

consistent.

Lemma 12. RSTr is consistent at CRTr .

Proof. Consider any triple 〈x,−, d〉 ∈ RSTr . We prove that d is written by the last committed

transaction that updates x and is serialized before CRTr . By Lemma 6, there is a unique update

transaction Td that writes d into x. This is done when Td successfully executes the u-cas for x.

Let Cd be the configuration following this u-cas. By inspection of the pseudocode, Cd < CWTd
.

By Lemma 11, it follows that CWTd
< CRTr .

Assume, by the way of contradiction, that the last committed transaction that updates x

and is serialized before CRTr is a transaction Tw which writes the value d′ 6= d for x. Let

p be the process that executes Tw, and let Cw be the configuration following the successful

u-cas that Tw executes to write d′ as the version number of x. Since Tw is serialized at CWTw ,

CWTd
< CRTr , and Tw is the last committed transaction that updates x and is serialized before

CRTr , it follows that CWTd
< CWTw . By Observation 3, CWTd

is in αx,Td
and CWTw is in

αx,Tw . Thus, Lemma 5 (claim 2) implies that αx,Td
< αx,Tw . By Lemma 6 (claim 1), it follows

that d′ > d. By Observation 3 (claim 4), Cd occurs in αx,Td
and Cw occurs in αx,Tw . Thus,

Cd < CWTd
< Cw < CWTw < CRTr .

Notice that after CRTr , Tr reads, on line 35, the transaction that is announced in A[p] and

then, on line 36, the status of this transaction. Let r1 and r2 be these two reads. Moreover,

during RTx,Tr , Tr reads, on line 47, the tvarrec for x, and, on line 48, the status of the

transaction that it read as the owner of x on line 47. Let r3 and r4 be these reads.

In the rest of the proof, we first argue that r3 does not return d for the version number of x.

Thus, Tr must read d in the oldver field of some transaction by executing line 50. We denote

by r5 this read. We next argue that r5 reads from the write-set of Tw and that the read of line

50 occurs only if Tw /∈ Tr → beforeMe. We also argue that r1 reads Tw in A[p] and r2 reads

WAITING for the status of Tw. We then derive a contradiction by proving that Tr adds Tw in

Tr → beforeMe.

We start by proving that r3 does not return d for the version number of x. By inspection

of the code (lines 75-77), Tw has updated the version number of x to d′ before CWTw . Since

r3 > r1 > CWTw , Lemma 5 (claim 2) and Lemma 6 (claim 1) imply that r3 returns either d′,

or a value larger than d′ for the version number of x. Thus, d is not read by Tr on line 47. So,

by inspection of the pseudocode, d must be read by Tr on line 50, through the oldver field of

the element maintained for x in the write-set of the owner of x at that point in time.

38

Since CRTr > CWTw , Lemma 5 (claim 1) implies that r3 returns as the owner of x a

transaction T ′
w, which is either Tw or some other transaction that acquired the lock for x after

Tw. We argue that T ′
w = Tw and Tw 6∈ Tr → beforeMe. Since Tw writes d′ > d, Lemma 5

(claim 2) and Lemma 6 (claims 2 and 3) imply that among the transactions that acquire the

lock after Tw, those that invoke WriteTvar for x have a value larger than d stored in the

oldver field of the wnode for x in their write-sets. It follows that it must be Tw that has the

value d in the oldver field of the wnode for x in its write-set, and that Tw writes d + 1. Thus,

r5 returns Tw as the owner for x. Since Tr executes line 50, by inspection of the code, it follows

that, in RTx,Tr , the condition of the if statement of line 49 is evaluated to true. Therefore,

Tw /∈ Tr → beforeMe; moreover, r4 returns a value other than SIMULATING for the status of Tw.

Since r4 occurs after CRTr and therefore, after CWTw , it follows that r4 returns either WAITING

or COMMITTED for the status of Tw.

Since Tw is announced before CWTw (lines 29 and 76), CWTw < CRTr < r1 < r3 < r4, and

r4 returns either WAITING or COMMITTED for the status of Tw, it follows that r1 returns Tw as the

owner of x and r2 returns either WAITING or COMMITTED for the status of Tw. So, by inspection

of the code (lines 36 - 37), it follows that Tr evaluates the condition of the if statement of

line 36 to true, and adds Tw in Tr → beforeMe. This is a contradiction.

Correctness of update transactions. Consider any execution α of WFR-TM. Throughout

this section, we consider an update transaction Tw. By inspection of the code (lines 26 and 64),

Tw is initiated as a read-only transaction and it becomes an update transaction after it first

executes line 64.

Lemma 13. Consider any instance V of Validate executed by Tw that returns true and let

CV be the configuration before the invocation of V . Then, for each triple 〈x,−, d〉 ∈ RSTw(CV),

d is consistent at CV .

Proof. Consider any triple 〈x,−, d〉 ∈ RSTw(CV). We will prove that d is written by the last

committed transaction that is serialized before CV and updates x. By Lemma 6, there is a

unique update transaction Td that writes d in x (line 75). Since 〈x,−, d〉 ∈ RSTw(CV) (i.e. Tw

reads the version number d for x), Lemma 9 implies that Td enters its waiting phase in α and

CWTd
< CV .

Assume, by the way of contradiction, that the last committed transaction that is serialized

before CV is Td′ 6= Td which writes the value d′ 6= d for x (line 75). Since CWTd
< CV and Td′

is the last transaction that is serialized before CV , by the way serialization points are assigned,

it must be that CWTd
< CWTd′

< CV . By Observation 3 (claim 2), CWTd
occurs in αx,Td

and

CWTd′
occurs in αx,Td′

. Therefore, Lemma 5 (claim 2) implies that αx,Td
< αx,Td′

. Since both

Td and Td′ update x, Lemma 6 (claim 1) implies that d < d′.

During the execution of V (and therefore, after CV), Tw reads the version number of x

(line 58); let r be this read. Since CWTd′
< CV < r, and, by Observation 3, Td′ writes d

′ > d

for x before CWTd′
, Lemma 6 (claim 1) implies that r returns either d′ or a value larger that

39

d′, as the version number of x. However, since V returns true, r must return d for x. This is a

contradiction.

Lemma 14. If Tw enters its waiting phase in α, RSTw is consistent at CWTw .

Proof. Let 〈x,−, d〉 be any triple added to the read-set of Tw. We prove that d is written by

the last committed transaction that is serialized before CWTw and updates x. By Lemma 6

(claim 1), there is a unique update transaction Td that writes d in x; let Cd be the configuration

following this write (line 75).

Let V be the last instance of Validate (line 52) executed by Tw before CWTw ; let CV be

the configuration preceding the invocation of V . Lemma 13 implies that d is consistent at CV .

Since Tw enters its waiting phase, by inspection of the code (lines 70 - 71), it follows that

the instance D of LockDataSet executed by Tw returns true. Since D returns true, by

inspection of the code (lines 81, 89, and 90), it follows that, in D, the l-cas for x that Tw

executes is successful. By inspection of the code (lines 82 - 83, and 89), this CAS uses d as the

version number of its second parameter. Since it is successful, no transaction updates x between

CWTd
and CLx,Tw .

Assume, by the way of contradiction, that the last committed transaction Td′ that updates

x and is serialized after CV and before CWTw , writes the value d′ 6= d to x. Since CWTd
< CV

and Td′ is the last transaction that is serialized between CV and CWTw , by the way serialization

points are assigned, it must be that CWTd
< CWTd′

< CWTw . By Observation 3 (claim 2),

CWTd
, CWTd′

and CWTw occur in αx,Td
, αx,Td′

and αx,Tw , respectively. Therefore, Lemma 5

(claim 2) implies that αx,Td
< αx,Td′

< αx,Tw . By Observation 3 (claim 4), it follows that

Td′ updates x between CWTd
and CWTd′

. Since αx,Td′
< αx,Tw , it follows that Td′ updates x

between CWTd
and CLx,Tw . This contradicts our claim above that no transaction updates x

between CWTd
and CLx,Tw .

We are now ready to argue that WFR-TM is opaque.

Theorem 15. WFR-TM is an opaque TM algorithm.

Proof. Consider any execution α produced by WFR-TM and let Hα be the history of α. Choose

any history H ′ from Complete(Hα) such that all transactions that enter their waiting phase in

α commit in H ′.

Recall that we have assigned a serialization point to all read-only transactions that commit

and to those update transactions that enter their waiting phase in α. We assign a serialization

point to each transaction T that aborts inH ′. If T has performed at least one successful instance

of ReadTvar, we place this point at the configuration just before T ’s last invocation of any

instance of Validate that returns true. Otherwise, we place the serialization point of T at an

arbitrary point within its execution interval. Notice that, once we do so, all transactions in H ′

have been assigned a serialization point.

Let ℓα = T ′′
1 , T

′′
2 , . . . be the sequence of transactions in H ′ in the order defined by their

serialization points. Let S = H ′|T ′′
1 , H

′|T ′′
2 , . . . be a sequential history. By definition, S is

40

equivalent to H ′. Moreover, by the way serialization points are assigned to aborted transactions

and by Lemma 7, the serialization point of every transaction T is within T ’s execution interval.

Thus, S respects the real-time order induced by H ′
α.

It remains to show that S is legal. Consider any transaction T in S. If T is a read-only

transaction that commits in H ′, Lemma 12 implies that T is legal in S. If T is an update

transaction that commits in H ′, Lemma 14 implies that T is legal in S. Thus, assume that T is

a transaction that aborts in H ′. If T has not performed any successful instance of ReadTvar,

then T is trivially legal in S. Assume finally that T has performed at least one successful

instance of ReadTvar. By inspection of the code (lines 52-53 and lines 70-71), T aborts either

during the execution of its last instance of ReadTvar (because the invocation of Validate by

that instance returns false), or during the execution of CommitTx (because LockDataSet

returns false). In the first case, the invocation of Validate by all previousReadTvar invoked

by T has returned true. In the second case, the invocation of Validate in the last invocation

of ReadTvar performed by T has returned true. Thus, Lemma 13 implies that T is legal in

S.

3.1.4 Proof of Progress.

In this section, we show that WFR-TM is wait-free for read-only transactions, and that update

transactions are not prone to deadlock.

Let α be an execution of WFR-TM. Let mw be the maximum number of t-variables written

by any update transaction in α and mr be the maximum number of t-variables read by any

read-only transaction in α.

Lemma 16. Consider any transaction T executed by some process pi in α. Then, T →

beforeMe contains at most two transactions initiated by each process pj, 1 ≤ j ≤ n, j 6= i.

Proof. Notice that new elements are added to T → beforeMe only during the execution of

CheckIfPerformed by T ; specifically, this occurs with the execution of line 37. We will

prove that line 37 may be executed by T at most twice for each entry A[j], 1 ≤ j ≤ n, j 6= i.

We remark that since T → wset = ∅ during the execution of CheckIfPerformed by T , T is

considered as a read-only transaction as long as it executes its CheckIfPerformed.

Fix any j, 1 ≤ j ≤ n, j 6= i. To obtain a contradiction, suppose that line 37 is executed

by T three times for A[j]. Notice that before executing line 37, T reads (on line 35) the txrec

record of some transaction from A[j]; let r1, r2, and r3 be the reads of line 35 in those for

iterations in which the first, the second, and the third execution, respectively, of line 37 for A[j]

occurs by T .

Let T1, T2, and T3 be the transactions returned by r1, r2, and r3, respectively. Notice that

T1, T2, and T3 have the same initiator pj . Since the first execution of line 37 occurs after r1,

the second after r2, and the third after r3, by inspection of the code (1st condition of line 36),

it follows that T1 6= T2 6= T3. Moreover, by inspection of the code (3rd condition of line 36),

the statuses of T1, T2, and T3 are either WAITING or COMMITTED when the condition of the if

41

statement of line 37 is evaluated after r1, r2, and r3, respectively. So, by inspection of the code

(lines 71 - 72, 73, 76, and 78), T1, T2, and T3 do not abort.

By inspection of the code (lines 29, 77 - 78, and 94 - 97), T1, T2, and T3 call WaitRead-

ers after CWT1
, CWT2

, and CWT3
, respectively. Recall that T is considered as a read-only

transaction while executing its instance of CheckIfPerformed.

Assume first that the announcement of T precedes the announcement of T1, thus it precedes

CWT1
. So, T1 waits (line 97) until the instance of CheckIfPerformed initiated by T returns.

Therefore, pj cannot initiate T2 as long as T executes its instance of CheckIfPerformed.

This contradicts the fact that r2 returns T2.

Assume now that the announcement of T follows the announcement of T1. Notice that T2

is initiated by pj after the completion of T1. Since T reads T1 on line 35 from A[j] (though

r1) and r1 follows the announcement of T (line 29), it follows that T is announced before the

announcement of T2, and, therefore, also before CWT2
. So, T2 waits (line 97) until the instance

of CheckIfPerformed initiated by T returns. Thus, pj cannot initiate T3 as long as T is

active. This contradicts the fact that r3 returns T3.

We implement the beforeMe set of each transaction T as a two-dimensional array of 2n

elements. Then, a search in T → beforeMe is executed in O(1) steps. Specifically, the array

must have as many rows as the number of processes and two columns, so that two array elements

are assigned to each process. Since each process may have at most one transaction active at

each point in time, Lemma 16 implies that T → beforeMe contains at most two transactions

from those initiated by any process pj , 1 ≤ j ≤ n, other than the process pi that executes T ;

pointers to these two transactions are stored in the elements of row j of the beforeMe set of

pi. To search if a transaction T ′ exists in its beforeMe set, pi reads the initiator pj of T ′ from

T ′’s txrec, and then it checks if a pointer to T ′ exists in any of the two elements of row j in its

beforeMe array. Thus, searching in the beforeMe set of a process can be performed in O(1)

steps. Notice that each transaction must initiate each element of the beforeMe array of its

initiator to NULL when it executes BeginTx.

Lemma 17. Consider any transaction T in α. Then, T completes BeginTx within O(n2)

steps.

Proof. T executes lines 23 - 29 in O(1) steps. Thus, it remains to show that CheckIfPer-

formed completes in O(n2) steps. Lemma 16 implies that no more than 2(n − 1) elements

are added in T → BeforeMe. Thus, no more than O(n) iterations of the do while loop

are executed. Each iteration reads n elements of the announce array. This results in O(n2)

steps. We remark that each iteration of the do while loop additionally performs a search in

T → beforeMe. Recall that if we implement the beforeMe set of T as a two-dimensional array

of 2n elements, then this search is executed in O(1) steps.

Theorem 18. Each read-only transaction commits after O(n2 +mrmw) steps, i.e. WFR-TM

is wait-free for read-only transactions.

42

Proof. Lemma 17 implies that Tr completes BeginTx within O(n2) steps. It remains to prove

that each instance of ReadTvar executed by Tr completes in O(mw) steps.

Since Tr is a read-only transaction, Tr → wset = ∅. Thus, lines 43 - 44, and 52 are executed

in O(1) steps. Lines 45, 46, and 51 execute only local computations. All remaining lines other

than 49 are also executed in O(1) steps. Notice that the second condition of line 49 performs

a search on the beforeMe set of Tr for transaction owner. Recall that if we implement the

beforeMe set of Tr as a two-dimensional array of 2n elements, then this search can be executed

in O(1) steps. Thus, the only condition whose evaluation may cause the execution of more than

O(1) steps, when executing line 49, is the condition “tvar ∈ owner → wset”. The evaluation

of this condition requires O(mw) steps. Thus, each instance of ReadTvar executed by Tr,

completes within O(mw) steps.

By inspection of the code (lines 67 to 69), it follows that CommitTx, when called by a

read-only transaction, completes within O(1) steps. Thus, Tr completes its execution within

O(n2 +mrmw) steps.

Consider now an update transaction Tw. By Theorem 18 and by inspection of the code, it

follows that for each read-only transaction Tr, Tw may wait (on line 88 or 97) only for a finite

number of steps in order for Tr to complete.

Theorem 19. In any infinite execution of WFR-TM, each update transaction Tw completes

within a finite number of steps.

Proof. Lemma 16 implies that Tw → beforeMe is finite. Since Tw → wset, and Tw’s read-set are

also finite, by inspection of the code, it follows thatCreateTvar, WriteTvar, Validate, and

LockDataSet, when called by Tw, complete within a finite number of steps. By inspection

of the code (lines 94 - 97), Tw may have to wait for the completion of at most n − 1 read-

only transactions while executing WaitReaders. Theorem 18 implies that, for each read-

only transaction Tr, Tw waits for a finite number of steps in order for Tr to complete. Thus,

WaitReaders completes within a finite number of steps and therefore the same is true for

CommitTx.

Theorem 20 proves that WFR-TM provides deadlock-freedom for update transactions.

Theorem 20. In any infinite execution α of WFR-TM in which infinitely many update trans-

actions are initiated, infinitely many update transactions commit.

Proof. To obtain a contradiction, assume that no update transaction ever commits after some

configuration C of α. Then, Theorem 19 implies that infinitely many transactions abort after

C. By inspection of the code (lines 52 - 54, 70, and 71), an update transaction Tw aborts either

when one of the instances of Validate (line 52), executed by Tw, returns false, or when the

single instance of LockDataSet, executed by Tw during CommitTx, returns false. In the

first case, by inspection of the code of Validate, it follows that the version of at least one

t-variable has changed since it has been initially read by T ; let this update be performed by

43

some transaction T ′
w. By inspection of the code (lines 73 - 79) and Theorem 19, it follows that

T ′
w commits within a finite number of steps. Since no transaction commits after C, it follows

that only a finite number of instances of Validate can return false, after C.

Let C ′ be the configuration following the return of the last instance of Validate that

returns false, after C. So, any update transaction T ′
w initiated after C ′ aborts because the

instance D′ of LockDataSet it executes returns false. By inspection of the code (lines 85 -

86 and 90), D′ returns false when a t-variable in RST ′

w
is locked by some other transaction.

By inspection of the code (line 81), each transaction acquires the locks of the t-variables it

accesses in (ascending) order. So, there is at least one transaction initiated after C ′ for which

the instance of LockDataSet executed by it will be able to acquire all the required locks and

respond with true. This is a contradiction.

3.2 Case Study II: Dense, A Concurrent Graph Algorithm

In Dense, operations are wait-free, i.e. an operation by a process that does not fail terminates in

a finite number of steps in any execution. Wait-freedom is achieved by employing light-weight

helping. Operations are aware of concurrent active dynamic traversals and ensure that those

dynamic traversals can return a consistent view by storing old edge versions for them (in the

worst case, Dense keeps n different versions, one for each process, on a given edge of the graph).

The edges are stored in an adjacency matrix, which is used for the graph’s representation.

Thus, Dense is so named because it is mostly suitable for dense graphs, i.e. graphs with high

connectivity, in which case the allocated adjacency matrix is sufficiently exploited.

In the following, we provide a detailed description of Dense and a formal proof of the

properties we claim for it.

Author’s contribution. The contents of this section are joint work that has been accepted

for publication in OPODIS 2015 [KK15]. The author contributed to the algorithm design and

proof of correctness of the algorithm presented in this section.

3.2.1 Overview and Main Ideas

A graph G = 〈V,E〉 is composed of V , a (finite) set of elements referred to as vertices, and

E, a set of pairs of vertices, referred to as the edges between them. Each edge eij ∈ E has a

weight wij , that takes values out of some set W . A graph supports several abstract operations,

well-known in literature, such as operations for adding vertices or edges, deleting vertices or

edges, modifying attributes of vertices or edges, returning specific subsets of the graph vertices

or edges, etc. A concurrent graph is a graph that can be accessed concurrently, through those

types of operations, by n processes.

We propose the dynamic traversal (which henceforth may be referred to as d-traversal for

brevity) as a concurrent graph operation that exhibits the following characteristics: (i) it starts

from a vertex v of the graph; (ii) it visits a sequence of vertices that is not necessarily known at

44

the point that the dynamic traversal initiates; (iii) the sequence of visits may be decided while

the visiting is taking place; (iv) the dynamic traversal returns a consistent view of the weights

of all the edges that it has traversed, i.e., all the returned values have co-existed on the graph

at some point in time.

We rely on the following concurrent graph representation. The graph is represented as an

m ×m adjacency matrix, for some positive integer m, and it allows the addition of edges, the

removal of edges, and the modification of edge weights by providing an updating operation.

This operation is UpdateEdge(i, j, w), where i, j are indices of vertices in V and where w is in

W ∪ {⊥}. It modifies the graph as follows: Assume that ei,j ∈ E. If w = ⊥, then the edge is

removed. Otherwise, its weight is changed to w. If ei,j 6∈ E, it is inserted in E with weight w.

The implementation supports the d-traversal as a composite operation, consisting of the

following ones:

❼ DynamicTraverse, which is used to mark the beginning of a d-traversal of the graph.

❼ EndTraverse, which is used to mark the end of a d-traversal of the graph.

❼ ReadEdge(i, j), where i, j are indices of vertices in V . It returns a weight for edge ei,j , if

ei,j ∈ E, and ⊥ if ei,j 6∈ E.

An instance of ReadEdge is only used in d-traversals, potentially as part of a sequence of

ReadEdge operations. A d-traversal by process pu consists in an instance bt of a DynamicTraverse

operation, followed by a finite sequence of instances of ReadEdge, followed in turn by an in-

stance et of an EndTraverse operation. No other operation is invoked between bt and et. The

execution interval of the d-traversal starts in the configuration in which pu invokes bt and ends

in the configuration resulting from the response of et.

Although we consider linearizability as the correctness criterion for UpdateEdge operations,

for the d-traversals we consider a criterion analogous to strict serializability, since they constitute

complex operations that are reminiscent of restricted transactions. We reformulate the definition

of linearizability of Section 2.2 in order to adapt it to the necessities of our graph model.

Definition 3.1 (Linearizability for Dense executions with dynamic traversals). An execution α

of Dense that contains dynamic traversals is linearizable if it is possible to assign a linearization

point inside the execution interval of each completed operation in α and possibly some of the

incomplete operations in α, and a linearization point in each completed dynamic traversal in α

and possibly some incomplete ones, so that the result of each of those operations and dynamic

traversals is the same as it would be, if they had been performed sequentially in the order dictated

by their linearization points.

Roughly speaking, we consider that the entire sequence of ReadEdge operations enclosed in

a dynamic traversal have a linearization point inside the execution interval of the d-traversal,

such that the ReadEdge return the weights that the traversed edges had in the configuration in

which the linearization point is placed. The provided graph operations as well as the d-traversal,

are wait-free.

45

3.2.2 Algorithm Description

Data Structures. Algorithm 4 shows the data structures used by Dense (initial values are

indicated on lines 17 - 21). Operation information is stored in a structure of type AnnStruct.

This structure consists of four fields, namely: (i) op, of typeOpType, which represents operations

provided by Dense (i.e. DynamicTraverse, UpdateEdge, and the void operation Noop); (ii)

i and j which identify the edge on which an UpdateEdge operation is to be performed (if

op = UpdateEdge); and (iii) value, an integer representing the value that an UpdateEdge

operation has to write to the weight of the edge specified by fields i and j (if op = UpdateEdge).

Algorithm 4 Dense: Data structures for a multi-traverse implementation of a concurrent graph
object suitable for dense graphs.

1 typedef OpType {DynamicTraverse, UpdateEdge, Noop}; // codewords for announced operations

2 type AnnStruct // the data type of the announce array elements

3 OpType op // the announced operation

4 int i, j // if OpType=Update, i and j denote the vertices connected by the edge to be updated

5 int value // the weight to be assigned to the edge if OpType=Update

6 type StateStruct // the data type of the structure storing the graph’s state

7 boolean phase // a field indicating the current phase of execution, either Announce or Apply

8 int seq // the sequence number, used as a version counter

9 int ann[1..n]
10 int done[1..n]
11 int rvals[1..n] // an array storing a value of seq for each process in order to facilitate dynamic traversals

12

13 type EdgeStruct // the data type of a graph edge

// each array element corresponds to a process and stores a weight and its version

14 〈 weightval, int 〉 prev[1..n]
15 int seq // current version of the edge

16 weightval w // current weight of the edge

17 shared int BitV ector[1..n] = 0; // used as a vector of n bits, one for each process

// announce array

18 shared AnnStruct Announce[1..n] = {〈Noop, 0, 0, 0〉, . . . , 〈Noop, 0, 0, 0〉};

19 shared StateStruct ST = 〈0, AGREE, 〈0, . . . , 0〉, 〈0, . . . , 0〉, 〈0, . . . , 0〉〉; // graph state

// adjacency matrix representing the graph

20 shared EdgeStruct Edges[1..m][1..m] = {〈〈0, 0〉, 0, 0〉, . . . , 〈〈0, 0〉, 0, 0〉};

21 private int toggleu = 2u; // there is a copy for each process pu, u ∈ {1, . . . , n}

46

Our implementation provides linearizable, wait-free operations and d-traversals by using

light-weight helping. To achieve it, each UpdateEdge or DynamicTraverse operation is first

announced by a process, subsequently agreed by all processes, and then it can be applied by some

process - not necessarily the one that invoked it. Finally, it can terminate and return a response.

Furthermore, after being agreed and before being applied, an instance u of UpdateEdge may

perform a modification on a graph edge, in which case we say that u has taken effect. In the

same way that an instance of any operation may be applied by a process other than the one

that invoked it, u may take effect due to events invoked by a process other than the one that

invoked u. In order to achieve the coordination that is necessary in order to apply operations

or achieve that updates take effect, the processes collaborate in order to alternate between two

types of phases, namely AGREE and APPLY.

The status of operations on the graph is indicated by ST , an LL/SC object of type StateStruct

consisting of: (i) phase, a boolean variable which indicates whether the execution of Dense is

in an AGREE or an APPLY phase at any given moment; (ii) seq, an integer which serves as global

version counter. It is incremented each time a process successfully switches the execution phase

from AGREE to APPLY; (iii) ann[1..n], an array implemented as n-bit integer, where ann[u] cor-

responds to process pu, u ∈ {1, 2, . . . , n}, and whose value is toggled each time an operation by

pu is agreed; (iv) done[1..n], an array implemented as n-bit integer, where done[u] corresponds

to process pu, u ∈ {1, 2, . . . , n}, and whose value is set equal to ann[u] each time an operation

by pu is applied to the graph; and (v) rvals[1..n], an array of n elements, where t rvals[u]

corresponds to process pu, u ∈ {1, 2, . . . , n}, and which stores the value of seq that pu uses as

read version number, in case it is performing a d-traversal.

The AGREE phase is used by processes in order detect which operation information in the

announce array corresponds to a pending operation: pu has a pending operation if the u-th

bit of the bitvector is not equal to done[u]. In this phase, processes essentially “agree” on a

set of operations that they will attempt to apply on the graph in the following APPLY phase.

Then, the APPLY phase that follows is used by processes for attempting to apply those pending

operations. As a result, operations are applied to the graph in batches. When an announced

operation is carried out by some process, we say that it is applied. Otherwise, it is pending.

An applied operation can return a response to the process that invoked it. The status of an

operation, i.e. whether it has been already applied or not, is reflected in the values of ST.ann[u]

and ST.done[u]: An invariant in our implementation is that in configurations in which it holds

that ST.ann[u] = ST.done[u], it also holds that the latest agreed operation by pu has been

applied; while in configurations in which ST.ann[u] 6= ST.done[u], it also holds that the latest

operation by pu is pending. A process which completes the actions associated with a phase,

attempts to flip it.

We represent the graph G with Edges, an adjacency matrix, i.e. a two-dimensional array,

where each element (i, j) of the array represents edge between vertices i and j, i, j ≤ m. Graph

edges, i.e. adjacency matrix elements, are LL/SC objects of type EdgeStruct. This type is a

record of three fields: (i) prev, an array of n elements (one for each process), where each element

47

Algorithm 5 Dense: Operations Update, DynamicTraverse, and EndTraverse, auxiliary rou-
tine Read, for a multi-traverse implementation of a concurrent graph object suitable for dense
graphs.

22 void UpdateEdge(int i, int j, int value) // for process pu, u ∈ {1, . . . , n}

23 BTU(UpdateEdge, int i, int j, int value)

24 void DynamicTraverse() // for process pu, u ∈ {1, . . . , n}

25 BTU(DynamicTraverse, ⊥, ⊥, ⊥);

26 void EndTraverse() // for process pu, u ∈ {1, . . . , n}

27 noop

28 int ReadEdge(int i, int j) // for process pu

EdgeStruct edge
29 int val, int seq, int rval
30 int rval = ST.rvals[u]

31 edge = Edges[i][j]
32 if (edge.seq > rval) then
33 〈val, seq〉 = edge.prev[u]
34 else val = edge.w
35 return val

is a pair < w, seq > of integers. Whenever an update operation modifies the weight of an edge,

it stores the current weight and version in prev[u] if process pu is performing a d-traversal on the

graph using as read value, stored in ST.rvals[u], a value that is larger than the current version

of the edge; (ii) seq, an integer which stores the current version of the edge; (iii) w, of type

weightval, which stores the current weight of the edge - if this value is ⊥, the corresponding

edge does not exist.

Recall that Dense implements the helping mechanism, where any process pu that invokes an

operation also attempts to apply pending operations by other processes. Operation information

is stored by processes in Announce[1..n], an announce array of n elements, where each element

Announce[u], u ∈ {1, 2, . . . , n}, is of type AnnStruct and can be written to only by process pu,

but can be read by all processes. The announcing of an operation is complemented by the use

of BitV ector, shared vector of n bits (represented as a n-bit integer) where bit u corresponds

to process pu as follows: In order to indicate a pending operation, after each time pu writes new

operation information in Announce[u], it flips the u-th bit of BitV ector. It does so with the aid

of a local, persistent variable, toggleu, with initial value 2u. After pu announces an operation,

it inverts the value of toggleu.

Pseudocode Description. Pseudocode for the operations of the graph that are described in

Subsection 3.2.1 is presented in Algorithm 5. Operations UpdateEdge and DynamicTraverse

require that the processes that execute them, assist each other. In order to do this, they both

48

invoke auxiliary routine BTU (these initials stand for “Begin a Traversal or Update”). BTU im-

plements the phase alternation and is further detailed below. We say that an execution of Dense

is in AGREE or APPLY phase during those execution intervals in which ST.phase = AGREE, or

ST.phase = APPLY, respectively. Notice that ReadEdge is independent of the phases. Instances

of ReadEdge are only invoked by a process following the execution of a DynamicTraverse op-

eration by the same process. They rely on UpdateEdge operations to store possibly useful old

edge versions for them in the prev arrays of each modified edge. To achieve the synchronization

that is necessary for this, d-traversals use the aforementioned concept of a read version number,

as follows.

The DynamicTraverse operation that initiates some d-traversal d, obtains as read version

number the current value v of ST.seq (this happens when either the process that initiated d

or some other process helps to apply this DynamicTraverse operation while executing line 64).

An instance r of ReadEdge that is invoked by process pu on edge ei,j and that is included in d,

must check whether the version of ei,j is greater than v (line 32). If this is the case, then ei,j was

updated after d started. However, in Dense, d-traversals must not be aware of the modifications

of concurrent edge updates and have to return values that the edge weights had just before the

d-traversal initiated. For this reason, r must return a previous weight of ei,j , and finds this in

ei,j .prev[u] (line 33). If the version of ei,j is less than v, then r returns ei,j ’s current weight

(line 34). Notice that although the instances of ReadEdge that are included in a d-traversal are

not aware of concurrent UpdateEdge instances (i.e. instances whose execution intervals overlap

with that of the d-traversal), those UpdateEdge instances become aware of d-traversals and

store the necessary old edge weights for them when they modify edges the graph.

Algorithm 5 presents BTU, which is at the heart of the Dense implementation. It is invoked

by UpdateEdge specifying as arguments the operation type, integers i and j, which identify

the edge to be modified, and integer value, which specifies the weight to be written to this

edge. When BTU is invoked by DynamicTraverse, then only the operation type is specified as

argument, while the remaining three are ⊥, as they are not required for the d-traversal.

An instance of BTU by pu first writes the operation information into element u of the announce

array (line 40) and then sets the value of the u-th bit of BitV ector (line 41), using the current

value of local persistent variable toggleu bit. It then flips toggleu (line 42) in order to prepare

its value for the next execution of an operation by pu. The algorithm implements this practice

in order to provide a previously mentioned invariant: by comparing ST.ann[u] and ST.done[u],

a process is able to detect whether the latest agreed operation by pu has already been applied

or not. Notice that the contents of BitV ector are copied into ST.ann by each process that

successfully executes an AGREE phase of Dense (lines 45, 48, 67), while they are copied into

ST.done by a process that successfully executes an APPLY phase of Dense (lines 45, 66, 67).

Therefore, each operation by pu must correspond to a different BitV ector[u] value than the

previous one.

BTU carries out any light-weight helping in addition to the execution of the operation that

invoked it. To do this, it iterates via a for loop (lines 43-67). An iteration of this for loop

49

Algorithm 6 Dense: ApplyOp routine for a multi-traverse implementation of a concurrent
graph object suitable for dense graphs.

36 void BTU(OpType op, int i, int j, int value) { // for process pu, u ∈ {1, . . . , n}

37 StateStruct st
38 int lbv, opi, opj
39 EdgeStruct e

40 Announce[u] = 〈op, i, j, value〉
41 Add(BitV ector, toggleu)
42 toggleu = - toggleu

43 for i up to 4 do {
44 st = LL(ST)
45 lbv = BitV ector

46 if (lbv[u] == st.done[u]) then break

47 if (st.phase == AGREE) then // AGREE Phase

48 st.ann[1..n] = lbv[1..n]
49 st.seq = st.seq + 1
50 st.phase = APPLY

51 else // APPLY Phase

52 for (r = 1; r ≤ n; r++) {
53 if (st.ann[r] 6= st.done[r]) then
54 if (Announce[r].op == UpdateEdge) then
55 opi = Announce[r].i
56 opj = Announce[r].j
57 e = LL(Edges[opi][opj])
58 if (e.seq < st.seq) then
59 for (k = 1; k ≤ n; k++) {
60 if (e.seq < st.rvals[k]) then
61 e.prev[k] = 〈e.w, e.seq〉;
62 e.w = Announce[r].value
63 e.seq = st.seq
64 SC(Edges[opi][opj], e)

else st.rvals[r] = st.seq
65 st.done[1..n] = lbv[1..n]
66 st.phase = AGREE

67 SC(ST, st);

consists in locally copying ST (line 44), and then attempting to perform the actions that are

required by the phase indicated in ST.phase. Once these actions have been performed, BTU

attempts to change the phase by executing the SC of line 67. If this SC is successful, we say that

BTU (or, abusing terminology, the process or the operation that invoked it) successfully executed

the phase. The execution of this primitive may fail if some instance of BTU, executed by a process

other than pu, has already performed the current phase and advanced the execution to the next

phase. When executing the for loop (lines 43 - 67), BTU proceeds as follows, depending on the

50

phase it performs:

❼ AGREE phase (lines 47-50). This phase updates the status record ST with the newly

announced operations, so that all processes can agree on them. So, BTU first records this

status locally on st, before using an SC instruction in order to attempt to update it globally

on ST . In order to set st, BTU collects information from the BitV ector regarding newly

announced and therefore possibly pending operations. It does so by copying the contents

of BitV ector into st.ann (line 48). Notice that for a process pl, 1 ≤ l ≤ n, that has a

newly announced operation, the invariant st.ann[u] 6= st.done[u] must hold. Therefore, a

successful assignment of st to ST (through the execution of the SC of line 67) creates the

inequality between ST.ann[u] and ST.done[u] and makes all processes “agree” that pu

has a newly announced operation which has not been applied yet. Once the information

regarding pending operation for each process has been copied into st, BTU increments seq,

the global version counter in st (line 49) and changes the phase field of st from AGREE to

APPLY.

❼ APPLY phase (lines 51 - 66) This phase applies any pending agreed UpdateEdge opera-

tion on the edges of the graph, and assigns read version number to any pending agreed

DynamicTraverse operation. For this, BTU uses st again, and for each process pu (line 52)

it checks whether such a pending operation exists (line 53), in which case it holds that

st.ann[u] 6= st.done[u]. Consider the case of a pending UpdateEdge operation by pu on

edge ei,j . Since multiple processes may be executing an operation on ei,j , these modifica-

tions must be synchronized in order to safeguard correctness. For this reason, ei,j is copied

locally into e using LL (line 57). If the current version number of ei,j , e.seq is greater than

st.seq then the specific UpdateEdge operation has already taken effect, namely by some

process other than pu, that has also changed the state. However, if this is not the case,

the modification of ei,j is carried out. Before setting the new value for the weight (line 62)

and version (line 63) of ei,j , a comparison of the current version of ei,j and all read version

numbers stored in st.rvals is performed (lines 59 - 61). If the current version of ei,j is

less than the read version number for some process pr, 1 ≤ r ≤ n, then the condition

e.seq < st.rvals[r] is true. This means that a concurrent d-traversal by process pr might

be in progress. In order to guarantee that an eventual such d-traversal can read mutually

consistent values, the current values of ei,j ’s weight and version are stored in e.prev[r].

There, instances of ReadEdge on ei,j that are included in a d-traversal, can later find it if

necessary. BTU then attempts to finalize the update of ei,j by using SC to copy e into ei,j

(line 64). Whether the SC on the edge is successful or not, at the end of the phase the

operation is considered applied.

If pu’s pending operation is a DynamicTraverse, the read version number must simply be

set. This is first recorded in st.rvals[u] (line 64) and is eventually stored in ST.rvals[u]

(line 67) by the process that successfully executes the phase. Recall that it is used by a

concurrent UpdateEdge operation in order to judge whether to discard the current value

of the edge that it is updating or whether to keep it for the ongoing d-traversal of pu.

51

If the assignment of line 64 followed by a successful SC on ST is executed more than

once for a given DynamicTraverse instance or for the d-traversal that it initiated, then

the consistency of the ReadEdge instances of the d-traversal could be compromised. An

eventual bad scenario would happen if ReadEdge instances that are invoked before the

second execution of those lines and ReadEdge instances that are invoked after the second

execution would use a different read version number when reading edges.

Thus, at the end of an APPLY phase, the done bits in st are set equal to the corresponding

ann bits (line 66). Then, BTU attempts to change the phase from APPLY back to AGREE

(line 66) by switching the phase field of st, which is reflected on ST if the SC instruction

of line 67 is successful.

Notice that an instance of BTU may be slow and end up performing the actions associated

with a phase while the execution has already progressed to some following phase. Notice also

that in the worst case, an instance of BTU has to perform four iterations of the for loop before

the operation that invoked it is applied. Such a worst-case scenario is the following: Let Ibtu be

an instance of BTU that executes the first iteration of the for loop during an AGREE phase and

let pl be the process that successfully flips the phase to APPLY by executing the SC on ST of

line 67. Consider however that the execution of line 41 by Ibtu occurs after pl executes the LL of

line 44, which corresponds to the successful SC on ST . This means that in the following APPLY

phase, the operation that invoked Ibtu will not be executed. In the worst case, all other processes

are slow and the process that invoked Ibtu must perform the actions associated with the APPLY

phase itself, during the second iteration of the for loop, as well as the actions required by the

following AGREE phase, during the third iteration of its for loop. During this AGREE phase,

the Add on BitV ector by Ibtu is guaranteed to be observed by the process that performs the

successful SC on ST and changes the phase to APPLY. Here again, in the worst case, all other

processes are once more slower than the process which invoked Ibtu, and thus, Ibtu that performs

the actions associated with the APPLY phase, in its fourth iteration of the for loop. This time,

however, the operation that invoked it is guaranteed to have been applied.

However, in the common case, the operation may be applied earlier, by some other, helping

process. The condition that signals this is expressed on line 46 and is checked at each iteration

of the for loop. It consists in verifying whether the toggle bit for pl, the process executing BTU,

in shared array BitV ector has the same value as the corresponding bit in the ST.done array.

If that is the case, the operation executed by BTU is considered applied and the iteration of the

for loop terminates as well.

3.2.3 Proof of Correctness

Let α be an execution of Dense. Such an execution is comprised of instances of operations

UpdateEdge and DynamicTraverse, which in turn invoke instances of auxiliary routine BTU, as

well as of instances of EndTraverse and auxiliary routine ReadEdge. We may refer to instances

of operations UpdateEdge and DynamicTraverse as requests. The execution interval of an

instance of UpdateEdge begins with its invocation and terminates when it returns. Similarly,

52

SCST
k the k-th successful SC on ST .

LLST
k the LL that corresponds to SCST .

CST
k he configuration resulting from the execution of SCST

k .

Qu
w the wu-th Add of line 41 executed by pu.

CAu
w the configuration after the execution of Qu

w.

LDT the sequence of DynamicTraverse operations that have been assigned linearization
points in α, based on the order of their linearization points.

LC
DT the prefix of LDT from C0 up to C, for some configuration C in α.

LU the sequence of UpdateEdge operations that have been assigned linearization points
in α, based on the order of their linearization points.

LU |ei,j the projection of LU on UpdateEdge operations that affect edge ei,j .

LC
U |ei,j the prefix of LU |ei,j from C0 up to C, for some configuration C in α.

SC
ei,j
k the k-th successful SC operation on ei,j .

Table 3.2: Notation used during the proof of Dense.

the execution interval of an instance of DynamicTraverse (or EndTraverse) begins with its

invocation and terminates when it returns (see Algorithm 5). The execution intervals of routines

BTU and ReadEdge are defined accordingly. The execution interval of a d-traversal begins with

the invocation of the instance of DynamicTraverse that initiates it and terminates with the

response of the instance of EndTraverse that finished it.

Consider an instance U of UpdateEdge, with arguments i, j and v and let pu, u ∈ {1, 2, . . . , n}

be the process executing it. We then say that U updates edge ei,j with value v. Let now R be

an instance of ReadEdge with arguments i and j. When R executes line 31 we say that R reads

edge ei,j .

In the following, we prove that the operations provided by Dense are linearizable and wait-

free. We start with some technical characteristics of the algorithm, which are then used in order

to argue about the claimed properties. Table 3.2 briefly summarizes the notation introduced

thus far, as well as some notation that will be introduced later. Note that notation that refers

to some configuration starts with the letter C.

Preliminaries. Let pu, u ∈ {1, 2, . . . , n} be one of the processes that execute Dense in α.

Recall that Dense relies on the shared variables Announce[1..n], BitV ector[1..n], and ST in

order to achieve process synchronization. Given that processes have local variables that share

denomination, we distinguish between them with a subscript indicating the id of the process

they belong to – e.g. local variable lbv of process pu is referred to as lbvu. Regarding the shared

variables, inspection of the pseudocode shows that the following hold.

Observation 21. Announce[u] is only modified by the execution of line 40 by an instance of

BTU executed by pu, u ∈ {1, 2, . . . , n}.

Observation 22. BitV ector[u] is only modified by the execution of line 41 by an instance of

BTU executed by pu, u ∈ {1, 2, . . . , n}.

53

Observation 23. ST is only modified by a successful execution of the SC operation of line 67

by an instance of BTU executed by some process pu, u ∈ {1, 2, . . . , n}.

We start by proving some useful properties of ST . We refer to the SC operation of line 67 as

st−sc and the LL operation of line 44 as st−ll. Denote by SCST
1 , SCST

2 , . . . the sequence of such

successful operations on ST in α and by LLST
1 , LLST

2 , . . . the sequence of corresponding st− ll

operations. We denote the initial configuration by C0. Let CST
k be the configuration resulting

from the execution of SCST
k , k > 0. By Observation 67 and the definition of SCST

1 , SCST
2 , . . .,

it is straight-forward to show the following lemma.

Lemma 24. ST is not modified in the execution interval between CST
k and (but not including)

CST
k+1, k > 0.

Assuming that the initial value of ST.phase is AGREE, then:

Lemma 25. If ST.phase has the value AGREE in the configuration just before SCST
k , k > 0, is

executed, then it has the value APPLY in CST
k . Conversely, if ST.phase has the value APPLY in

the configuration just before SCST
k , k > 0, is executed, it has the value AGREE in CST

k .

Proof. We prove the claim by contradiction.

Fix a k > 0 and assume first that in the configuration in which SCST
k is executed, ST.phase =

AGREE. Let pu, u ∈ {1, 2, . . . , n}, be the process that executes SCST
k . To arrive at a contradic-

tion, assume that when LLk reads ST , the value of ST.phase is not AGREE. This is a contra-

diction, since, by Observation 67, ST only changes through successful SC operations of line 67,

and by definition, SCST
k is such an instance. By similar reasoning, that is also the value that

ST.phase has in the configuration just before SCST
k is executed.

By inspection of the pseudocode, if pu executes LLk and finds that ST.phase = AGREE,

(line 47), it executes lines 48 - 50 before executing SCST
k on line 67. Notice that any successful

st − sc assigns the value of local variable st to ST . Notice also that st.phase is assigned the

value APPLY on line 50. Therefore, in CST
k , ST.phase = APPLY and the claim holds.

By analogous reasoning, we prove that if ST.phase = APPLY in the configuration just before

SCST
k , then ST.phase = AGREE at CST

k .

The previous lemma implies the following corollary:

Corollary 26. Any SCST
k such that k mod 2 = 1 changes ST.phase from AGREE to APPLY.

Any SCST
k such that k mod 2 = 0 changes ST.phase from APPLY to AGREE.

Lemma 27. For any k > 0,

1. At CST
k , k > 0, the value of ST.seq is ⌈k2⌉

2. The value of ST.seq does not change between CST
k and the configuration in which SCST

k+2

is executed, for k > 0, k mod 2 = 1.

54

Proof. Recall that, by Observation 67, ST , and therefore ST.seq, is only modified by the SC

instruction of line 67 and that a successful SC operation assigns to it the value of local variable

st. The value of st for each successful SC is determined either in the for or the else branch of

the for loop of lines 47, 51.

By Lemma 67 we have that each SCST
k toggles ST.phase from AGREE to APPLY and vice

versa. Recall that inspection of the pseudocode shows that, since each st − ll copies the value

of ST into the local variable st of the process p executing st − ll (line 44), this also holds for

LLST
k . Since, according to the pseudocode, st.seq is incremented only during the AGREE phase

(line 49), this means that it is not modified during the APPLY phase. Then, it is incremented by

those SCST
k which toggle ST.phase from AGREE to APPLY. By assumption, initially it holds that

ST.phase = AGREE. It follows that SCST
1 , SCST

3 , . . ., increment ST.seq, proving the claims.

Lemma 67 implies the following corollary.

Corollary 28. ST.seq is monotonically increasing in α.

Toggle bits, Done bits, and BitVector. We proceed by examining how the values of

BitV ector[1..n], as well as ST.ann[1..n] and ST.done[1..n] change during α.

Observation 29. Each request invokes one instance of BTU.

We denote by mu the number of requests executed by a process pu, u ∈ {1, 2, . . . , n}, in α.

Each process pu has a persistent local variable toggleu. Let reqwu be the w-th request invoked

by pu. Let the initial value of toggleu be 2u and let togglewu be the value of toggleu in the

configuration right after request reqwu has been executed.

Observation 30. For any w, 0 ≤ w ≤ mu, the following holds:

1. if w mod 2 = 0, togglewu = 2w

2. if w mod 2 = 1, togglewu = −2w

By inspection of the pseudocode, we have that local variable toggleu is added by pu to

BitV ector[1..n] by the execution of the Add primitive of line 41.

Let C be some configuration in α. Then the following lemma holds.

Lemma 31. For each u ∈ {1, 2, . . . , n}, if pu has executed wu ≥ 0 Add on BitV ector[1..n] by

C, it holds that BitV ector[u] = wu mod 2 at C.

Proof. Fix any u ∈ {1, . . . , p}. We prove the claim by induction on wu.

Base case (wu = 0). By the way BitV ector is initialized and by Observation 22, it follows

that BitV ector[u] = 0 at C0. Since pu has not performed any request by C, it holds that wu

mod 2 = 0 and the claim follows.

Induction hypothesis. Fix any wu > 0 and assume that the claim holds.

Induction step. We prove that the claim holds for wu + 1.

55

First assume that wu + 1 mod 2 = 1. Then, wu mod 2 = 0, and, by the induction hy-

pothesis, BitV ector[u] = 0 in the configuration right after the wu-th Add by pu is executed. In

that configuration, by Observation 30, it also holds that toggleuwu
= 2wu . By inspection of the

pseudocode, we have that this still holds in the configuration in which the (wu+1)-th Add by pu

is executed. By Observation 22, in that configuration, it also still holds that BitV ector[u] = 0.

Then, the (wu + 1)-th Add by pu set the u-th bit to 1 while leaving all other bits unchanged.

Thus, if pu has executed (wu + 1) Add on BitV ector[1..n] by C, where (wu + 1) mod 2 = 1,

then BitV ector[u] = 1, i.e. BitV ector[u] = (wu + 1) mod 2 at C. Therefore, the claim holds.

The case where wu mod 2 = 0 is symmetric.

Let Qu
w be the wu-th Add of line 41 executed by pu in α and let CAu

w be the configuration

that results from that. Then, an immediate consequence of Lemma 31 is the following.

Corollary 32. For each wu, 0 ≤ wu ≤ mu, the following claims hold:

1. BitV ector[u] = wu mod 2 at CAu
w;

2. BitV ector[u] has the same value between CAu
wu

and the configuration in which Qu
wu+1 is

executed.

We proceed to examine the behavior of ST.ann[1..n] and ST.done[1..n].

Inspection of the pseudocode (lines 48, 67) shows that a successful st− sc executed during

an AGREE phase assigns to ST.ann[1..n] the value of local variable lbv. Conversely, a successful

st− sc executed during an APPLY phase assigns to ST.done[1..n] the value of local variable lbv

(lines 66, 67). In conjunction with Lemma 25, this leads to the following observation.

Observation 33. ST.ann[1..n] is only modified by those SCST
k for which k mod 2 = 1.

ST.done[1..n] is only modified by those SCST
k for which k mod 2 = 0.

This observation, as well as further inspection of the pseudocode (lines 45, 48, 66, 67) and

Lemma 25 imply the following lemma.

Lemma 34. Let pl be the process that executes SCST
k . Let C be the last configuration in which

pl reads BitV ector before executing SCST
k . If k mod 2 = 1, then in CST

k , ST.ann[1..n] has the

value that BitV ector[1..n] had at C. If k mod 2 = 0, then in CST
k , ST.done[1..n] has the value

that BitV ector[1..n] had at C.

Linearizability. Recall that an execution interval of α during which ST.phase has the value

AGREE is referred to as AGREE phase, while an execution interval in which ST.phase has the

value APPLY, is referred to as APPLY phase. Inspection of the pseudocode shows that if the

LL of line 44 of some process occurs during an AGREE phase, then lines 47 to 50 are executed.

This observations, as well as Observation 33 and Lemma 34, indicate that if ST.ann[u], u ∈

{1, 2, . . . , n}, is modified by an SCST
k , k > 0, then this SCST

k toggles ST.phase from AGREE to

APPLY. If such a modification of ST.ann[u] occurs in CST
k , then we say that some operation by

process pu has been agreed in CST
k .

56

By similar reasoning, if the LL of line 44 occurs during an APPLY phase, the process executes

lines 51 to 66 and toggles the phase from APPLY to AGREE, while also potentially modifying

ST.done[u], u ∈ {1, 2, . . . , n}. If such a modification of ST.done[u] occurs in CST
k , then we say

that some operation by process pu has been applied in CST
k .

Considering that at least one process is crash-free in α, we have the following lemma.

Lemma 35. Any announced request is agreed at most once during its execution interval.

Proof. Let requ be a request by pu that is announced in some configuration Cu in α. We prove

the claim by contradiction.

Assume first that requ is never agreed in α. Corollaries 26 and 28 imply that this cannot be

due to the fact that the phase does not change. Thus, the phases alternate, but by assumption,

there is no phase in which requ is agreed. Let pl, 1 ≤ l ≤ n be a process that executes

SCST
k for some k, that changes the phase from AGREE to APPLY. Inspection of the pseudocode

shows that in order to do so, it executes line 48. So, in CST
k , BitV ector[u] = ST.ann[u]. By

Lemmas 31 to 34, we have that if an operation is not agreed, then ST.ann[u] = ST.done[u] and

BitV ector[u] 6= ST.ann[u] – a contradiction. Thus requ is announced at least once during its

execution interval.

Assume now that requ is agreed at least one more time after CST
k . By definition of the phases,

this can only happen in a configuration CST
l , k < l, that results from some subsequent AGREE

phase. By Corollary 26, we have that at least one APPLY phase occurs between CST
k and CST

l .

Notice that by Lemma 34, at the end of an APPLY phase, it holds that ST.ann[u] = ST.done[u]

and those values are equal to BitV ector[u]. Inspection of the pseudocode (line 46) shows that if

this is the case, BTU terminates its execution and returns a response to requ. By Observation 29,

if BitV ector[u] 6= ST.done[u] in some subsequent configuration, then this can only hold because

pu has invoked a subsequent request – a contradiction with the assumption that requ is agreed

more than once. Thus, the claim holds.

By similar reasoning, we have the following.

Lemma 36. Let req be a request that is agreed in configuration CST
k in α. Then req is applied

at most once during its execution interval, namely in CST
k+1 if it is included in α.

We proceed to examine the modification of edges. Inspection of the pseudocode leads to the

following observation.

Observation 37. The weight and sequence number of an edge ei,j can only be modified by a

successful execution of the SC operation of line 64 during an APPLY phase of Dense.

Let U be an instance of an UpdateEdge operation by pu that writes v to edge ei,j and that is

agreed upon in some configuration CST
k in α. If after CST

k , some process pl successfully executes

the SC of line 64 on ei,j with the parameter v of U resulting in configuration C, we say that U

takes effect in C.

57

Lemma 38. For any instance U of an UpdateEdge operation in α, there is at most one con-

figuration C in α in which U takes effect.

Proof. We prove the claim by contradiction. Assume that there are two such configurations, C

and C ′ in α and let C < C ′, without loss of generality. Let U write v on edge ei,j . Furthermore,

let C be immediately preceded by step sc, an SC that is successfully executed by some process

pu on ei,j , and let C ′ be immediately preceded by step sc′, also a successful SC executed by

process pl on ei,j . Denote by ll and ll′ the corresponding LL on ei,j for sc and sc′, respectively.

We proceed by case analysis.

First, consider that sc < ll′. Since sc is a successful SC on ei,j , inspection of the pseudocode

(lines 58 - 64) implies that the condition of the if statement of line 58 evaluates to true, i.e.

that stu.seq is greater than ei,j .seq. Further inspection of the pseudocode (lines 62 - 64) shows

that the value of ei,j .seq in C is the same as that of stu.seq. By Observation 37, C occurs in an

APPLY phase of Dense. Consider first that ll′ occurs in the same APPLY phase. Inspection of the

pseudocode shows that ll′ is a step taken when pl executes line 57. Since ll′ occurs in the same

APPLY phase as C, it must hold that stl.seq = stu.seq. Since sc
′ is the successful execution by pl

of line 64, it must hold that the evaluation by pl of the condition of the if statement of line 58

is true, i.e. it must hold that in the configuration in which this statement is evaluated, ei,j .seq

is less than stl.seq. Inspection of the pseudocode (lines 57 - 58) shows that this configuration

follows ll′. Since ll′ follows C, and since stl.seq = stu.seq, the condition of the if statement of

line 58 is evaluated to false by pl and line 64 is not executed – a contradiction. Thus ll′ does

not occur in the same APPLY phase as C.

Since sc < ll′, it must then hold that ll′ occurs in a subsequent APPLY phase. Let pk be the

process that invokes U . Lemmas 34 and 35 imply that at the end of the APPLY phase in which

sc takes place, ST.done[k] = ST.ann[k]. However, inspection of the pseudocode (lines 53 - 64)

show that (given the assumption that it executes ll′ and sc′) pl evaluates the condition of the

if statement of line 53 to true, also a contradiction. Therefore, it cannot hold that sc < ll′.

Consider now that ll′ < sc. Since by definition sc < sc′, it follows that ll′ < sc < sc′. This

in turn implies that sc′ is a successful SC on ei,j , although sc, i.e. another successful SC on ei,j , is

interposed between ll′ and sc′. By the definition of the LL/SC primitive, this is a contradiction.

It follows that there can be no more than one configuration in which U takes effect and the

claim holds.

We assign linearization points to instances of UpdateEdge and DynamicTraverse as follows:

❼ UpdateEdge. Let U be an UpdateEdge operation executed by process pu that writes to

edge eij of the graph. Let U be agreed upon in configuration CST
k , k > 0. Let pl be the

process that executes the first successful SC of line 64 on eij after U has been agreed upon

(notice that it is possible that l = u). If this step occurs in an iteration of the for loop of

line 52, in which it holds that rl = u, then, the linearization point ∗U of U is placed in the

resulting configuration. In that case, we refer to U as a visible UpdateEdge. Conversely,

if the step occurs in an iteration of the for loop of line 52, in which it holds that rl 6= u,

58

then ∗U point is placed in the configuration just before the step is executed. In that case,

we refer to U as an invisible UpdateEdge. In case several invisible UpdateEdge operations

have their linearization point in the same configuration, ties are broken based on the ID

number of the process.

❼ DynamicTraverse. Let DT be a DynamicTraverse operation executed by process pu and

let DT be agreed upon in configuration CST
k , k > 0. The linearization point ∗D for DT

is placed in configuration CST
k+1, i.e. in the configuration in which DT is applied.

By inspection of the pseudocode (line 25), we see that an instance DT of DynamicTraverse

also invokes exactly one instance of BTU. Thus, the next lemma follows as a direct consequence

of Lemma 35 and the definition of the linearization point of DynamicTraverse.

Lemma 39. The linearization point of an instance DT of DynamicTraverse is included in its

execution interval.

We prove this property also for UpdateEdge operations.

Lemma 40. The linearization point of an instance U of UpdateEdge is included in its execution

interval.

Proof. Let U be executed by some process pu, u ∈ {1, 2, . . . , n} and assume that it is invoked

to update edge ei,j . After U is invoked, it in turn invokes an instance I of BTU (line 23). By

inspection of the pseudocode, we have that U invokes exactly one instance I of BTU and that it

terminates only after I returns. We proceed by case analysis.

First, assume that pu is the process that executes the first successful SC of line 64 on ei,j ,

after the configuration CST
k in which U is announced.

Let U be linearized in the configuration resulting from the first successful execution of the

SC instruction of line 64 by pu (while executing I). As this line is executed before I terminates

and given that U terminates only after I returns, the claim holds.

Next, let U be linearized in the configuration just prior the configuration resulting from the

successful execution of the SC instruction of line 64 by some other process p′ (while executing an

instance I ′ of BTU). By definition, the SC instruction executed by I in this case is unsuccessful,

i.e. between the execution of the LL instruction of line 57 by p and the SC instruction of line 64

by p, p′ has executed a successful SC instruction. Given that lines 57 and 64 are executed by p

before I returns, and thus, before U terminates, the claim holds also in this case.

Consider the DynamicTraverse operations that are assigned linearization points in α and

let LDT be the sequence of those operations, based on the order of their linearization points.

Lemma 41. Let C be any configuration in α and let LC
DT be the prefix of LDT that denotes the

sequence of operations that are assigned linearization points in the execution interval α′ between

C0 and C. Then, the value of ST.rvals[u] at C, for some u ∈ {1, 2, . . . , n}, is equal to the value

that ST.seq had in the configuration CST
k in which the last DynamicTraverse in LC

DT by pu was

59

linearized in α′. If no DynamicTraverse by pu is linearized in α′, then the value of ST.rvals[u]

is equal to the initial value.

Proof. We prove the claim by contradiction. Assume first that there is an instance dtu of

DynamicTraverse by pu that is linearized last in LC
DT and let the linearization point be placed

in configuration CST
l , l mod 2 = 0. Assume that SCST

l assigns value v to ST.rvals[u] and, to

arrive at a contradiction, assume that at C, ST.rvals[u] = v′, v′ 6= v.

Inspection of the pseudocode (line 64) shows that ST.rvals[u] can only be modified by those

st − sc that toggle ST.phase from APPLY to AGREE, i.e., by Corollary 26, those SCST
k where k

mod 2 = 0. Since, ST.rvals[u] may only be modified by some SCST
k such that k mod 2 = 0,

this in turn implies that v′ is a value assigned by some SCST
k where k > l. By the way

linearization points are assigned, an instance of DynamicTraverse by pu that has been agreed

upon in CST
k−1, is linearized in CST

k , k mod 2 = 0. This in turn implies that some instance

of DynamicTraverse is linearized after dtu, a contradiction. Thus, at C, ST.rvals[u] = v.

Notice that by inspection of the pseudocode (line 64, line 67), we have that when ST.rvals[u]

is assigned a value, this value corresponds to the value that ST.seq had in the immediately

preceding APPLY phase. Thus, v is the value that ST.seq has in the configuration in which dtu

is linearized and the claim holds.

The argument for the case in which there is no such dtu in α′ is analogous.

Consider the UpdateEdge operations that are assigned linearization points in α and let

LU be the sequence of those operations, based on the order of their linearization points. Let

LU |ei,j be the projection of LU on the instances of UpdateEdge which modify edge ei,j . Let

SC
ei,j
1 , SC

ei,j
2 , . . . be the sequence of successful SC operations (line 64) on ei,j in α that LU |ei,j

imposes. Denote by CB
ei,j
k the configuration in which SC

ei,j
k is executed and denote by CA

ei,j
k

the resulting configuration.

Lemma 42. Let C be any configuration in α and let LC
U |ei,j be the prefix of LU |ei,j that denotes

the sequence of operations that are assigned linearization points in the execution interval α′

between C0 and C. Then, the value of ei,j .seq at C is equal to the value that ST.seq had in the

configuration in which the last UpdateEdge in LC
U |ei,j was linearized in α′. If there is no such

instance UpdateEdge, then the value of ei,j .seq is equal to the initial value.

Proof. We prove the claim by contradiction. Assume first that there is an instance ui,j of

UpdateEdge by some process pu that writes to ei,j and is the instance of LC
U |ei,j that is linearized

last in α′ and that writes v to ei,j .seq, and, to arrive to a contradiction, assume that the value

of ei,j .seq at C is v′ 6= v.

Since the value of ei,j .seq is other than v at C, this means that it was modified in the execu-

tion interval between the configuration in which ui,j was linearized and C. By Observation 37,

we have that in that interval, a successful SC was executed on ei,j . Notice that by definition,

when this occurs, an instance of an UpdateEdge operation on ei,j is applied. Furthermore, by

the way linearization points are assigned, if an instance of an UpdateEdge operation is applied,

60

it is linearized in the configuration following the SC that applies it. This implies that a further

instance of UpdateEdge on ei,j is linearized in the execution interval between the linearization

point of ui,j and C. By the definition of ui,j , this is a contradiction. Therefore, the value of

ei,j .seq at C is the value written by the SC that applies ui,j .

Let pl be the process that applies ui,j . Inspection of the pseudocode (lines 63 - 64) shows

that a successful SC on ei,j assigns to ei,j .seq the value of stl.seq and further inspection of the

pseudocode (line 44) shows that this is the value that ST.seq has during the APPLY phase in

which ui,j is applied. Thus, the claim holds.

The argument for the case where no instance of UpdateEdge on ei,j is linearized in α is

analogous.

Lemma 43. Let SC
ei,j
k , k > 0, be an SC that applies some instance of UpdateEdge to ei,j and,

for some u, u ∈ 1, 2, . . . , p, let it hold that ST.rvals[u] > ei,j .seq at CB
ei,j
k . Then, at CA

ei,j
k it

holds that ei,j .prev[u] contains that weight-sequence number pair that is written to ei,j by that

applied instance U of UpdateEdge in LU |ei,j, which is the last to be linearized before SC
ei,j
k .

Proof. We prove the claim by contradiction. Let the SC that applies U write to ei,j the weight-

sequence number pair 〈v, s〉, i.e. in the configuration following this SC, it holds that ei,j .w = v

and ei,j .seq = s. To arrive at a contradiction, assume that at CA
ei,j
k , ei,j .prev[u] = 〈v′, seq′〉,

where v′ 6= v and s′ 6= s.

By inspection of the pseudocode (lines 59 - 61, lines 57 - 64) we see that SC
ei,j
k assigns to

ei,j .prev[u] the values that ei,j .w and ei,j .seq had in the configuration in which the LL corre-

sponding to SC
ei,j
k was executed.

By Observation 37, we have that ei,j may only be modified by successful executions of

SC on it. This means that after the configuration in which U is linearized and before the LL

corresponding to SC
ei,j
k is executed, a successful SC on ei,j takes place. By the way linearization

points are assigned, the configuration resulting from the execution of this SC is a configuration in

which some instance of an UpdateEdge operation is linearized – a contradiction to the definition

of U . Thus, the claim holds.

We now proceed to prove that instances of ReadEdge that are invoked by a process during

a dynamic traversal, read edge values that are mutually consistent.

Lemma 44. Consider an instance R of ReadEdge with arguments i and j, executed by pu and

let r be the executed by R on line 31. Let DT be the last instance of DynamicTraverse executed

by pu before R. Then, R returns as the weight for edge ei,j the value v, which is the weight

written to ei,j by U , where U is the last instance of UpdateEdge with arguments i, j, v, that

was linearized before the linearization point of DT .

Proof. To arrive at a contradiction, let R return the value v′ written by another instance of

UpdateEdge, U ′. Also, let s be the value of ST.seq in the configuration in which U is applied

and let s′ be the value of ST.seq in the configuration in which U ′ is applied. Inspection of

61

the pseudocode (lines 32 - 34) shows that after R executes r, it either assigns to local variable

val – which is the value that ReadEdge returns – the value of ei,j .w or the value of ei,j .prev[u].w.

Thus, we distinguish two cases.

Case 1. Consider that R returns the value of ei,j .w, i.e. that line 34 is executed. By

assumption, this value is v′. Inspection of the pseudocode shows that line 34 is executed

only if the condition of the if statement of line 32 evaluates to false. For this to be the

case, it must hold that in the configuration in which r is executed, ei,j .seq ≤ ST.rvals[u], i.e.

s′ ≤ ST.rvals[u]. By Lemma 42 we have that in that configuration, the value of ei,j .seq is the

value that ST.seq had in the configuration in which the last UpdateEdge that is applied on ei,j

was linearized. By Lemma 41, we also have that ST.rvals[u] has the value that ST.seq had in

the configuration in which DT was linearized. Since by Corollary 28 the value of ST.seq only

increases in α, it must either hold that s ≤ s′ or that s′ ≤ s. If s ≤ s′, then, since it holds

that s′ ≤ ST.rvals[u], it must hold that U ′ is the last instance of UpdateEdge to be linearized

before DT , a contradiction. If s′ ≤ s, then it can either hold that s′ ≤ s ≤ ST.rvals[u] or that

s′ ≤ ST.rvals[u] ≤ s. In case that s′ ≤ s ≤ ST.rvals[u], then in the configuration in which

line 34 is executed, ei,j .seq does not have the value of ST.seq in the configuration in which U ,

i.e. the last instance of UpdateEdge on ei,j was executed. By Lemma 42, this is a contradiction.

In case that s′ ≤ ST.rvals[u] ≤ s, then it must hold that the last instance of UpdateEdge that

is linearized on ei,j before the linearization point of DT , is linearized in a configuration that

had a greater value on ST.seq. By Corollary 28 this also is a contradiction.

Case 2. Consider now that R returns the value of ei,j .prev[u].w, i.e. that line 33 is executed.

By assumption, this value is v′. Inspection of the pseudocode shows that line 33 is executed

only if the condition of the if statement of line 32 evaluates to true. Since this is the case,

it holds that in the configuration in which r is executed, ei,j .seq > ST.rvals[u]. Let U ′′ be

the last instance of UpdateEdge that is applied and linearized on ei,j before this configuration.

Lemmas 42 and 41 as well as Corollary 28 imply that DT was linearized in a configuration

which precedes the configuration in which U ′′ was linearized. Lemma 43 implies that in that

configuration, ei,j .prev[u] contains the weight-sequence number pair that was written to ei,j

by the last instance of UpdateEdge that was applied on ei,j and linearized before DT , i.e. it

contains 〈v, s〉 written by U . Since we have assumed that the execution of line 33 finds 〈v′, s′〉

in ei,j .prev[u], this is a contradiction.

The previous lemma implies the following corollary for all those instances of ReadEdge that

are executed by some process during a graph traversal.

Corollary 45. Dynamic traversals provided by Dense have a linearization point inside their

execution interval and return a consistent view.

The previous lemmas and corollaries support the following theorem1.

Theorem 46. Dense is a linearizable concurrent graph implementation with dynamic traversals.
1Notice that both in the correctness as well as the progress proofs, we have omitted mention of operation

EndTraverse, since its function and pseudocode trivially comply with the claimed properties.

62

3.2.4 Proof of Progress

In this section, we show that operations and dynamic traversals of Dense are wait-free.

Let α be an execution of Dense. By inspection of the pseudocode, lines 32 - 34, we see that

ReadEdge has no loops and that it performs two accesses to shared memory locations – namely,

a read of ST (line 30) and a read of a graph edge (line 31). Thus, we obtain the following

straight-forward lemma.

Lemma 47. An instance of a ReadEdge operation of Dense terminates after O(1) steps.

In a similar straight-forward manner, by applying the previous lemma to an infinite execu-

tion, we obtain the following theorem.

Theorem 48. Dense provides wait-free ReadEdge operations with O(1) step complexity.

Contrary to ReadEdge, operations DynamicTraverse and UpdateEdge consist in an invoca-

tion of BTU. Therefore, their complexity depends on that of BTU.

Lemma 49. An instance of a BTU of Dense terminates after O(k) steps.

Proof. Inspection of the pseudocode, lines 53 - 64, shows that the shared object accesses, namely

the executions of SC on edges during the execution of an iteration of the for loop (line 43) of

an instance of BTU are at most k, where 1 ≤ k ≤ n is the number of “active processes”, i.e., the

number of processes that have a pending operation during the execution intervals in which the

instance of BTU performs an APPLY phase. Furthermore, the loop is executed a finite number of

times, namely at most 4 times. Inspection of the pseudocode shows that it then returns. Thus,

an instance of BTU performs O(k) SC on shared objects before it returns, proving the claim.

The previous lemma implies the following corollary.

Corollary 50. DynamicTraverse and UpdateEdge operations in Dense have a step complexity

of O(k), where k is the number of pending operations during an APPLY phase.

By Lemma 35, in an infinite execution, each instance of one of those operations is announced

inside its execution interval. By Lemmas 38 and 36, we have that they are applied at most once

inside their execution interval. We now proceed to prove that they are applied exactly once

inside their execution interval.

Lemma 51. In an infinite execution α of Dense, for any request requ operation by process pu,

agreed in configuration C in α, there is exactly one configuration C ′ inside requ’s execution

interval in α, with C < C ′, in which requ is applied.

Proof. Since we have assumed that α is infinite, this means that there is at least one non-faulty

process which invokes and executes Dense operations. Recall that, by definition, d-traversals

in Dense contain a finite number of instances of ReadEdge. Thus, for α to be infinite, it must

contain an infinite number of instances of UpdateEdge or of DynamicTraverse. In either case,

63

α then contains an infinite number of instances of BTU that are invoked after C, and therefore,

an infinite number of st − sc instances. Notice that it is impossible for all instances of st − sc

that occur during any Dense phase (either AGREE or APPLY) to fail, since for this to happen, at

least one sc− st that is executed during that phase must succeed, leading us to a contradiction.

Thus, we infer that after C, α contains an infinite number of successful st − sc, meaning an

infinite number of SCST
k .

We now prove the claim by contradiction. Assume that requ is agreed in configuration

C in α, in which by definition ST.ann[u] 6= ST.done[u]m but that α does not contain any

configuration after C, in which ST.ann[u] = ST.done[u]. Since requ is agreed in C, by the

definition of an operation being agreed, this means that C occurs in α right after an SCST
k ,

for some k > 0, which changes the phase from AGREE to APPLY. For a subsequent st − sc to

be successful, its corresponding st − ll must after C in α. By inspection of the pseudocode

(lines 65 - 67), we have that this subsequent successful st − sc then writes into ST.done[1..n]

the contents that ST.ann[1...] had in C. Since we have assumed that there is no configuration

in α after C, such that ST.ann[u] = ST.done[u], this implies that either no process executes an

st− sc after C in α, or no further st− sc, executed after C by any process, can be successful.

Assuming that no process executes an st − sc after C in α, we arrive at a contradiction,

since for this to happen, either all processes execute only ReadEdge operations, contradicting the

definition of d-traversals, or all processes stop invoking both UpdateEdge and DynamicTraverse

operations, contradicting the assumption that α is infinite.

Assume now that processes do execute st− sc after C, but that no further of those st− sc,

executed after C by any process, is successful. By the definition of LL/SC and configuration

C, for this to happen, all st − ll corresponding to the st − sc must occur before C and also,

in the last iteration of the for loop of the instance of BTU executed by each of the processes

executing the st − sc. Since α is infinite, this implies that processes invoke further instances

of UpdateEdge or DynamicTraverse after C - a contradiction, since we have assumed that the

st− ll for all st− sc that occur after C in α, occur before C.

Thus, the claim holds.

The previous lemmas, corollaries and observations imply the following theorem.

Theorem 52. Dense provides wait-free UpdateEdge and DynamicTraverse operations that have

O(k) step complexity, where k is the number of active processes, i.e. processes that have pending

operations during an APPLY phase.

3.3 Related Work

The present section aims at providing a clearer image of the context in which WFR-TM and

Dense have been elaborated. While STM and concurrent data structure implementation are vast

areas of research, for the purposes of this thesis we limit our literature review to publications

that cover those aspects that concern our algorithms.

64

Transactional Memory In WFR-TM, a read-only transaction Tr starts by announcing itself,

so that update transactions may become aware of it. In case an update transaction Tw wants

to update a t-variable x after the announcement of Tr (and thus probably after Tr has read x),

it may only commit after Tr has committed. So, before an update transaction Tw completes, it

waits for all read-only transactions that have been initiated and not yet completed at some point

of Tw’s execution, to commit. For these cases, Tw stores this value in its local write-set and

allows Tr to obtain it from there; this behavior, in which read-only transactions read t-variable

values from the write-set of some update transaction, is referred to as snooping. We remark

that it is not necessary to know in advance whether a transaction is read-only; any transaction

is read-only when it is initiated and becomes an update transaction the first time it accesses a

t-variable for write. Update transactions employ fine-grained locking for accessing t-variables,

so that those of them that do not conflict can commit in parallel; a conflict occurs between two

concurrent update transactions when they access the same t-variable and at least one of them

writes it.

On the contrary, in current pessimistic TM algorithms [AMS12, MS12], the updaters use a

single coarse-grain lock for accessing shared data. This is a design characteristic that allows

those algorithms to bypass the well-known theoretical result of [BGK12a], which implies that

wait-freedom cannot be achieved by any TM algorithm, since this result implicitly refers to TM al-

gorithms which do not employ coarse-grained locking or extensive helping mechanisms. Popular

lock-based TM implementations, which, like WFR-TM use fine-grained locking on each t-variable

that they update, include [ST95, DSS06, FFMR10, FFR08]. However, in those algorithms,

read-only transactions may be aborted spuriously and thus they are not wait-free.

In [FC11], a multi-version TM algorithm is introduced which supports wait-free read-only

transactions by keeping a list for each t-variable, where each value that it has had is recorded;

read-only transactions can find values for the t-variables that they read that are mutually con-

sistent. In [PFK10], a property, called multi-version (MV-) permissiveness, is introduced which

requires that read-only transactions never abort. MV-permissive TM algorithms that maintain

multiple versions of each t-variable are also presented in [PFK10, PBLK11] enhanced with ef-

ficient garbage collection for deallocating obsolete versions of t-variables. WFR-TM ensures

multi-version permissiveness while being single-version, i.e. it does not maintain multiple ver-

sions of t-variables. Thus, WFR-TM is more space efficient in comparison to multi-version

algorithms. We remark that in WFR-TM read-only transactions not only never abort, but

additionally, they always complete (by committing).

Although WFR-TM does not maintain multiple versions, each update transaction that locks

a t-variable x, must also maintain the value that x had before the transaction locked it. Thus,

at any given configuration in an execution of WFR-TM, up to two distinct values for x may

be maintained. We remark WFR-TM is in accordance with the theoretical result presented

in [KR15], which studies the cost of providing wait-freedom for read-only transactions while en-

suring that update transactions commit only if they are executed in the absence of concurrency.

The result finds that a TM algorithm with those characteristics must keep unbounded values for

65

each t-variable, in case read-only transactions are required to be invisible. Notice however that

in WFR-TM, read-only transactions are visible in the announce array.

Attiya and Hillel present in [AH12] PermiSTM, a TM algorithm that ensures multi-version

permissiveness without actually maintaining multiple versions of t-variables. Instead, transac-

tions that read a t-variable x announce their presence by incrementing a dedicated read-counter

linked to x; this is done by repeatedly executing CAS until one of these CAS primitives succeeds.

So, if it executes concurrently with update transactions that read x, a read-only transaction

may repeatedly fail to increment the read-counter of x. This means that read-only transactions

in [AH12] are obstruction-free; obstruction-freedom does not ensure that a transaction com-

pletes unless the thread executing it runs solo for a sufficient number of steps after some point

during the transaction’s execution. Each read-only transaction in PermiSTM executes, at best,

twice as many expensive synchronization primitives (like CAS) as the number of t-variables it

reads. PermiSTM pays this cost in order to ensure disjoint-access parallelism; roughly speak-

ing, disjoint-access parallelism guarantees that transactions that do not conflict do not interfere

with each other by accessing common base objects. It has been proved in [AHM09] that in

disjoint-access parallel TM implementations with wait-free read-only transactions, a read-only

transaction that reads m t-variables has to perform non-trivial operations on at least m − 1

base objects; a non-trivial operation may change the status of the object on which it is applied.

In WFR-TM, read-only transactions perform only two writes on base objects and no expensive

synchronization operations at all. However, WFR-TM is not disjoint-access parallel.

Similarly to WFR-TM, PermiSTM supports parallelism among update transactions; update

transactions are executed speculatively and they may abort. In PermiSTM, a write-transaction

does not proceed in updating the t-variables until all read-only transactions that are accessing

it are committed (after decrementing the read counter of the t-variable). Thus, update trans-

actions writing to a t-variable may face a never-decrementing read-counter for this t-variable,

leading them to run forever. WFR-TM avoids this by having update transactions waiting for

the completion of only a limited number of read-only transactions.

Snooping into a transaction’s write-set in order to read t-variable values has also been used

in other algorithms, such as WSTM [FH07] and OSTM [FH07]. However, WFR-TM combines

this with a waiting mechanism where update transactions let read-only transactions terminate,

in order to guarantee their wait-freedom. Similar waiting techniques, where update transac-

tions may not commit until some read-only transactions that are concurrent with them have

committed, have also been used in [AH12, AMS12].

Concurrent Data Structures with Iterators A great body of work on the concurrent im-

plementation of graph algorithms tackles common graph-related issues (e.g. [CKK+08, NP11,

PMP12]) and focuses either on parallelizing existing sequential algorithms or on providing con-

currency through the use of locks on well-known sequential algorithms. Then, liveness guar-

antees are rather relaxed, as most of these implementations are blocking. In contrast, we are

interested in the graph as a general-purpose, concurrent data structure and are especially con-

66

cerned with providing wait-freedom and linearizability.

Work on concurrent data structures has been devoted to commonly-used ones, such as

queues, stacks, or trees, with the focus on providing interesting progress properties – initially

simply by avoiding locks (e.g. [MS96, SLS06]), and recently a step further, by proposing wait-

free implementations. Notably, in [KP11], the implementation of a wait-free queue is proposed.

It uses an announce array to facilitate helping and builds on the CAS-based lock-free queue

implementation of [MS96]. This method is elaborated upon in [KP12] and, together with a “fast

path, slow path” methodology [TBKP12], previously used for the implementation of a wait-free

linked list out of well-known lock-free design [Har01], proposed as a generalized methodology of

designing wait-free concurrent data structures, given a lock-free implementation. Our method

is “stand-alone”, providing wait-freedom without requiring a lock-free design as base.

Recently, techniques that provide iterators of concurrent data structures have been pro-

posed. An iterator parses a data structure in order to obtain a consistent view. In [PT13], a

methodology is proposed for enhancing lock-free or wait-free set-based data structures with a

CAS-based implementation of a wait-free iterator. It entails reporting data structure updates to

any active snapshot, so that they can be taken into account, depending on the order of lineariza-

tion. In [PBBO12], update and read operations on a trie are aware of an ongoing iterator, and

copy – and thus, effectively rebuild – the parts of the trie that they access, leaving intact the

albeit obsolete version that the iterator is parsing. The complexity is divided among updates

and reads, while the snapshot occurs in constant time.

We, however, are interested in a partial view of the graph, which, furthermore, is dynamically

defined. Thus, we want to avoid the overhead that is induced by iterating over the entire data

structure. Arguably, the implementation in [PBBO12] does not induce it, having a constant-time

snapshot. However, to achieve that, it must employ either DCSS primitives, or a custom-made,

CAS-like software primitive, unlike our method, which simply relies on LL/SC. Moreover, those

works take advantage of the structural regularity of the underlying data structure. In contrast,

a graph usually has irregular characteristics. Our work is more akin to partial snapshots,

such as [AGR08, IR09], because we use an adjacency matrix to represent the graph. However,

partial snapshots are more restrictive than our model as they require a priori knowledge of the

component subset to be scanned.

The required dynamicity can be provided by using transactional memory to access a graph.

Indeed the dynamic traversal provided by our model resembles a read-only transaction. How-

ever, efficient TM algorithms commonly rely on locks, while even obstruction-free or non-

blocking ones commonly burden reads and updates with the processing overhead necessary

for conflict-detection and resolution (cf. with [FIKK15] for a survey on TM algorithmic tech-

niques). We wish to avoid these issues, as well as the commit/abort semantics inherent in TM,

but unusual for data structures. The recent impossibility result in [BGK12b] further implies

that, even if commit/abort semantics are included in our model, the TM progress property

equivalent to wait-freedom cannot be achieved.

67

68

Chapter 4

Data Structures for Many-core

Architectures without

Cache-coherence Support

In this chapter, we present a collection of algorithms that implement distributed data struc-

tures, intended to facilitate their use on many-core architectures, i.e. architectures that rely

on message-passing for process synchronization. We assume that processes cannot suffer from

crash failures and examine two different approaches of data structure (DS) design, which we

base on the client-server model. In more detail, we assume that out of the entirety of cores, NS

act as servers, while the remaining ones act as clients. A servers may store parts of the data

structure in its memory module or manage the access to the data structure in co-ordination with

other servers. However, we assume that the application using the data structure is executed on

clients and so, a data structure operation is invoked on a client, which in turn communicates

with the appropriate servers in order to carry it out.

The first design approach that we present in this chapter is based on the assumption that

(a subset of) the servers implement a directory service for the storage of the data structure. We

present the directory-based designs of a stack and a queue in Section 4.1. The second design

approach consists in adopting the use of a token. The token is assigned to one server at a time

and this token server is in charge of serving client requests for access to the data structure.

The token is passed to a subsequent server if the token server storage fills up or empties. We

present the token-based designs of a stack, a queue, and an unsorted list in Section 4.2, as well

as a sorted list design in Section 4.3. We make brief mention of experimental results that were

obtained for some of those data structures, in Section 4.4. Section 4.5 gives an overview on

related literature.

Author’s contribution. Contents of this chapter are a joint work that has been published as

Technical Report in [FKKS15]. The author provided all the proofs of correctness presented in

this chapter and contributed to the design of the distributed lists of Sections 4.2.3 and 4.3.

69

4.1 Design Paradigm I: Directory-based Data Structures

The directory is a data structure that supports the operations DirInsert, DirDelete, and

DirSearch. Although the directory can be implemented with several different ways,we employ

a simple highly-efficient distributed hash table implementation (also met in [Dev93, Haz, Sha14])

where hash collisions are resolved by using hash chains, called buckets. Each server stores a

number of buckets. For simplicity, we consider a simple hash function which employs mod

and works even if the key is a negative integer. The hash function returns an index which is

used to find the server where a request must be sent, as well as the appropriate bucket at this

server in which the element resides (or must be stored). Then (to apply the request), a message

to this server is sent; the server locally processes the request and responds to the process that

initiated it. One of the servers, denoted ss, acts as the synchronizer. Its main function is to

assign a unique sequence number k to each element e inserted in the data structure DS; this

number serves as the key of e.

4.1.1 The Directory

Algorithm 7 Insert, search and delete operations of a client of the directory.

1 boolean DirInsert(int cid, Data data, int key) {
2 sid = hash function(key);
3 send(sid, 〈INSERT, data, key, cid〉);
4 status = receive(sid);
5 return status;

}

6 boolean DirSearch(int cid, int key) {
7 sid = hash function(key);
8 send(sid, 〈SEARCH,⊥, key, cid〉);
9 status = receive(sid);
10 return status;

}

11 boolean DirDelete(int cid, int key) {
12 sid = hash function(key);
13 send(sid, 〈DELETE,⊥, key, cid〉);
14 status = receive(sid);
15 return status;

}

Algorithm 7 presents pseudocode for the client’s side directory operations. Let c be a client

that requests the insertion of an element e into the directory by invoking DirInsert. In order

to determine the hash table server to which the request should be sent, the hash function is

applied on the key of e (line 2). The result of this hashing gives the server’s id, which is then

used in order to send the request to the server (line 3). Such a request may not always be

70

Algorithm 8 Events triggered in a directory server.

16 HashTable buckets = ∅;

17 a message 〈op, key, data, cid〉 is received:
18 if (op == INSERT) {
19 status = insert(buckets, key, data);
20 send(cid, status);
21 } else if (op == DELETE) {
22 status = delete(buckets, key);
23 send(cid, status);
24 } else if (op == SEARCH) {
25 status = search(buckets, key);
26 send(cid, status);

}

successful, as it may happen that the server’s allocated hash table memory chunk is full. For

this reason, DirInsert blocks while waiting for a response from the hash table server (line 4),

before finishing by returning the response of the hash table server (line 5). Similarly, DirDelete

(and DirSearch) finds the hash value of the key to be deleted (searched, respectively) and sends

a request to the appropriate server.

The server locally processes the request and responds to the process that initiated the

request. Algorithm 8 presents event-driven pseudocode for the server’s side of the directory

operations. We consider a standard implementation of hash table functions such as insert

(line 19), delete (line 21), and search (line 24). Those implementations return ⊥ in case the

requested operation is not successful.

4.1.2 A Directory-based Stack

To implement a stack, the synchronizer ss maintains a variable top key which stores the key

of the topmost element of the stack at each point in time. A client c sends a PUSH (POP)

request to ss to obtain a key k. When ss processes such a PUSH (POP) request, top key

is incremented (decremented) and sent as k to c. Then, c uses k as the input argument to

DirInsert (DirDelete). We describe the algorithm in more detail below.

4.1.2.1 Algorithm Description

Pseudocode for the client’s side DS operations is presented in Algorithms 9 and 10. Push and

pop operations are carried out by ClientPush() and ClientPop() respectively. An operation

op is invoked on a client c by invoking one of these routines. Subsequently, c sends a message to

the synchronizer ss (line 3 in ClientPush(), line 9 in ClientPop()) and awaits the response.

The synchronizer receives, processes, and responds to clients’ messages. The messages have

an op field that represents the operation to be performed (PUSH or POP), and a cid field that

uniquely identifies the client, so that the synchronizer can communicate with it. Event-drive

71

Algorithm 9 Push operation for a client of the directory-based stack.

1 void ClientPush(int cid, Data data)
2 sid = get the synchronizer id
3 send(sid, 〈PUSH, cid〉)
4 key = receive(sid)
5 status = DirInsert(key, data)
6 return status

Algorithm 10 Pop operation for a client of the directory-based stack.

7 Data ClientPop(int cid)
8 sid = get the synchronizer id
9 send(sid, 〈POP, cid〉)
10 key = receive(sid)
11 if (key == NACK) then
12 status = ⊥
13 else

14 do

15 status = DirDelete(key)
16 while (status == ⊥)
17 return status

pseudocode for the synchronizer’s side handling of operations is presented in Algorithm 11. As

mentioned, ss uses top key in order to assign keys to the stack elements.

More specifically, if op is a push operation, ss increments top key by one and then sends

this value to c (lines 20 - 22). After c receives this value (line 4), it has to use it in order to

perform the insertion in the directory itself (line 5) by invoking DirInsert. Notice that c may

do so lazily. The operation terminates after c receives the response of the directory.

Pop operations proceed in a similar fashion. If op is a pop operation, then an important

difference is that ss has to handle the case where the stack is empty (lines 24 - 25). This is

indicated by the fact that the value of top key equals −1. In that case, ss responds with a

NACK (line 25) to c. When c receives it (line 11), pop terminates, returning ⊥ (lines 12, 17).

If the stack is not empty, ss sends the value stored in top key to c (line 27) and decrements

it by one afterwards (line 28). After c receives this value (line 10), it has to use it in order to

perform the deletion the directory itself by invoking DirInsert. However, since clients insert

elements into the directory lazily, it may occur that the key that c attempts to remove, has

not yet been inserted into the directory. For this reason, DirDelete() is invoked repeatedly

(line 15) while the required key is not yet in the directory, in which case the directory responds

with the value ⊥ (line 16).

4.1.2.2 Proof of Correctness

Let α be an execution of the directory-based stack implementation. We assign linearization

points to push and pop operations in α as follows:

❼ Let c be a client invoking a push operation op with key argument k. Let s be the hash table

72

Algorithm 11 Events triggered in the synchronizer of the directory-based stack.

18 int top key = −1

19 a message 〈op, cid〉 is received:
20 if (op == PUSH) then
21 top key ++
22 send(cid, top key)
23 else if (op == POP) then
24 if (top key == −1) then
25 send(cid, NACK)
26 else

27 send(cid, top key)
28 top key −−

server that is indicated by the hash function for input argument k. The linearization point

of op is placed in the configuration resulting from the execution of line 5 of Algorithm 7

for op by s.

❼ Let c be a client invoking a pop operation op. If line 25 of Algorithm 11 is executed for

op by ss, then the linearization point is placed in the resulting configuration. If line 27

of Algorithm 11 is executed by ss, then we distinguish two cases. Let op′ be that push

operation, which inserts into the directory the element that op removes. If the linearization

point of op′ occurs before or at the execution of line 27 for op, then op is linearized in the

configuration resulting from the execution of this line. Otherwise, the linearization point

of op is placed right after the linearization point of op′.

Notice that in the proposed implementation, ss does not communicate directly with the

directory, nor does it receive feedback when a client successfully inserts or deletes an element

with a certain key from it. Instead, ss serves client requests oblivious to the actions of a client

after it has sent it a key value. This may lead to the following scenario: a client c1 invokes a

push operation and receives value k as the key from ss. However, it stalls right after receiving

it. A different client c2 invokes a pop operation and receives value k for the key as well. Since

c1 is stalling and has not performed the insertion in the directory yet, c2 has to loop and wait

for an element with key k to be inserted in the directory. Yet another client c3 invokes a push

operation and once more, receives value k from ss. If c3 inserts an element with key k into the

directory before c1 does, then c2 may remove from the directory an element that was inserted by

a push operation that was invoked after c2 invoked its pop operation. In the following section

we prove that, given that the operation intervals overlap, this does not violate the linarizability

of the stack’s operations.

Lemma 53. The linearization point of a push (pop) operation op is placed within its execution

interval.

Proof. Inspection of the pseudocode easily shows that the claim holds for push operations, as

the execution of the line after which the linearization point is placed, takes place after the

invocation and before the response of the operation.

73

Assume now that op is a pop operation invoked by client c and assume that op removes

an element with key k from the directory. We consider two cases. First, assume that the

linearization point of op is placed in the configuration resulting from the execution of line 25

for op by ss. Inspection of the pseudocode shows that this line is executed by ss for op after

ss receives from c the message that is sent by executing line 9, i.e. after ClientPop is invoked.

Further inspection shows that c blocks (line 10) until it receives from ss the message sent on

line 25. This means that ClientPop, and therefore, op, does not respond before line 25 is

executed. The above implies that the linearization point of op is included in its execution

interval. The argument is analogous if we assume that op is linearized in the configuration

resulting from the execution of line 27, i.e. that c receives a response from ss because ss

executes line 27.

Let op′ be the push operation that inserts the element with key k that op removes, in

the directory. Let C be the configuration in the last do-while loop iteration of lines 14 - 16

executed during op, i.e the iteration in which the execution of DirDelete does not return ⊥.

Let C ′ be the configuration resulting from the execution of DirInsert on line 5 by op′, after

which the element with key k is inserted in the directory by op′. Recall that by the way that

the linearization points are assigned, the linearization point of op′ is placed in C ′. Assume next

that the linearization point of op is also placed in C ′. By definition, C ′ follows the execution of

line 27 for op by ss. Following the same argumentation as for the previous case, we have that

the execution of that line occurs in the execution interval of op, i.e after op is invoked. From the

definitions of C and C ′, we further have that C ′ happens before C, since the element that op′

inserts in the directory by using DirInsert, is the element that op removes from the directory

in C. Recall that by the way that the linearization points are assigned, the linearization point

of op′ is placed in C ′. Since C is included in the execution interval of op and C ′ occurs after the

execution of line 27 and before C, and given that the linearization point of op is in this case also

placed in C ′, it follows that the linearization point for op is included in its execution interval.

Thus, the claim holds for all cases.

Notice that since only ss executes Algorithm 11, we have the following.

Observation 54. Instances of Algorithm 11 are executed sequentially, i.e. their execution

intervals do not overlap.

Further inspection of the pseudocode of Algorithm 11 indicates that the value of top key

is incremented before an element is inserted into the directory and decremented before one is

removed from the directory. This implies the following observation.

Observation 55. When the value of top key is equal to −1 , then for each positive integer that

ss has sent as key to a push operation, there is a pop operation that has been assigned the same

integer as key. The value of top key is greater than −1 in any other case.

Denote by L the sequence of operations (which have been assigned linearization points) in

the order determined by their linearization points. Let Ci be the configuration in which the i-th

74

operation opi of L is linearized. Denote by αi, the prefix of α which ends with Ci and let Li be

the prefix of L up until the operation that is linearized at Ci. We denote by topi the value of

the local variable top key of ss at configuration Ci; let top0 = −1. Denote by Si the sequence of

elements in the sequential stack that results if the operations of Li are applied sequentially to

an initially empty stack. Denote by di the number of elements in Si. We associate a sequence

number with each stack element such that the elements from the bottommost to the topmost

are assigned 1, . . . , di, respectively. Denote by sldi the di-th element of Si. Denote by λ the

empty sequence.

Lemma 56. For each integer i > 0, it holds that if opi is a pop operation, then it returns the

value of the field data of sldi−1
if Si−1 6= λ, or ⊥ if Si−1 = λ.

Proof. We prove the claim by induction on i.

Base case. We prove the claim for i = 1. Recall that at C0, since no operation has

been linearized, the equivalent sequential stack is empty. Recall also that at C0 it holds that

top key = −1. If op1 is a push operation, the claim holds vacuously. Let then op1 be a pop

operation. We prove that op1 is linearized in the configuration that results when ss executes

line 25.

Assume by the way of contradiction that op1 is not linearized in that configuration. Then,

by the way linearization points are assigned, ss does not execute line 25 for op1. Thus, when

ss evaluates top key on line 24, its value is not equal to −1. By Observation 55, the value of

top key is greater than −1. Thus, by the way linearization points are assigned, op1 is linearized

either at the execution of line 27 by ss or at an even later configuration. By assumption, op1

is the first operation to be linearized. This means that there is no linearization point for some

push operation that is placed in a configuration preceding the execution of line 27 by ss for op1.

Then, by definition, if op1 is linearized at a configuration later than this, then it is linearized

together with the push operation whose value op1 returns. Then, however, op1 is not the first

operation to be linearized – a contradiction. Therefore, S0 = λ and op1 is linearized at the

execution of line 25 by ss.

Hypothesis. Fix any i, i > 0 and assume that the claim holds for all Cj , j ≤ i.

Induction step. We prove that the claim also holds at Ci+1. If opi+1 is a push operation,

the claim holds vacuously. Let then opi+1 be a pop operation. We proceed by case analysis.

First, assume that opi+1 is linearized in the configuration immediately following the execu-

tion of line 25 by ss. This implies that ss evaluates the if condition of line 24, to true. Let ℓ

be the number of push operations that ss has processed up to Ci+1. Since top key = −1, this

means that ss has processed ℓ or more pop operations up to Ci+1. Notice that for each of these

pop operations, ss has executed either line 25 or line 27 before Ci+1. Assume that ℓ′ of those ℓ

push operations are linearized before Ci+1. Then, by the way linearization points are assigned,

the corresponding pop operations have been linearized before Ci+1 as well. It follows that at

Ci+1, Si is empty and that the claim holds.

Next, assume that opi+1 is linearized in the configuration right after the execution of line 27

75

by ss. By definition, this means that opi+1 removes an element from the directory that has

been inserted into the directory by a push operation opj , j ≤ i, which has been linearized before

the execution of this line, due to the way linearization points are assigned. We distinguish two

cases.

First assume that opi is a push operation and assume that ki is the value of top key that

it has received by ss, i.e., opi inserts into the directory an element with key ki. Since opi+1 is

linearized in the configuration following the execution of line 27, Lemma 53 implies that opi is

linearized before the execution of line 27 by ss for opi+1 and by Observation 54, we have that at

the end of the execution of the instance of Algorithm 11 by ss for opi, it holds that top key = ki.

Inspection of Algorithm 11 shows that a pop operation that follows a push operation receives

the same value of top key as the one that was sent to the push operation. Therefore, if no

further instance of Algorithm 11 is executed for some other operation by ss after it executes it

for opi and before it executes it for opi+1, then the claim follows straight-forwardly. Assume

now that between Ci and Ci+1, more instances of Algorithm 11 are executed by ss for other

operations. Let op′ be that out of those operations for which Algorithm 11 is executed last

before Ci+1 and assume that it is a push. Let k′ be the value of top key at the end of this

instance of Algorithm 11. Then, at Ci+1, ss sends k′ to the client that invoked opi+1. Then

this client attempts to remove from the directory an element with key k′. However, since there

is no further operation linearized between Ci and Ci+1, this element is not in the directory at

Ci+1. Thus, the push operation that inserts in the directory the value which opi+1 removes, is

linearized after Ci+1 – a contradiction to the definition of linearization points. If op′ is a pop

operation and it receives k′ as the value of top key from ss, then opi+1 receives k′ − 1 as value

of top key. Then, opi+1 attempts to remove from the directory an element with key k′ − 1. Let

op′′ be the push operation that inserts an element with this key. If op′′ is linearized after Ci+1,

once more we arrive at a contradiction. If op′′ is linearized before Ci+1, then by the induction

hypothesis, implies that each of the pop operations between Ci and Ci+1 removes the top-most

element of the sequential stack. Thus, at Ci+1, the element inserted by op′′ is the top-most one

and the claim holds.

Finally, assume that opi+1 is linearized right after the linearization point of that push op-

eration op′ whose value it removes from the directory. In this case, since no further operation

is linearized between opi+1 and op′, this means that the value inserted by op′ is indeed the

top-most of Si when it is removed by opi+1 and the claim holds.

From the above lemmas we have the following.

Theorem 57. The directory-based distributed stack implementation is linearizable.

4.1.3 A Directory-based Queue

The directory-based distributed queue implementation follows similar ideas as those of the

directory-based stack implementation of Section 4.1.2. To implement a queue, ss maintains

two counters, head key and tail key, which store the key associated with the first and the last,

76

Algorithm 12 Enqueue operation for a client of the directory-based queue.

29 void ClientEnqueue(int cid, Data data)
30 sid = get the server id
31 send(sid, 〈ENQ, cid〉)
32 tail key = receive(sid)
33 DirInsert(tail key, data)

respectively, element in the queue. A client c sends an enqueue (dequeue) request to ss to

obtain a key k. Then, it uses k as the input argument to DirInsert (DirDelete). When ss

receives an enqueue (dequeue) request from c, it sends the value stored in tail key (head key)

to c and increments tail key (head key). In case of a dequeue request on an empty queue (i.e.

if head key = tail key), ss sends NACK to c without changing head key.

4.1.3.1 Algorithm Description

Pseudocode for the client’s side DS operations is presented in Algorithms 12 and 13. En-

queue and dequeue operations are carried out by ClientEnqueue() and ClientDequeue(),

respectively. ClientEnqueue(), performs similar steps as those presented in Algorithm 9 of the

directory-based stack: An operation op is invoked on a client c by invoking one of these routines.

Subsequently, c sends a message to ss (line 31 of ClientEnqueue(), line 36 of ClientDequeue())

and awaits the response.

The synchronizer receives, processes and responds to clients’ messages. The messages cor-

respond to enqueue and dequeue requests. Message fields are similar as in the case of the stack

of Section 4.1.2. Event-driven pseudocode for ss is presented in Algorithm 14.

More specifically, if op is an enqueue operation, then ss receives an ENQ message (line 46)

and sends to c a message containing the current value of tail key. Then it increments tail key

by one (line 48). After c receives this value (line 32), it calls DirInsert to insert the new

element in the directory (line 47). As in the case of the stack, it may do so lazily. The operation

terminates after c receives the directory’s response.

If op is a dequeue operation, it proceeds in similar fashion, with the difference being that

the case of the empty queue must be taken into account. This is indicated by the fact that the

values of head key and tail key are equal. So, when a DEQ message is received, ss first checks

if the values of head key and tail key are the same (line 50) and if they are, then it responds

to c with a NACK message (line 51). Otherwise, it sends the current value of head key to c

(line 53) and then increments its value by one (line 54).

If c receives a NACK response from ss (line 38), then the queue is empty and the operation

returns ⊥. Otherwise, c uses the value of head key that it has received as the key of the element

to remove from the directory (line 41). As in the case of the directory-based stack, DirDelete

is invoked repeatedly while it returns ⊥, meaning that the insertion of the key to be deleted

is still pending. The operation terminates when DirDelete() returns a value different than ⊥,

which is the data associated with head key.

77

Algorithm 13 Dequeue operation for a client of the directory-based queue.

34 Data ClientDequeue(int cid)
35 sid = get the server id
36 send(sid, 〈DEQ, cid〉)
37 head key = receive(sid)
38 if(head key == NACK) then
39 return ⊥
40 do

41 status = DirDelete(head key)
42 while (status == ⊥)
43 return status

Algorithm 14 Events triggered in the synchronizer of the directory-based queue.

44 int head key = 0, tail key = 0

45 a message 〈op, cid〉 is received:
46 if (op == ENQ) then
47 send(cid, tail key)
48 tail key++
49 else if (op == DEQ) then
50 if (head key == tail key) then
51 send(cid,NACK)
52 else

53 send(cid, head key)
54 head key++

4.1.3.2 Proof of Correctness

Let α be an execution of the directory-based queue implementation. We assign linearization

points to enqueue operations to which the synchronizer has sent a key as a response to their

message in α. Then, the linearization point of an enqueue operation op is placed in the config-

uration resulting from the execution of line 47 for op by ss. Similarly, we assign linearization

points to dequeue operations to which the synchronizer has sent a key or NACK as a response

to their message in α. Then, the linearization point of a dequeue operation op is placed in

the configuration resulting from the execution of either line 51 or line 53 for op (whichever is

executed) by ss.

Lemma 58. The linearization point of an enqueue (dequeue) operation op is placed within its

execution interval.

Proof. Assume that op is an enqueue operation and let c be the client that invokes it. After the

invocation of op, c sends a message to ss (line 32) and awaits a response from it. Recall that

routine receive() (line 32) blocks until a message is received. The linearization point of op

is placed at the configuration resulting from the execution of line 47 for op by ss. This line is

executed after the request by c is received, i.e. after c invokes ClientEnqueue. Furthermore, it

is executed before c receives the response by the synchronizer and thus, before ClientEnqueue

78

returns. Therefore, the linearization point is placed in the execution interval of enqueue.

The argumentation regarding dequeue operations is similar.

Denote by L the sequence of operations which have been assigned linearization points in

α in the order determined by their linearization points. Let Ci be the configuration in which

the i-th operation opi of L is linearized; denote by C0 the initial configuration. Denote by αi,

the prefix of α which ends with Ci and let Li be the prefix of L up until (and including) the

operation that is linearized at Ci. We denote by headi the value of the local variable head key

of ss at configuration Ci, and by taili the value of the local variable tail key of ss at Ci. By

the pseudocode, we have that the initial values of tail key and head key are 0; therefore, we

consider that head0 = tail0 = 0.

Let Le be the subsequence of L that contains all enqueue operations in L, excluding all

dequeue operations. For each operation in Le, we define an equivalent enqueue operation ej ,

j > 0, such that ej corresponds to the j-th enqueue operation in Le, and such that ej enqueues

a pair 〈key, data〉 to a sequential queue, such that data is the argument of the j-th enqueue

operation in Le and that key = j − 1. Denote by L′ the sequence of operations that results

when each enqueue operation in L is replaced by the corresponding ej . Similarly, denote by L′
i

the sequence of operations that results if all enqueue operations in Li are substituted by the

corresponding ej . Denote by Qi the sequence of elements in the sequential queue that results

if the operations of L′
i are applied sequentially to an initially empty queue. Denote by di the

number of elements in Qi. Denote by slji the j-th element of Qi, 1 ≤ j ≤ di.

Consider a sequence of elements S. If e is the first element of S, we denote by S \e the suffix

of S that results by removing only element e from the first position of S. If e is an element not

included in S, we denote by S′ = S · e the sequence that results by appending element e to the

end of S.

As the execution interval of an instance of an algorithm executed in α, we consider that

subsequence of α that starts with the configuration right after which the algorithm instance

takes its first step and ends with the configuration resulting from the last step of the algorithm

instance in α. Notice that since only ss executes Algorithm 14, we have the following.

Observation 59. Instances of Algorithm 14 are executed sequentially, i.e. their execution

intervals do not overlap.

By inspection of Algorithm 14, we have that for some instance of it, either lines 46-48, or

lines 50-51, or lines 52-54 are executed. Then, by the definition of Ci, by the way linearization

points are assigned, and by Observation 59, we have the following.

Observation 60. Given two configurations Ci, Ci+1, i ≥ 0, in α, there is at most one step in

the execution interval between Ci and Ci+1 that modifies either head key or tail key.

By further inspection of the pseudocode, we have that each enqueue or dequeue operation

sends one single request to ss (line 31, line 36). Inspection of the pseudocode executed by ss

shows that when it serves an enqueue request, it only modifies tail key (lines 46-48). Similarly,

79

when ss serves a dequeue request, it only modifies head key (lines 49-54). So we have the

following observation.

Observation 61. A dequeue operation does not cause ss to modify head key. An enqueue

operation does not cause ss to modify tail key.

Lemma 62. For each integer i ≥ 1, the following hold at Ci:

1. If i > 1 and opi−1 is an enqueue operation, then taili = taili−1 + 1 and headi = headi−1;

if i = 1, then taili = taili−1.

2. If i > 1, headi−1 6= taili−1 and opi−1 is a dequeue operation, then headi = headi−1 + 1

and taili = taili−1; if i = 1, then headi = headi−1.

Proof. Fix any i ≥ 1. The linearization point of opi may be placed at the configuration resulting

from the execution of line 47, line 51 or line 53, whichever is executed by ss for it. By inspection

of the pseudocode, we have that in either case, the execution of neither of these lines, nor the

ones preceding it in the instance of Algorithm 14 executed for opi, modify tail key or head key.

Notice also that because of Observation 59 no process other than ss modifies neither tail key

nor head key between Ci−1 and Ci.

We proceed by case analysis. First, consider the case where i = 1. Recall that tail0 =

head0 = 0. Because of the preceding argument, tail1 = tail0 = 0 and head1 = head0 = 0.

Thus, the claims hold.

Next, consider the case where i > 1. Let opi−1 be an enqueue operation. By the pseudocode

(line 48), tail key is incremented after the linearization point of opi−1, i.e. between configura-

tions Ci−1 and Ci. Thus, taili = taili−1 +1. The value of head key is not modified by enqueue

operations (lines 46-48), therefore headi = headi−1.

Now let opi−1 be a dequeue operation that is linearized at the execution of line 51. By

inspection of the pseudocode (line 50), this occurs only in case headi−1 = taili−1. By the

pseudocode (lines 50-51) and by Observation 59, it follows that in this case head key is not

modified in the execution interval between Ci−1 and Ci. Therefore, headi = headi−1. Since, by

Observation 61, a dequeue operation does not modify tail key, it also holds that taili = taili−1.

Finally, let opi−1 be a dequeue operation that is linearized at the execution of line 53. By the

pseudocode, line 54 and by Observation 59, head key is incremented by 1 after the linearization

point of opi−1, i.e. between configurations Ci−1 and Ci. Thus, headi = headi−1 + 1. The value

of tail key is not modified by dequeue operations (lines 50-54), therefore taili = taili−1.

The previous lemma implies the following corollary.

Corollary 63. Let opi be a dequeue operation in L. Let opj, j < i, be the last dequeue operation

that precedes opi in L. Then, headi = headj + 1. If no such opj exists, then headi = head0.

Let opi be an enqueue operation in L. Let opj, j < i, be the last enqueue operation that

precedes opi in L. Then, taili = tailj + 1. If no such opj exists, then taili = tail0.

We denote the key field of the 〈key, data〉 pair that comprises some element slji , 0 < j ≤ di,

of Qi by slji .key. By the way Qi is defined, we have that if slji has been enqueued by the

80

ℓ-th enqueue operation in L′
i, then slji .key = ℓ − 1. By Corollary 63, we have the following

observation.

Observation 64. If Li contains ℓ enqueue operations, and if opi is an enqueue operation, then

taili = ℓ− 1.

By inspection of the pseudocode (lines 46-48), we see that, when opi is an enqueue operation,

taili is sent by ss to the client c that invoked opi. By further inspection of the pseudocode

(lines 32-33), we see that c uses taili as the key field of the element it enqueues. When opi

is a dequeue operation, by inspection of the pseudocode (lines 50-51), we have that when

head key = tail key, ss sends NACK to c, and that when c receives NACK, it does not enqueue

any element and instead, returns ⊥(lines 38-39). When head key 6= tail key, ss sends headi to

c (lines 52-54) and c uses headi as the key field in order to determine which element to dequeue

(lines 41-43).

Observation 65. Let c be the client that invoked opi. If opi is an enqueue operation, then c

initiates the insertion of a pair with key = taili into the directory. If opi is a dequeue operation

then, if headi 6= taili, c initiates the removal of a pair with key = headi from the directory; if

headi = taili, it does not initiate the removal of any pair from the directory.

Lemma 66. At Ci, i ≥ 1, the following hold:

1. If opi is an enqueue operation, then taili = sldii .key.

2. If opi is a dequeue operation, then if Qi−1 6= λ, headi = sl1i−1.key. If Qi−1 = λ, then

headi = taili.

Proof. We prove the claims by induction.

Base case. We prove the claim for i = 1. Consider the case where op1 is an enqueue

operation. Then, by Lemma 62 and since tail0 = 0, it follows that d1 = 1 and Q1 contains only

one element, namely sld11 = 〈0, data〉. By Observation 59, it is the first operation in α for which

an instance of Algorithm 14 is executed by ss. Therefore, by Lemma 62, tail1 = tail0 = 0.

Thus, tail1 = sld11 .key

Now consider the case where op1 is a dequeue operation. By Observation 59, op1 is the

first operation in α for which an instance of Algorithm 14 is executed by ss. Notice that then,

Q1 = λ, given that Qi is defined as the sequence of elements that results if operations are

applied to an initially empty queue. Therefore, by Lemma 62, head1 = head0 = 0. By the same

reasoning, tail1 = tail0 = 0. Thus, head1 = tail1, so Claim 2 holds.

Hypothesis. Fix any i, i > 0 and assume that the lemma holds at Ci.

Induction step. We prove that the claims also hold at Ci+1. Assume that opi+1 is an

enqueue operation. Then, its corresponding enqueue operation in L′
i+1 is also an enqueue

operation, and thus, di+1 = di + 1. We examine two cases. First, consider that opi is an

enqueue operation as well. Since i > 0, it holds that i + 1 > 1. By Lemma 62, we have that

taili+1 = taili + 1. By Observation 65, we have that the client c that initiated opi+1 inserts a

pair with key = taili+1 = taili + 1 into the directory. By definition, and by the semantics of

81

the sequential queue, sl
di+1

i+1 .key = sldii .key + 1. By the induction hypothesis, sldii .key = taili.

Thus, sl
di+1

i+1 .key = taili + 1, and Claim 1 holds.

Next, consider that opi is a dequeue operation. By Lemma 62 and Observation 61, dequeue

operations do not modify tail key, and by Corollary 63, taili+1 = tailj + 1, where opj is the

last enqueue operation preceding opi+1 in Li+1. By definition of Qj and by Observation 65, opj

enqueues a pair with key = tailj to Qj . Furthermore, by definition of opj , all other operations in

Li+1 that have a linearization point between that of opj and opi+1, are dequeue operations. By

definition, the same holds for L′
i+1. Therefore, no further element is appended to the sequential

queue by operations that are linearized between Cj and Ci+1, i.e. sl
dj
j = sldii . Notice that, by

Observation 64 and the definition of the semantics of the sequential queue, sl
dj
j .key = tailj . By

Observation 65, c inserts a pair with key = taili+1 into the directory. Also, by the definition

of L′
i+1, it holds that sl

di+1

i+1 .key = sldii .key + 1. Thus, since taili+1 = tailj + 1, it follows that

sl
di+1

i+1 .key = tailj + 1 = sl
dj
j .key + 1 = sldii .key + 1, and Claim 1 holds.

Now let opi+1 be a dequeue operation. Again we examine two cases. First, consider that opi

is a dequeue operation as well. Assume that Qi−1 = λ. Then, since the induction hypothesis

holds at Ci, it holds that taili = headi. By Observation 61, the value of tail key is not modified

neither by opi nor by opi+1. By Lemma 62, head tail is not modified either. Therefore, also

at Ci+1, we have that headi+1 = taili+1, so Claim 2 holds. Assume now that Qi−1 6= λ. By

the induction hypothesis, Claim 2 holds at Ci, which implies that when opi is applied to the

sequential queue to obtain Qi, it dequeues an element with key sl1i−1.key = headi. By the

definition of Qi and of L′
i, the keys of the elements in the key-data pair sequence that is Qi,

take consecutive values as well. This implies that, since sl1i−1.key = headi, it must hold that

sl1i .key = sl1i−1.key + 1 = headi + 1. By Lemma 62, headi+1 = headi + 1. Thus, opi+1 removes

from the sequential queue the element with key equal to headi + 1. Since Claims 1 and 2 hold

at Ci by the induction hypothesis, we have that this element is sl1i , i.e. Claim 2 also holds at

Ci+1.

Next consider that opi is an enqueue operation. By Lemma 62 and Observation 61, enqueue

operations do not modify head key. By Corollary 63, we further have that headi+1 = headj+1,

where opj is the last dequeue operation preceding opi+1 in Li+1. By definition and by Obser-

vation 65, opj dequeues from the sequential queue Qj−1 a pair with key = tailj . Furthermore,

by definition of opj , all other operations in Li+1 that have a linearization point between that

of opj and opi+1, are enqueue operations. By definition, the same holds for L′
i+1. Therefore,

no further element is removed from the sequential queue between Cj and Ci+1, i.e. sl1j = sl1i .

Notice that sl1j .key = headj . By Observation 65, the client c that invoked opi+1 removes a pair

with key = headi+1 from the directory and by definition, sl1i+1.key = sl1i .key + 1. Thus, since

headi+1 = headj + 1, it follows that sl1i+1.key = headj + 1 = sl1j .key + 1 = sl1i .key + 1, and

Claim 2 holds.

By Lemma 62 and by inspection of the pseudocode, we have that at Ci, i > 0, the value

of tail key indicates the number of enqueue operations on Qi that have been linearized in αi,

and the value of head key indicates the number of successful dequeue operations (i.e. dequeue

82

operations that do not return ⊥) on Qi that have been linearized in αi. Thus, the following

corollary holds.

Corollary 67. Qi = λ if and only if headi = taili.

Lemma 68. If opi is a dequeue operation, then it returns the value of the field data of sl1i−1 or

⊥ if Qi−1 = λ.

Proof. Consider the case where Qi−1 6= λ. By definition of Qi, we have that Qi = Qi−1\{sl
1
i−1}.

Let opj be the enqueue operation that is linearized before opi and inserts an element with key

headi to the queue. Notice by the pseudocode, line 41, that the parameter of DirDelete is headi.

By the semantics of DirDelete, if at the point that the instance of DirDelete is executed in

the do - while loop of lines 41-43 for opi, the instance of DirInsert of opj has not yet returned,

then DirDelete returns 〈⊥,−〉.

By Lemma 66, and since head key is not modified by the execution of line 53 by the server,

headi is the key of the first pair sl1i−1 in Qi−1. Therefore, when DirDelete returns a status 6= ⊥,

it holds that it returns the data field of sl1i−1, the first element in Qi−1, as the return value of

opi, i.e. the claim holds.

Now consider the case where Qi−1 = λ. Since, by Corollary 67, when this is the case,

headi = taili, NACK is sent to the client that invoked opi and, by inspection of the pseudocode,

opi returns ⊥, i.e. the claim holds.

From the above lemmas we have the following:

Theorem 69. The directory-based queue implementation is linearizable.

4.2 Design Paradigm II: Token-based Data Structures

We assume that the servers are numbered from 0 to NS −1 and form a logical ring. Each server

has allocated a chunk of memory (e.g. one or a few pages) of a predetermined size, where it

stores elements of the implemented DS. A DS implementation employs (at least) one token

which identifies the server st, called the token server, at the memory chunk of which newly

inserted elements are stored. (A second token is needed in cases of queues and deques.) When

the chunk of memory allocated by the token server becomes full, the token server gives up its

role and appoints another (e.g. the next) server as the new token server. A client remembers

the server that served its last request and submits the next request it initiates to that server; so,

each response to a client contains the id of the server that served the client’s request. Servers

that do not have the token for handling a request, forward the request to subsequent servers;

this is done until the request reaches the appropriate token server. A server allocates a new

(additional) chunk of memory every time the token reaches it (after having completed one more

round of the ring) and gives up the token when this chunk becomes full.

83

Algorithm 15 Push operation for a client of the token-based stack.

1 sid = 0 // the client stores the id of the first server with id=0.

2 Data ClientPush(int cid, Data data)
3 send(sid, 〈PUSH, data, cid,⊥〉)
4 〈status, sid〉 = receive()
5 return status

Algorithm 16 Pop operation for a client of the token-based stack.

6 sid = 0 // the client stores the id of the first server with id=0.

7 Data ClientPop(int cid)
8 send(sid, 〈POP,⊥, cid,⊥〉)
9 〈status, sid〉 = receive()
10 return status

4.2.1 A Token-based Stack

To implement a stack, each server uses its allocated memory chunk to maintain a local stack,

lstack. Initially, st is the server with id 0. To perform a push (or pop), a client c sends a push

(or pop) request to the server that has served c’s last request (or, initially, to server 0) and

awaits for a response. If this server is not the current token server at the time that it receives

the request, it forwards the request to its next or previous server, depending on whether its

local stack is full or empty, respectively. This is repeated until the request reaches the server st

that has the token which pushes the new element onto its local stack and sends an ACK to c.

If st’s local stack does not have free space to accommodate the new element, it sends the push

request of c, together with an indication that it gives up its token, to the next server. A pop

request is treated by st in a similar way.

4.2.1.1 Algorithm Description

Pseudocode for the client’s side DS operations is presented in Algorithms 15 and 16. Push and

pop operations are carried out by ClientPush() and ClientPop(), respectively. An operation

op is invoked on a client c by invoking one of these routines. Subsequently, c sends a message

to the token server st (line 3 in ClientPush(), line 8 in ClientPop()) and awaits the response

(lines 4 and 9, respectively).

The token server receives, processes, and responds to clients’ messages. As with previous

data structures, a field in each message indicates the type of operation that is requested. Event-

driven pseudocode for the server is presented in Algorithm 17. Initially, the stack elements are

stored in the memory space allocated by server s0, the first server in the ring. At this point, s0

is the token server, managing the top of the stack. Once the memory chunk of the token server

becomes full, the token server notifies the next server in the ring to become the new token server

84

(s0 notifies s1, s1 does so with s2, etc, while sNS−1 notifies s1).

Algorithm 17 Events triggered in a server of the token-based stack.

11 LocalStack lstack = ∅

12 int my sid // each server has a unique id

13 int token = 0

14 a message 〈op, data, id, tk〉 is received:
15 switch (op)
16 case PUSH:
17 if (tk == TOKEN) then token = my sid
18 if (token 6= my sid) then
19 send(token, 〈op, data, id, tk〉)
20 break;
21 if (!IsFull(lstack)) then
22 push(lstack, data)
23 send(id, 〈ACK,my sid〉)
24 else if (my sid 6= NS-1) then
25 token = find next server(my sid)
26 send(token, 〈op, data, id,TOKEN〉)
27 else // It’s the last server in the order, thus the stack is full

28 send(id, 〈NACK,my sid〉)
29 break

30 case POP:
31 if (tk == TOKEN) then token = my sid
32 if (token 6= my sid) then
33 send(token, 〈op, data, id, tk〉)
34 break

35 if (!IsEmpty(lstack)) then
36 data = pop(lstack)
37 send(id, 〈data,my sid〉)
38 else if (my sid 6= 0) then
39 token = find previous server(my sid)
40 send(token, 〈op, data, id,TOKEN〉)
41 else // It’s the first server in the order, thus the stack is empty

42 send(id, 〈NACK,my sid〉)
43 break

Each server si, 0 ≤ i < NS, maintains a local variable token which identifies whether si is

the token server. We assume that a local stack implementation, lstack, is available for each

server. Depending on whether si is the token server or not, the messages that it receives are

treated accordingly. Each message has four fields: (1) op designates the requested operation,

(2) data contains the data in to be enqueued if op = ENQ and ⊥ otherwise, (3) id contains the

id of the sender, and (4) tk is a one-bit flag which is set to TOKEN only when the server has

received a forwarded message from another server that also requests a token transition.

Let si receive a message. If the message op field is PUSH (line 16), then si first checks

85

whether the message contains a token transition. This is indicated by tk = TOKEN. If si

detects this condition, it changes its token variable to contain its own id (line 17). If si is not

a token server, however, it just forwards the message to the next server in the ring (line 19). If

si is the token server, it checks whether it can perform the push on its local stack (line 21). If

this is possible, then si responds with ACK to c, the client that initiated the push request. In

this implementation, the push() function (line 22) does not need to return any value, since the

check for memory space has already been performed by the server on line 21, hence push() is

always successful.

If the local stack of si does not have any free space, then si must forward c’s request to the

next server in the ring and also notify it that it must become the token server. More specifically,

if i 6= NS−1 (line 24), then si sets the tk field of the message to the value TOKEN and forwards

the message to si+1 (line 26). On the other hand, if i = NS− 1, then this implies that all other

servers in the ring have no memory space available for storing the stack element. In this case

the token-based stack is considered full and si notifies c by sending a NACK message (line 28).

If si receives a message where the op field is POP (line 30), then similar actions take place:

si checks whether the message contains a token transition and if this is true, then it changes its

local variable token appropriately. If si is not the token server (line 32), then it forwards the

message (line 33). If si is the token server, however, then it checks whether its local stack is

empty (line 35) and if it is not, then si can execute the requested pop operation and send the

data of the top element to c (line 37). In case si has an empty local stack, if i 6= 0 (line 38),

then si it forwards the pop request to si−1, after setting the tk field to TOKEN (line 40). If

i = 0, then this implies that the local stacks of all servers are empty and, consequently, the

distributed stack is empty. So, si responds with NACK to c (line 42).

When c receives a response from si, it updates the value of variable sid (line 4 of ClientPush(),

line 9 of ClientPop()). This variable represents the id of the server that c considers as token

server. Initially, all clients forward their requests to s0. However, as the server that maintains

the top element might change throughout an execution, the clients have to update the value of

sid and do so through the aforementioned lazy mechanism. In the meanwhile, if c’s message

was sent to an incorrect server, it is forwarded by the servers till it reaches the server that holds

the token. Since that server is going to respond to c after performing the requested operation, c

can update the value of sid. ClientPush() and ClientPop() then return the value of variable

status. This value is either ACK indicating a successful push or pop, or NACK, indicating that

the stack is full, in case of a push, and that it is empty, in case of a pop.

4.2.1.2 Proof of Correctness

Let α be an execution of the token-based stack algorithm presented in Algorithms 15, 16, and 17.

Let op be any operation in α. We assign a linearization point to op by considering the following

cases:

❼ op is a push operation. Let st be the token server that responds to the client that initiated

op (i.e. the receive of line 4 in the execution of op receives a message from st). If op

86

returns ACK, the linearization point is placed at the configuration resulting from the

execution of line 23 by st for op. Otherwise, the linearization point of op is placed at the

configuration resulting from the execution of line 28 by st for op.

❼ op is a pop operation. Let st be the token server that responds to the client that initiated

op (line 9). If the operation returns NACK, the linearization point of op is placed at

the configuration resulting from the execution of line 42 by st for op. Otherwise, the

linearization point of op is placed at the configuration resulting from the execution of

line 37 by st for op.

Denote by L the sequence of operations (which have been assigned linearization points) in the

order determined by their linearization points.

Lemma 70. The linearization point of a push (pop) operation op is placed in its execution

interval.

Proof. Assume that op is a push operation and let c be the client that invokes it. After the

invocation of op, c sends a message to some server s and awaits a response. Recall that routine

receive() (line 4) blocks until a message is received. The linearization point of op is placed

either in the configuration resulting from the execution of line 23 by st for op, where st is the

token server in this configuration, or in the configuration resulting from the execution of line 28

by st for op.

Either of these lines is executed after the request by c is received, i.e. after c invokes

ClientPush. Furthermore, they are executed before c receives the response by st and thus,

before ClientPush returns. Therefore, the linearization point is inside the execution interval of

push.

The argumentation regarding pop operations is analogous.

Each server maintains a local variable token with initial value 0 (initially, the server with

id equal to 0 is the token server). Whenever some server si receives a TOKEN message, i.e. a

message with its tk field equal to TOKEN (line 17), the value of token is set to i. By inspection

of the pseudocode, it follows that the value of token is set to the id of the next server if the

local stack of si is full (line 25); then, a TOKEN message is sent to the next server (line 26).

Moreover, the value of token is set to the id of the previous server if the local stack lstack of si

is empty (line 38); then, a TOKEN message is sent to the previous server (lines 39-40). (Unless

the server is s0 in which case a NACK is sent to the client (line 42 but no TOKEN message to

any server.) Thus, the following observation holds.

Observation 71. At each configuration in α, there is at most one server si for which the local

variable token has the value i.

At each configuration C, the server si whose token variable is equal to i is referred to as the

token server at C.

Observation 72. A TOKEN message is sent from a server with id i, 0 ≤ i < NS − 1, to a

server with id i+ 1 only if the local stack of server i is full. A TOKEN message is sent from a

87

server with id i, 0 < i ≤ NS− 1, to a server with id i− 1 only when the local stack of server i

is empty.

By the pseudocode, namely the if clause of line 18 and the if clause of line 32, the following

observation holds.

Observation 73. Whenever a server si performs push and pop operations on its local stack

(lines 22 and 36), it holds that its local variable token is equal to i.

Let Ci be the configuration at which the i-th operation opi of L is linearized. Denote by

αi, the prefix of α which ends with Ci and let Li be the prefix of L up until the operation that

is linearized at Ci. Denote by Si the sequence of values that a sequential stack contains after

applying the sequence of operations in Li, in order, starting from an empty stack; let S0 = ǫ,

i.e. S0 is the empty sequence.

Lemma 74. For each i, i ≥ 0, if ski is the token server at Ci and lsji are the contents of the

local stack of server j, 0 ≤ j ≤ ki, at Ci, then it holds that Si = ls0i · ls
1
i · . . . · ls

ki
i at Ci.

Proof. We prove the claim by induction on i. The claim holds trivially for i = 0. Fix any i ≥ 0

and assume that at Ci, it holds that Si = ls0i · ls
1
i · . . . · ls

ki
i . We show that the claim holds for

i+ 1.

We first assume that opi+1 is a push operation initiated by some client c. Assume first that

ski = ski+1
. Then, by induction hypothesis, Si = ls0i · . . . · ls

ki
i . In case the local stack of ski is

not full, ski pushes the value vi+1 of field data of the request onto its local stack and responds

to c. Since no other change occurs to the local stacks of s0, . . . , ski from Ci to Ci+1, at Ci+1,

it holds that Si+1 = ls0i · . . . · ls
k
i · {vi+1} = ls0i · . . . · ls

ki
i+1. In case that the local stack of ski

is full, since ski = ski+1
and it is the token server, it follows that ski = sNS−1. In this case,

ski responds with a NACK to c and the local stack remains unchanged. Thus, it holds that

Si+1 = ls0i · . . . · ls
k
i = Si.

Assume now that ski 6= ski+1
. This implies that the local stack of ski is full just after Ci.

Observation 72 implies that ski forwarded the token to ski+1 in some configuration between Ci

and Ci+1. Notice that then, ski+1 = ski+1
. Observation 73 implies that the local stack of ski+1

is empty. Thus, the if condition of line 21 evaluates to true for server ski+1 and therefore,

it pushes the value vi+1 of opi+1 onto its local stack. Thus, at Ci+1, lski+1
i+1 = {vi+1}. By

definition, Si+1 = Si · {vi+1}. Therefore, Si+1 = ls0i · . . . · ls
ki+1
i+1 . And since by Observations 71

and 73, the contents of the local stacks of servers other than ki +1 do not change, it holds that

Si+1 = ls0i+1 · . . . · ls
ki+1
i+1 = ls0i+1 · . . . · ls

ki+1

i+1 .

The reasoning for the case where opi+1 is an instance of a pop operation is symmetrical.

From the above lemmas and observations, we have the following.

Theorem 75. The token-based distributed stack implementation is linearizable. The time com-

plexity and the communication complexity of each operation op is O(NS).

88

4.2.2 A Token-based Queue

The token-based distributed queue implementation follows similar ideas as those of the token-

based stack implementation of Section 4.2.1. To implement a queue, two tokens are employed:

at each point in time, there is a head token server sh and a tail token server st. Initially, server

0 plays the role of both sh and st. Each server si, other than st (sh), that receives a request

(directly) from a client c, it forwards the request to the next server to ensure that it will either

reach the appropriate token server or return back to si (after traversing all servers). Servers st

and sh work in a way similar as server st in stacks.

To prevent a request from being forwarded forever due to the completion of concurrent

requests which may cause the token(s) to keep advancing, each server keeps track of the request

that each client c (directly) sends to it, in a client table (there can be only one such request per

client). Server st (and/or sh) now reports the response to si which forwards it to c. If si receives

a response for a request recorded in its client table, it deletes the request from the client table.

If si receives the token (tail, or head), it serves each request (enqueue, or dequeue, respectively)

in its client array and records its response. If a request, from those included in si’s client array,

reaches si again, si sends the response it has calculated for it to the client and removes it from

its client array. Since the communication channels are FIFO, the implementations ensures that

all requests, their responses, and the appropriate tokens, move from one server to the next,

based on the servers’ ring order, until they reach their destination. This is necessary to argue

that the technique ensures termination for each request.

4.2.2.1 Algorithm Description

Pseudocode for the client’s side DS operations is presented in Algorithm 18. Enqueue and

dequeue operations are carried out by ClientEnqueue() and ClientDequeue(), respectively:

An operation op is invoked on a client c by invoking one of these routines. Subsequently, c sends

a message to the server that it considers to be tail token server, in case of an enqueue operation

(line 4), or the server it considers to be head token server, in case of a dequeue operation (line 8),

and then awaits the response. Notice that as in the case of the token-based stack, the clients

in their initial state consider that s0 holds the head and tail tokens and they keep track of the

changes in token servers in a lazy way.

On the server side as well, the queue implementation is based on similar ideas as the token-

based distributed stack of Section 4.2.1: Clients initially send their requests to what they

consider to be the token server, servers message each other in order reassign the tokens. Each

server maintains a local queue lqueue on which it performs the enqueue and dequeue requests,

depending on whether that local queue is empty or full, respectively, and on whether the server

holds the appropriate tokens.

The token servers receive, process, and respond to clients’ messages. As with previous data

structures, a field in each message indicates the type of operation that is requested. Event-driven

pseudocode for a server is presented in Algorithm 19. Apart from the local queue lqueue, each

89

Algorithm 18 Enqueue and Dequeue operations for a client of the token-based queue.

1 int enq sid = 0
2 int deq sid = 0

3 Data ClientEnqueue(int cid, Data data)
4 send(enq sid, 〈ENQ, data, cid,−1〉)
5 〈status,⊥, enq sid〉 = receive(enq sid)
6 return status

7 Data ClientDequeue(int cid)
8 send(deq sid, 〈DEQ,⊥, cid〉)
9 〈status, data, deq sid〉 = receive(deq sid)
10 return data

server keeps two boolean flag variables, (hasHead and hasTail), in order to monitor whether

it has the token or not. Furthermore, it uses a bit flag, fullQueue, which indicates whether the

local queue is full. A defining difference from the token-based stack is the client array that each

server has to maintain. This is implemented as a local array of size n, where n is the maximum

number of clients. Initially, the client table of a server is empty. As it receives requests, it stores

in the client table all those requests that it has received from clients directly – in contrast to

those requests that it received because they were forwarded to it by another server.

The messages that reach a server have five fields: (1) op designates the operation (ENQ or

DEQ) up to when it is served and after that, it indicates whether it has been successful or not

(ACK or NACK), (2) data stores the data to be added to the queue in case op = ENQ, and ⊥

otherwise, (3) cid is the id of the client that issued the request, (4) sid is the id of the server that

forwarded the message towards the token server and has the value −1 if that has not occurred,

and (5) tk takes the values TAIL TOKEN or HEAD TOKEN when it is a field of a forwarded

messages (of type ENQ or DEQ, respectively), and is used to indicate that a head or tail token

transfer is required. When that is not the case, it is equal to ⊥.

When a server si, 0 ≤ i < NS, that is not the tail token server, receives a message of type

ENQ (line 23), it first checks if it contains a token transfer from another server (line 24). Assume

first that it does not (line 28). In this case, si forwards the request to the next server in the ring

(line 29, lines 32 and 34) so that it can eventually reach st. A bad scenario that could occur is

that the client request may be transmitted indefinitely from a server to the next without ever

reaching the appropriate token server. This can happen if, in the meanwhile, both the head

and the tail tokens are forwarded indefinitely along the ring. To avoid this, if si receives a

message from a client (line 30) but cannot serve it, then si updates its clients table, storing in

it information about the request (line 31), before it forwards the message towards st.

If the message reaches st, then it attempts to serve the request. If the local queue lqueue of

si is not full, then st it enqueues the given data. Recall that the message may reach st either

because it was sent directly from the client or because it was forwarded to it from another

server, let it be si. If the former is the case, then st responds with an ACK directly to the client

90

(lines 37 - 38). If the latter is the case, then, deviating from the stack implementation, once st

serves the request it does not respond to the client directly. Instead, it sends an ACK message

Algorithm 19 Events triggered in a server of the token-based queue.

11 int my sid
12 LocalQueue lqueue = ∅

13 LocalArray clients = ∅ // Array of three values: <op, data, isServed>

14 boolean fullQueue = false// True when tail and head are in the same server and tail is before head

15 boolean hasHead // Initially hasHead and hasTail are true in server 0, and false in the rest

16 boolean hasTail

17 a message 〈op, data, cid, sid, tk〉 is received:
18 if (!clients[cid] AND clients[cid].isServed) then // If message has been served earlier.

19 send(cid, 〈ACK, clients[cid].data, my sid〉)
20 clients[cid] = ⊥
21 else

22 switch (op)
23 case ENQ: // The message contains an enqueue request

24 if (tk == TAIL TOKEN) then
25 hasTail = true

26 if (hasHead) fullQueue = true

27 ServeOldEnqueues()
28 if (!hasTail) then // Server does not have token

29 nsid = find next server((my sid)
30 if (sid == −1) then // From client.

31 clients[cid] = 〈ENQ, data, false〉
32 send(nsid, 〈ENQ, data, cid,my sid,⊥〉)
33 else // From server.

34 send(nsid, 〈ENQ, data, cid, sid,⊥〉)
35 else if (!IsFull(lqueue)) then // Server can enqueue.

36 enqueue(lqueue, data)
37 if (sid == −1) // From client.

38 send(cid, 〈ACK,⊥,my sid〉)
39 else// From server.

40 send(sid, 〈ACK,⊥, cid,my sid,⊥〉)
41 else if (fullQueue) then // Global Queue full

42 if (sid == -1) // From client.

43 send(cid, 〈NACK,⊥,my sid〉)
44 else // From server

45 send(sid, 〈NACK,⊥, cid,my sid,⊥〉)
46 else // Server moves the tail token to the next server

47 nsid = find next server(my sid)
48 fullQueue = false

49 hasTail = false

50 send(nsid, 〈op, data, cid,my sid,TAIL TOKEN〉)
51 break

91

52 case DEQ: // The message contains an dequeue request

53 if (tk == HEAD TOKEN) then
54 hasHead = true

55 ServeOldDequeues()
56 if (!hasHead) then
57 nsid = find next server(my sid)
58 if (sid == −1) then // From client

59 clients[cid] = 〈DEQ,⊥, false〉
60 send(nsid, 〈DEQ,⊥, cid,my sid〉)
61 else // From server

62 send(nsid, 〈DEQ,⊥, cid, sid,⊥〉)
63 else if (!IsEmpty(lqueue)) then // Server can dequeue.

64 data = dequeue(lqueue)
65 if (sid == −1) then // From client

66 send(cid, 〈ACK, data,my sid〉)
67 else // From server

68 send(sid, 〈ACK, data, cid,my sid,⊥〉)
69 else if (hasTail AND !fullQueue) then // Queue is empty

70 if (sid == −1) then // From client

71 send(cid, 〈NACK,⊥,my sid〉)
72 else // From server

73 send(sid, 〈NACK,⊥, cid,my sid,⊥〉)
74 else // Server moves the head token to the next server

75 nsid = find next server(my sid)
76 hasHead = false

77 send(nsid, 〈op,⊥, cid,my sid,HEAD TOKEN〉)
78 break

79 case ACK:
80 clients[cid] = ⊥
81 send(cid, 〈ACK, data, sid〉)
82 break

83 case NACK:
84 clients[cid] = ⊥
85 send(cid, 〈NACK,⊥, sid〉)
86 break

back to si (lines 39-40) and it is si that responds to the client with an ACK message. In order

to keep the clients up-to-date with the approximate location of the token, this message also

includes the id of the server that currently holds the token.

If the token-based queue is full, as indicated when fullQueue is true, then st sends a NACK

message to the client or the server that the message was sent from (line 41-45). It may however

be that the lqueue of st is full but that the token-based queue is not. In that case, st moves the

enqueue request to the next server in the ring (line 47), encapsulating in it a token transfer, by

setting tk = TAIL TOKEN and hasTail = false (lines 46 - 50).

Assume now that a server si, that is not tail token server, receives a request, forwarded

92

to it by another server and that the message does include a token transfer. Then, si sets its

token hasTail to true (line 25) and if it also had the head token from a previous message, then

it changes the fullQueue flag to true as well (line 26). Then, si serves all pending enqueue

requests that it has stored in its client table (line 27).

Algorithm 20 Auxiliary functions for a server of the token-based queue.

87 void ServeOldEnqueues(void)
88 if (!fullQueue) then
89 for each cid such that clients[cid].op == ENQ do

90 if (!IsFull(lqueue)) then
91 enqueue(lqueue, clients[cid].data)
92 clients[cid].isServed = true

93 void ServeOldDequeues(void)
94 for each cid such that clients[cid].op == DEQ do

95 if (!IsEmpty(lqueue)) then
96 clients[cid].data = dequeue(lqueue)
97 clients[cid].isServed = true

In order to deal with requests that are stored in the client table of a server, additional

mechanisms are required. Let si received a message of type ACK (line 79) or NACK (line 83) for

that request. In this case, si sets the entry cid of its client table to ⊥ (lines 80, 84) and sends

an ACK (line 81) or a NACK (line 85) to that client. In either of those cases, the request has

been served by another server and can be deleted from the client table (lines 19, 20). However,

recall that the request may do a round-trip on the server ring and reach si again without having

been served. When this happens, then si obtains the tail token as well. Then si has to serve

all its pending enqueue requests, indicated on the client table. In order to do this, it uses

ServeOldEnqueues().

The actions that are performed by a server in the case of a dequeue request are analogous.

In the dequeue case, pending requests are handled through ServeOldDequeues().

Functions ServeOldEnqueues() and ServeOldDequeues() are described in more detail in

Algorithm 20. ServeOldEnqueues() (line 87) processes all enqueue requests stored in the client

table, if the local queue has space (line 90). Similarly, ServeOldDequeues() (line 93) processes

all dequeue requests stored in the client table, if the local queue is not empty (line 95).

4.2.2.2 Proof of Correctness

Let α be an execution of the token-based queue algorithm presented in Algorithms 18, 19, and

20. Each server maintains local boolean variables hasHead and hasTail, with initial values

false. Whenever some server si receives a TAIL TOKEN message, i.e. a message with its tk

field equal to TAIL TOKEN (line 24), the value of hasTail is set to true (line 25). By inspection

of the pseudocode, it follows that the value of hasTail is set to false if the local queue of si

is full (line 35, 46- 49); then, a TAIL TOKEN message is sent to the next server (line 50). The

same holds for hasHead and HEAD TOKEN messages, i.e. messages with their tk field equal to

93

HEAD TOKEN. Thus, the following observations holds.

Observation 76. At each configuration in α, there is at most one server for which the local

variable hasHead (hasTail) has the value true.

Observation 77. In some configuration C of α, TAIL TOKEN message is sent from a server

sj, 0 ≤ j < NS − 1, to a server sk, where k = (j + 1) mod NS only if the local queue of sj is

full in C. Similary, a HEAD TOKEN message is sent from sj to sk only if the local queue of sj

is empty in C.

By inspection of the pseudocode, we see that a server performs an enqueue (dequeue) op-

eration on its local queue lqueue either when executing line 36 (line 55) or when executing

ServeOldEnqueues (ServeOldDequeues). Further inspection of the pseudocode (lines 24-27,

lines 35-41, as well as lines 56-62, lines 63-69), shows that these lines are executed when

hasTail = true. Then, the following observation holds.

Observation 78. Whenever a server sj performs an enqueue (dequeue) operation on its local

queue, it holds that its local variable hasTail (hasHead) is equal to true.

By a straight-forward induction, the following lemma can be shown.

Lemma 79. The mailbox of a client in any configuration of α contains at most one incoming

message.

If hasTail = true (hasHead = true) for some server s in some configuration C, then we

say that s has the tail (head) token. The server that has the tail token is referred to as tail

token server. The server that has the head token is referred to as head token server.

Let op be any operation in α. We assign a linearization point to op by considering the

following cases:

❼ If op is an enqueue operation for which a tail token server executes an instance of Algorithm

19, then it is linearized in the configuration resulting from the execution of either line 36,

or line 91, or line 43, whichever is executed for op in that instance of Algorithm 19 by the

tail token server.

❼ If op is a dequeue operation for which a head token server executes an instance of Algorithm

19, then it is linearized in the configuration resulting from the execution of either line 64,

or line 96, or line 66, whichever is executed for op in that instance of Algorithm 19 by the

head token server.

Lemma 80. The linearization point of an enqueue (dequeue) operation op is placed in its

execution interval.

Proof. Assume that op is an enqueue operation and let c be the client that invokes it. After

the invocation of op, c sends a message to some server s (line 4) and awaits a response. Recall

that routine receive() (line 5) blocks until a message is received. The linearization point of op

is placed either in the configuration resulting from the execution of line 36 by st for op, in the

94

configuration resulting from the execution of line 43 by st for op, or in the configuration resulting

from the execution of line 91 by st for op. Notice that either of these lines is executed after

the request by c is received, i.e. after c invokes ClientEnqueue, and thus, after the execution

interval of op starts.

By definition, the execution interval of op terminates in the configuration resulting from the

execution of line 6. By inspection of the pseudocode, this line is executed after line 5, i.e. after

c receives a response by some server. In the following, we show that the linearization point of

op occurs before this response is sent to c.

Let sj be the server that c initially sends the request for op to. By observation of the pseu-

docode, we see that c may either receive a response from sj if sj executes lines 38 or 43, or if sj

executes lines 80-81 or lines 84-85, or if sj executes line 19. To arrive at a contradiction, assume

that either of these lines is executed in α before the configuration in which the linearization

point of op is placed. Thus, a tail token server st executes lines 36, 91, or 43 in a configuration

following the execution of lines 38, or 43, or 80-81 or 84-85, or line 19 by sj . Since the algorithm

is event-driven, inspection of the pseudocode shows that in order for a tail token server to ex-

ecute these lines, it must receive a message containing he request for op either from a client or

from another server.

Assume first that a tail token server executes the algorithm after receiving a message con-

taining a request for op from a client. This is a contradiction, since, on one hand, c blocks

until receiving a response, and thus, does not sent further messages requesting op or any other

operation, and since op terminates after c receives the response by sj , and on the other hand,

any other request from any other client concerns a different operation op′.

Assume next that a tail token server executes the algorithm after receiving a message con-

taining the request for op from some other server. This is also a contradiction since inspection

of the pseudocode shows that after sj executes either of the lines that sends a response to c,

it sends no further message to some other server and instead, terminates the execution of that

instance of the algorithm.

The argumentation regarding dequeue operations is analogous.

Denote by L the sequence of operations which have been assigned linearization points in α

in the order determined by their linearization points. Let Ci be the configuration at which the

i-th operation opi of L is linearized. Denote by αi, the prefix of α which ends with Ci and let Li

be the prefix of L up until the operation that is linearized at Ci. Denote by Qi the sequence of

values that a sequential queue contains after applying the sequence of operations in Li, in order,

starting from an empty queue; let Q0 = ǫ, i.e. Q0 is the empty sequence. In the following, we

denote by sti the tail token server at Ci and by shi
the head token server at Ci.

Lemma 81. For each i, i ≥ 0, if lqji are the contents of the local queue of server sj at Ci,

hi ≤ j ≤ ti, at Ci, then it holds that Qi = lqhi

i · lqhi+1
i · . . . · lqtii at Ci.

Proof. We prove the claim by induction on i. The claim holds trivially at i = 0.

95

Fix any i ≥ 0 and assume that at Ci, it holds that Qi = lqhi

i · lqhi+1
i · . . . · lqtii . We show that

the claim holds for i+ 1.

First, assume that opi+1 is an enqueue operation by client c. Furthermore, distinguish the

following two cases:

❼ Assume that ti = ti+1. Then, by the induction hypothesis, Qi = lqhi

i ·lqhi+1
i ·. . .·lqtii . In case

the local queue of sti is not full, sti enqueues the value vi+1 of the data field of the request

for opi+1 in the local queue (line 36 or line 91). Notice that, by Observation 78 changes

on the local queues of servers occur only on token servers. Notice also that those changes

occur only in a step that immediately precedes a configuration in which an operation is

linearized. Thus, no further change occurs on the local queues of shi
, shi+1, . . . , sti between

Ci and Ci+1, other than the enqueue on lqti . Then, it holds that Qi+1 = Qi · vi+1 =

lqhi

i · lqhi+1
i · . . . · lqtii · vi+1 = lqhi

i · lqhi+1
i · . . . · lqtii+1 = lqhi

i+1 · lqhi+1
i+1 · . . . · lqtii+1, and

if the head token server does not change between Ci and Ci+1, then hi+1 = hi and

Qi+1 = lq
hi+1

i+1 · lq
hi+1+1
i+1 · . . . · lq

ti+1

i+1 and the claim holds. If the head token server changes,

i.e., if hi+1 6= hi, then by Observation 77, lqhi

i+1 = ∅ and the claim holds again.

In case the local queue of sti is full and since by assumption, sti = sti+1
, it follows by

inspection of the pseudocode (line 41) and the definition of linearization points, that

sti+1
= shi+1

. In this case, sti+1
responds with a NACK to c and the local queue remains

unchanged. Since no token server changes between Ci and Ci+1, Qi+1 = Qi = lqhi

i · lqhi+1
i ·

. . . · lqtii = lq
hi+1

i+1 · lq
hi+1+1
i+1 · . . . · lq

ti+1

i+1 and the claim holds.

❼ Next, assume that ti 6= ti+1. This implies that the local queue of sti is full just after

Ci. Observation 77 implies that sti forwarded the token to sti+1 in some configuration

between Ci and Ci+1. Notice that then, sti+1 = sti+1
. If the local queue of sti+1

is not

full, then the condition of line 35 evaluates to true and therefore, line 36 is executed,

enqueueing value vi+1 to it. Then at Ci+1, lq
ti+1

i+1 = vi+1. By definition, Qi+1 = Qi · vi+1,

and therefore, Qi+1 = lqhi

i · lqhi+1
i · . . . · lqtii · vi+1 = lq

hi+1

i+1 · lq
hi+1+1
i+1 · . . . · lqtii+1 · vi+1 =

lq
hi+1

i+1 · lq
hi+1+1
i+1 · . . . · lqtii+1 · lq

ti+1

i+1 and the claim holds. If the local queue of sti+1
is

full, then the condition of line 35 evaluates to false and therefore, line 45 is executed.

The operation is linearized in the resulting configuration and NACK is sent to c. Notice

that in that case, the local queue of the server is not updated. Then, Qi+1 = Qi =

lqhi

i · lqhi+1
i · . . . · lqtii · lq

ti+1

i+1 = lq
hi+1

i+1 · lq
hi+1+1
i+1 · . . . · lqtii+1 · lq

ti+1

i+1 , and the claim holds.

The reasoning for the case where opi+1 is an instance of a dequeue operation is symmetrical.

From the above lemmas and observations we have the following theorem.

Theorem 82. The token-based distributed queue implementation is linearizable. The time

complexity and the communication complexity of each operation op is O(NS).

96

4.2.3 A Token-based Unsorted List

In order to implement a list, its elements are stored in the local memory modules of several of

the available servers, potentially spreading among all of them, if its size is large enough. The

proposed implementation follows a token-based approach for implementing insert operations:

At each point in time, there is a server (not necessarily always the same), denoted by st, which

holds the insert token, and serves insert operations. Initially, server s0 has the token, thus the

first element to be inserted in the list is stored on server s0. Further element insertions are also

performed on it, as long as the space it has allocated for the list does not exceed a threshold.

In case s0 has to serve an insert but its space is filled up, it forwards the token by sending a

message to the next server, i.e. server s1. The token may propagate to subsequent servers in

that manner.

In case the token reaches s0 again, then, if the allocated memory chunk of s0 is still full, s0

allocates more memory for storing more list elements. The token might go through the server

ring again without having any upper-bound restrictions concerning the number of round-trips.

In order for a server to know whether the token has performed a round-trip on the ring, and

hence all servers have stored list elements, it deploys a variable to count the number of ring

round-trips it knows that the token has performed.

4.2.3.1 Algorithm Description

Pseudocode for the client’s side DS operations is presented in Algorithm 21. Insert operations

are carried out by invoking ClientInsert(), search operations by invoking ClientSearch(),

and delete operations by invoking ClientDelete(). It is notable that insert operations in the

proposed implementation are executed in sequence and must necessarily pass through server 0

and be forwarded through the server ring, if necessary due to space constraints. Search and

delete operations, on the contrary, are executed in parallel.

In more detail, after a client invokes ClientInsert() (line 41), it sends an INSERT message

(line 45) to server 0, regardless of which server holds the token in any given configuration, and

then blocks waiting for a response (line 46). If the client receives ACK from a server, then the

element was inserted correctly. If the client receives NACK, then the insertion failed, due to

either limited space, or the existence of another element with the same key value.

For a search operation the client invokes ClientSearch() (line 57), which sends a SEARCH

request to all servers (line 62) and waits to receive a response message (line 64) from each server

(do while loop of lines 63-67). The requested element is in the list if the client receives ACK

from some server (line 65). A delete operation proceeds similarly to ClientSearch(). It is

initiated by a client by sending a DELETE request to all servers (line 74). The client then waits

to receive a response message (line 76) from each server (do while loop of lines 75-79). The

requested element has been found in the list of some client and deleted from there, if the client

receives ACK from some server s.

Event-driven code for the server is presented in Algorithm 22. Each server s maintains a

97

Algorithm 21 Insert, Search and Delete operation for a client of the distributed list.

1 boolean ClientInsert(int cid, int key, data data)
2 boolean status

3 send(0, 〈INSERT, cid, key, data, false,−1〉)
4 status = receive()
5 return status

6 boolean ClientSearch(int cid, int key)
7 int sid
8 int c = 0
9 boolean status
10 boolean found = false

11 send to all servers(〈SEARCH, cid, key,⊥, false,−1〉)
12 do

13 〈status, sid〉 = receive()
14 if (status == ACK) then found = true

15 c++
16 while (c < NS)
17 return found

18 boolean ClientDelete(int cid, int key)
19 int sid
20 int c = 0
21 boolean status
22 boolean deleted = false

23 send to all servers(〈DELETE, cid, key,⊥, false,−1〉)
24 do

25 〈status, sid〉 = receive()
26 if (status == ACK) deleted = true

27 c++
28 while (c < NS)
29 return deleted

local list (llist variable) allocated for storing list elements, a token variable which indicates

whether s currently holds the token, and a variable round to mark the ring round-trips the

token has performed; round is initially 0, and is incremented after every transmission of the

token to the next server.

Each message a server receives has five fields: (1) op that denotes the operation to be

executed, (2) cid that holds the id of the client that initiated a request, (3) key that holds

the value to be inserted, (4) mloop stands for “message loop”, a boolean value that denotes if

the message has traversed the whole server sequence and (5) tk that is set when a forwarded

message also denotes a token transition from one server to the other.

When a message is received, the server s first checks its type. If the message is of type

INSERT (line 5), s first checks whether the message has the tk field marked. If it is marked

(line 6), s sets a local variable token equal to its own id (line 7) and allocates additional space

for its local part of the list (line 8).

98

Algorithm 22 Events triggered in a server of the distributed unsorted list.

30 List llist = ∅

31 int my id, next id, token = 0, round = 0

32 a message 〈op, cid, key, data,mloop, tk〉 is received:
33 switch (op)
34 case INSERT:
35 if (tk == TOKEN) then
36 token = my id
37 allocate new memory chunk(llist, round)
38 status1 = search(llist, key)
39 if (status1) then send(cid, NACK)
40 else

41 if (token 6= my id) then
42 next id = get next(my id)
43 if (my id 6= NS− 1) then
44 send(next id, 〈op, cid, key, data,mloop, tk〉)
45 else send(next id, 〈op, cid, key, data, true, tk〉)
46 else

47 if ((my id 6= NS− 1) AND (round > 0) AND !(mloop)) then
48 next id = get next(my id)
49 send(next id, 〈op, cid, key, data,mloop, tk〉)
50 else

51 status2 = insert(llist, round, key, data)
52 if (status2 == false) then
53 round++
54 token = get next(my id)
55 send(token, 〈op, cid, key, data,mloop,TOKEN〉)
56 else send(cid, ACK)
57 break

58 case SEARCH:
59 status1 = search(llist, key)
60 if (status1) then send(cid, 〈ACK,my id〉)
61 else send(cid, 〈NACK,my id〉)
62 break

63 case DELETE:
64 status1 = delete(llist, key)
65 if (status1)then send(cid, ACK)
66 else send(cid, NACK)
67 break

}

Afterwards, s searches the part of the list that it stores locally, for an element with the same

key (key variable in the algorithm) as the one to be inserted (line 9). Searchingllist for the

element has to be performed independently of whether the server holds the token or not. Since

this design does not permit duplicate entries, if such an element is found, the server responds

with NACK to the client (line 12). Otherwise (line 17), s checks whether the new element can

be stored in llist.

In case s does not hold the token (line 20), it is not allowed to perform an insertion, therefore

it must forward the message to the next server in the ring. If s is not sNS−1 (line 43), it forwards

99

to the next server the request (line 22). In case s is sNS−1, it means that all servers have been

searched for the element and the element was not found. Server s sends the message to the

next server (in order to eventually reach the token server), after marking the mloop field of

the message as true, to indicate that the message has completed a full round-trip on the ring

(line 45).

On the other hand, if s holds the token (line 23), it must first check whether there is room in

llist to insert the element in it. If there is room in llist and the local variable round of s equals to

false (which means that the list does not expand to the next servers)or the message has already

performed a round-trip on the ring, then s inserts the element and returns ACK. If however,

round > 0 and the message has not performed a round trip on the ring (mloop == false), s

continues forwarding the message.

If the token server’s local memory is out of sufficient space (line 25) (i.e. the insert()

function was unsuccessful), s forwards the message to the next server the tk field with TOKEN

(line 28) to indicate that this server will become the new token server after s. Also, s increments

round by one to count the number of times the token has passed from it. The round variable

is also used by function allocate new memory chunk() that allocates additional space for the

list (line 8).

Notice that, contrary to other token-based implementations presented in previous sections,

the token server of the unsorted list does not need to rely on client tables in order to stop

a message from being incessantly forwarded from one server to another, without ever being

served. By virtue of having clients always sending their insert requests to s0, an insert request

rj that arrives at s0 before some other insert request rk, is necessarily served before rk. The

scenario where insert requests constantly arrive at the token server before rj , making the token

travel to the next server before rj can be served, is thus avoided.

Upon receiving a SEARCH request from a client (line 31), a server searches for the requested

element in its local list (line 32) and sends ACK to the server if the element is found (line 33)

and NACK otherwise (line 34).

Upon receiving a DELETE request from a client (line 36), a server attempts to delete the

requested element from its local list (line 37) and sends ACK to the server if the deletion was

successful (line 38). Otherwise it sends NACK (line 39).

4.2.3.2 Proof of Correctness

We sketch the correctness argument for the proposed implementation by providing linearization

points. Let α be an execution of the distributed unsorted list algorithm presented in Algo-

rithms 21 and 22. We assign linearization points to insert, delete and search operations in α as

follows:

❼ Insert. Let op be any instance of ClienInsert for which an ACK or a NACK message

is sent by a token server. Then, if ACK is sent by a token server for op (line 29), the

linearization point is placed in the configuration resulting from the execution of line 24

that successfully inserted the required element into the server’s local list. If NACK is sent

100

for op (line 12), then the linearization point is placed in the configuration resulting from

the execution of line 9, where the search operation on the local list of the server returned

true.

❼ Let op be any instance of ClientDelete for which an ACK or a NACK message is sent

by a server. Then, if ACK is sent by a server s for op, the linearization point is placed in

the configuration resulting from the execution of line 37 by the server that sent the ACK.

Otherwise, if the key k that op had to delete was not present in any of the local lists of

the servers in the beginning of the execution interval of op, then the linearization point

of op is placed at the beginning of its execution interval. Otherwise, if k was present but

was deleted by a concurrent instance op′ of ClientDelete, then the linearization point is

placed right after the linearization point of op′.

❼ Let op be any instance of ClientSearch for which an ACK or a NACK message is sent

by a server. Then, if ACK is sent by a server s for op, the linearization point is placed in

the configuration resulting from the execution of line 32 by the server that sent the ACK.

Otherwise, if the key k that op had to find was not present in the list in the beginning of its

execution interval, then the linearization point is placed there. Otherwise, if k was present

but was deleted by a concurrent instance op′ of ClientDelete, then the linearization point

is placed right after the linearization point of op′.

Lemma 83. Let op be any instance of an insert, delete, or a search operation executed by some

client c in α. Then, the linearization point of op is placed in its execution interval.

Proof. Let op be an instance of an insert operation invoked by client c. A message with the

insert request is sent on line 45, after the invocation of the operation. Recall that routine

receive() blocks until a message is received. Notice that both line 24 as well as line 9 are

executed by a server before it sends a message to the client. Therefore, whether op is linearized

at the point some server sends it a message on line 29 or on line 12, it terminates only after

receiving it. Notice also that the operation terminates only after the client receives it. Thus,

the linearization point is included in its execution interval.

By similar reasoning, if op is an instance of a delete operation that is linearized in the

configuration resulting from the execution of line 37 or a search operation that is linearized in

the configuration resulting from the execution of line 32, then the linearization point is included

in the execution interval of op.

Let op be an instance of a delete operation that deletes key k and that terminates after

receiving only NACK messages on line 76. If k is not present in the list in the beginning of the

execution interval of op, then op is linearized at that point and the claim holds.

Consider the case where k is included in the list when op is invoked. By observation of the

pseudocode (lines 36-40), we have that when a server receives a delete request by a client, it

traverses its local part of the list and deletes the element with key equal to k (line 37), if it

is included in it. By further observation of the pseudocode (lines 74-80), we have that after c

invokes op, it sends a delete request to all servers (line 74) and then awaits for a response from

101

all of them (do while loop of lines 75-79). By assumption, all servers responds with NACK.

Notice that this implies that between the execution of line 76 and 78 the element with key k is

removed from the local list of s because of some other concurrent delete operation op′ invoked

by some client c′. By scrutiny of the pseudocode, we have that a server that deletes an element

from its local list, does so on line 37, which occurs before the server sends a response to the

delete request. By definition, then, op′ is linearized at the point s executes line 37, before it

sends an ACK message to c′. Since op′ causes the element with key k to be removed from the

local list of s between the execution of lines 76 and 78 by c, its linearization point is included

in the execution interval of op. Since we place the linearization point of op right after the

linearization point of op′, the claim holds.

The argument is similar for when op is an instance of a search operation for key k that

terminates after receiving a NACK message from all the servers on lines 63-67.

Each server maintains a local variable token with initial value 0. Let some server s receive

a message m in some configuration C. If the field tk of m is equal to TOKEN, we say that

receives a token message. Observe that when s receives a token message (line 17), the value of

token is set to s. Furthermore, when s executes line 27, where the value of token changes from

s to s + 1, s also sends a token message to s + 1 (line 28). Notice that s can only reach and

execute this line if the condition of the if clause of line 20 evaluates to false, i.e. if token =

s. Then, the following holds:

Observation 84. At each configuration in α, there is at most one server s for which the local

variable token has the value s.

This server is referred to as token server. By the pseudocode, namely the if else clause of

lines 20, 23, and by line 24, the following observations holds.

Observation 85. A server s performs insert operations on its local list in α only during those

subsequences of α in which it is the token server.

Each server maintains a local list collection, llist. By observation of the pseudocode,

lines 9 and 12, we have that if an insert operation attempts to insert key k in either of the

lists of a server s, but an element with that key already exists, then no second element for k is

inserted and the operation terminates. Thus, the following holds:

Observation 86. The keys contained in the list collection of s in any configuration C of α

form a set.

We denote this set by lls. By scrutiny of the pseudocode, we see that a new list object is

allocated in llist each time a server receives a token message (lines 6-8). The new object is

identified by the value of local variable round. By observation of the pseudocode, we further

have that each time a server inserts a key into lls, it does so on the list object identified by

round (line 24). We refer to this object as current list object. Then, based on lines 25-28 we

have the following:

102

Observation 87. A token message is sent from a server s to a server ((s + 1) mod NS) in

some configuration C only if the current local list object of server s is full at C.

Further inspection of the pseudocode shows that the local list object of a server is only

accessed by the execution of line 9, 24, 32, or 37. From this, we have the following observation.

Observation 88. If an operation op modifies the local list object of some server, then this

occurs in the configuration in which op is linearized.

Let Ci be the configuration in which the i-th linearization point in α is placed. Denote by

αi, the prefix of α which ends just after Ci and let Li be the sequence of linearization points

that is defined by αi. Denote by Si the set of keys that a sequential list contains after applying

the sequence of operations that Li imposes. Denote by Si = ǫ the empty sequence (the list is

empty).

Lemma 89. Let k be the token server in some configuration C in which it receives a message

m for an insert operation op with key k invoked by client c. Then at C, no element with key k

is contained in the local list set of any other server s 6= k.

Proof. By inspection of the pseudocode, when a client c sends a message m to some server

either on line 45, line 62, line 74, or line 78, the mloop field of m is equal to false. This field is

set to true when server sNS−1 executes line 45. Notice that in the configuration in which this

line is executed by sNS−1, it is not the token server (otherwise the condition of line 20 would

not evaluate to true and the line would not be executed).

Consider the case where m reaches a server s at some configuration C and let lls contain

an element with key k in C. By inspection of the pseudocode (lines 9-12) we have that in that

case, m is not forwarded to a subsequent server.

Furthermore, by lines 20-45, we have that if s is not the token server and not sNS−1, and

provided that lls does not contain an element with key k, then s forwards m without modifying

the mloop field. This implies that the mloop field of m is changed at most once in α from

false to true, and that by server NS− 1, in a configuration C ′ in which k is not contained in

llNS−1.

Lemma 90. Let Ci, i ≥ 0, be a configuration in α in which server sti is the token server. Let

llji be the local list set of server sj, 0 ≤ j < NS, in Ci. Then it holds that Si =
⋃

NS−1
j=0 llji .

Proof. We prove the claim by induction on i.

Base case (i = 0). The claim holds trivially at C0.

Hypothesis. Fix any i > 0 and assume that at Ci, it holds that Si =
⋃

NS−1
j=0 llji . We show

that the claim holds for i+ 1.

Induction step. Let opi+1 be the operation that corresponds to the linearization point

placed in Ci+1. We proceed by case study.

Let opi+1 be an insert operation for key k. Assume first that the linearization point of opi+1

is placed at the execution of line 9 by sti+1
for it. Notice that when this line is executed, k is

103

searched for in the local list of sti+1
. Recall that, by the way linearization points are assigned,

the client c that invoked opi+1 receives NACK as response. Notice also that sti+1
sends NACK

as a response to c if k is present in the local list of sti+1
, and thus status1 = true. In that

case, lines 20 to 29 are not executed, and therefore, no new element is inserted into the local

list of sti+1
(line 24). Thus ll

sti+1

i+1 = ll
sti+1

i . By the induction hypothesis, Si =
⋃

NS−1
j=0 llji . By

Observation 88 it follows that for any other server sj , where j 6= ti+1, ll
sj
i+1 = ll

sj
i as well.

Then,
⋃

NS−1
j=0 llji+1 =

⋃
NS−1
j=0 llji . Notice that since the server responds with NACK, Si+1 = Si by

definition. Thus, Si+1 =
⋃

NS−1
j=0 llji+1 and the claim holds.

Now, assume that opi+1 is linearized at the execution of line 24 by the token server for

it. By the way linearization points are assigned, this implies that when this line is executed,

status2 = true, and the insertion of an element with key k into the local list of st was successful.

This in turn implies that at Ci+1, ll
st
i+1 = llsti ∪ {k}. By Observation 88 it follows that for any

other server sj , where j 6= ti+1, ll
sj
i+1 = ll

sj
i as well. Notice that since the server responds with

ACK, by definition the insertion is successful and thus Si+1 = Si∪{k}. Since by the hypothesis,

Si =
⋃

NS−1
j=0 llji , it holds that Si+1 =

⋃
NS−1
j=0 llji ∪ {k} =

⋃
NS−1
j=0 llji+1, thus, the claim holds.

Now consider that opi+1 is a delete operation for key k. Assume first that some server sd

responds with ACK, by executing line 38, to the client c that invoked opi+1. Then opi+1 is

linearized at the execution of this line by sd. Notice that this line is executed by a server if

status1 = true, i.e. if the server was successful in locating and deleting an element with key

k from its local list. Thus, llsti+1 = llsti \ {k}. Furthermore, by definition, Si+1 = Si \ {k}. By

the induction hypothesis, Si =
⋃

NS−1
j=0 llji and since by Observation 88 no other modification

occurred on the local list of some other server between Ci and Ci+1, it follows that Si+1 =

Si \ {k} =
⋃

NS−1
j=0 llji \ {k} =

⋃
NS−1
j=0 llji+1.

Assume now that opi+1 is a delete operation for which no server responds with ACK to

the invoking client. Recall that in this case, by definition, Si+1 = Si. By inspection of the

pseudocode, it follows that no server finds an element with key k in its local list when it is

executing line 37 for opi+1. We examine two cases: (i) either no element with key k is contained

in any local list of any server in the beginning of the execution interval of opi+1, or (ii) an element

with key k is contained in the local list of some server sd in the beginning of opi+1’s execution

interval, but sd deletes it while serving a different delete operation op′, before it executes line 37

for opi+1.

Assume that case (i) holds. Then, the linearization point is placed in the beginning of the

execution interval of opi+1. Notice that in this case, the invocation (nor in fact the further

execution) of opi+1 has no effect on the local list of any server. Thus, between Ci and Ci+1 no

server local list is modified and, by the induction hypothesis, the claim holds.

Assume now that case (ii) holds. By Lemma 83, we have that a concurrent delete operation

op′ removes the element with key k from the local list of sd during the execution interval of

opi+1. By the assignment of linearization points, Observation 88 and Lemma 83, it further

follows that op′ = opi. Notice that in this case (ii) also, opi+1 has no effect on the local list of

any server. Thus, since by the induction hypothesis it holds that Si =
⋃

NS−1
j=0 llji , it also holds

104

that Si =
⋃

NS−1
j=0 llji+1, and since Si = Si+1, the claim holds. Since a search operation does

not modify the local list of any server, the argument is analogous as for the case of the delete

operation.

From the above lemmas and observations, we have the following.

Theorem 91. The distributed unsorted list is linearizable. The insert operation has time and

communication complexity O(NS). The search and delete operations have communication com-

plexity O(1).

4.2.4 A variation on the Unsorted List

In order to avoid the serial nature of Insert operations, we present a variant of the unsorted list

implementation, in which insert operations avoid traversing the entire server ring by default.

Event-driven code for the server is presented in Algorithm 23. Each server s maintains a

local list (llist variable) allocated for storing list elements, a token variable which indicates

whether s currently holds the token, and a variable round to mark the ring round-trips the

token has performed; round is initially 0, and is incremented after every transmission of the

token to the next server. The pseudocode of the client is presented in Algorithm 24.

A client c sends an insert request for an element with key k to all servers in parallel and

awaits a response. If any of the servers contains k in its local list, it sends ACK to c and the

insert operation terminates. If no server finds k, then all reply NACK to c. In addition, the

token server st encapsulates its id in the NACK reply. After that, c sends an insert request for

k to st only. If st can insert it, it replies ACK to c. If k has in the meanwhile been inserted, st

replies NACK to c. If st is no longer the token server, it forwards the request along the server

ring until it reaches the current token server. Servers along the ring should check whether they

contain k or not, and if some server does, then it replies NACK to c. Let s′t be a token server

that receives such a request. It also checks whether it contains k or not. If not, it attempts to

insert k into its local list. Otherwise it replies NACK. When attempting to insert the element

in the local list, it may occur that the allocated space does not suffice. In this case, the server

forwards the request as well as the token to the next server in the ring, and increments the

value of round variable. If the insertion at a token server is successful, the server then replies

ACK to c.

Delete and Search operations are the same as in the previous version of the unsorted list.

4.3 A Distributed Sorted List

We briefly propose a modification of the distributed unsorted list of Section 4.2.3 that converts

it into a sorted list. Clients use the same functions as for the unsorted list in order to access

the sorted list. However, the servers have to perform more complex handling of messages and

communication among them. Each server s has a memory chunk of predetermined size where

it maintains a part of the implemented list so that all elements stored on server si have smaller

105

Algorithm 23 Events triggered in a server of the distributed unsorted list variant.

1 List llist = ∅;
2 int my id, next id, token = 0, round = 0;

3 a message 〈op, cid, key, data, tk〉 is received:
4 switch (op) {
5 case INSERT:
6 if (tk == TOKEN) {
7 token = my id;
8 allocate new memory chunk(llist, round);

}
9 status1 = search(llist, key);
10 if (tk == −2) {
11 if (status1) {
12 if (token == my id) send(cid, 〈ACK, true〉);
13 else send(cid, 〈ACK, false〉);
14 } else {
15 if (token == my id) send(cid, 〈NACK, true〉);
16 else send(cid, 〈NACK, false〉);

}
17 } else {
18 if (status1) send(cid, NACK);
19 else {
20 if (token 6= my id) {
21 next id = get next(my id);
22 send(next id, 〈op, cid, key, data, tk〉);
23 } else {
24 status2 = insert(llist, round, key, data);
25 if (status2 == false) {
26 round++;
27 token = get next(my id);
28 send(token, 〈op, cid, key, data,TOKEN〉);
29 } else send(cid, ACK);

}
}

}
30 break;
31 case SEARCH:
32 status1 = search(llist, key);
33 if (status1) send(cid, 〈ACK,my id〉);
34 else send(cid, 〈NACK,my id〉);
35 break;
36 case DELETE:
37 status1 = delete(llist, key);
38 if (status1) send(cid, ACK);
39 else send(cid, NACK);
40 break;

}

keys than those stored on server si+1, 0 ≤ i < NS − 1. Because of this sorting property, an

element with key k is not appended to the end of the list, so a token server is useless in this

case. This is an essential difference with the unsorted list implementation.

106

Algorithm 24 Insert, Search and Delete operation for a client of the distributed list variant.

41 boolean ClientInsert(int cid, int key, data data) {
42 boolean status;
43 boolean found = false;
44 int tid;

45 send to all servers(〈INSERT, cid, key,⊥,−2〉);
46 do {
47 〈status, sid, is token〉 = receive();
48 if (status == ACK) found = true;
49 if (is token) tid = sid;
50 c++;
51 } while (c < NS);
52 if (found == true) return false;
53 send(tid, 〈INSERT, cid, key, data,−1〉);
54 status = receive();
55 if (status == NACK) return false;
56 else return true;

}

57 boolean ClientSearch(int cid, int key) {
58 int sid;
59 int c = 0;
60 boolean status;
61 boolean found = false;

62 send to all servers(〈SEARCH, cid, key,⊥,−1〉);
63 do {
64 〈status, sid〉 = receive();
65 if (status == ACK) found = true;
66 c++;
67 } while (c < NS);
68 return found;

}

69 boolean ClientDelete(int cid, int key) {
70 int sid;
71 int c = 0;
72 boolean status;
73 boolean deleted = false;

74 send to all servers(〈DELETE, cid, key,⊥,−1〉);
75 do {
76 〈status, sid〉 = receive();
77 if (status == ACK) deleted = true;
78 c++;
79 } while (c < NS);
80 return deleted;

}

4.3.1 Algorithm Description

Event-driven pseudocode for the server is presented in Algorithm 25 and 26. Similarly to the

unsorted case, a client sends an insert request for key k to server s0. The server searches its

local part of the list for a key that is greater than or equal to k. In case that it finds such an

107

element that is not equal to k, it can try to insert k to its local list, llist. More specifically,

if the server has sufficient storage space for a new element, it simply creates a new node with

key k and inserts it to the list. However, in case that the server does not have enough storage

space, it tries to free it by forwarding a chunk of elements of llist to the next server. If this is

possible, it serves the request. In case s0 does not find a key that is greater than or equal to

k in its llist, if forwards the message with the insert request to the next server, which in turn

tries to serve the request accordingly.

Notice that this way, a request may be forwarded from one server to the next, as in the

case of the unsorted list. However, for ease of presentation, in the following we present a static

algorithm where this forwarding stops at sNS−1. In case that an element with k is already

present in the llist of some server s of the resulting sequence, then s sends an NACK message

to the client that requested the insert.

As in the case of the unsorted list, a client performs a search or delete operation for key k by

sending the request to all servers. If not handled correctly, then the interleaving of the arrival

of requests to servers may cause a search operation to “miss” the key k that it is searching,

because the corresponding element may be in the process to be moved from one server to a

neighboring one. In order to avoid this, servers maintain a sequence number for each client that

is incremented at every search and delete operation. Neighboring servers that have to move a

chunk of elements among them, first verify that the latest (search or delete) requests that they

have served for each client have compatible sequence numbers and perform the move only then.

When an insert request for key k reaches a server s, s compares the maximal key stored in

its local list to k. If k is greater than the maximal key and s is not sNS−1, the request must be

forwarded to the next server (line 36). Otherwise, if k is to be stored on s, s checks if llist has

enough space to serve the insert. If it does, s inserts the element and sends an ACK to the client

(line 24-25). If s does not have space for inserts, the operation cannot be executed, hence s must

check whether a chunk of its elements can be forwarded to the next server to make room for

further inserts. To move a chunk, s calls ServerMove() (presented in Algorithm 26) (line 29). If

ServerMove() succeeds in making room in s’s llist, the insert can be accommodated (line 30).

In any other case, s responds to the client with NACK (line 33).

A server process a search request as described for the unsorted list, but it now pairs each such

request with a sequence number (line 41). Delete is processed by a server in a way analogous

to search.

In order to move a chunk of llist to the next server, a server si invokes the auxiliary routine

ServerMove() (line 29). ServerMove() sends a REQC message to server si+1 (line 57). When

si+1 receives this request, it sends its client vector to si (line 7). Upon reception (line 58), si

compares its own client vector to that of si+1 and as long as it lags behind si+1 for any client, it

services search and delete requests until it catches up to si+1 (lines 59-61). Notice that during

this time, si+1 does not serve further client request, in order allow si to catch up with it.

As soon as si and si+1 are compatible in the client delete and search requests that they

have served, si sends to si+1 a chunk of the elements in its local list (lines 62-63) and awaits

108

Algorithm 25 Events triggered in a server of the distributed sorted list.

1 List llist = ∅; int my id, next id, kmax, cv[MC], nbr cv[MC]
2 data[0 . . . CHUNKSIZE] chunk1, chunk2
3 boolean status = false, served = false

4 a message 〈op, cid, key, data〉 is received:
5 switch (op)
6 case REQC:
7 send(cid, cv)
8 chunk2 = receive(cid)
9 if (there is not enough free space in local list to fit the elements recorded in chunk2) then
10 if (my sid == NS− 1) then status = false

11 else

12 chunk1 = getChunkOfElementsFromLocalList(llist)
13 status = ServerMove(next id, chunk1)
14 else status = true

15 if (status == true) then
16 insertChunkOfElementsInLocalList(llist, chunk2)
17 send(cid, ACK)
18 else send(cid, NACK)
19 break

20 case INSERT :
21 while (served 6= true) do
22 kmax = find max(llist)
23 if (kmax > key and isFull(llist) 6= true) then
24 status = insert(llist, key, data)
25 send(cid, status)
26 served = true

27 else if (kmax > key) then
28 chunk1 = getChunkOfElementsFromLocalList(llist)
29 status = ServerMove(next id, chunk1)
30 if (status == true) then
31 removeChunkOfElementsFromLocalList(llist, chunk1)
32 else

33 send(cid, NACK)
34 served = true

35 else

36 if (my id 6= NS− 1) then send(next id, 〈INSERT, cid, key, data〉)
37 else send(cid, NACK)
38 served = true

39 break

40 case SEARCH:
41 cv[cid] + +
42 status = search(llist, key)
43 if (status == false) then send(cid, NACK))
44 else send(cid, ACK)
45 break

46 case DELETE:
47 cv[cid] + +
48 status = search(llist, key)
49 if (status == true) then
50 delete(llist, key)
51 send(cid, ACK)
52 else send(cid, NACK)
53 break

109

Algorithm 26 Auxiliary routine ServerMove for the servers of the distributed sorted list.

54 boolean ServerMove(int cid, data chunk1)
55 boolean status
56 data chunk2

57 send(next id, 〈REQC, cid, 0,⊥〉)
58 nbr cv = receive(next id)
59 while (for any element i, cv[i] < nbr cv[i]) do
60 receiveMessageOfType(SEARCH or DELETE)
61 service request
62 chunk2 = getChunkOfElementsFromLocalList(llist)
63 send(next id, chunk2)
64 status = receive(next id)
65 if (status == true) then
66 removeChunkOfElementsFromLocalList(llist, chunk2)
67 insertChunkOfElementsInLocalList(llist, chunk1)
68 return true

69 else return false

the response of si+1. We remark that in order to perform this kind of bulk transfer, as the one

carried out between a server executing line 64 and another server executing line 8, we consider

that remote DMA transfers are employed. This is omitted from the pseudocode for ease of

presentation.

If si+1 can store the chunk of elements, then it does so and sends ACK to si. Upon reception,

si may now remove this chunk from its local list (line 30) and attempt to serve the insert request.

Notice that if si+1 cannot store the chunk of elements of si, then it itself initiates the same chunk

moving procedure with its next neighbor (lines 11-13), and if it is successful in moving a chunk

of its own, then it can accommodate the chunk received by si. Notice that in the static sorted

list that is presented here, this protocol may potentially spread up to server sNS−1 (line 10). If

sNS−1 does not have available space, then the moving of the chunk fails (line 32). The client

then receives a NACK response, corresponding to a full list.

We remark that this implementation can become dynamic by appropriately exploiting the

placement of the servers on the logical ring, in a way similar to what we do in the unsorted

version.

4.4 Hierarchical Approaches and Experimental Evaluation

In the interest of supporting our theoretical view of the expected behavior of our implementa-

tions, we provide a summary of an experimental evaluation that was performed on them. We

first sketch the hierarchical approach, a practical variation of the data structure implementa-

tions that does not affect correctness or data structure operation, but which is instead intended

to provide good performance and scaling behavior. A deeper analysis of the obtained results is

included in [FKKS15].

110

The hierarchical approach. This approach exploits the fast communication between the

cores of the same island by organizing them virtually, as follows. In each island i, one process

is designated as island master mi. The remaining processes act as clients. The island master

gathers requests from clients located on its island and forwards them to the appropriate data

structure servers. To minimize the number of messages that are sent to those servers, mi may

batch several requests in one or more memory chunks (or fat messages). Then, mi may send the

memory chunks as messages or choose to transfer them to the servers using DMA. Conversely,

a data structure server can either respond to clients individually, or batch the responses to the

messages that pertain to requests initiated by clients of island i and send them to mi (using

DMA). If the latter option is followed, then mi forwards each response to the appropriate

client. Batching can be performed based on different rules for different data structures (and

design approaches) to optimize performance. A straightforward example is the elimination that

can be done in the case of a stack: to implement it, mi may first collect a number of requests

from the clients of its island, then perform elimination among the push and pop requests that

it has received, and then batch the remaining requests into a fat message and forward it to a

data structure server.

In case the architecture is fully non-cache coherent, then mi does not gather the client

requests from their shared memory module. Instead, the clients send their request to mi as

messages. A timeout delimits how long mi waits for such messages before batching them and

forwarding them to the data structure servers.

In partially cache-coherent architectures, an instance of a combining synchronization algo-

rithm [FK12, HIST10] can be used in each island with all clients of the island participating to

the protocol. A combining synchronization algorithm employs a list which stores requests of

active clients from the island. After announcing its request by placing a node in the list, a client

tries to acquire a global lock. The client that manages to acquire the lock, called the combiner,

serves, in addition to its own request, other active requests recorded in the list. Thus, at each

point in time, the combiner plays the role of the island master. When the island master receives

(a batch of) responses from a server, it records each of them in the appropriate element of the

request list to inform active clients of the island about the completion of their requests. In the

meantime, each such client performs spinning (on its element) until either the response for its

request has been fulfilled by the island master or the global lock has been released.

The simple one-level hierarchical scheme of island masters, described above, can easily be

generalized to work for more layers of intermediate masters (in a tree-like fashion). The number

of intermediate masters and the number of layers can be tuned for achieving the best perfor-

mance.

Experimental evaluation. The stack and queue implementations were tested experimentally

on the Formic-Cube [LKL+12], which is a hardware prototype of a 512 core, non-cache-coherent

machine. It consists of 64 boards with 8 cores each (for a total of 512 cores). Each core owns

8 KB of private L1 cache, and 256 KB of private L2 cache. None of these caches is hardware

111

coherent. The boards are connected with a fast, lossless packet-based network forming a 3D-

mesh with a diameter of 6 hops. Each core is equipped with its own local hardware mailbox, an

incoming hardware FIFO queue, whose size is 4 KB. It can be written by any core and read by

the core that owns it. One core per board plays the role of the island master(and could be one

of the algorithm’s servers), whereas the remaining 7 cores of the board serve as clients.

The experiments that were performed on the data structures consisted of executing 107

pairs of requests (push and pop or enqueue and dequeue) in total, increasing the number of

cores for each experiment. To make the experiment more realistic, a random local work (up to

512 dummy loop iterations) was simulated between the execution of two consecutive requests

by the same process. The average throughput of each of the algorithms was measured. The

experiments were similar to those presented in [FK11, FK12, MS96].

The stack implementations that were used for the experiments were (i) a centralized stack,

where only one core acts as server, while all remaining ones act as clients; (ii) a hierarchical

version of the centralized stack where island masters do not batch messages; (iii) a hierarchical,

centralized stack where messages are batched by the island masters; (iv) a hierarchical imple-

mentation of the directory-based stack; and (v) a hierarchical implementation of the token-based

stack.

Since (as further experiments confirmed) the effect of the elimination technique is dominant,

the implementations did not perform elimination, in order to give insights into their actual

behavior. These experiments confirmed that the centralized implementation does not scale

for more than 16 cores and showed the advantages of the hierarchical approach, since the

implementations that incorporate it show better scaling. Interestingly, the directory-based stack

outperforms the other implementations in experimental settings that use between 32 and 256

cores, showing a decline in scalability after that, when compared to the other implementations.

This is attributed to the effect that the particular experimental setting has on the directory

service: since pushes and pops are performed in pairs, frequently, the same key is assigned

to two subsequent operations. This creates contention on the directory servers and degrades

performance.

The queue implementations that were used for the experiments were (i) a centralized queue

where only one core acts as server, while all remaining ones act as clients; (ii) a hierarchical

version of the centralized queue; (iii) a hierarchical version of the directory-based queue; and

(iv) a hierarchical version of the token-based queue. In these experiments, as well, the central-

ized queue exhibited the less scalability and was outperformed by its hierarchical version. The

experiments further supported out theoretical perception that token-based implementations are

nicely-suited for queues of relatively small expected size, offering an alternative that scales bet-

ter than the centralized version as the number of cores increases up to 64. The hierarchical

directory-based approach was the one that exhibited the best scalability characteristics also in

the case of the queue implementations. We attribute this both to the fact that the synchro-

nizer receives batched messages in this case, i.e. has less message handling to perform, and

to the fact that the necessary computation on the synchronizer is minimal, while the actual

112

insertion and deletion to the data structure takes place on the directory servers, allowing for

more parallelization of operations.

By monitoring the amount of exchanged messages in each of the experiments, it was observed

that they do not necessarily represent an indicative factor of actual performance in the proposed

implementations. A low amount of messages may already saturate a server, it it means that the

server has to dedicate significant effort in handling them. It seems more important to ensure

good load balancing between servers if scalability is the desired outcome. A more in-depth

analysis of those factors out of the scope of this thesis and is included in [FKKS15], together

with graphical representations of the obtained resuls.

4.5 Related Work

We round up the context in which the work of this chapter was elaborated, by reviewing the

related literature. Previous research results [KBI+09, KPR+08, LDK+08, KW94] propose how

to support dynamic data structures on distributed memory machines. Some are restricted on

tree-like data structures, other focus on data-parallel programs, some favor code migration,

whereas other focus on data replication. We optimize beyond simple distributed memory ar-

chitectures by exploiting the communication characteristics of non cache-coherent multicore

architectures. Some techniques from [KBI+09, KPR+08, LDK+08] could be of interest though

to further enhance performance and scalability in our implementations.

As in the shared memory context, in the distributed context also, transactional memory

can be employed for the implementation of data structures. Distributed transactional memory

(DTM) [BAC08, CRCR09, DPR15, GGT12, KAJ+08, MMA06, SR11a, SR11c] is a generic

approach for achieving synchronization, so data structures can be implemented on top of them.

However, to do so, DTM systems introduce not only significant space overheads by maintaining

metadata for every object and every transaction, but also performance overheads whenever

reads from or writes to data items take place. Moreover, DTM requires the programmer to

write the code in a transactional-compatible way. (When the transactions dynamically allocate

data, as when they synchronize operations on dynamic data structures, compilers cannot detect

all possible data races without trading performance, by introducing many false positives.) Our

work is on a different avenue: towards providing a customized library of highly-scalable data

structures, specifically tailored for non cache-coherent machines.

TM2C [GGT12] is a DTM proposed for non cache-coherent machines. The paper presents a

simple distributed readers/writers lock service where nodes are responsible for controlling access

to memory regions. It also proposes two contention management (CM) schemes (Wholly and

FairCM) that could be used to achieve starvation-freedom. However, in Wholly, the number of

times a transaction T may abort could be as large as the number of transactions the process

executing T has committed in past, whereas in FairCM, progress is ensured under the assump-

tion that there is no drift [AW04, Lam78] between the clocks of the different processors of the

non cache-coherent machine. Read-only transactions in TM2C can be slow since they have to

113

synchronize with the lock service each time they read a data item, and in case of conflict, they

must additionally synchronize with the appropriate CM module and may have to restart sev-

eral times from scratch. Other existing DTMs [BAC08, CRCR09, SR11b, SR11c, SR11d], not

only impose common DTM overheads, but also may cause livelocks thus not providing strong

progress guarantees.

The data structure implementations we propose do not cause any space overhead, read-only

requests are fast, since all nodes that store data of the implemented structure search for the

requested key in parallel, and the number of steps executed to perform each request is bounded.

We remark that, in our algorithms, information about active requests is submitted to the nodes

where the data reside, and data are not statically assigned to nodes, so our algorithms follow

neither the data-flow approach [BF10, SR11d] nor the control-flow approach [BAC08, SR11b]

from DTM research.

Distributed directory protocols [AGM10, AGM15, HS05, SB14, ZR09] have been suggested

for locating and moving objects on a distributed system. Most of the directory protocols follow

the simple idea that each object is initially stored in one of the nodes, and as the object moves

around, nodes store pointers to its new location. They are usually based either on a spanning

tree [DH98, ZR09] or a hierarchical overlay structure [AGM10, HS05, SB14]. Remarkably,

among them, COMBINE [AGM10] attempts to cope with systems in which communication

is not uniform. Directory protocols could potentially serve for managing objects in DTM.

However, to implement a DTM system using a directory protocol, a contention manager must

be integrated with the distributed directory implementation. As pointed out in [AGM15], this

is not the case with the current contention managers and distributed directory protocols. It is

unclear how to use these protocols to get efficient versions of the distributed data structures we

present in this work.

Distributed data structures have also been proposed [AS03, GBHC00, HBC97, MNN01,

AGS08] in the context of peer-to-peer systems or cluster computing, where dynamicity and

fault-tolerance are main issues. They tend to provide weak consistency guarantees. Our work

is on a different avenue.

Hierarchical lock implementations and other synchronization protocols for NUMA cache-

coherent machines are provided in [DMS11, DMS12, FK12, HIST10, LDT+12, LNS06, RH03].

We extend some of the ideas from these papers, and combine them with new techniques to

get hierarchical implementations for a non cache-coherent architecture. Tudor et al. [DGT15]

attempt to identify patterns on search data structures, which favor implementations that are

portably scalable in cache-coherent machines. The patterns they came up with cannot be used

to automatically generate a concurrent implementation from its sequential counterpart; they

rather provide hints on how to apply optimizations when designing such implementations.

Hazelcast [Haz] is an in-memory data grid middleware which offers implementations for maps,

queues, sets and lists from the Java concurrency utilities interface. These implementations are

optimized for fault tolerance, so some form of replication is supported. Lists and sets are stored

on a single node, so they do not scale beyond the capacity of this node. The queue stores all

114

elements to the memory sequentially before flushing them to the datastore. Like Hazelcast,

GridGain [Gri], an in-memory data fabric which connects applications with datastores, provides

a distributed implementation of queue from the Java concurrency utilities interface. The queue

can be either stored on a single grid node, or be distributed on different grid nodes using the

datastore that exists below GridGain.

115

116

Chapter 5

Conclusion and Open Problems

We have presented a collection of algorithms that are meant to offer ease of programmability of

current multi-core and of emerging future many-core architectures. Those algorithms include

a transactional memory and a concurrent graph implementation that are designed assuming a

cache-coherent shared memory system, as well as a collection of data structures that are imple-

mented assuming a client-server model over a non-cache-coherent message-passing machine. In

the present chapter, we discuss their use and implications.

5.1 Perspectives on Presented Algorithms

Previous chapters were restricted to detailing the defining aspects of our contributions. In

order to round up our presentation, we make use of the following paragraphs in order to discuss

interesting or important issues that our work has not yet covered.

WFR-TM: Practical Aspects and Future Work. We have presented WFR-TM, our im-

plementation of a transactional memory algorithm, in a theoretical manner, in order to simplify

its description and to focus on the correctness and progress properties that it guarantees. This

has also allowed us to simplify the necessary formalism that was used in the proof. However, an

additional concern that would arise for the implementation of a practical version of WFR-TM

would be the optimization for performance. An important such optimization could be the use

of a timestamping mechanism as the one that is presented in [DSS06, RFF06]. This mecha-

nism can speed up the read-set validation process: currently, the validation process that we

provide requires first obtaining and then de-referencing a pointer to a data item, in addition to

the comparison to a local value. On the contrary, the use of timestamping would require the

comparison of a local value – the timestamp of the read-set entry – to the current value of the

global counter.

Another straight-forward optimization could be obtained by substituting the read-set lock-

ing that update transactions perform at commit-time. This locking provides a final read-set

validation to determine whether the transaction must abort. Instead, explicit read-set valida-

117

tion could be carried out, once the transaction has locked its write-set. As a positive side effect,

only the owner field of a tvarrec would then be required to be a CAS object, whereas the rest

fields could be updated with simple writes.

Dense: Extending the Model. The novel model that we have used in order to present

Dense, our concurrent graph implementation, is edge-oriented, meaning that operations on the

graph do not create or remove vertices, but instead, access and affect the edges of the graph.

Implicitly, this means that the resulting implementation assumes a fixed or at least, maximal

number of possible vertices out of a specific vertex set. Dense operations are oblivious to the

values or possible other attributes of those vertices.

Indeed, there are many applications that are concerned with just the connectivity of a graph

and only require to access graph edges. Examples include garbage-collection – where objects

are represented by graph nodes, while references to them are represented by graph edges – and

graph-based video game navigation – where the edges of a graph represent walkable surfaces

between obstacles, represented in turn by graph nodes. Nevertheless, an interesting line of future

work is to extend the update and traversal capabilities of Dense to also provide information

about the state or attributes of the visited vertices.

Distributed Data Structures: Perspectives. We have presented two different implemen-

tations for basic data structures, intended to facilitate programmability of future many-core ar-

chitectures. The implementations could be utilized by runtimes of high-productivity languages

ported to such architectures. Notably, our implementations correspond to several concurrent

data structures supported in Java’s concurrency utilities: Specifically, our implementations can

be used (directly or with light modifications) in order to provide e.g. different kinds of queues,

including static, dynamic, and synchronous ones. The queue implementation can be trivially

adjusted to provide the functionality of delay queues (or delay deques) [Lea06]. Furthermore,

our list implementations provide the functionality of sets.

The experimental evaluation shows the performance and scalability characteristics that some

of the techniques provide, when used on FORMIC, a non cache-coherent hardware prototype.

They also illustrate the scalability power of the hierarchical approach on that machine. While

FORMIC is a many-core architecture emulator, we consider that it exhibits behaviors that

actual machines will have. For this reason, we believe that the proposed data structure imple-

mentations will exhibit the same performance characteristics, if programmed appropriately, on

prototypes with similar characteristics as FORMIC, like Tilera or SCC. We expect this also to

be true for similar machines that may be commercially available in the future.

5.2 Future Prospects

The algorithms presented in this thesis have been designed following diverse models and as-

sumptions. Nevertheless, their designs are governed by similar principles. Arguably, insights

118

that are gained while studying one design may result useful for analyzing another. This can be

nicely illustrated by comparing WFR-TM and Dense.

WFR-TM forces each update transaction to wait for each active read-only transaction it

encounters, even if the read-set of the read-only transaction shares no t-variables with the

update transaction’s write-set. Recall that dynamic traversals in Dense exhibit behavior that is

reminiscent of transactional memory. So, in order to avoid the unnecessary waiting of Update

operations in the Dense implementation, several previous values of an edge are stored on the edge

itself. In ensuring that transactions and dynamic traversals, i.e. complex read-only operations,

are correct and wait-free, WFR-TM opts for incurring time overhead, while Dense opts for

incurring some space overhead. We have thus here the opportunity to observe the trade-offs

offered by different approaches.

With regards to transactional memory in particular, it would also be interesting not only

to investigate trade-offs between design choices, but also between correctness and progress.

Specifically, given the well-known impossibility result by Bushkov et al. [GK08], which states

that a TM implementation cannot ensure that transactions are both opaque and wait-free, it

remains to be seen whether TM algorithms with stronger progress properties than those ensured

by WFR-TM can be designed by trading opacity with a weaker consistency condition. Con-

versely, impossibility results such as the aforementioned one [GK08] can help delimit the extent

to which transaction-like complex operations can be provided for concurrent data structure

implementations such as Dense.

While some data structures can be characterized as regular – as is the case with stacks and

queues, which allow very specific access patterns – others, such as graphs or trees, exhibit a

structural irregularity: This means that it is not easy to predict where and how updates will be

made on the data structure. Contrast this with a FIFO queue: “where” on the data structures

an update can be made is very specifically defined. Furthermore, depending on what end of the

queue the modification is made on, the type of modification, i.e addition of an element (enqueue)

or removal of an element (dequeue), is also very specifically defined. This is not the case in

irregular data structures. Consequently, this makes the design of complex read-only operations

difficult, given that a greater variety of modification patters will have to be taken into account

if the read-only operation has to provide consistency. The implementation of Dense addresses

this by taking such an irregular data structure and using a regularized representation of it,

in order to provide dynamic traversals. An interesting question concerns whether the helping

mechanism employed by Dense can be used as a generalized traversal technique. It would be

interesting to explore what other irregular or regular data structures (trees, lists, queues, etc)

can benefit from it.

Even though the distributed data structures are devised under a different framework than

their concurrent equivalents, they provide the same functionality when seen from the program-

mer’s level. For this reason, we consider that the concerns we exhibited previously, regarding

read-only operations, also apply to them. Furthermore, the absence of cache-coherence is an

additional factor of difficulty, apart from the process asynchrony. Generally speaking, the

119

algorithms that we provide for either paradigm are rather reader-friendly: WFR-TM favors

read-only transactions and Dense burdens the Update operations with the book-keeping of past

edge values so that the dynamic traversals can easily construct a consistent view. Similarly, the

distributed list implementations that we present provide a parallelized implementation of the

Search operation. A step further in terms of functionality would be to enhance our distributed

implementations with the capability of taking a total or partial snapshot of the data structure’s

state. Taking a cue from the Dense implementation and from standard practices in distributed

computing, the use of vector clocks can be an interesting path to follow for that. A less complex

read-only operation that is useful when it comes to list implementations in particular, is the

range query. Interestingly, our sorted list implementation can be modified in order to provide

it: by making the delete operation visit the servers one after another, i.e. by making it as slow

as the insert operation, we could use the search operations in order to provide range queries.

However, a more challenging question is how to accomplish this without sacrificing the efficiency

that the current update implementation can provide.

The questions and concerns that are mentioned so far are an indicative subset of the chal-

lenges that the new machines pose, not only to the average programmer but also to the expert

that is tasked with providing programming abstractions and data structure libraries. Arguably,

while the architectures that we are concerned with become more and more pervasive, expertise

in programming them will increase. The solutions we propose cannot claim to be the “silver

bullet” to every kind of programming or performance problem. However, we consider that the

presented algorithms can be a valuable contribution to making the programming of those ar-

chitectures more accessible, while the required expertise is being acquired. We consider that

this accessibility allows for the sufficient exploitation of the available computing power, even

in the face of lacking programmer specialization. Furthermore, we hope that the study of the

behavior of those algorithms can help shed light on more general concurrent computing issues

and give insight into future architectures’ behavior that will ultimately contribute to the better

design of tailor-made applications for them.

If we return to the pebble-in-the-pond metaphor, we can state that while practices in hard-

ware design change and evolve, the manner in which the programming paradigms adapt to them

may continue to raise waves. Far from calming the surface, efforts such as ours may add to

the turbulence. In fact, we do hope that they may contribute to the better understanding of

the characteristics of the emerging hardware and in turn, indirectly contribute to the design of

more efficient software. In the meanwhile, we hope that the implementations that we provide

may assist the programmer in floating even while the waters are troubled.

120

Bibliography

[AAD+93] Yehuda Afek, Hagit Attiya, Danny Dolev, Eli Gafni, Michael Merritt, and Nir

Shavit. Atomic snapshots of shared memory. J. ACM, 40(4):873–890, September

1993.

[ABH+01] Gabriel Antoniu, Luc Bougé, Philip Hatcher, Mark MacBeth, Keith McGuigan, and

Raymond Namyst. The Hyperion system: Compiling multithreaded Java bytecode

for distributed execution. Parallel Computing, 27(10):1279–1297, 2001.

[AGM10] Hagit Attiya, Vincent Gramoli, and Alessia Milani. A provably starvation-free

distributed directory protocol. In Proceedings of the 12th International Symposium

on Stabilization, Safety, and Security of Distributed Systems (SSS), pages 405–419,

New York, USA, September 2010.

[AGM15] Hagit Attiya, Vincent Gramoli, and Alessia Milani. Directory protocols for dis-

tributed transactional memory. In Rachid Guerraoui and Paolo Romano, editors,

Transactional Memory. Foundations, Algorithms, Tools, and Applications, volume

8913 of Lecture Notes in Computer Science, pages 367–391. Springer International

Publishing, 2015.

[AGR08] Hagit Attiya, Rachid Guerraoui, and Eric Ruppert. Partial snapshot objects. In

Proceedings of the 20th Annual Symposium on Parallelism in Algorithms and Ar-

chitectures (SPAA), pages 336–343, NY, USA, 2008. ACM.

[AGS08] Marcos Kawazoe Aguilera, Wojciech M. Golab, and Mehul A. Shah. A practical

scalable distributed b-tree. PVLDB, 1(1):598–609, 2008.

[AH12] Hagit Attiya and Eshcar Hillel. A single-version stm that is multi-versioned per-

missive. Theory of Computing Systems, 51(4):425–446, 2012.

[AHM09] Hagit Attiya, Eshcar Hillel, and Alessia Milani. Inherent limitations on disjoint-

access parallel implementations of transactional memory. In Proceedings of the 21st

Symposium on Parallelism in Algorithms and Architectures, SPAA ’09, pages 69–78,

New York, USA, 2009. ACM.

121

[AMS12] Yehuda Afek, Alexander Matveev, and Nir Shavit. Pessimistic software lock-elision.

In Proceedings of the 26th International Symposium on Distributed Computing,

DISC’12, pages 297–311, Berlin, Heidelberg, 2012. Springer-Verlag.

[And93] James H. Anderson. Composite registers. In Distributed Computing, pages 15–30,

1993.

[And94] JamesH. Anderson. Multi-writer composite registers. Distributed Computing,

7(4):175–195, 1994.

[AR93] Hagit Attiya and Ophir Rachman. Atomic snapshots in o(n log n) operations. In

Proceedings of the Twelfth Annual ACM Symposium on Principles of Distributed

Computing, PODC ’93, pages 29–40, New York, NY, USA, 1993. ACM.

[AS03] James Aspnes and Gauri Shah. Skip Graphs. In Proceedings of the Fourteenth

Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 384–393,

Philadelphia, USA, 2003. SIAM.

[AW04] Hagit Attiya and Jennifer Welch. Distributed Computing: Fundamentals, Simula-

tions and Advanced Topics (2nd edition). John Wiley Interscience, March 2004.

[BAC08] Robert L. Bocchino, Vikram S. Adve, and Bradford L. Chamberlain. Software

transactional memory for large scale clusters. In Proceedings of the 13th ACM SIG-

PLAN Symposium on Principles and Practice of Parallel Programming (PPoPP),

pages 247–258, New York, USA, 2008.

[BF10] Annette Bieniusa and Thomas Fuhrmann. Consistency in hindsight: A fully de-

centralized STM algorithm. In Proceedings of the 24th IEEE International Sympo-

sium on Parallel and Distributed Processing (IPDPS), pages 1–12, Atlanta, Georgia,

USA, April 2010.

[BGK12a] Victor Bushkov, Rachid Guerraoui, and Michal Kapalka. On the liveness of trans-

actional memory. In Proceedings of the 31st ACM Symposium on Principles of

Distributed Computing, PODC ’12, pages 9–18, New York, USA, 2012. ACM.

[BGK12b] Victor Bushkov, Rachid Guerraoui, and Michal Kapalka. On the liveness of trans-

actional memory. In Proceedings of the 31st Annual ACM SIGACT-SIGOPS Sym-

posium on Principles of Distributed Computing (PODC), pages 9–18, NY, USA,

2012. ACM.

[CAB+13] Nicholas P. Carter, Aditya Agrawal, Shekhar Borkar, Romain Cledat, Howard

David, Dave Dunning, Joshua B. Fryman, Ivan Ganev, Roger A. Golliver, Rob C.

Knauerhase, Richard Lethin, Benôıt Meister, Asit K. Mishra, Wilfred R. Pinfold,

Justin Teller, Josep Torrellas, Nicolas Vasilache, Ganesh Venkatesh, and Jianping

Xu. Runnemede: An architecture for Ubiquitous High-Performance Computing.

122

In Proceedings of the 19th IEEE International Symposium on High Performance

Computer Architecture (HPCA), pages 198–209. IEEE Computer Society, 2013.

[CKK+08] Guojing Cong, Sreedhar B. Kodali, Sriram Krishnamoorthy, Doug Lea, Vijay A.

Saraswat, and Tong Wen. Solving large, irregular graph problems using adaptive

work-stealing. In 37th International Conference on Parallel Processing (ICPP),

pages 536–545, 2008.

[CRCR09] M. Couceiro, P. Romano, N. Carvalho, and L. Rodrigues. D2STM: Dependable

Distributed Software Transactional Memory. In Proceedings of the 15th Pacific Rim

International Symposium on Dependable Computing (PRDC), Shanghai, China,

November 2009.

[Dev93] Robert Devine. Design and Implementation of DDH: A Distributed Dynamic Hash-

ing Algorithm. In Proceedings of the 4th International Conference on Foundations

of Data Organization and Algorithms (FODO), pages 101–114, 1993.

[DGT15] Tudor David, Rachid Guerraoui, and Vasileios Trigonakis. Asynchronized concur-

rency: The secret to scaling concurrent search data structures. In Proceeding of

the 20th international Conference on Architectural Support for Programming Lan-

guages and Operating Systems (ASPLOS), pages 631–644, Istanbul, Turkey, March

2015.

[DH98] Michael J. Demmer and Maurice Herlihy. The arrow distributed directory protocol.

In Shay Kutten, editor, DISC, volume 1499 of Lecture Notes in Computer Science,

pages 119–133. Springer, 1998.

[DMS11] David Dice, Virendra J. Marathe, and Nir Shavit. Flat-combining NUMA locks. In

Proceedings of the 23rd Annual ACM Symposium on Parallelism in Algorithms and

Architectures (SPAA), pages 65–74, San Jose, CA, USA, June 2011.

[DMS12] David Dice, Virendra J. Marathe, and Nir Shavit. Lock cohorting: A general tech-

nique for designing numa locks. In Proceedings of the 17th ACM SIGPLAN Sympo-

sium on Principles and Practice of Parallel Programming (PPoPP), pages 247–256,

New York, USA, 2012.

[DPR15] Aditya Dhoke, Roberto Palmieri, and Binoy Ravindran. On reducing false conflicts

in distributed transactional data structures. In Proceedings of the 2015 International

Conference on Distributed Computing and Networking (ICDCN), pages 8:1–8:10,

Goa, India, January 2015.

[DSS06] Dave Dice, Ori Shalev, and Nir Shavit. Transactional locking ii. In Proceedings

of the 20th international conference on Distributed Computing, DISC’06, pages

194–208, Berlin, Heidelberg, 2006. Springer-Verlag.

123

[DT01] William J. Dally and Brian Towles. Route packets, not wires: On-chip inteconnec-

tion networks. In Proceedings of the 38th Annual Design Automation Conference,

DAC ’01, pages 684–689, New York, NY, USA, 2001. ACM.

[FC11] Sérgio Miguel Fernandes and João Cachopo. Lock-free and scalable multi-version

software transactional memory. In Proceedings of the 16th ACM symposium on

Principles and practice of parallel programming, PPoPP ’11, pages 179–188, New

York, USA, 2011. ACM.

[FFMR10] Pascal Felber, Christof Fetzer, Patrick Marlier, and Torvald Riegel. Time-based

software transactional memory. IEEE Transactions on Parallel and Distributed

Systems, 21:1793–1807, 2010.

[FFR08] Pascal Felber, Christof Fetzer, and Torvald Riegel. Dynamic performance tuning of

word-based software transactional memory. In PPoPP ’08: Proceedings of the 13th

ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,

PPoPP’08, pages 237–246, New York, USA, 2008. ACM.

[FH07] Keir Fraser and Tim Harris. Concurrent programming without locks. ACM Trans.

Comput. Syst., 25(2), May 2007.

[FIKK15] Panagiota Fatourou, Mykhailo Iaremko, Eleni Kanellou, and Eleftherios Kosmas.

Algorithmic techniques in stm design. In Transactional Memory. Foundations, Al-

gorithms, Tools, and Applications, volume 8913, pages 101–126. Springer, 2015.

[FK11] Panagiota Fatourou and Nikolaos D. Kallimanis. A highly-efficient wait-free univer-

sal construction. In Proceedings of the 23rd Annual ACM Symposium on Parallelism

in Algorithms and Architectures (SPAA), pages 325–334, New York, USA, 2011.

[FK12] Panagiota Fatourou and Nikolaos D. Kallimanis. Revisiting the combining syn-

chronization technique. In Proceedings of the 17th ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming (SPAA), pages 257–266, 2012.

[FKKR14] Panagiota Fatourou, Eleni Kanellou, Eleftherios Kosmas, and Md Forhad Rabbi.

WFR-TM: wait-free readers without sacrificing speculation of writers. In Principles

of Distributed Systems - 18th International Conference, OPODIS 2014, Cortina

d’Ampezzo, Italy, December 16-19, 2014. Proceedings, pages 420–436, 2014.

[FKKS15] Panagiota Fatourou, Nikolaos D. Kallimanis, Eleni Kanellou, and Christi Syme-

onidou. Distributed data structures for future many-core architectures. Technical

Report TR-447, ICS-FORTH, April 2015.

[GBHC00] Steven D. Gribble, Eric A. Brewer, Joseph M. Hellerstein, and David Culler. Scal-

able, distributed data structures for internet service construction. In Proceedings of

the 4th Conference on Symposium on Operating System Design & Implementation

(OSDI), pages 22–22, Berkeley, CA, USA, 2000. USENIX Association.

124

[GGT12] Vincent Gramoli, Rachid Guerraoui, and Vasileios Trigonakis. TM2C: A Software

Transactional Memory for Many-cores. In Proceedings of the 7th ACM European

Conference on Computer Systems (EuroSys), pages 351–364, NY, USA, 2012.

[GHKR11] M. Gries, U. Hoffmann, M. Konow, and M. Riepen. Scc: A flexible architecture for

many-core platform research. Computing in Science Engineering, 13(6):79–83, Nov

2011.

[GK08] Rachid Guerraoui and Michal Kapalka. On the correctness of transactional memory.

In Proceedings of the 13th ACM Symposium on Principles and Practice of Parallel

Programming, PPoPP ’08, pages 175–184, New York, USA, 2008. ACM.

[GKV07] Rachid Guerraoui, Michal Kapalka, and Jan Vitek. Stmbench7: A benchmark for

software transactional memory. In Proceedings of the 2Nd ACM SIGOPS/EuroSys

European Conference on Computer Systems 2007, EuroSys ’07, pages 315–324, New

York, NY, USA, 2007. ACM.

[Gri] GridGain. Gridgain - in-memory data fabric. http://www.gridgain.com/.

[Har01] Timothy L. Harris. A pragmatic implementation of non-blocking linked-lists. In

Proceedings of the 15th International Conference on Distributed Computing (DISC),

pages 300–314, London, UK, 2001. Springer-Verlag.

[Haz] Hazelcast. Hazelcast the leading in-memory data grid. http://hazelcast.com/.

[HBC97] Victoria Hilford, Farokh B. Bastani, and Bojan Cukic. Eh* - extendible hashing

in a distributed environment. In Proceedings of the 21 st International Computer

Software and Applications Conference (COMPSAC), 1997.

[HDH+10] J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl, D. Jenkins, H. Wil-

son, N. Borkar, G. Schrom, F. Pailet, S. Jain, T. Jacob, S. Yada, S. Marella, P. Sali-

hundam, V. Erraguntla, M. Konow, M. Riepen, G. Droege, J. Lindemann, M. Gries,

T. Apel, K. Henriss, T. Lund-Larsen, S. Steibl, S. Borkar, V. De, R. Van der Wijn-

gaart, and T. Mattson. A 48-Core IA-32 message-passing processor with DVFS in

45nm CMOS. In Proceedings of the International Solid-State Circuits Conference

(ISSCC), pages 108–109, 2010.

[Her91] Maurice Herlihy. Wait-free synchronization. ACM Trans. Program. Lang. Syst.,

13(1):124–149, January 1991.

[Hew13] HP ProLiant SL4500 server series overview. Technical report, Hewlett-Packard,

2013.

[HIST10] Danny Hendler, Itai Incze, Nir Shavit, and Moran Tzafrir. Flat combining and

the synchronization-parallelism tradeoff. In Proceedings of the 22nd Annual ACM

125

http://www.gridgain.com/
http://hazelcast.com/

Symposium on Parallelism in Algorithms and Architectures (SPAA), pages 355–364,

New York,USA, 2010.

[HLM03] Maurice Herlihy, Victor Luchangco, and Mark Moir. Obstruction-free synchroniza-

tion: Double-ended queues as an example. In Proceedings of the 23rd International

Conference on Distributed Computing Systems, ICDCS ’03, pages 522–, Washing-

ton, DC, USA, 2003. IEEE Computer Society.

[HLMS03] Maurice Herlihy, Victor Luchangco, Mark Moir, and William N. Scherer, III. Soft-

ware transactional memory for dynamic-sized data structures. In Proceedings of the

22nd ACM Symposium on Principles of Distributed Computing, PODC’03, pages

92–101, New York, USA, 2003. ACM.

[HM93] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: architectural sup-

port for lock-free data structures. In Proceedings of the 20th Annual International

Symposium on Computer Architecture (ISCA), New York, USA, 1993.

[HS05] Maurice Herlihy and Ye Sun. Distributed transactional memory for metric-space

networks. In Proceedings of the 19th International Conference on Distributed Com-

puting (DISC), pages 324–338. Springer Berlin Heidelberg, 2005.

[HS08] Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming. Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA, 2008.

[HW90] Maurice P Herlihy and Jeannette M Wing. Linearizability: A correctness condition

for concurrent objects. ACM Transactions on Programming Languages and Systems

(TOPLAS), 12(3):463–492, 1990.

[IR09] Damien Imbs and Michel Raynal. Help when needed, but no more: Efficient

read/write partial snapshot. In Distributed Computing, volume 5805, pages 142–

156. Springer Berlin Heidelberg, 2009.

[KAJ+08] Christos Kotselidis, Mohammad Ansari, Kim Jarvis, Mikel Luján, Chris C.

Kirkham, and Ian Watson. Distm: A software transactional memory framework

for clusters. In ICPP, pages 51–58. IEEE Computer Society, 2008.

[KBI+09] Milind Kulkarni, Martin Burtscher, Rajeshkar Inkulu, Keshav Pingali, and Calin

Casçaval. How much parallelism is there in irregular applications? In Proceedings

of the 14th ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming (PPoPP), pages 3–14, New York, USA, 2009. ACM.

[KBLD08] Jakub Kurzak, Alfredo Buttari, Piotr Luszczek, and Jack Dongarra. The playstation

3 for high-performance scientific computing. Computing in Science and Engineering,

10(3):84–87, 2008.

126

[KK15] Nikolaos D. Kallimanis and Eleni Kanellou. Wait-free concurrent graph objects

with dynamic traversals. In Principles of Distributed Systems - 19th International

Conference, OPODIS 2015, 2015.

[KP11] Alex Kogan and Erez Petrank. Wait-free queues with multiple enqueuers and de-

queuers. In Proceedings of the 16th ACM Symposium on Principles and Practice

of Parallel Programming (PPoPP), pages 223–234, NY, USA, 2011. ACM.

[KP12] Alex Kogan and Erez Petrank. A methodology for creating fast wait-free data

structures. SIGPLAN Not., 47(8):141–150, February 2012.

[KPR+08] Milind Kulkarni, Keshav Pingali, Ganesh Ramanarayanan, Bruce Walter, Kavita

Bala, and L. Paul Chew. Optimistic parallelism benefits from data partitioning.

In Proceeding of the 13th international Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS), 2008.

[KR15] Petr Kuznetsov and Srivatsan Ravi. On partial wait-freedom in transactional mem-

ory. In Proceedings of the 2015 International Conference on Distributed Computing

and Networking, ICDCN ’15, pages 10:1–10:9, New York, NY, USA, 2015. ACM.

[KW94] Brigitte Kröll and Peter Widmayer. Distributing a search tree among a growing

number of processors. In Proceedings of the 1994 ACM SIGMOD International

Conference on Management of Data, pages 265–276, New York, USA, 1994.

[Lam78] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.

Commun. ACM, 21(7), 1978.

[LDK+08] D.B. Larkins, J. Dinan, S. Krishnamoorthy, S. Parthasarathy, A. Rountev, and

P. Sadayappan. Global trees: A framework for linked data structures on distributed

memory parallel systems. In International Conference for High Performance Com-

puting, Networking, Storage and Analysis, pages 1–13, Nov 2008.

[LDT+12] Jean-Pierre Lozi, Florian David, Gaël Thomas, Julia Lawall, and Gilles Muller. Re-

mote core locking: Migrating critical-section execution to improve the performance

of multithreaded applications. In Proceedings of the 2012 USENIX Conference on

Annual Technical Conference, pages 6–6, Berkeley, CA, USA, 2012. USENIX Asso-

ciation.

[Lea06] Douglas Lea. Concurrent Programming in Java(TM): Design Principles and Pat-

terns (3rd Edition). Addison-Wesley Professional, 2006.

[LKL+12] Spyros Lyberis, George Kalokerinos, Michalis Lygerakis, Vassilis Papaefstathiou,

Dimitris Tsaliagkos, Manolis Katevenis, Dionisios Pnevmatikatos, and Dimitris

Nikolopoulos. Formic: Cost-efficient and scalable prototyping of manycore archi-

tectures. In Proceedings of the 2012 IEEE 20th International Symposium on Field-

127

Programmable Custom Computing Machines (FCCM), pages 61–64, Washington,

DC, USA, 2012. IEEE Computer Society.

[LNS06] Victor Luchangco, Dan Nussbaum, and Nir Shavit. A Hierarchical CLH Queue Lock.

In WolfgangE. Nagel, WolfgangV. Walter, and Wolfgang Lehner, editors, Euro-Par

2006 Parallel Processing, volume 4128 of Lecture Notes in Computer Science, pages

801–810. Springer Berlin Heidelberg, 2006.

[Lyn96] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA, 1996.

[MCS91] John M. Mellor-Crummey and Michael L. Scott. Algorithms for scalable synchro-

nization on shared-memory multiprocessors. ACM Transactions on Computer Sys-

tems (TOCS), 9(1):21–65, 1991.

[MMA06] Kaloian Manassiev, Madalin Mihailescu, and Cristiana Amza. Exploiting dis-

tributed version concurrency in a transactional memory cluster. In Proceedings

of the 11th ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-

gramming (PPoPP), pages 198–208, New York, USA, 2006. ACM.

[MNN01] Richard P. Martin, Kiran Nagaraja, and Thu D. Nguyen. Using distributed data

structures for constructing cluster-based services. In Proceedings of the First Work-

shop on Evaluating and Architecting System dependabilitY (EASY), 2001.

[MS96] Maged M. Michael and Michael L. Scott. Simple, fast, and practical non-blocking

and blocking concurrent queue algorithms. In Proceedings of the 15th Annual ACM

Symposium on Principles of Distributed Computing (PODC), pages 267–275, NY,

USA, 1996. ACM.

[MS10] Ross McIlroy and Joe Sventek. Hera-jvm: a runtime system for heterogeneous

multi-core architectures. In Proceedings of the 25th Annual ACM SIGPLAN Con-

ference on Object-Oriented Programming, Systems, Languages, and Applications

(OOPSLA), pages 205–222, 2010.

[MS12] Alexander Matveev and Nir Shavit. Towards a fully pessimistic stm model. In 7th

ACM SIGPLAN Workshop on Transactional Computing (TRANSACT), 2012.

[NDB+14] Stanko Novakovic, Alexandros Daglis, Edouard Bugnion, Babak Falsafi, and Boris

Grot. Scale-out numa. In Proceedings of the 19th international conference on

Architectural support for programming languages and operating systems, pages 3–

18. ACM, 2014.

[NGF08] Albert Noll, Andreas Gal, and Michael Franz. CellVM: A homogeneous virtual ma-

chine runtime system for a heterogeneous single-chip multiprocessor. In Workshop

on Cell Systems and Applications. Citeseer, 2008.

128

[NP11] Donald Nguyen and Keshav Pingali. Synthesizing concurrent schedulers for irregular

algorithms. In Proceedings of the 16th International Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS), pages 333–

344, 2011.

[Ora] Oracle. Java utilities library. http://docs.oracle.com/javase/7/docs/api/

java/util/concurrent/package-summary.html.

[Pap79] Christos H. Papadimitriou. The serializability of concurrent database updates. Jour-

nal of the ACM, 26(4):631–653, oct 1979.

[PBBO12] Aleksandar Prokopec, Nathan G. Bronson, Phil Bagwell, and Martin Odersky. Con-

current tries with efficient non-blocking snapshots. SIGPLAN Not., 47(8):151–160,

Feb 2012.

[PBLK11] Dmitri Perelman, Anton Byshevsky, Oleg Litmanovich, and Idit Keidar. Smv: Se-

lective multi-versioning stm. In David Peleg, editor, DISC, volume 6950 of Lecture

Notes in Computer Science, pages 125–140. Springer-Verlag, 2011.

[PFK10] Dmitri Perelman, Rui Fan, and Idit Keidar. On maintaining multiple versions in

stm. In Proceedings of the 29th ACM Symposium on Principles of Distributed

Computing, PODC ’10, pages 16–25, New York, USA, 2010. ACM.

[PMP12] Dimitrios Prountzos, Roman Manevich, and Keshav Pingali. Elixir: A system for

synthesizing concurrent graph programs. SIGPLAN Not., 47(10):375–394, October

2012.

[PT13] Erez Petrank and Shahar Timnat. Lock-free data-structure iterators. In Distributed

Computing, volume 8205, pages 224–238. Springer Berlin Heidelberg, 2013.

[RFF06] Torvald Riegel, Pascal Felber, and Christof Fetzer. A lazy snapshot algorithm with

eager validation. In Proceedings of the 20th International Symposium on Distributed

Computing, DISC’06, pages 284–298, Berlin Heidelberg, 2006. Springer-Verlag.

[RH03] Zoran Radovic and Erik Hagersten. Hierarchical backoff locks for nonuniform com-

munication architectures. In Proceedings of the 9th International Symposium on

High-Performance Computer Architecture (HPCA), pages 241–252, 2003.

[SB14] Gokarna Sharma and Costas Busch. Distributed transactional memory for general

networks. Distrib. Comput., 27(5):329–362, October 2014.

[Sha14] Omid Shahmirzadi. High-Performance Communication Primitives and Data Struc-

tures on Message-Passing Manycores. PhD thesis, École Polytechnique fédérale de

Lausanne (EPFL), 2014. n➦ 6328.

129

http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/package-summary.html
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/package-summary.html

[SLS06] William N. Scherer III, Doug Lea, and Michael L. Scott. Scalable synchronous

queues. In Proceedings of the 11th ACM Symposium on Principles and Practice of

Parallel Programming (PPOPP), NY, USA, 2006. ACM.

[SR11a] Mohamed Saad and Binoy Ravindran. Supporting STM in Distributed Systems:

Mechanisms and a Java Framework. In 6th ACM SIGPLAN Workshop on Trans-

actional Computing (TRANSACT), 2011.

[SR11b] Mohamed Saad and Binoy Ravindran. Transactional forwarding algorithm. Tech-

nical report, Virginia Tech, 2011.

[SR11c] Mohamed M. Saad and Binoy Ravindran. HyFlow: A High Performance Distributed

Software Transactional Memory Framework. In Proceedings of the 20th Interna-

tional Symposium on High Performance Distributed Computing (HPDC), pages

265–266, New York, USA, 2011.

[SR11d] Mohamed M. Saad and Binoy Ravindran. Snake: Control Flow Distributed Soft-

ware Transactional Memory. In Proceedings of 13th International Symposium on

Stabilization, Safety, and Security of Distributed Systems (SSS), pages 238–252,

2011.

[ST95] Nir Shavit and Dan Touitou. Software transactional memory. In Proceedings of the

14th Annual ACM Symposium on Principles of Distributed Computing (PODC),

pages 204–213, New York,USA, 1995. ACM.

[TBKP12] Shahar Timnat, Anastasia Braginsky, Alex Kogan, and Erez Petrank. Wait-free

linked-lists. In Proceedings of the 17th ACM SIGPLAN Symposium on Principles

and Practice of Parallel Programming (PPoPP), pages 309–310, NY, USA, 2012.

ACM.

[TMG+09] Fuad Tabba, Mark Moir, James R. Goodman, Andrew W. Hay, and Cong Wang.

Nztm: Nonblocking zero-indirection transactional memory. In Proceedings of the

21st Symposium on Parallelism in Algorithms and Architectures, SPAA ’09, pages

204–213, New York, USA, 2009. ACM.

[Vaj11] Andras Vajda. Introduction. In Programming Many-Core Chips, pages 1–7. Springer

US, 2011.

[vB09] C. H. (Kees) van Berkel. Multi-core for mobile phones. In Proceedings of the

Conference on Design, Automation and Test in Europe, DATE ’09, pages 1260–

1265, 3001 Leuven, Belgium, Belgium, 2009. European Design and Automation

Association.

[YC97] Weimin Yu and Alan Cox. Java/dsm: A platform for heterogeneous computing.

Concurrency: Practice and Experience, 9(11):1213–1224, 1997.

130

[ZR09] Bo Zhang and Binoy Ravindran. Brief announcement: Relay: A cache-coherence

protocol for distributed transactional memory. In Proceedings of the 13th Inter-

national Conference on Principles of Distributed Systems (OPODIS), pages 48–53,

Nı̂mes, France, December 2009.

[ZWL02] Wenzhang Zhu, Cho-Li Wang, and Francis CM Lau. Jessica2: A distributed java

virtual machine with transparent thread migration support. In 2002 IEEE Interna-

tional Conference on Cluster Computing., pages 381–388. IEEE, 2002.

131

132

List of Algorithms

1 Data structures of WFR-TM. 24

2 Pseudocode for BeginTx, CheckIfPerformed, CreateTvar, ReadTvar, and Vali-

date of WFR-TM. 26

3 Pseudocode for WriteTvar, CommitTx, LockDataSet, and WaitReaders of WFR-

TM. 27

4 Dense: Data structures for a multi-traverse implementation of a concurrent graph

object suitable for dense graphs. 46

5 Dense: Operations Update, DynamicTraverse, and EndTraverse, auxiliary rou-

tine Read, for a multi-traverse implementation of a concurrent graph object suit-

able for dense graphs. 48

6 Dense: ApplyOp routine for a multi-traverse implementation of a concurrent

graph object suitable for dense graphs. 50

7 Insert, search and delete operations of a client of the directory. 70

8 Events triggered in a directory server. 71

9 Push operation for a client of the directory-based stack. 72

10 Pop operation for a client of the directory-based stack. 72

11 Events triggered in the synchronizer of the directory-based stack. 73

12 Enqueue operation for a client of the directory-based queue. 77

13 Dequeue operation for a client of the directory-based queue. 78

14 Events triggered in the synchronizer of the directory-based queue. 78

15 Push operation for a client of the token-based stack. 84

16 Pop operation for a client of the token-based stack. 84

17 Events triggered in a server of the token-based stack. 85

18 Enqueue and Dequeue operations for a client of the token-based queue. 90

19 Events triggered in a server of the token-based queue. 91

20 Auxiliary functions for a server of the token-based queue. 93

21 Insert, Search and Delete operation for a client of the distributed list. 98

22 Events triggered in a server of the distributed unsorted list. 99

23 Events triggered in a server of the distributed unsorted list variant. 106

24 Insert, Search and Delete operation for a client of the distributed list variant. . . 107

25 Events triggered in a server of the distributed sorted list. 109

26 Auxiliary routine ServerMove for the servers of the distributed sorted list. 110

133

134

List of Tables

3.1 Notation used during the proof of WFR-TM. 32

3.2 Notation used during the proof of Dense. 53

135

Résumé

À une époque où les processeurs sont omniprésents, les programmer correctement et efficace-

ment est un enjeu important. Les tendances récentes dans la conception de matériel montrent

une évolution vers l’intégration de plusieurs cœurs de traitement sur une seule puce. Actuelle-

ment, la majorité de ces machines sont fondées sur une mémoire partagée avec cohérence de

caches. Des prototypes intégrant de grandes quantités de coeurs, reliés par une infrastructure

de transmission de messages, indiquent que, dans un proche avenir, les architectures de pro-

cesseurs vont probablement avoir ces caractéristiques. Ces deux tendances – mémoire partagé

ou transmission de messages – exigent que les processus s’exécutent en parallèle et rendent

la programmation concurrente nécessaire. Cependant, la difficulté inhérente du raisonnement

sur la concurrence peut avoir un effet négatif: celui de rendre ces nouvelles architectures de

processeurs difficiles à programmer.

La programmation concurrente est actuellement considérée comme une discipline réservée

aux experts qui mâıtrisent la gestion des accès aux ressources partagées. Ce genre de gestion

peut exiger des aptitudes différentes, car, selon l’application à programmer, il peut être plus

important d’ éviter les mauvais effets que les mémoires cachés ont sur la performance, ou bien

de pouvoir résister aux crash, ou encore de savoir utiliser de verrous correctement. Pour le

cas ou la transmission de messages est utilisée, il peut être plus important de minimiser la

totalité de messages qui circulent ou bien d’adapter leur montant à l’architecture de la machine

utilisée. Afin de résoudre ce type de problèmes, nous explorons trois approches ayant pour but

de faciliter la programmation concurrente.

Notre première approche est fondé sur la mémoire transactionnelle (TM), un paradigme de

programmation concurrente très prometteur. Une TM utilise des transactions afin de synchroniser

l’accès aux données partagées, appelées aussi variables transactionnelles. Une transaction peut

soit terminer (commit), rendant visibles ses modifications des variables transactionnelles, soit

échouer (abort), annulant toutes ses modifications. Étant donné que les échecs de transactions

sont considérés comme une perte de puissance de calcul, un important sujet de recherche sur

le domaine des TM est de savoir comment les minimiser. Typiquement, une transaction peut

échouer dans des cas ou elle a un conflit avec une autre transaction. Un conflit se produit

quand deux (ou plus) transactions essayent d’accéder à la même variable transactionnelle et

qu’au moins une de ces transactions essaie de la modifier. Dans des cas comme celui-ci, l’échec

protège la cohérence des données partagées, mais les échecs diminuent les performances si ils

sont trop nombreux.

Idéalement, nous voudrions avoir des implémentations de TM qui garantissent que toutes les

transactions terminent. Pourtant, des résultats théoriques montrent que ce n’est pas possible.

Cela pose une restriction importante, surtout quand cela touche aux transactions en lecture

seule, c’est à dire, les transactions qui ne modifient pas des variables transactionnelles. Dans

de nombreuses applications la majorité des transactions sont en lecture seule, comme par ex-

emple celles ou les transactions sont utilisées pour convertir une implémentation séquentielle de

structure de données en implémentation concurrente. Nous voudrions avoir des transactions en

lecture seule qui sont légères à la fois en méta-données et synchronisation.

Nous proposons WFR-TM, un algorithme qui tente d’offrir ces propriétés en combinant

des caractéristiques désirables des TM optimistes et pessimistes. Dans une TM pessimiste, aucune

transaction n’échoue jamais; néanmoins, pour cela les algorithmes existants utilisent des verrous

afin d’exécuter de manière séquentielle les transactions qui contiennent des opérations d’écriture.

Cela diminue le degré de parallélisme qui peut être atteint par l’application. À l’inverse, les

algorithmes TM optimistes exécutent toutes les transactions en parallèle mais ne les terminent

que si elles n’ont pas rencontré de conflit au cours de leur exécution. WFR-TM fournit des

transactions en lecture seule qui sont wait-free, avec l’avantage supplémentaire de ne jamais

exécuter d’opérations de synchronisation coûteuse (comme par exemple, CAS, LL/SC, etc). Ce

résultat est obtenu sans sacrifier le parallélisme entre les transactions d’écriture.

Dans WFR-TM, chaque transaction d’écriture détecte les transactions en lecture seule con-

currentes et attend qu’elles terminent avant de terminer elle même afin d’éviter des conflits.

Ce mécanisme permet aux transactions de lecture seule de toujours terminer. Par contre,

lorsqu’une transaction d’écriture détecte un conflit avec une autre transaction d’écriture, elle

peut échouer. Dans ce cas, l’approche optimiste est utilisé pour la synchronisation entre

les transactions d’écriture (alors que l’approche pessimiste est utilisé pour synchroniser les

transactions d’écriture avec les transactions de lecture). Afin d’offrir au programmeur une

implémentation correcte de TM, ce travail contient une démonstration formelle qui prouve que

WFR-TM offre des transactions de lecture seule qui terminent toujours, et que l’algorithme sat-

isfait la condition de cohérence opacité, qui exige qu’aucune transaction ne lise les valeurs d’un

état global incohérent.

La mémoire transactionnelle est un outil facilitant la programmation de modèles génériques

de coordination entre des processus qui utilisent une mémoire partagée. Les structures de

données concurrentes sont une façon plus spécialisée de faire la même chose. Actuellement,

on peut trouver plusieurs implémentations concurrentes de structures de donnés comme par

exemple de piles, de files et de listes et la recherche dans cet direction est très active. Une telle

implémentation concurrente fournit des algorithmes qui fournissnet les opérations basiques de

la structure, mais qui prennent également en compte le fait que plusieurs processus peuvent

y accéder en parallèle, et s’occupent de leur synchronisation. Ici, nous sommes intéressés par

des structures de données offrant des fonctionnalités améliorées en fournissant des opérations

complexes en lecture seule. Contrairement aux opérations basiques d’une structure de données,

les opérations complexes en lecture seule sont utiles quand l’objectif est d’obtenir un snapshot,

c’est à dire, une vue cohérente, partielle ou totale, de l’état de la structure. Dans le contexte

séquentiel, obtenir un snapshot est trivial, mais ce n’est pas le cas dans le contexte concurrent:

étant donné que plusieurs processus accèdent à la structure en parallèle, il peut arriver que

l’un d’entre eux fasse des modifications sur la structure alors qu’un autre essaie d’obtenir un

snapshot, ce qui peut causer des problèmes de cohérence.

Comme solution aux problèmes de ce type, dans ce travail, nous présentons également une

implémentation concurrente de graphe qui fournit une opération complexe en lecture seule.

Les graphes sont des structures de données polyvalentes qui permettent la mise en oeuvre

d’une variété d’applications, comme par exemple les simulations scientifiques ou les jeux vidéo.

Cependant, bien que des structures de données tel que des files, des piles, et des arbres aient

été largement étudiés et adaptées en versions concurrentes, des applications multi-processus

qui utilisent des graphes utilisent encore largement des versions séquentielles où les accès aux

données partagées sont synchronisés par l’utilisation de verrous, ce qui entraine des pertes de

performance. Nous introduisons un nouveau modèle de graphes concurrents, permettant l’ajout

ou la suppression de n’importe quel arc du graphe, ainsi que la traversée atomique d’une partie

(ou de l’intégralité) du graphe. Nous présentons également Dense, une implémentation concur-

rente de graphes visant à atténuer les deux inconvénients d’implémentation susmentionnés.

Dense offre la possibilité d’effectuer un snapshot partiel d’un sous-ensemble du graphe défini

dynamiquement. Des modifications et des traversées atomiques peuvent se faire en parallèle sans

violer la cohérence du snapshot obten. Comme le sous-ensemble à visiter est défini dynamique-

ment, le modèle proposé ressemble à la mémoire transactionnelle. Ayant cette versatilité, il peut

être utilisé pour implémenter plusieurs modèles de traversée très variés. Pour autant, les simi-

larités avec la mémoire transactionnelle n’incluent pas les échecs de terminaison qui sont associés

aux transactions. Cette caractéristique est importante car elle aide à assurer que les opérations

du graphe satisfassent le critère de cohérence linéarisabilité et qu’elles soient wait-free, c’est à

dire qu’elles terminent toujours.

Enfin, nous ciblons les futures architectures et étudions des techniques générales pour

implémenter des structures de données distribuées en supposant qu’elles seront utilisées sur

des architectures many-core, qui n’offrent qu’une cohérence partielle de caches, voir pas de

cohérence du tout. Dans l’intérêt de la réutilisation du code et afin d’offrir un paradigme com-

mun, il existe depuis quelques temps une tentative d’adaptation des environnements d’exécution

de logiciel, initialement prévus pour mémoire partagée, à des machines sans cohérence de caches.

Un exemple notable est la JVM, l’environnement d’exécution de Java. Les implementations de

structure de données distribuées sont des composantes importantes des bibliothèques incor-

porées dans ces environnements. Afin de contribuer à cet effort, nous présentons différentes

implémentations de piles, de files et de listes.

Nous nous concentrons sur deux techniques. Nous présentons d’abord une approche fondée

sur le répertoire. Avec cette approche, les éléments qui composent la structure de données sont

stockés dans un répertoire distribué. Dans cette technique, un serveur de synchronisation agit

comme coordinnateur qui indique où les données doivent être stockés et d’où elles peuvent être

récupérées. Cette approche permet d’atteindre l’équilibrage de charge dans les situations où

la structure de données est grande. Cependant, la manière dont ceci est réalisé, reste “caché”

pour le programmeur.

Le même est vrai pour l’approche basée sur les jetons, la deuxième technique de conception

que nous présentons. Dans nos algorithmes à base de jeton, les éléments qui constituent la struc-

ture de données sont stockés dans les modules de mémoire de certains de serveurs disponibles.

Ces serveurs forment un anneau. L’un d’entre eux est désigné comme le serveur du jeton et,

initialement, le stockage et la récupération des éléments de la structure de données a lieu sur

son module de mémoire. Si le module de mémoire de ce serveur devient vide ou se remplit

complètement, le jeton est envoyé au serveur suivant ou précédent dans l’anneau. Cette ap-

proche exploite la localité des données et pour cette raison elle est mieux adaptée pour les cas

où la taille de la structure de données est modérée.

Dans le but de rendre les architectures many-core plus accessible aux programmeurs qui sont

habitués à la programmation séquentielle, un avantage supplémentaire de nos implémentations

est qu’elles peuvent faciliter la réutilisation des applications qui étaient initialement conçues

pour la mémoire partagée. Les algorithmes que nous présentons sont conçue comme une étape

vers la création de bibliothèques de structures de données adaptées aux infrastructures de trans-

mission de messages. Des applications à mémoire partagée qui se fondent sur des bibliothèques

équivalentes de structures de données pourraient être portées à des environnements qui utilisent

la transmission de messages simplement en substituant une bibliothèque par une autre. Beau-

coup d’efforts de recherche ont été consacrés à la mise en œuvre des environnements distribués

d’exécution pour les langages à forte productivité, tels que Java par exemple. Bien que ces

implémentations supposent des mémoires cachés sans cohérence, ils maintiennent néanmoins

l’abstraction de la mémoire partagée pour le programmeur. Les structures de données que nous

fournissons correspondent à plusieurs des structures de données inclues dans des bibliothèques

concurrentes de Java, et pourraient être utilisées pour les remplacer.

Abstract

In an era where processors are ubiquitous, programming them correctly and efficiently is an

important issue. Recent trends in hardware design mark a shift towards integrating several

processing cores on a single chip. Currently, a majority of those machines relies on shared,

cache-coherent memory. Prototypes that integrate large amounts of cores, connected through

a message-passing substrate, indicate that architectures of the near future may have these

characteristics. Either of those tendencies requires that processes execute in parallel, making

concurrent programming a necessary tool. The inherent difficulty of reasoning about concur-

rency, however, may lead to the adverse effect of rendering the new processor architectures

hard to program. In order to deal with issues such as this, we explore a threefold approach to

providing ease of programmability.

The first approach employs transactional memory (TM), a promising concurrent program-

ming paradigm. TM employs transactions in order to synchronize the access to shared data,

known as data items or transactional variables. A transaction may either commit, making its

updates to transactional variables visible, or abort, discarding its updates. We propose WFR-

TM, an implementation that attempts to combine desirable characteristics of pessimistic and

optimistic TM. In a pessimistic TM, no transaction ever aborts; however, in order to achieve that,

existing TM algorithms employ locks in order to execute update transactions sequentially, de-

creasing the degree of achieved parallelism. Contrary to that, optimistic TM algorithms execute

all transactions concurrently and commit them if they have encountered no conflict during their

execution. WFR-TM provides read-only transactions that are wait-free, with the added benefit

of never executing expensive synchronization operations (like CAS, LL/SC, etc). This is achieved

without sacrificing the parallelism between update transactions. As such, the optimistic ap-

proach is used for the synchronization among update transactions, while they synchronize with

read-only transactions pessimistically.

Transactional memory is a tool that is meant to facilitate the programmability of generic

patterns of coordination among processes using a shared-memory. More specialized manners

of process coordination and shared data organization may involve concurrent data structure

implementations. Exemplifying that, we present a concurrent graph implementation. Graphs

are versatile data structures that allow the implementation of a variety of applications, such

as computer-aided design and manufacturing, video gaming, or scientific simulations. However,

although data structures such as queues, stacks, and trees have been widely studied and imple-

mented in the concurrent context, multi-process applications that rely on graphs still largely use

a sequential implementation where accesses are synchronized through the use of global locks

or partitioning, thus imposing serious performance bottlenecks. We introduce an innovative

concurrent graph model that provides addition and removal of any edge of the graph, as well

as atomic traversals of a part (or the entirety) of the graph. We further present Dense, a con-

current graph implementation that aims at mitigating the two aforementioned implementation

drawbacks. Dense achieves wait-freedom by relying on light-weight helping and provides the

inbuilt capability of performing a partial snapshot on a dynamically determined subset of the

graph.

We finally aim at predicted future architecture and study general techniques for implement-

ing distributed data structures assuming they have to run on many-core architectures that offer

either partially cache-coherent memory or no cache coherence at all. In the interest of code

reuse and of a common paradigm, there is recent momentum towards porting software run-

time environments, originally intended for shared-memory settings, onto non-cache-coherent

machines. JVM, the runtime environment of the high-productivity language Java, is a notable

example. Concurrent data structure implementations are important components of the libraries

that environments like these incorporate. With the goal of contributing to this effort, we present

different implementations of stacks, queues, and lists.

	Table of Contents
	Introduction
	Motivation
	Contributions of this thesis
	List of Publications

	Roadmap

	System Model and Definitions
	Shared Memory Systems
	Correctness
	Progress
	Message-Passing
	Conventions for Algorithm Presentation

	Data Structures for Multi-core Architectures Supporting Cache-coherence
	Case Study I: WFR-TM, A TM Algorithm
	Overview and Main Ideas
	Algorithm Description
	Proof of Correctness
	Proof of Progress.

	Case Study II: Dense, A Concurrent Graph Algorithm
	Overview and Main Ideas
	Algorithm Description
	Proof of Correctness
	Proof of Progress

	Related Work

	Data Structures for Many-core Architectures without Cache-coherence Support
	Design Paradigm I: Directory-based Data Structures
	The Directory
	A Directory-based Stack
	Algorithm Description
	Proof of Correctness

	A Directory-based Queue
	Algorithm Description
	Proof of Correctness

	Design Paradigm II: Token-based Data Structures
	A Token-based Stack
	Algorithm Description
	Proof of Correctness

	A Token-based Queue
	Algorithm Description
	Proof of Correctness

	A Token-based Unsorted List
	Algorithm Description
	Proof of Correctness

	A variation on the Unsorted List

	A Distributed Sorted List
	Algorithm Description

	Hierarchical Approaches and Experimental Evaluation
	Related Work

	Conclusion and Open Problems
	Perspectives on Presented Algorithms
	Future Prospects

	Bibliography
	List of algorithms
	List of tables

