
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1984

Data Structures for On-Line Updating of Minimum Spanning Trees, Data Structures for On-Line Updating of Minimum Spanning Trees,

with Applications with Applications

Greg N. Frederickson
Purdue University, gnf@cs.purdue.edu

Report Number:
83-449

Frederickson, Greg N., "Data Structures for On-Line Updating of Minimum Spanning Trees, with
Applications" (1984). Department of Computer Science Technical Reports. Paper 368.
https://docs.lib.purdue.edu/cstech/368

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

\

DATA STRUCTURES FOR ON-IJNE UPDATING
OF MINIMUM SPANNING TREES, WITH APPLICATIONS'

Greg N. Frederickson
Revised May 1984

Depart.ment. of Comput.er Sciences
Purdue University

West Lafayette. IN 47907

• This re9carch "11.9 supported in part by the National Science Foundation under Grant IlCS
6201063.

Abstract. Data structures are presented for the problem of maintaining a.

minimum spanning tree on-line under the operation of updating the cost of

some edge in the graph. For the case of a general graph, maintaining the data

structure and updating the tree are shown to take O(vm) time. where m is the

number of edges in the graph. For the case of a planar graph, a data structure

is presented which supports an update time of O«(Iog m)2). These structures

contribute to improved solutions for the on-line connected components problem

and the problem of generating the K smallest spanning trees.

Keywords. connected components, data structure!';, edge insertion and deletion,

K smallest spanning trees, minimum spanning tree, on-line computation, planar

graphs.

1

1. Introduction

Consider the following on-line updat.e problem: A minimum spanning tree is

to be maintained for an underlying graph. which is modified repeatedly by hav

ing the cost of an edge changed. How fast can the new minimum spanning tree

be computed after each update? In this paper we present novel graph decompo~

SiUOD and data structures techniques to deal with this update problem. includ

ing a useful characterization of the topology of a spanning tree. Furthermore.

while dynamic data structures have been applied witb success to various

geometric problems [QV. LW]. our results are among the first [ST. Hill in the

realm of graph problems.

Let m be the number of edges in the graph. and n the number of vertices.

The current best time to find a minimum spanning tree is Oem logl08(2+m/n) n)

[CT, Y]. If only straightforward descriptions of the underlying graph and its

current minimum spanning tree are maintained, then it has been shown in [SP]

that the worst-case time to perform an edge-cost update is G(m). The problem

of determining the replacement edges for all edges in the spanning tree can be

~olved in O(ma(m ,n)) time [T2], where a(·,) is a functional inverse of

Ackermann's function [TI]. However, that solution is essentially static, so that

actually performing replacements can necessitate considerable recomputation.

We show how to maintain information about the graph dynamically so that

edge costs can be updated repeatedly with etliciency. After each edge cost

change, the change in the minimum spanning tree is determined, and the data

structures are updated. We are able to realize an O(vm) update time. More

over, if the underlying graph is planar, we show how to achieve an O({log m)2)

update time. Our structures require Oem) space and Oem) preprocessing time,

aside from the time to find the initial "minimum spanni.ng tree. These compare

favorably with those developed recently in [HI2], which realize O(n log n)

2

update times.

Our results aTe both of practical and theoretical interest. On the one hand,

a minimum spanning tree may be used to connect the nodes of a communica

tions network. Variable demand. or transmission problems, may cause the cost

of sowc some edge in the network to change. and the tree will need to be

reconfigured dynamically. On the other hand, by focusing on edge cost changes.

we have formulated a natural version of the problem of updating a minimum

cost base of a matroid [W]. (In this case, the matroid is a graphic matroid.) Our

work leads naturally into the updating of minimum-cost bases of certain simple

ITlatroid intersections. These are investigated in [FS1, FS2]. in which our data

structures aTe used extensively. The problem of maintaining a mini.mum span·

ning tree when vertices are inserted and deleted bas been studied in [SP, CH],

but the best performan~e lo date is 0(71.2). This suggesls lhat because of its

connection to matroids, the edge-updale problem is perhaps more natural than

the verlex-update problem.

We also show how lo apply our data slruclures to a number of relaled prob

lems lo yield improved performllnce bounds. We cast lhe problems of edge

insertion and deletion inlo an edge update framework, and realize O(vmt)

update times, where ml is the current number of edges in the graph. Using this,

we improve on the update time for lhe on·line connected components problem

in a graph in which edges are being inserled and deleted. The problem is to

maintain a data structure so that a query asking if two vertices are in the same

conncct.ed componcn~. can be answered in constant time. A version involving

deletions only was ~Xil.mined in [RS1. for which the t.otal t.ime for TTl. updaLcs was

O(mn). A more ~encral version has been discussed raccnlly in L11Il], for which

0(71.) time per individual update was realized. Our solution uses O(vmt) time

per update.

3

Our data structures can also be used in generating the K smallest spanning

trees in increasing order [G]. The. best published solution [KIM] requires

Oem loglog(2+m./n)7t + Km) time and O(K + m) space. Quite recenUy, this has

been improved in [HI2] to O(Kn (log n)2 + m log n) time at the expense of

O(Kn log n + m log n) space. We improve the time complexity for instances

with relat.ively small K. if K is D(Vin), our solution uses

Oem loglog(2+m./n)7t + J(2vm) time and Oem) space. If the graph is planar, then

the solution in [KIM] uses O(Kn} time and O(K + n) space. If K is

O(nl (log n)2) and the graph is planar. our solution uses O(n + K2(log n)2} time

find O(n) space.

A preliminary version of this paper appeared in [F].

2. Preliminaries

There are several cases to be handled in edge-cost updating. The cost of an

edge may either be increased or decreased. and this edge may currently be

either in the minimum spanning tree or or not in the tree. If the cost of a tree

edge is decreased, or the cost of a non·tree edge is increased, then there will be

no change in the minimum spanning tree.

In the two remaining cases, the minimum spanning tree may be forced to

change. However, at most one edge will leave the tree, and one edge will enter

the tree. If the cost of a non-tree edge (v,w) is decreased, then this edge may

enter the tree, forcing out some other edge. This case may be detected by

determining if the maximum cost of an edge on the cycle that (v ,w) induces in

the tree has grenhlr cost. than c(v,w). An obvious implementation of this test

would use 0(n) time. A faster approach uses the dynamic tree structures of

Sleator and Tarjan EST]. A maximum cost edge (:z: ,y) can be found using the

operations evert (v) and lindma:x (w). The operation evert (v) makes 1J the root

of the dynamic tree structure. and J'in.dmaz(w) finds the maximwn cost edge

on the path from w to the root. The dynamic tree may be updated using

cut(z,y) and link(v,w). The operation cut(z,y) deletes edge (.z,y) from the

tree, and link(v,w) adds edge (v,w). As discussed in CST]. the worst-case time

required to perform these operations is O(log n).

The most interesting case is if the cost of a tree edge (.z.y) increases. Then

the edge may be replaced by some non-tree edge. This case may be detected by

determining if the minimum cost non·tree edge (v.w) that connects the two

subtrees created by removing (.z.y) has cost less than c (.z ,y). In worst case,

there can be Oem) edges that are candidates for the replacement edge. Conse

quently. this case appears to be the most troublesome to deal with.

Our structures are designed to handle graphs in which no vertex has degree

greater than three. Given a graph Go = (Vo.Eo). we shall produce a graph

G = (V.E) in which each vertex satisfies t.his degree constraint. A well-known

transformation in graph theory [H. p. 132] is used. For each vertex v of degree

d > 3, where Wt), ... ,wd_l are the vertices adjacent to v, replace v with new

vertices va.'· . 'Vd_ l · Add edges HVi.V(i+l)modd) [i=O.··· ,d-ll. each of cost O.

and replace the edges HWi.V) li=o•...•d-lj with HW(,vdli=O.· ..•d-l). of

cQrresponding costs.

Let n' = I VI and m' = lEI. Then it is not hard to see that n':s; 2m and

m':s; 3n'/2S: 3m.. Thus there are SCm) vertices in the new graph G. and SCm)

storage is required. Given a minimum spanning tree To =(Vo.Eo,) for Go. it is

ea~y La find a minimum spanning t.ree T = (V,F.I) for G. For each new vertex v,

includc !(Vi.Vhl)l1:=O,··· .d-2l. and replace any ed~e (W;,.v) with the

corresponding edge (wf,vd. In sections 3 through 7 of the paper. we shall

assume that we are dealing with graph of O(m.) vertices. in which each vertex

hilS degree no greater than 3.

5

3. Topological partitions of the vertez set

In this section we examine a simple solution to our problem that allows for

o (m.) update times. We first. give a procedure for organizing vertices into clus

ters, ba~ed on the topoLogy of the minimum spanning tree. Using this partition,

we show how to achieve O(m2/:'I) update times.

We partition the vertices of the minimum spanning tree T on the basis of

the topology of the tree. Let z be a positive integer to be specified later. Let E'

. be a set of edges whose removal from T leaves connected components with

between z and 3z -2 vertices. The vertex set of each resulting connected com

ponent will be called a vertex cluster, and the collection of clusters will be called

a topological partition of order z. Such a partition always exists and is in gen~

eral not unique.

Given a tree with more than 32 -2 vertices, and of maximum degree 3, a

topological parlilion may be generated as follows. Perform a depth-first search

of T starling at any leaf vcrtex, which shaH be identified as the root. Now call

cseCIrch(root), where cseCITch(v) partitions v and its descendants into zero or

more clusters of size between 2 and 32 -2, and one set of size between 0 and

2 -1. The set is returned to the calling procedure.

proc c~p.arr.h(11)

local dust

clu.<I;t 6- !v I

for each child w of v do clust 6- clust ucseCITch(w) cndfor

if Idust I < 2 then return(clust)

else print(clust); return(rp) endif

endproc

Let a procerl.ure FINDCLUSTERS be the procedure that initially calls cseaTch.

If csearch ret.urns a non-empty set to FINDCLUSTERS. FINDCLUSTERS should

6

union it in wit.h the last cluster printed.

Lemma 1. Procedure FINDCLUSTERS partitions the vertex set of a spanning tree

with maximum degree 3 into verlex clusters of cardinality between z and 3z-2

in O(m) time.

Proof. It is not hard to see that. the clusters which are output do form con

nected components with respect to tree T. Since verlices are of degree no

greater than 3, and the rool has degree 1. each vertex in T will have at most two

children. Since sets of size at most z -1 are returned by csearch, and a.ny ver

tex will have at most two children, any cluster formed at a vertex v will have size

al most 2z.-1. A set of at most z -1 vertices can be returned to FINDCLUS

TERS. and when this set is unianed with the last cluster printed out, a cluster of

size at most 3z -2 will result, Thus all clusters are within the the prescribed size

bounds. If the sets are implemented as linked lists, then the whole procedure

will require time proportional to the size of T. •

The number of vertex clusters will be 9{m./ 2'). If 2' :!: -.1m, then there will

be O{vm} vertex clusters. Once the vertices are partitioned, partition tbe

edgf:)~ in E - Et into sets E;.,. such that an edge in E(j has one endpoint in vertex

cluster V;, and the ather endpoint in vertex cluster lj. Thus there will be O{m)

sets Bt,.. For each sC'!t Eij' a minimum cost edge is delermined. Both of these

lasks ca.n be performC'!d in O(m) lime. Thus once a minimum spanning tree for

Go is determined, all other initialization will take O(m) time. The amount of

space used may be seen to be O(m).

We now describe how to handle the two more interesting update operations.

Suppose the cost of a non-tree edge (v ,w) is decreased, so that tree edge (x ,y)

mus!. ht'! rOrJlovcd from the tree, ilnd (v,w) l'l1u!':t. h~ added. I~:dgc (:r,y) cun bc

d~t.p.rrninr:d in O(lng m) time, ilS discussed in !':C'!~lion 2. Several co.se~ are possi~

ble. If:r., y, 11, ilnrJ llJ <J.re in the :'lame clust.nr, or if x and y f1Tl) in ditTerent

7

clusters. then the cluster need nol be changed.

The crucial case is when:z: and yare in the same vertex cluster, say V1..

which does not contain both 1J and w. Then this verlex cluster must be split inlo

Vi' and v,;". and the sels ~J must be split for all j. Since I V.I is 0(2) and each

vertex is of degree no grealer than 3. I Us EIJ J is O(z). Thus the splitting may

be carried out in O(z) time. If either V;,' or 1';," has fewer than z vertices, then

combine it with a neighboring vertex cluster. If this neighbor now has more

than 3z -2 vertices. it can be split inlo two clusters by using cseaTch. The total

time to determine and perform whatever splits are necessary will be O(z).

If the cost of a tree edge (z.y) is increased. then a minimum cost replace

ment edge (v,w) #- (x,y) must be found. To find (v,w), do the following. If

(:t,y) connects two vertices in the !lame cluster Vi, split Vj into 11.' and li", and

adjust the sets Eij , as above. Removing (:t,y) will partition the vertex clusters

into two sets. Check the minimum cost edges between every pair of vertex clus

ters ~ and Vj • where VI: and lj are in ditlerent sets of the partition. Choose the

minimum of these to be (v,w). There can be 9(m/z) vertex clusters in each

set of the p<lrlilion, so that the time required t.o check aU pairs of vertex clus

ters will be 8(m 2
/ Z2). As before, splitting VI: into VI:' and VI: " will use O(z) time.

We may realize best performance for this approach if we choose z =rm.2/~.

This structure is called structure J.

Theorem 1. Struct.ure I allows the on-line edge-update problem for minimum

spannin~ trees to be solved in O(m2,l3) time per update, using O(m) space and

O(m) preprocessing time, aside from the time required to find the initial

mi.nimum spanning tree.

Proof. The preprocessing requirements have already been established. The

update limes are dominated by 0(2 + m2/z2). Choosin~ z = rm2,l31 p;ives the

B

desired result.•

4. Topology trees

In the previous section we showed how to partition the vertices into clusters

to improve update limes. In this section we show bow to build clusters of clus

ters, yielding 11 hierarchical characterization of the minimum spanning tree.

This characterization is then used in the next section to aggregate edge set

information.

Given a spanning tree T in which each vertex has degree no greater than

three, we define a data structure that describes the topology of the tree in a

convenient manner. Let the ezternal degree of a. vertex cluster be the number

of spanning tree edges with exactly one endpoint. in the vertex cluster.

Amulti-le1Jel topologiL:al partition of the set of vertices satisfies Lhe rollowing:

1. For each level i, the vertex clusters at level i will form a partition of the

sel of vertices.

2. A vertex cluster at level 0 will contain a single vertex.

3. A vertex cluster at level 1. > 0 is either

a. the union of 2, 3 or 4 vertex clusters of level i-I. where the clusters

are connected together in one of the three ways shown in Figure I, and

the external degree no greater than 3. or

b. a vertex cluster of level i -1 whose external degree is 3.

A topology trp.p. for spanninp, trec T is a tree in which each internal node has at

mOlit four children. and all leflv~s are at the same depth. such that:

1. a node at. level 1. in t.he topolugy t.ree reprc:<mnt.!> a vertex duster in level i

of the multi-level topological partition. and

2. a node at level i > 0 has children which represent the vertex clusters

9

whose union is the vertex clust.er it represents.

Given the vertex clusters for level i-I. we can determine how the vertex

clusters arl:! unianed together to give vertex clusters at level i. Consider a span.

ning tree T':_ l derived from T by collapsing each vertex cluster of level i-I to a

single vertex. Apply procedure FINDCLUSTERS to the tree Ti -
lo

with parameter

z =2. This will identify clusters of vertices in the tree T(_l of cardinality two,

three. or four. grouped as in Figure 1. For each cluster in Ti - 1 that would have

external degree greater than 3. subdivide the cluster so that the resulting sub.

sets each have degree 3. The vertices in T':_ I so grouped. represent the vertex

clusters of level i-I that should be unioned to get vertex clusters on level i. An

example of tree T is shown in Figure 2. The corresponding topology tree is

shown in Figure 3.

Lemma 2. Let n be the number of vertices in a spanning tree T. The height of a

corresponding topology tree will be 8(Iog n).

ProoL Consider the generation of the vertex clusters of level i > 0, using the

vertex c!ustcrs of level i-l and the corresponding tree T.. _
1

_ Over half the ver-

tices in Ti._1 will be of degree less than three. and all of them will participate in a

unioning from level i-l to 1.. Since one vertex cluster will replace at least two

for each vertex cluster that is unloned. fewer than

n - L(!"'n) =.:!...n
2 2 "

vertex clusters will remain after the unloningS'.

Since the number of vertex clusters unioned at each level is at least a con-

stant fraction of the remaining number. the number of levels until a single ver-

lex is reached is O(Iog n). It follows that the the topology tree is of height

O(log n).•

Lemma 3. A topology tree can be generated for a given spanning tree T in time

10

proportional to the number of vertices in T.

Proof. Let 1'l. be the number of vertices in T. The first iteration will require

O(n) time. From the proof of Lemma 2, at least :i- of the remaining vertices are

removed on any iteration. Thus total time will be O(L;;=on(~);').which is D(n) .

•

We are interested in the operations of deleting an edge from the minimum

spanning tree, and connecting two trees via an edge into a minimum spanning

tree. These spanning tree operations will force corresponding operations of

splitting a topology tree and merging two topology trees. We shall show that

each of these topology tree operations can be performed in O(log m) time.

At first glance. merging and splitting of topology trees would appear similar

to the merging and splitting of 2-3 trees [AHU]. However the topology trees

represent clusters that satisfy, among other things, degree constraints, and

thus must be handled carefully. Adding an edge to merge two lrees into a span

ning tree may cause the external degree of a vertex cluster to increase from 3

to 4. In this case the vertex cluster must be split, and the tree must be restruc

tured accordingly. On the other band. deleting an edge may make it possible to

include a vertex cluster in some union at a lower level than before.

We first discuss in detail the merging of two topology trees. Consider the

edge that is added to connect the two corresponding trees to give the spanning

tree. If some vertex cluslcr has its external degree increased from 3 to 4.

choose the most deeply nested such cluster, say W. It must be the union of at

least two clust.ers, and ils constituent clu:>lers can be regrouped into two adja

cent vertex clusters, If' and W", such that the external degree of each is now

three. We thus replace tl vflrtcx cluster W, originally of external degree 3. and

now of der,ree 4, with two v~rt.ex cluslers. each of degree 3. An example in which

11

a cluster must be split into two clusters is shown in Figure 4a, and the resulting

clusters are shown in Figure 4b. The resulting clusters may force the cluster in

which they are located to be split. and this effect may propagaLe upwards in the

multilevel partition. The next level up from the cluster in Figure 4a is shown in

Figure -te, with the result in Figure 4d.

Once any critical change in external degree has been handled, the root of

the topology tree of smaller height can be joined at the appropriate level of the

other topology tree. The operation is similar to inserting a node as a child of

some node in a 2-3 tree, in that the insertion of the new node may force the

parent and children to be reorganized so that there are two parents, and this

eITect may then propagate upward. It is not hard to see that nodes along only

one path to the root are affected. An example is shown in Figure 5, with levels

beneath the root of the smaller topology tree not shown in either tree. The mul

tilevel partition and topology trees are shown before the edge insertion in Fig

ures Sa and 5b. and after the insertion in Figures 5c and 5d. The set Vg becomes

a child of V12, which is then split into V14 and Vill , which then forces the splitting

of V13 into VU1 and VI ?_

We now discuss the splitting of a topology tree. The l?dge is deleted, and aU

clusters containing that edge are split. These clusters are represented by nodes

on a path in the topology tree. The pieces of the topology tree are merged back

into two trees, in a fashion similar to what is done when fragments of a 2-3 tree

are merged after a splitting. Here again the constraints on the clustering shown

in Fip,ure 1 must be preserved. An example of clu!iters that are split is shown in

l"jl~~lre Gn, anr'! t.he resulting clusters for the t.wo trees are shown in Figure 6b.

Suppose t.here is a vert.ex clustt'!r that is an only child and has had its exter

nal degree drop from 3 to 2. Choose the most deeply nested sueh cluster, say

W_ Identify a cluster W' at the same level as W in the multilevel partition, and

12

that has the lowest common ancestor with W of such clusters in the topology

tree. Combine Wand W'. rearranging the enclosing clusters as necessary. The

m:wly rorrnr:d clust.er may need to be split.. because it is nol one of the lhrce

forms in Fij;tllre 1. An example of this is shown in Figure 7a and 7b. Otherwise.

tl1r:re will be one fewp.l' node, and this may cause lhe combinations to propagate

back up in the tree. An example is shown in Figure 7c. with an intermetliate

result shown in Figure 7d. (The outermost cluster shown must still be unfaned

with some other cluster at its level.)

Theorem 2. The t.ime required to perform a split of Q topology tree, caused by

the dcl~tion of an edge in a spanning tree. or to merge two topology trees.

caused by adding an edge to create a spanning tree, is O(log n}.

Proof. From the previous discussion. it may be seen that a constant amount of

work is done for each node along a constant number of paths in the topology

tree. The theorem then follows.•

5. Aggregating edge costs using topology trees

.In section 3 we outlined a first strategy for updating minimum spanning

trees on-line, using a partition of the vertices based on the topology of the

minimum spanning tree. We determined that an expensive operation is finding

an edge to replace a tree edge that has increased in cost. This operation could

take time proportional to the square of the number of vertex clusters. In this

section we use t.he topology tree described in the last section and show how to

avoid '3xamininp; so many edge sets, by ar,gregating edge set information in a

manm:r based on t.he topology tree. Using this approach, we show how to

achir.ve O(vm lu~ m) update times.

, ,

13

We would like to generate a data structure in the following manner. Shrink

each vertex cluster in a 'topological partition to Ii single vertex. yielding a

shrunken tree Tr • Now generate a topology tree for Tr " Unfortunately, lhis is

not in general possible, since vertices in Tr may have degree greater than 3.

The difficulty is in our rather simple definition of Ii topological partition. which

we now extend to a simply~connected topological partition. Such Ii partition

consists of 0(m./z) verlex clusters of size O(z), such that. any cluster is adja

cent to at most three other clusters in the spanning tree. and any cluster with

fewer than z vertices must have external degree 3.

Procedure csearch from section 3 can be modified to generate the desired

partition. Besides returning- a set of vertices, the procedure should return the

current external degree of the set. The size and external degree of a set gen

erated at v can then be determined. If this set has at least z vertices or has

external degree 3. then it should be printed out. The set generated at 1) will

never have external degree greater than 3, for the following reason. As before,

each vertex in T will have at most two children. Suppose nonempty sets of ver

tices are returned from recursive calls to each child. Each of these sets will

have external degree at most two. But of this degree Qf at most two, one was

contributed by the child's' adjacency to v, which will not be counted. Hence the

external degree of the set generated at v will be at most three: at most one

from each of the at most two children, plus one for the adjacency of v with its

parent (if any).

The simply-connected partition will induce shrunken tree T
B

• Note that

each leaf in TB will represent a vertex cluster of size between z and 3z _ 2. This

follows since such a cluster, generat.ed at vertex v, will have in effect no external

deg:rcc contributed by its children. Such a set will not have external degree

equal t.o three. so it ill output only because its size is at least z. Hence there will

be O(ml z) leaves in TB • Every vertex cluster of cardinality less than z will be

.

represented by a vertex of degree 3 in T.. Since there will be fewer vertices of

degree 3 than leaves in Ta" there will be e(rn/z) vertex clusters in a simply

connect.cd partition. We call these vertex clusters basic vertex clusters.

We may now generate a topology tr,ee for tree Ts , the tree resulting by

shrinking basic vertex clusters in a simply-connected topological partition. We

show how to use these structures to improve update times. For each basic ver

tex cluster Vi.. we mainlain an image of the topology tree. At the leaf represent

ing basic vertex cluster Vi in tree i, store the set E;'j' along with the minimum

cost edge in that set. If there is no such edge. t.hen assume a default cost of co.

Al each internal node in the topology tree, maintain Lhe minimum value from

among its children. Thus the topology tree is augmented to maintain a heap on

edge costs. The space required by the topology tree for one cluster Vi will be

0(m/z) for the nodes, and 8(z) for the elements in UjEij. Thus total space

requirements for 0(m/z) trees for all the clusters will be 0{rn2/z 2 + rn). which

is 0(m) if ?~vm.

Given a ~asic vertex cluster lj, suppose we wish to find a path from the root

to t.he leaf mpresent.ing lj in Vi's copy of the topology tree. It is sufficient l.o

maintain an origiT"\al copy of the topology tree with pointers from children to

parents. The location of basic vertex cluster lj in Vi. 's copy can be found by

tracing up from vi· in the original copy of the topology tree. Thus locating the

path from the root to basic vertex cluster Yj will use O(log (m/ z» time.

We noW' consider handling the two more interesting update operations. If

the cost of it non·trec cdge is decreased. then finding the edge to replace, split

ting a ba.sic Vp.rl.cx cluster, and recombining: the pieces is similar l.o lhat dis

cussed before, except that now there'! dre consequences in terms of the struc

ture f)f ~.he topology tree. We have already discussed how to split and merge

Lopology Lre'!r:!s. In particular, a topology tree can be split on a leaf representing

15

basic vcrtex cluster ~ in O(log (m./ z» lime. Merging two topology trees that

are to be joined via an edge will use O(log (ml z» time to adjust external

degrees. and O(h I-h2) time to merge the topology trees, where h I and h 2 are

their heighls. It is straightforward to maintain the heap property on the topol~

0RY trees as they are merged ar split. Since each image of the topology tree

must be changed. total time is O({m/z)log (m/z)} for all the topology tree

manipulations.

10 the case in which the cost of a tree edge is increased, we can use the

topology trees to find the replacement edge for (x ,y) more quickly than before.

If % and yare in the same basic vertex cluster Vi. split Vi into V;, , and Vi". If

either is too small, given its external degree. combine it with a neighboring basic

cluster. if there is one. and adjust the upper levels of the topology tree as neces

sary. Now split each copy of the topology tree on edge (z.y) to give two topology

trees for each copy before. This split induces a parlition of the set C of basic

vertex clusters into C' and C". In Figure 6b. for example. C' would consist of

basic clusters 1, 2. and 3, while C" would consist of the remaining basic clusters

1- .through 9. For each basic vertex cluster Vi. one of its now two topology trees

will be il hcap on edge costs for edges with one endpoint in l'i and the other end

point. in a cluster in C'. and the other tree will be a heap on edge costs for edges

wit.h one endpoint in Vi. and tJ,e other in a cluster in C".

We fllld the minimum cost replacement edge (u,'IJ) as follows. For each

basic vertex cluster Vi in one of the sets, say C'. consider Vi's topology tree for

the other set C". Take the minimum vlilue from among those in the roots of all

su~h LO!Jology trees. If this value is smaller than the new cost of edge (xtY),

then thfl edge corresponding to this value becomes the replacement edge.

Once the minimum c:ost replacement edge (u.'IJ) has been chosen. the

topology t.ree:,> Ci1T1 be mcrt~cd on thi:,> edge. Choosing z = [vm log m 1. we gel

16

structure II.

Theorem 3. Structure Jf allows the edge-update spanning tree problem to be

solved in O(VTn log Tn) time per update. using O(m.) space and Oem) prepro

ce~sing time, aside from the time to find the initia.l minimum spanning tree.

Proof. Splitting and merging the ba!lic vertex sets will use time O(z). Splitting

O{m/ z) copies of the topology tree on an edge will lake time

D«m/ z)log(ml z ». and merging the will lake the same. The time to examine

the rools of O(m/ z) topology t.rees for the replacement edges will be O(m/ z) .

•

6. The 2-di.mensional topology tree

It is possible to improve the update time over that of structure II by doing

the following. In structure II there is a separate copy of the topology tree for

every b'lsic vertex cluster loi. If we combine all t.he images of the topology tree

into one large tree, we can realize slightly faster update times. The leaves of the

large tree will be essentially the same as the set of leaves in all copies of the

topology tree, with one leaf for each pair of basic vertex clusters. The root of

the large tree may be viewed as the union of the roots of aU of the copies. Other

int.ernal nodes may be viewed as the unions of various internal nodes in tbe

copies of the topology trees. The organization of the large tree will be such that

t.he t.ime to split or merge the structure will be B(ml z). rather than the

0«m/z)log(m/z)) of::;trudure J/.

We define the 2~dim.en..'iiona1topology trrm in terms of the topology tree, Let

Vn and Vii be vertex clust.ers represented by nodes at the same level in the

t.opolo~y tree. Then t.here is a node labeled with V",xV.8 in the 2-dimensional

17

topology tree, which represents the set of edges in E-Et with one endpoint in Va

and the other in Vpo Since edges are undirected, we shall understand Vpx Va to

denote the same node as VaxVIJ. The root of the 2-dimensional topology tree is

labeled VxV and represents the sel of all edp,es in E-Et . If a node in the 2

dimensional topology tree represents V",x Va. where Va has children Val' Va2'

...• Var in the topology t.ree. then VaxVo: has children ~V"iXVtlj I l~i ~j ~Tj.

Similarly, if a node represents V",xVp• where a. ~ {3 and V,a has children VP!' Vp2,

, VI1~ in t.he topolo~y tree. then V",x Vfl has children

!V"tX VPj 1 ~ i ~ r. 1:< j :.< .~ f- It portion of thl;! 2~dimensional topology tree

corresponding to the topology tree in Figure 2 is given in Figure B. In our struc

lure iff, leaves of the 2-diInensional t.opology t.ree will store the edge sels E;,j.

along wilh lhe minimum cost erlgc of each set.. Inlernal nodes will have the

minimum of the values of thei.r children.

We discuss how lo modify a 2-dimensional topology tree when its

corresponding topoLogy tree is modified. Each modification in the topology tree

affects nodes along a path from lhe rool to some node representing a vertex

cluster Va. which mayor may not be a basic vertex cluster. In the correspond

i.ng 2·dimensional topology tree. nodes are affected along paths from the root to

nndcs of the form V.. x Vp for "l.ll clmlt,ers VIJ for which node V..x VIJ exists. For any

node V'l' on the pat.h t.o Va in the topology tree. aIL node!i of Lhe form V'l'x V" will be

on these paths in the 2-dimensionnl topology tree. (It is straighlforwi1rd Lo ver

ify t.hat for c"l.ch node Vll on t.he same level of the topology tree as V'l" there will

be a node Vax Vll in the 2-dimensional topology tree.) These nodes V'l'x V" together

form a :::;ubtrc8 Ta of the 2-dimr:n~ional t.opology tree. In fad the subLree Ta will

br;- isomorphic to that. sllhtr8e of t.hp. topology tree wilh nodes at the same level

i'.~ Va or ;"\how~. Hence t.here are O(m./ z) nodes in Ta.

18

Since each node bas a number of children bounded by a constant. the time

to modify or replace each node in the subtree T l:l will be const~nl. Thus the

operations of merging or splitting a 2-dimensional topology tree can be done in

lime proportional to the number of nodes in Ta' which is O(m/ z). To tlnd a

replacement edge. one must examine the values in appropriate nodes once the

2-dimcn~ion1l1 topology tree has been split. Suppose that the topology tree has

been split into two trees, whose vertex sels are the clust.ers V" and Vp• with the

VJI set having no fewer levels tJHm VOl set. The replacement. ed~e can be found by

examining the values at the node:> V",xV7 for an such nodes, and laking the

minimum. It. will lake O(ml z) time to find and examinr> these nodes.

Cboosinp, z =vm, we get our structure Ill.

Theorem 4. Structure llf aJlow~ the on-line edge-update problem for minimum

~pannine; trees to be solved in O(vm) time per update, using O(m) space and

O(m) preprocessing time, aside from the time to find the initial minimum span

ning; t.re8.

Proof. As before, splitting a.nd merging the basic vertex: sets will use time O(z).

All other operations will take O(m/z) time.•

7. A data structure for planar graphs

As stated previously, we have been able to do much better in the case that

the underlying graph is planar. In this case we do not deal at all with basic ver

lex clusters, but merely use the multilevel parlition. Thus we use a topology

tree for the minimum spanning: tree T. augmented with additional informalion.

Consirlcr an intcrnfll node of the topoloRY tree representing vertex clusLer W,

who~e children represent vert.ex clusters if 10 W2• ..• ,!f... Si.nce the graph is

planar, it m~y be laid out ;;0 tha~. ea.ch cluster W;: is in it.~ own connected reRion

19

of the plane. All edges between a pair of vertices in anyone Wi may be laid out

so that they are wholly contained in the appropriate region. An example of such

a correspondence is shown in Fi,e;ure 9, with the tree edges shown as bold lines,

the nonlT'F.lc edges as solid lines, and the qoundary of the regions shown with

dashed line~_

Given a planar embedding of the graph. consider any vertex cluster Wi and

its region. The region is either simple. or it ha::; between one and three "holes"

in it. One such example is shown in Figure lOa, in which region W I has a closed

curve bounding it, which SCpilrates WI from W2• W3 and W.,. For each closed

curve bounding a region Wi. the edges with one endpoinl in Wi and lhe other not

in Pli may be ordered in a natural way, e.g. clockwise around the closed curve.

A bouTI.da.ry between two regions is a maximal set of edges between the regions

that ilr~ ~om:~cutive in their ordering with respect to both regions. It is possible

that two regions have more than one boundary between. For example, note that

in Figure 10b the clusters W::l and Wo1- have hro boundaries between them. For

T >: 3 region~. it is no~. hard to show that there are at most 3T - G boundaries

he~.wr.cn them. Si.nce TlO vertex clu~ler will have mop! than four children in the

topolor,y lrcp-, lhere will be at most six boundarip.!'i between the children. Two

sucn cases are shown in Figures 9 and lOb.

The operations that WI' shall perform on 'boundaries are l>plilting a boun

dary, concatenating two boundaries, and findine a minimum~cost nontree edge

in the boundary. Vie thus represent the boundaries with mer~eable heaps, such

as those in [AHU]. The merginn and spli';.ting of rcp,ions are similar to what has

already been discusserl wit.h respect t.o t.oTlology trees, 8xcept. now boundaries of

regions must. illso br. mninlilincd.. We ~h,JJI discuss the splil.ling of a region in

some detail, 1.eaving th~ simpler operation of merging to the reader.

20

We first consider how to split a vertex cluster W in the topology tree,

assuming that edge e. a tree edge with endpoints in W. is removed. Our split

routine will return two clusters W' and W", and boundary B between them. Let

W be the union of subsets WI. Wz. Wr. If e is in some boundary between a

pair of t.he Wi'S, then do the following. Determine which of the W;:'s will still be

connecLed to each other, i.e" which Wi'S will be in 11", and which will be in 11'''.

Determine those boundaries between W;:'~ that will form the boundary between

W' and W", ;~nd concatenate them together to form B. Each remaining boun

dary between the 11'('5 will !"eparate subcluslers of either W' or 11'''. Return 11",

W" and t.he boundary B between them.

As nn example. consider the region Wt from Figure 9. shown by itself in Fig

ure 11 a. Suppose it consists of two subregions. WIt with the upper four vertices.

and W12 with the lower five vertices. Suppose that WI is to be split on the dashed

edr:::e bclween f:'u and W12. The resulting two regions WI' = Wll and WI" = WI2

i'l.re shown in Figure lIb. along with thc bounrtary bp.tween them. 'shown as a dot

ten linl").

If e is not in the boundary between a pair of the Wl's, then it is contained in

one of the Wi 's, say Wj. Recursively split Wi on edge e, which should return Wi'.

Wj ", fine! a boundary between them. Split as necessary the boundaries that Wj

had with any of the other Wi·s. Determine which of the Wi'S. along with Wi' and

W/'. arl") connected, to rorrn the basis of W' anel W". 1f W/ is of level one less,

merge it wit.h i\ neighbnr. I-lanrll~ Wi' similarly. Determine the boundaries

belween the new Wi':; that will rorrn the boundary between W' and W". As befoec

concatenate t.hese bouf!darics. and assign remaining boundaries to W' and W".

Now suppose that the whole p.raph W in Ji'igure '9 is to be split on the same

edge as in Fi~ure lla. The bounrlary that WI shared with Ws must be split. as

wea a.::; the boundary t.hat WI shared with W2• Note that WI' will be merged with

21

W3 • absorbing the boundary between into the result W'. and WI" will be merged

with W2 and W4 • yieldtng the result W". The boundary between W' and W" will be

the concatenation of the boundaries between Ws and W4 • WI' and W4• WI' and W2•

WI' and WI'" Ws and WI", and Ws and W2• in that order.

The time to splil vertex cluster Von edge e may be seen to be O((log 711..)2),

As established earlier. the height of the topology tree will be O(tog 711..). For each

level, the number of boundaries that will be split. or concatenated will be no

greaLer lhim some constant. Sincp- each split and concatenation will lake

O(log: 711..) time, this work is bounded by D(log 711..) per level. Merging vertex clus

t.ers together. as in a small W/ with a lar,l;ler neighbor, will require

O«h-h')log 11L), where h' is the level of Wi'. and h is the level of iLs larger neigh.

bar. The level of the resulting vertex cluster will be at least h. Thus the total of

the difJerence in levels will be O(log m). Thus the merging will be O((log m)2)

also.

Theorem 5. The edge-update spanning t.ree problem may be solved in

n(lor; m.)2) time per updatr:. using n(m) spRee anc] O(m) prcprocc~ssing lime.•

B. Edge insertion and deletion. and maintaining connected components

It is not hard to cast the problems of edge insertion and deletion into an

edge update framework. When an edge is inserted, the degree of the incident

vertices in the original graph increases. If the degree of such a vertex has

bpcome four. then the Lransformation discussed in !'icclion 2 musL be applied Lo

I.he vc:rl.cx. Tf lhe dr:r.r-er: has be~omc e;rc,'1l:~r than four. then the: lransforrnatiofl

from section 2 has ;llrei'l.dy been applied hut now must be modified. In bolh

cases. t.he number of new edges and vertices introduced is a small ·constanl.

Similar tran:o;:forma.tiQ'l.s may be performed in revers~ if an edge is deleted.

22

When edges are being inserted or deleted. the nwnber m of edges is of

course changing. Let. m., be the number of edges in the graph at lime t. We

claim that an update at time t can be carried out. in time D(..../Tnd. This can be

achieved as follows. Let z, = h/m~ 1. We shall also allow basic vertex clusters of

size 3zt -1, and basic vertex clusters of external degree less than three of size

Zt -1. When the value of z changes due to an insertion or deletion. there will be

at leastrmr. updates before z advances to the next value up or down in the

same direction. The idea I::; to adjust a small constant number of basic vertex

clusters each time t.hat. there is a new update. Since there will be no more than

vm:; clusters that need to be adjusted. the adjustmrmt may be accomplished

before a new round of adjustmtmt!'; is initiated. Thus every time an insertion

occurs, the clusters can be scanned to find any cluster that is too small nnd this

cluster can be combined with a neighbor as necessary. Similar operations are

performed upon a deletion.

Theorem 6. A minimum spanning tree may he maintained under the operations

of insertion and d~letions of edges in O(v'711t) time per update, where m, is the

current number of edges.•

If the graph is planar, then things are even easier. since no parameter z will

be adjusted. Thus edge insertion and deletion can he performed in O«log m)2)

time. provided that the graph remains planar.

Using the above modifications to our basic structure, we can solve the prob

lem of maintaining connected components of a graph on~line. Given a graph in

which edges are being inserted and deleted. a data structure must be main

tained :::;0 th;).t. n query about whet.her two vertice~ are in the same connected

component 01.0 bn answered in constant time. In addition to our above struc

ture we use t.he [oUowine. Let each nage in the graph have cost 1. In addition,

keep a ~ufficient number of "dummy" edges of cost 2 in ;;he graph to link

23

together the connected components. Any dummy edge included in the aug

mented graph must be in the minimum spanning tree of the graph.

Give each connected component a number. In each basic vertex clusler,

maintain lisls of verlices that are in the same connected component. An array

liA,<;rnu.m will give for each vcr!:.[!x v. the index or the lis I, holding 'lJ. A second

array crnnpn~Lm will give for each list l the index of the connected component

containing the vertices in l. To answer a query on vertices u and '!J. compare

compnum (listnum (u» and compnum(listnum(v» for equality.

To insert an edge (u,'ll) do the following. If the edge is currently a dummy

edge, make it a. real edge by decreasing its cost to 1. Olherwise insert it. with

cost 1. If u and v were in different components. merge the components by

doing the following. First identify the at most one basic vertex cluster that con

t.ains vert.ices from both component.s, and concat.enat.e t.he lists for t.hese com

ponents, changing t.he listnum values of the vertices on one list to be t.he

smaller of Lhc t.wo component numbers. Then in each basic vert.ex clust.er con~

taining a list in the higher numbered component.. change the r.:ompnum value of

the li::t to be the inc!ex of the lower numbered component. Since Lhere are

O(.../Ti!.i) vertices in any basic vertex cluster, and O(Vmd basic vertex clusters

altogether. the time required will be O(...;m;-). Inserting edge (u,v) may force a

dummy edge out of the minimum spanning tree. Delete this edge. This will

require work proportional to the total size of a constant number of basic vertex

clusters, or O(vm;).

The ideas for deletion are similar. 1f the edge e to be deleted is not in the

minimum :>panning tree. rlelf!t,e it. If it is in the tree, and t.here .is a replacement

edt~p. for Po of casl 1, delete fl. Otherwise, increase t.he cast of e from 1 to 2.

Til''m renumber the component that has split off, split t,hr: at most one list in

some basic vertex cluster that has vertices in both resulting components, and

give the new number to the D(vm,) lists (at most one per basic vertex cluster)

containing vertices in the new component.

Theorem 7. The on·line connected components problem can be solved using

dat.a structures that allow edge insertion and deletion times of D(....Jm;).•

9. Generating the K smallest spanning trees

In this section we show how to use our data structures to generate the K

smallest. spanning trecs of n graph in increasing order of cost. Each tree in the

sequence except for the nrst can be described in terms of a preced'ing tree in

thc sequence, with one tree edge swapped out and replaced by i:l nontree edge.

Thus our out.put will be in the following form. The minimum spanning tree will

be output first, followed by a succinct description of each of the remaining

trees. Each remaining tree will be characterized by its cost, a reference to the

tree from which it can be derived using a single swap, and that swap.

Our approach is based on a branch-and-bound technique described in [L]

and used in [G,KIM]. The set of all ::.panninp; trees not yet selected is partitioned

on the basis of the inclusion or exclusion of certain edges. When the minimum

spanning tree is selected, th"e set is partiUoned as follows. For each edge eoi in

the minimum spanni!1r, tree, there is n replacement edge Ii of minimum cost.

Without loss of generality assume the swap pairs (ei./ t) are indexed in increas

inp, ord":!!" of r: (fJ-r: (ed. We assume that all sueh costs are unique, with ties

broken by lexicography, if necessary. The s~t of remaining spanning trees is

part.i.t.ioncd int.., 71,-1 ~ubsd.!'l wit.h the '/',Lh SIJ"'lscl. conl.ilininr; all spflrlning lrccs

wit.h edge Poi P.Xdlldcrl and le h . ,p-i-d inC'llldcd.

Wh<::n t.h,... next. smallest spanninR tree T' i:c:; chosen from one of these sub

!'ict.s, t.he rl,,!Tywinr1c:- "i t.hr: :lubset is part.itioned ilS follows. Lel

~e,;'li=l,,·, ;n.'-lj be lhe set of edges in tree T' that are noL required to be

included in T' because of membership in the subset, and !f,;'l the corresponding

set of replacement edges of minimum cost that are not required to be excluded

fr-om spanning trees in t.hat. subset.. Once rl/Fl.in assume thal the pairs (ef'./f')

are in order of increasing cos!:.. The subset is partitioned inlo n'-l subsets with

thp. 'i.lh subset eontaining all spnnning trees satisfying the previous conditions

plus t1,;' excluded and tel'.' ,. ,t11.-I'~ included.

The above discussion seems to imply that every time the next smallest

spanning tree is chosen, a large number of replacement edgcs must be found.

However. the determination of some replacement edges may be delayed, as the

next lemma suggests. This will allow us to realize our improved strategy when K

is small.

Lemma 4. Let T be a minimum spanning tree of graph (V,E). Let f t and J j be

•the replacement edges for Poi and ej. resp., in T, and let r be the replacement

edge for ej in the minimum spanning tree T-ef+ff in (V,E-ed. If c(f,;)-c(ed

Proof. Sincp. T is a minimum spanning tree, c(f1.) > c(ed. Thus the proof

reduces to showing that c (J)::? c (fj)' If! =f j' then we are done. Otherwise.

P.j musL bl'! on t.he eyel~ inducf"!rl by J1. in T. Sincp. (1j has a replacemenL edge of

• •Ii in T chosen among edg~r; including I,;, r:Ud ~ cUi)' Since T ;o! Ij, 1'-e,;+1

is a spanninp: t.rec. Sinee Of has replac"=lment edge f f chosen instead of j,

e(J) > CUi)' The lemma then foltows. "

Our ~pproach is as ronows. First use a fast algorithm to fmd the minimum

spanning tree TI . Generate our d:'\ta structure for T l • For each tree edge, find

it~ r~pli'<:!cm('nl.edp,e, u:-:io('; l,he algorithm in [1'2]. Each such swap infers a span-

nin~ I.rm~. Name each sp;uming tree, label. it, wit.h a rcrercnce La 1'1 and the swap

26

that generates it. Create a heap on the costs of these spanning trees. Set up a

list. L) of such trees resulting from T 1 that have already been chosen. Initially,

L) i!'i empty.

We then iterate the following step until K-l additional spanning trees have

been chosen. Suppose i-1 trees have already been chosen. Select the

minimum value oul of the heap. The corresponding spanning tree will be T(. Let

Tj be thp. spanning tree from which r, is generated, Pot the edge removed. and f i

t.he replacement edge. Generate our data structure for Tf. from that of TJ. set

bng lhe CO!'it. of ~i in Lhe graph to bt') "". Traverse the Ii!';L Lj • F'or each T, on the

Pst., dcterrnine th~ rcplncamr.nt edge for P.i in Tt . N<l,me Lhe corresponding

sp'1nning trpe, label it with T1 find the new swap, and enter its cost into the heap.

Now add T(to the list Tj • Find the replacement edge for Ii in Ti . Name the new

spanning tree, and as befor,,:: label it and enter its co:">t into thc heap. Set up a

list IJj" initially empty. Repeat until i=K.

1'he correctness of .the above algorithm may be seen as follows. The

inclusion-exclusion strategy ~s being implemented, with an edge excluded by set

Ling il.s cost Lo no in the dnta struct.ure that is the source of the appropriate ~ub

seJ. of :,,>panning trees. Inclu:=oion of edges i::: enforced by the mechanism of build

ing and tra'l("!r~ing t.he list:; ;/'j!' The only edr;cs in trae 7', lhiJ.t can be swapped

'JIlt 'lr~ Ii and Lhr)sc cdgc:"> involved in SWl'l.p!i with respect to 1j thal are more

c:~pensive than (e'./i)' Lemma 4 guarantees t.hat a spanning tree arising from

!iuch a swap need not be examined until the corresponding list has been

traversed during execution of the algorithm.

YTe now consider the time complexity of our algorithm. Finding the

minimum spannin~ t.rl"le requirl'ls O(m loglr)P,(?+m/n.)'n.) time. The time to Cmd all

rcplacClOlenl. f'dp'f!s in :.hc minimum c;panninr; t.rep. is O(ma(m,n)), which is dom

inatcd by t.h'1 f'l.bove time. WI"! hnund t.hc iteration Ume a.:> ro!low~. Every lime an

iteration is performed, the length of some list is increased by one. The total

number of elements on ell lists when tree Ti is chosen is i-2. Thus at most i-I

replac"'''llmt edges in various trees must be found after selecting tree Ti • Since

the time to find a replacement edge is O(...tm) , the ith iteration requires

O(i..Jm) time. For J(-l iterations, this time is O(J<2...tm). When K is o(....trn)

thc resulting time is n (Km.).

As presented, the time and space to generate the Ti's is O(Km). since the

space for our basic data. structure is Oem). However it is possible to save space

in t.he following way. Since t.hc time required to generat.c our data structure for

Ti by modifying the structure for T1 is O(vm), the number of new nodes is

O(vm). The idea is to not destroy any nodes of the structure for Tj , but simply

share the appropriate subtrees. This reduces the space to O(m+K...,r,n), whieh

is O(m) when K is O(vm).

Theorem B. The K smallest spanning trees of a graph can be found in

n{mlogJog{2+m/n)n + Jr..Jm) time and O(m.+K...;;n") space.•

As discussed in the introduction, this result is better than previous results

in [KIM] whenever K is o(..fm') and CJ(loglo/7,(2+m/n)n). Our results are belter

Lhan t.hol'lC! in [Hl21 whenever Kvm: is I') ('77.(1.0,,,,: ".f) nr I(is a (m l/ 4(log n)l/2). If

t.he ~iv(m p"rnph is plnnnr. then our correspondinp. structures for planar graphs

should be used. These result!'> are better than the corresponding ones for [KIM]

whenever K is 0 (n/ (log n)2). They are also never worse than those in [H12]. and

arc belterwhenKis I') (n.).

Theorem 9. The J(~mallest spanning trc~~ of a planar graph can be found in

D(n + f~(log n)2) time and O(n -[- K(log n)2) space.•

\

28

References

[AHU] A. V. Abo. J. E. Hopcroft and J. D. Ullman, The Design and Analysis 01 Com
pv.t6T Algorithms, Addison-Wesley, Reading, Mass. (1974).

reT] D. Cheriton and R. Tarjan. Finding minimum spanning trees, SIAM J. Com
put. 5 (1976) 724-742.

[eH] F. Chin and D. Houck, Algorithms for updating minimum spanning trees,
J. Compo Sy.... Sci. 11) (i9?£]) 333-34-'1-.

[ES] S. Even and Y. Shiloach. An on-line edge deletion problem. J.ACM 28. 1
(January 19B1) 1-4.

[F] G. N. Frederickson. Data structures for on~line updating of minimum
spanning trees, ?roc. 15th ACM Symp. on Theory oj Computing, Boston
(April 1963) 252-257.

[FS1] C. N. Frcdcrick!'ion and M. A. Sriniv<l!l. Data :'llruclures for updating con
::;lraiTlcd spanning trees, nbslracl (1963).

[FS2] G. N. Frederickson and M. A. Srinivas. Data structures for on-line updating
of matroid intersection solutions. ?roc. 16th ACM Symposium on Theory
01 Computing, Washington. D. C. (April 19B4) 303-390.

[G] H. N. Gabow, Two algorithms for generating weighted spanning trees in
order. SIAM J. Com'P1Lting 6. 1 (March 19?7) 139·150,

[Hll] Dov Harel. On line maintenance of the connected components of dynamic
graphs. manuscript (1982).

[H12] Dov Harel, personal communication (1983).

[Hy] F. Harary. Graph Theory. Addison-Wesley. Reading. Mass. (1969).

[KIM] N. Katoh, T. Ibaraki, and H. Mine. An algorithm for finding K minimum
spanning t.rees, SIAM J. Computing 10, 2 (May 1981) 24-7-255.

[L] E. 1.. Lawler, Combinatorial Optimization: Networks and Matroids. Holt.
Rin~hl1rl. rmd Winston, New York (1976).

[OV] M. H. Overman: nnd .J. van Leeuwen, Maintenance of configurations in the
plane. J. Compo 8ys. Se-i. 23. 2 (October 1981) 168-204-.

[S'1'] D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees. J.
Compo Sy~. Sc'~. 26 (Hl83) 362<]91.

[SP] 'P. Vr. ~pira ?tnc A. Pan. On finding and updating spanning trees and shar
I.cst flHt.h~, SI/J.M J. Com1Jul. 4, 3 (Scptember 19'75) 375·380.

['1'1] roo. E. 'l'Elrjan, F:fficiency of a p,ood but not. linear set union algorithm. J.
/lCM ,"':::, 2 (April l!WG) 2tG·225.

29

[T2] R. E. Tarjan. Applications of path compression on balanced trees, J.ACM
28 (1979) 690-715.

[W] D. J. A. Welsh. Matroid Theory, Academic Press, New York (1976).

[WL] D. E. Willard and G. Lueker. A transformation for adding range restriction
capahiJity t.o d8La stnlctures, to appear in J.ACM.

[Y] A. C. Yao, An O{IEllor,logl VI) algorithm for finding minimum spanning
t.rees, hI. Froc. LeU. -1 (1975) 21·23.

V2

Figure 1. The allowable "'l"'1~es for vertex clusters
thai may be umoned '''ll''lhe<.

...--------------
/,- ,...---

I / ,,-........... / .", - - - - .. --: " "
~11' "':-'1:3 I' '\\

I I 0 ',' I I I

1
' " I \

I " \0'\ I' -----, I
{I to", ,'I I ti: ,I
I I ' I I I

I I I' I I
I I ," / I I
I' 1 \ I

I
00 \ I I I

I I I

I I ~ I I
{ " ~/ - : I

{ I -' '- I I
I I,' '- ~ ~ I
I I " '- \ '-', I I

I
I I ,\' ./:>."1
1 I ' , I

I I \ " :1/
II ~ \ \ N\' '1/

\\'__ ./:>./1 \IW'I, '_ --- / \'- /1/
" - - - - ---- '-_//--- _ _ J

Figure 3. The topology _ correspJnding to the
topological partition in Figure 2

'- ,,-.,.

'.'.
(a)

(c)

(b)

(d)

figwe 4. An ell3lllple of elllemal <lege. in=asing from 3 to 4.

(a)

(c)

(b)

(d)

Figure 5. An example of inserting • tree edge andmc~ "'" topology trees.

(a)

Figure 6. An e..".e of deleliDg a tree edB/> and
opitliDg allll1li1e",1 partition.

(b)

-

(c)

(a) (b)

-

(d)

Figure 7. E>lmnpIes of extemal c1eFe c1eaeasing from 3 to 2

Figure 8. A portion of .he 2-dimensional topology tree
corresponding to the topology tree in FtgUIe 3.

...

- - -- ----- -- "-/'

/ \

W 4
\

I ,
I

).-- I-- ,
I

/ , I
I , I

I I
I,,
I

W l W z I
I

I
I

I
I
I

- I
"'\- I

I
W 3

\
\ I

I

" /... /'- -- - --

Figure 9. A planar graph, with the tree edges sbown
in bold. the nonlree edges in solid, and
the vertices grouped with dmhed lines.

(a) (b)

FIgUre 10. E1cImpIes of relalionsbips between ref#ons.

- --

-

W{

(a) (b)

Figure 11. Spliuing a planar region.

	Data Structures for On-Line Updating of Minimum Spanning Trees, with Applications
	Report Number:
	

	tmp.1307986960.pdf.Ez_vW

