
RESEARCH CONTfWUTKWS

Image Processing
and Computer
Vision

Data Structures for Quadtree
Robert M. Haralick
Editor

Approximation and
Compression

HANAN SAMET

ABSTRACT: A number of data structures for representing
images by quadtrees without pointers are discussed. The
image is treated as a collection of leaf nodes. Each leaf node
is represented by use of a locational code corresponding to a
sequence of directional codes that locate the leaf along a
path from the root of the tree. Somewhat related is the
concept of a forest which is a representation that consists of

a collection of maximal blocks. It is reviewed and refined to

enable the representation of a quadtree as a sequence of

approximations. In essence, all BLACK and WHZTE nodes
are said to be of type GB and GW, respectively. GRAY nodes
are of type GB if at least two of their sons are of type GB;

otherwise, they are of type GW. Sequences of approximations
using various combinations of locational codes of GB and
GW nodes are proposed and shown to be superior to
approximation methods based on truncation of nodes below
a certain level in the tree. These approximations have two
important properties. First, they are progressive in the sense
that as more of the image is transmitted, the receiving
device can construct a better approximation (contrast with
facsimile methods which transmit the image one line at a
time). Second, they are proved to lead to compression in the
sense that they never require more than MlN@, W) nodes
where B and W correspond to the number of BLACK and
WHZTE nodes in the original quadtree. Algorithms are given
for constructing the approximation sequences as well as
decoding them to rebuild the original quadtree.

This work was supported in part by NSF Grant DCR-83-02118.

0 1985 ACM 0001.0782/85/0900-0973 750

1. INTRODUCTION
Region representation is an important issue in graphics
and image processing applications. A number of repre-
sentations are currently in use. These have been tradi-
tionally dominated by run lengths, binary arrays, and

chain codes. Recently, the quadtree of Klinger [12, 241

has received considerable attention as a data structure

for such applications. This renewed interest was due in
a large measure to the work of Hunter and Steiglitz in
the domain of computer graphics and animation [6-g],
and work showing the interchangeability of the quad-
tree representation with other representations such as
boundary codes [4, 191 and rasters [20]. A variant of the

quadtree, termed an octree, has also been used for
three-dimensional data [6, 9, 15, 301.

The quadtree was originally conceived as an alterna-
tive to binary array image representation with the goal
of saving space by aggregation of similar regions. Of
course, if there is no aggregation (e.g., a checkerboard
image), then the quadtree will require more space than
the binary array. However, more importantly, the hier-
archical nature of the quadtree also results in savings

in execution time. In particular, algorithms using quad-
trees have execution times that are only dependent on
the number of blocks in the image and not on their size
(e.g., connected component labeling [21]). Nevertheless,
by virtue of the tree structure, the amount of space
required for pointers from a node to its sons is not
trivial. As a result, there has recently been a consider-

able amount of interest in pointerless quadtree repre-

September 1985 Volume 28 Number 9 Communications of the ACM 973

Research Contributions

sentations. They can be grouped into two categories.
The first represents the image in the form of a preorder
traversal of ihe nodes of its quadtree [ll]. The second
treats the image as a collection of leaf nodes. Each leaf
is represented by use of a locational code corresponding
to a sequence of directional codes that locate the leaf
along a path from the root of the tree. It has a large
number of v,ariants and is used by many researchers
[l-3, 5, 13, 16, 17, 28, 291. Somewhat closely related is
the concept of a forest of quadtrees of Jones and Iyengar
[lo] which uses a variant of ,a locational code to repre-
sent the roots of the elements of the forest.

In this article, we define a sequence of approxima-
tions to quad.trees that are based on the notions of for-
ests. In essence, all BLACK and WHITE nodes are said
to be of type GB and GW, respectively. GRAY nodes are
of type GB if at least two of their sons are of type GB;
otherwise, th.ey are of type GW. Thus, we see that this
redefinition of a GRAY node does not cost any extra
storage. We propose a number of approximation se-
quences using various combinations of the locational
codes of GB and GW nodes and show them to be supe-
rior to the inner and outer approximations discussed in
[18]. Our sequences of approximations possess two im-
portant properties. First, they are progressive. This
means that a:s more of the image is transmitted, the
receiving device can construct a better approximation.
Progressive approximation methods are to be contrasted
with facsimile methods that transmit the image one
line at a time. Second, use of our approximation meth-
ods also leads to image compression in the sense that
the image never requires more nodes when our approx-
imation methtods are used. In fact, they never lead to
fewer nodes than are required were the image to be
represented solely by BLACK nodes or solely by WHITE
nodes.

This article is organized as follows. In the remainder
of this section we give a brief definition of a quadtree.
Section 2 contains a discussion of the pointerless quad-
tree representation that we use. In particular, we elabo-
rate on a number of different ways of defining a loca-
tional code and motivate our choice. Section 3 is a brief
overview of hierarchical approximation methods. Sec-
tions 4 and 5 constitute the heart of the article. In
Section 4 we define the concept of a forest-based ap-
proximation method and in Section 5 we discuss the
degree of image compression that is achievable when
our approximation methods are used. Section 6 pre-
sents experimental results from the use of our approxi-
mation methods and an interpretation of their signifi-
cance. Section 7 concludes our presentation with a set
of open questions for future research.

Given a 2” x 2” array of unit pixels, a quadtree is
constructed by repeatedly subdividing the array into
quadrants, subquadrants, . . . until we obtain blocks
which consist of a single value (e.g., a gray level). This
process is represented by a tree of out degree 4 in
which the root node corresponds to the entire array,
the four sons of the root node correspond to the quad-

rants, and the terminal nodes correspond to those
blocks of the array for which no further subdivision is
necessary. The nodes at level k (if any) represent blocks
of size zk x zk and are often referred to as nodes of size
Zk. Thus, a node at level 0 corresponds to a single pixel
in the image, while a node at level .n is the root of the
quadtree. For example, Figure lb is a block decomposi-
tion of the region in Figure la while Figure IC is the
corresponding quadtree. In general, we will be dealing
with two values 1 and 0 where BLACK and WHITE
square nodes in the tree represent blocks consisting
entirely of l’s and O’s, respectively. Circular nodes, also
termed GRAY nodes, denote nonterminal nodes.

Each node in a quadtree is stored as a record contain-
ing six fields. The first five fields contain pointers to tht3
node’s father and its four sons, labeled NW, NE, SW,
and SE. Given a node P and a son I, these fields are
referenced as FATHER(P) and SON(P, I), respectively.
We can determine the specific quadrant in which a
node, say P, lies relative to its father by use of the
function SONTYPE such that SONTYPE = I if
SON(FATHER(P), I) = P. The sixth field, NODETYPE,
describes the contents of the block of the image which
the node represents, that is, BLACK, WHITE, or GRAY.

2. POINTERLESS QUADTREE REPRESENTATIONS
Instead of using a tree consisting of BLACK, WHITE,
and GRAY nodes, we use a representation in the form
of a collection of the leaf nodes of the quadtree. Each
leaf node is represented by a locational code which
corresponds to an encoding of the path from the root of
the tree to the node. In fact, we only need to maintain ;1
collection of the BLACK nodes since we represent bi-
nary images and the only GRAY nodes are internal to
the data structure which means that the WHITE nodes
can be determined given the BLACK nodes. As men-
tioned in Section 1, there exist many variants of the
locational code. In this article, we make use of the
following definition of a locational code. Let the se-
quence (xi) represent the path of nodes from the root of
a quadtree to x,,,, the desired node, such that x, = root
of the quadtree and Xi = FATHER(xi-I). The directions
NW, NE, SW, and SE are represented by the directional
codes 1, 2, 3, and 4, respectively, and are accessed by
the function SONTYPES. The encoding of the locational
code for node x,,, is given by z,, where Zi is defined:

0 i=m

zi = 5 . z;-1 + SONTYPE5(xi) rn < i 5 II.

For example, node 10 of Figure 1 would be encoded
by the number 24 = 582. It can be decoded into the
sequence of directional codes (b,) = (2, 1, 3, 4) =
(NE, NW, SW, SE)-that is, z4 = 4 . !? + 3 . 5’ + 1 . 5’

+ 2 . 50.
The above encoding method has a number of useful

features. First, it lends itself easily to decoding a loca-
tional code into the sequence of directional codes by

Communications of the ACM September 1985 Volume 28 Number 9

Research Contributions

FIGURE 1.

24

A Region, its Maximal Blocks, and the Corresponding Quadtree. Blocks in the region are shaded, background blocks

(a) Region. (b) Block decomposition of the region in (a). (c) Quadtree representation of fhe blocks in (b).

using a combination of modulo and integer division BLACK nodes in increasing order, results in a list
operations. This is an important operation and must be which is a variant of a breadth-first traversal of the
fast and computationally simple. In essence, we are BLACK portion of the tree, that is, for i < j, BLACK
able to decode the number in such a way that we ob- nodes at level j will appear in the list before BLACK
tain the directional codes in the order in which we nodes at level i. For example, listing the BLACK nodes
traverse a path from the root of the quadtree to the root of Figure 1, in increasing order of locational codes,
of the subquadtree. Second, sorting the codes of the yields 25, 16, 22, 23, 28, 14, 27, 29, 20, 38, 19, 21, and 10

September 1985 Volume 28 Number 9 Communications of the ACM 97s

‘areblack.

Research Contributions

with codes 13, 17, 96, 121, 184, 196, 284, 309, 446, 459,

546, 571, and 582, respectively. This breadth-first prop-
erty means that as the list grows, we get a better ap-
proximation of the image, that is, suc:cessive nodes in
the list lead to a better approximation. Finally, increas-
ing the resolution of the image does not require exten-
sive recoding of the codes far the existing nodes.

Our locational codes differ from those used by Gar-
gantini [5] and Abel and Smith [l]. They make use of
fixed length codes, that is, for a 2” x 2” image, all nodes
are encoded by a sequence of n base 5 digits where one
of the five values designates a do not care condition. It
is used in the codes of nodes corresponding to blocks
that are larger than one pixel. The coding sequence is
defined as follows. Each node in the quadtree is repre-
sented by an n element sequence (9i) = (9n-r, . . . ,91,
90) constructed from the digits 10, 1, 2, 3, 4). Once
again, let (Xi) represent the path of nodes from the root

0

(a) lb)

25 16 25 16 25

0’0 (0 (j)

A
A

of the quadtree to x,,,, the desired node, such that xn =
root of the quadtree and xi = FATHER(Xi-1). The direc-
tions NW, NE, SW, and SE are represented by direc-
tional codes 0, 1, 2, and 3, respectively, and are ac-
cessed by the function SONTYPE4. 4 corresponds to a
do not care condition.

1

4 Oci<m
9i = SONTYPE4(xi) m s i < n.

For example, node 10 of Figure 1 would be encoded by
the rmmber 9 = 138. It can be decoded into the se-
quence of directional codes (9i) = (1, 0, 2, 3), that is,
9=1.53+0.52+2-51+3-50.

This encoding, termed a 9i sequence, has the interest-
ing property that when the codes of the BLACK nodes
are sorted in increasing order, the resulting sequence is
the postorder traversal of the BLACK portion of the
tree. A comparison of 9; with the Zi sequence described

A

!k
D

((3

A

!ik
D

25

03

FIGURE 2. The Steps in Adding Nodes 25,16, %, and 23 When
Constructing the Quadtree Corresponding to Fgure 1

22 23

976 Communications of the ACM September 1985 Volume 28 Number 9

Research Contributions

earlier reveals a number of shortcomings. First, using qi
it is more complex to decode a locational code to yield
the path from the root of a quadtree to the root of the
subquadtree. Second, increasing the resolution of the
image requires recoding 9i for the existing nodes. In
particular, their codes must be multiplied by 5 to a
power equal to the increase in resolution. Finally, 9i
does not have the progressive approximation property
Of Zi.

Using a 9i or zi sequence encoding for the BLACK
nodes of the quadtree, the tree representation (i.e., with
pointers) is quite easy to obtain. For example, proce-
dures BUILD-TREE and ADDNODE, given below, en-
able reconstruction of the tree representation from Zi.
To facilitate the explanation of the algorithm, we refer
to Figure 1 as an example and build its tree for the
sequence of nodes 25, 16, 22, 23, 28, 14, 27, 29, 20, 38,

19, 21, and 10 in this order. Figures Za-j show the
intermediate trees obtained during the process of add-
ing nodes 25, 16, 22, and 23. BUILD-TREE has as its
input a list of codes for the BLACK nodes and invokes
ADDNODE to add each element thereof to the tree.
Initially, the image is assumed to be WHITE and thus
the root is initialized to be of type WHITE (e.g., node A

in Figure 2a). ADDNODE decodes the code for the node
(i.e., the path to the node from the root of the tree) and
in the process may need to expand a node (e.g., the
transition from Figure 2a to Figures 2b and 2c when
adding node 25). In such a case, the node’s type is
changed to GRAY and its four sons take on its previous
value (e.g., the color of node A is changed to GRAY in
the transition from Figure 2a to Figure 2b). When the
decoding process is done, the node’s type is comple-
mented (e.g., node 25 becomes BLACK in the transition
from Figure 2c to Figure 2d). Applying procedures
BUILD-TREE and ADDNODE to the remaining nodes
(i.e., nodes 28, 14, 27, 29, 20, 38, 19, 21, and 10) yield
Figure 1.

node procedure BUILD-TREE(L);
/* Construct a quadtree from the list L of nodes in

terms of locational codes. L is a pointer to a list
implemented as a record of type nlist having two
fields DATA and NEXT corresponding to the data
stored in the list and a pointer to the next element
in the list. */

begin
value pointer nlist L;
pointer node ROOT;
ROOT c create(node); /* Assume that the initial

image is not empty */
NODETYPE(ROOT) c ‘WHITE’;
while not empty(L) do

begin
ADDNODE(ROOT,DATA(L));
L + NEXT(L);

end;
return(ROOT);

end;

procedure ADDNODE(ROOT,B);

/* Add a node with locational code B to the quadtree
rooted at node ROOT. */

begin

value pointer node ROOT;
value integer B;
quadrant Q;

while (B mod 5) # 0 do
begin

if not GRAY(ROOT) then
begin /* Expand a terminal node */

for I in (‘NW’, ‘NE’, ‘SW’, ‘SE’] do

begin
SON(ROOT,I) t create(node);
NODETYPE(SON(ROOT,I))

+ NODETYPE(ROOT);
end;

NODETYPE(ROOT) c GRAY;
end;

ROOT t SON(ROOT,DIR(B mod 5));

/* DIR converts a directional code to a
quadrant */

B c B div 5;
end;

NODETYPE(ROOT)
+ COMPLEMENT(NODETYPE(ROOT));

/* The node’s type is opposite to the type of the node
that was being added or expanded, that is, a
WHlTE(BLACK) node is being replaced by a
BLACK(WHITE) node. */

end;

3. HIERARCHICAL APPROXIMATION METHODS
By virtue of its hierarchical structure the quadtree
lends itself to serve as an image approximation device.
By truncating the tree (i.e., ignoring all nodes below a
certain level), we get a crude approximation. Ranade,
Rosenfeld, and Samet [18] define two basic variants
termed an inner and outer approximation. Given an
image I, the inner approximation IB(k) is the binary
image defined by the BLACK nodes at levels rk. Fig-
ures 3a and 3b (p. 978) show IB(2) and IB(l), respec-
tively, for Figure 1. The outer approximation, OB(k), is
the binary image defined by the BLACK nodes at levels
rk and the GRAY nodes at level k. Figures 4a and 4b
(p. 978) show OB(2) and OB(l), respectively, for Figure
1. At this point, let us use C and > to indicate set
inclusion in the sense that A c B and B > A imply that
the space spanned by A is a subset of the space spanned
by B. It can be shown that IB(n) c IB(n - 1) c . . . C
IB(0) = I and OB(n) > OB(n - 1) 2 . . . > OB(0) = 1.
Alternatively, we can approximate the image by using
its complement, E that is, the WHITE blocks. We define
IW(k) and OW(k) in an analogous manner to that of IB(k)
and OB(k), respectively, except in terms of WHITE
blocks. It can be shown that IW(n) C IW(n - 1) C . . . C
IW(0) = iand OW(n) 2 OW(n - 1) > . . . > OW(0) = 1.
Moreover, Ranade, Rosenfeld, and Samet [18] show that

September 1985 Volume 28 Number 9 Communications of the ACM 977

Research Contributions

(a) (b)

FIGIJRE 3. (a) B(2) and (b) B(l) for Figure 1 FIGURE 4. (a) OB(2) and (b) 06(l) for Figure 1

the outer approximations to I are actually the inner
approximations to r= that is, OB(k) = IW(k). Similarly,
it can be shaswn that the inner approximations to I are
actually the outer approximations to r that is, IB(k) =
OW(k).

Sloan and Tanimoto [26] treat the problem of trans-
mitting an image by successively approximating it by
use of pyramid-based approaches [27]. They are able to
handle gray scale images. They propose a number of
methods. However, none feature any compression.
Knowlton [PI] addresses a similar problem. He makes
use of a binary tree version of a quadtree. In essence,
an image is split into two halves alternating between
horizontal and vertical splits. Much of the compression
is obtained by using special coding techniques to en-
code primitive 2 x 3 blocks. The methods we discuss in
the following section make no use of such techniques.

4. FOREST-BASED APPROXIMATION METHODS
Jones and Iylangar [lo] introduced the concept of a for-
est of quadtrees which is a decomposition of a quadtree
into a collection of subquadtrees, each of which corre-
sponds to a maximal square. The maximal squares are
identified by refining the concept of a nonterminal
node to indicate some information about its subtrees.
An internal node is said to be of type GB if at least two
of its sons are BLACK or of type GB. Otherwise, the
node is said to be of type GW. For example, in Figure 1,

nodes F, 1, and M are of type GB and nodes A, B, C, D, E,
G, H, I, K, L, and N are of type GW. Each BLACK node
or an internal node with a label GB is said to be maxi-
mal square. A BLACK forest is the minimal set of maxi-
mal squares that are not contained in other maximal
squares and that span the BLACK area of the image.
Thus, the BLACK forest corresponding to Figure 1 is
(F, 10, 16, 25, 27, M, 38) and their corresponding sub-
trees. The elements of the BLACK forest are specified
by locational codes (although Jones and Iyengar use a
different definition than zi). Such a representation can
lead to a savings of space since large WHITE areas are
ignored by it.

A forest can also be used as an approximation where
we treat its elements as BLACK and all remaining
nodes as WHITE. In the remainder of this section, we

expand on the use of a forest to approximate images. It
is useful to sort the nodes of the forest according to
their codes. We use the locational codes given by zi. For
example, for Figure 1, the nodes will appear in the
order 25, 16, F, M, 27, 38, and 10. This order is a partial
ordering (S, 2) such that Si 2 Si+l means that the block
subsumed by Si is 2 in size than the block subsumed by
Si+r. In fact, for a breadth-first traversal we only need
to process the nodes in an order that satisfies the above
subsumption relation. It should be clear that a sorted
list is just one of many possible orderings satisfying the
subsumption relation.

The BLACK forest approximation can be defined as
follows. Let FB(P) be the quadtree constructed by color-
ing BLACK the roots of the subquadtrees comprising
the forest of the quadtree rooted at node P. FB(P) is
empty when P is a WHITE terminal node and likewise
it is equal to P when P is a BLACK terminal node. FB(P)
can be further refined to more closely mirror the con-
cept of an approximation. Let FB(P, k), the kth order
approximation to FB(P), be the nodes at levels
rk of FB(P). For example, in Figure 1 we have FB(A, 2)

= 125, 16, F); FB(A, 1) = 125, 16, F, M); FB(A, 0) =

(25, 16, F, M, 27, 38, 10) = FB(A). FB(A, 4) = FB(A, 3)

= J). Figures 5a, 5b, and 5c show FB(A, 2),
FB(A, l), and FB(A, 0), respectively. Clearly,
FB(P, n) c FB(P, n - 1) c . . . C FB(P, 0) = FB(P).

Note that any node can be approximated by a BLACK
forest of quadtrees, that is, not just the root of the quad-
tree corresponding to the image. Thus, we can approxi-
mate an image by a sequence of BLACK forests of quad-
trees where the sequence is defined by replacing non-
terminal node components of a BLACK forest by their
BLACK forests. More formally, let FBB(i), 0 5 i 5 n, be
defined as follows:

FBB(i)

i

(FB(root, 0)) i=n
(FB(j, 0) J j E FBB(i + 1) and not(GRAY(j)))

= U JFB(k, 0) J j E FBB(i + 1)

and GRAY(j) and FATHER(k) = j)

0 5 i< ;n.

For example, in Figure 1 we have FBB(4) = (25, 16, F,
M, 27, 38, 10). FBB(3) is obtained by adding the BLACK

910 Communications of the ACM September 1985 Volume 28 Number 9

Research Contributions

(a)

F 16

M

25 --

>

(4

FIGURE 5. (a) FB(A, 2), (b) FB(A, l), and (c) FB(A, 0) for Figure 1

forests of nodes F (i.e., nodes 19, J, 22, and 23) and M

(i.e., nodes 28 and 29) to yield FBB(3) = (25, 16, J, 22,

23, 28, 27, 29, 38, 19, 10). FBB(2) is obtained by adding
the BLACK forests of node] (i.e., nodes 14, 20, and 21)
to yield FBB(2) = 125, 16, 22, 23, 20, 14, 27, 29, 28, 38,

19, 21, 10). No additional nodes are added by FBB(l)
and FBB(O), that is, FBB(2) = FBB(l) = FBB(0) = I. Fig-

ures 6a and 6b show FBB(4) and FBB(3), respectively.
Clearly, FBB(n) 2 FBB(n - 1) 2 . . . > FBB(0) = I.

Approximation FBB provides a closer approximation
to the image than OB in the sense that OB(i) > FBB(i)
for all i. This is because the BLACK forest approxima-
tion (FBB) only includes GRAY nodes at level i if they

represent 2’ x ~‘blocks that are at least 1/Z’ BLACK
and OB includes GRAY nodes at level i if any fraction
of their corresponding 2’ X Z’block is BLACK. Actually,
the index i in FBB(i) corresponds to an iteration

(cl

whereas the index i in OB(i) corresponds to a level.
Nevertheless, OB(i) 2 FBB(i) because both OB(i) and
FBB(i) contain all terminal nodes at levels k 2 i, and all

nodes of FBB(i) at levels j C i are contained in the
GRAY nodes at level i which are part of OB(i).

We can also have a forest approximation that is made

up entirely of nodes corresponding to WHITE blocks. In
other words, we are approximating the complement of

the image r Such a forest is defined analogously to the
one presented earlier using the BLACK blocks, that is,
each quadtree is a collection of subquadtrees, each of
which corresponds to a maximal square. A WHITE jor-
est is the minimal set of maximal squares that are not
contained in other maximal squares and that spans the
WHITE area of the image. Now, all that remains is to
define a maximal square. As in the case of BLACK
forests, maximal squares are defined in terms of inter-

(a)

FIGURE 6. (a) FBB(4) and (b) FBB(3) for Figure 1

September 1985 Volume 28 Number 9

(W

Communications of the ACM 979

Research Contributions

(4 (b)

FIGURE 7. (a) FBW(4) and (b) FBW(3) for Figure 1

nal (i.e., GRAY) nodes. There are two ways in which

we can proceed. First, we can retain our definitions of
internal nodes in terms of GW and GB. Alternatively,

we can define an internal node to be of type GW’ if at
least two of its sons are WHITE or of type GW’. Other-
wise, the node is said to be of type GB’. We choose to

retain the o:riginal definition because it complements

the way the nodes were defined to build the BLACK
forest. Thus, given a tree labeled with GB and GW, both
BLACK and WHITE forests may be extracted; whereas

when using GW’ and GB’, prior to extracting the
WHITE forest from a tree labeled with GB and GW, the
tree must be relabeled. We use the following notation

in our discussion of WHITE forests. FW(P) is the WHITE
forest corresponding to the quadtree rooted at node P.
FM’(P) is further refined in terms of FW(P, k), the kth
order approximation to FW(P), as the nodes at levels zk
of FW(P). For example, in Figure 1, we have FW(A, 4) =
(A] and, in fact, FW(A, 3) = FW(A, 2) = FW(A, 1) =
FW(A, 0) = :FW(A) = (A]; FW(F, 2) = {); FW(F, 1) = (I);
FW(F, 0) = (I, 15); FW(H, 2) = (H); FW(H, 1) = @I);
FW(H, 0) = (H]. Clearly, FW(P, n) C FW(P, n - 1) C . . .
C_ FW(P, 1) := FW(P).

Similarly, we can approximate the complement of

the image by a sequence of forests of WHITE quadtrees
where the sequence is defin.ed by replacing nonter-
minal node components by their WHITE forests. More
formally, let FWW(i), 0 s i s n, be defined as follows:

(FW(root, 0))
(FW(j, 0) 1 j E FWW(i + 1)

i=n

FWW(i) =$
and not(GRAY(j))J

U (FW(k, 0) 1 j E FWW(i + 1)
and GRAY(j)
and FATHER(k) = j) Osi<n.

For example, in Figure 1 we have FWW(4) = {A].

FWW(3) is obtained by adding the WHITE forests of
node A (i.e., nodes B, C, D, and E) to yield FWW(3) =

(B, C, D, El. FWW(2) is obtained by adding the WHITE
forests of node B (i.e., nodes 1, 2, 11, I, and 15), C (i.e,

nodes G, 5, and 17), D (i.e., nodes 24, 40, and 41), and E
(i.e., nodes H, 30, 42, and 43) to yield FWW(2) = (1, 2,

11, I, 15, G, 5, 17, 24, 40, 41, H, 30, 42, 43). Continuing
this procedure we find FWW(1) = (1, 2, 11, 12, 13, 18,

15, 3, 4, K, 8, 5, 17, 24, 40, 41, L, 33, 34, N, 37, 30, 42, 43)

and FWW(0) = (1, 2, 11, 12, 13, 18, 15, 3,4, 6, 7, 9, 8, 5,

17, 24.40.41, 26, 31, 32, 33, 34, 35, 36, 39, 37, 30, 42,

43) = x Clearly, FWW(n) > FWW(n - 1) 2 . . . 2
FWW(o) = IW(0) = T:

Earlier we saw that OB(i) 3 FBB(i) for all i and we
have an analogous relationship between OW(i) and

FWW(i), that is, OW(i) 2 FWW(i) and hence FWW pro-
vides a closer approximation to the inverse image than
OW. We can also make use of FWW to approximate I
by working with its complement, FWW, defined as fol-
lows:

FWW(i) =

I

r (FW(root, 0))
(FW(j, 0) 1 j E FWW(i + 1)

and not(GRAY(j))]
U (FW(k, 0) 1 j E FWW(i +

and GRAY(j)

c and FATHER(k) = j)

ii

i == n

OsiCn.

Clearly, FWW(I’) 2 ow(i) for all i. Recalling that ow(ir
= IB(i), we have IB(i) _C FWW(I’). Also, FWW(i) 2 T

implies that FMTW(i) C 1. In fact, we have just shown
the existence of better approximations to 1 (i.e., FBB
and FWW) than OB and IB and in the process have
proven the following theorem.

THEOREM 1.

lB(i) C FWW(i) C I c FBB(i) c OB(i) for all i 0 5 i 5 n.

Use of approximation FBB results in overestimating
the area spanned by the image while use of FWW re-
sults in underestimating the area. In essence, we are
approximating the image solely by use of BLACK blocks
or solely by use of WHITE blocks. However, we could

980 Communicatiom of the ACM September 1985 Volume 28 Number 9

also aunroximate the image bv a combination of BLACK
1 I

and WHITE blocks. What-we do is use FBB(n) for the
first level of approximation; augment all elements of
FBB(n) which correspond to GRAY nodes in the original

quadtree by use of FWW; and repeat the alternating
process until no GRAY nodes are left. More formally,
we define a sequence FBW(i) as follows:

empty i = II + 1

FBB(n) i = n

FBW(i + 1) U (FW(j)) j E FBW(i + 1)

FBW(i) =
and j e FBW(i + 2))

(n - i) mod 2 = 1 and i < n

FBW(i + 1) U (FB(j)l j E FBW(i + 1)
and j @ FBW(i + 2)l

(n-i)mod~=oandicn.

For example, in Figure 1 we have FBW(4) = (25, 16, F,

M, 27, 38, 10). FBW(3) is obtained by adding the WHITE
forests of node F (i.e., nodes I and 15) and M (i.e., nodes
33 and 34) to yield FBW(3) = (25, 16, F, M, 27, 38, 10, I,

15, 33, 34). FBW(2) is obtained by adding the BLACK

forests of node I (i.e., node 19) to yield FBW(2) =
125, 16, F, M, 27, 38, 10, I, 15, 33, 34, 19) = FBW(1) =
FBW(0) = 1. Figures 7a and 7b show FBW(4) and

FBW(3], respectively. Note that in Section 5 we discuss
a symmetric approximation which makes use of FWW.

Procedure ENCODE-FBW, given below, generates
the FBW(0) encoding of an image. It does this by suc-

cessively generating in order, FBW(n), FBW(n - l), . . .
until FBW(i) is encountered such that no more GRAY

nodes need to be expanded. In essence, as FBW(n)
(i.e., a BLACK forest) is generated, all of its elements
that correspond to GRAY nodes are output as well as
placed on a list termed WLIST (e.g., nodes F and M in
Figure 1). Next, we replace all elements of WLIST by
their WHITE forests and thereby generate FBW(n - 1).
During this process all elements of FBW(n - 1) that
correspond to GRAY nodes are output as well as placed

on the BLIST (e.g., node I) to be used in the generation
of FBW(n - 2). The process terminates when encoun-
tering an empty BLIST or WLIST. Note that WLIST is
initially empty and BLIST is initialized to the entire

image (e.g., node A in Figure 1). ENCODE-FBW makes
use of procedures FOREST-BLACK2 and FOREST-

WHITE2 to generate the BLACK and WHITE forests cor-
responding to elements of BLIST and WLIST, respec-
tively. Note that in addition to outputting a forest of the
appropriate color, they also construct a list of the non-

terminal nodes of the forest to serve as input for the
next level of encoding.

ENCODE-FBW yields the nodes for FBW(0) in the
order of FBW(n), FBW(n - l), FBW(n - 2) . . ., FBW(0).
This is useful because it means that the reverse process
of building a quadtree from the transmitted codes re-
sults in obtaining successive approximations to the im-
age. In fact, procedure BUILD-TREE, given earlier in
Section 2, to construct a quadtree given the set of loca-
tional codes for all of its BLACK blocks can be used to
construct the quadtree from the FBW approximation.

Research Contributions

This is true as long as the codes for the nodes are
processed (i.e., added to the tree) in an order so that for
any two nodes P and Q such that P is an ancestor of Q,

P is added to the tree before Q. It should be clear that
procedure ENCODEEFBW yields the nodes in such an
order. In fact, as will become apparent from the discus-

sion of BUILD-TREE below, if we do not have such an
order, then we would have to specify the colors corre-
sponding to the elements of FBW (i.e., BLACK, WHITE,

GB, or GW). Note that this ordering property can also
be satisfied by a sorted sequence, a breadth-first traver-
sal, and even a preorder traversal. In the subsequent
discussion, we use the term transmit to denote the en-

coding process.

procedure ENCODE-FBW(P):
/“: Given a 2N x 2N image represented by a quadtree

such that P points to its root, construct its FBW
approximation. The approximations are output in

the order FBW(N), FBW(N - l), . . , FBW(0). For
each approximation FBW(i), all nodes at level k are

output before nodes of level j where j <k. The
approximations alternate between BLACK forests
and WHITE forests with the first approximation

being a BLACK forest. BLIST is a list of nodes for

whom a BLACK forest is to be constructed and
WLIST is a list of nodes for whom a WHITE forest is

to be constructed. BLIST and WLIST are both of
type list which is a record having four fields PTR,

PATH, LEV, NEXT corresponding respectively to a

pointer to a node, the locational code for the path
from the root of the quadtree to the node, N minus
the level of the node, and a pointer to the next
element in the list. BLIST is initially set to P. */

begin
value pointer node P;

pointer list BLIST, WLIST;
global integer N;
WLIST t “empty”;
/“’ Initialize BLIST to P with locational code 0 and

level N: */

ADDTOLIST(BLIST,P,o,O);
while true do

begin
if empty(BLIST) then return;

while not empty(BLIST) do

begin
FOREST_BLACK2(PTR(BLIST),

PATH(BLIST), LEV(BLIST), WLIST);

BLIST t NEXT(BLIST);
end;

if empty(WLIST) then return;

while not empty(WLIST) do
begin

FOREST-WHITEZ(PTR(WLIST),
PATH(WLIST), LEV(WLIST), BLIST);

WLIST t NEXT(WLIST);

end;
end;

end;

September 1985 Volume 28 Number 9 Communications of the ACM 981

Research Contributions

procedure FOREST~BLACK2(P,B,I,WLIST);

/“’ Output 1:he BLACK forest nodes for the quadtree

rooted at P with locational code R and at level N - I

given a 12~ x ZN image. All elements of the BLACK
forest which are nonterrninal nodes are also added

to the list WLIST for subsequent expansion into a
WHITE forest. “/

begin

value poiuter node P;
value integer B, I;
reference pointer node WLIST;

global integer N;
quadrant Q;
if GB(P) then

begin
output(B);
ADDTOLIST(WLIST,P,B,I);

end
else if BLACK(P) then output(B)
else if GW(P) then

begin

for Q in I‘NW’, ‘NE’, ‘ISW’, ‘SE’) do
FOREST-BLACKZ(SON(P,Q),

B+QCODE(Q)*5**1, I+l,WLIST);

/* QCODE converts a quadrant to a locational
code */

end;
end:

procedure FOREST-WHITE2(P,B,I,BLIST);
/:’ Output the WHITE forest for the quadtree rooted at

P with locational code B and at level N - I given a
2N x 2N image. All elements of the WHITE forest
which are nonterminal nodes are also added to the
list BLIST for subsequent expansion into a BLACK
forest. “1’

begin

value pointer node P;
value integer B, I;
reference pointer node BLIST;

global integer N ;

quadrant Q;
if GW(P) thten

begin

output(B);
ADDTOLIST(BLIST,P,B,I);

end
else if WHITE(P) then output(B)
else if GB(P) then

begin
for Q in (‘NW’, ‘NE’, ‘SW’, ‘SE’] do

FOREST-WHITEz(SON(P,Q),
13 + QCODE(Q)+*I, I+l,BLIST);

end;
end;

At this point, let us examine the mechanics of
BUILD-TREE more closely to see how and why it
works correctly. Recall that whenever a node is added,

a path (designated by the node’s locational code) is
traced from the root of the quadtree to the node. In the

process, nodes may need to be expanded (e.g., the tran-

sition from Figure 2a to Figures 2b and 2c when adding

node 25). In such a case, the node’s type is changed to
GRAY and its four sons take on its previous value (e.g.,
node A in the transition from Figure 2a to Figure 2b).
When the decoding process is done, the node’s type is
complemented (e.g., node 25 changes from WHITE to
BLACK in the transition from Figure 2c to Figure 2d).
In the case of the FBW sequence, replacement of a
BLACK (WHITE) node by its WHITE (BLACK] forest
proceeds in the same way. For example, Figure 8a
shows the result of applying BUILD-TREE to FBW(4) ==

(25, 16, F, M, 27, 38, 10) of Figure 1. Next, we process
FBW(3) which means that we must add nodes I, 15, 33,
and 34. Figures 8b-8h illustrate this process. The pres-

ence of node I implies that BLACK node F must be
replaced by its WHITE forest. This is accomplished in
two steps. First, node F is changed to a GRAY node and
gains four BLACK sons (Figure 8b). Next, node I is la-

beled and in the process is changed from BLACK to
WHITE (Figure 8~). Figures 8d and 8e show how node

15 is added while Figures 8f-8h show the process of

adding nodes 33 and 34. The final step is to process
FBW(2) which means that we must add node 19. In this
case, the presence of node 19 implies that WHITE node

I must be replaced by its BLACK forest. Figures 8i and
8j illustrate this process.

Approximation FBW satisfies the following relation-

ships FBW(n) > FBW(n - l), FBW(n - 1) C FBW(n - 2),

FBW(n - 2) > FBW(n - 3), and, in general, FBW(n - 2i)

> FBW(n - 2i - 1) and FBW(n - 2i - 1) c FBW(n - 2i

- 2). Furthermore, it is easy to show that FBW(n) 2
FBW(n - 2) 2 . . . > FBW(n - 2i) > . . . > FBW(0) =
I1 . . . > FBW(n - 2i - 1) 1 . . . 1 FBW(n - 3) 1
FBW(n - 1). In other words, the approximations FBW
spiral in from both sides of I in converging to 1. Note
that individually, FBB and FWW may, at times, be bet-
ter approximations to I than FBW-that is, there exist
images for which the amount of BLACK by which FBB

overestimates I is less than the amount of BLACK by
which FBW underestimates I. As an example, suppose
that WHITE node 18 in Figure 1 has been replaced by

GRAY node P and four sons 44,45,46, and 47 where
nodes 44,45, and 46 are WHITE and node 47 is BLACK
(see Figure 9 where the subtree rooted at node F is

shown). In such a case FBB(3) = 125, 16, J, 22, 23, 28, 27,
29, 38, 19, 10, 471, FBW(3) = (25, 16, F, M, 27, 38, 10, I,

15, 33, 341, and FBB(3) overestimates the BLACK area

spanned by node F by 4 pixels while FBW(3) underesti-
mates the same BLACK area by 5 pixels. Of course, an
image can also be constructed where the opposite is
true-that is, the amount of BLACK by which FBB
overestimates I is greater than the amount of BLACK by
which FBW underestimates 1. As an example, suppose
that BLACK node 20 in Figure 1 has been changed to a

WHITE node. In this case, FBB(3) = 125, 16, J, 22, 23, 28.

27, 29, 38, 19, lo), FBW(3) = (25, 16, F, M, 27, 38, 10, I,
15, 33, 34, 201, and FBW(3) underestimates the BLACK

982 Commur~icatior~s of the ACM September 1985 Volume 28 Number I?

Research Contributions

IO 27 38

(a) (W (c) (d) (e)

27 38 27 33 38 27 3334 38

(f) (cl) 0-d 0
F

ifi?b I J

15

0
F

& I J

19 15

0) (i)

FIGURE 8. The Steps in Adding Nodes I, 15, 33, 34, and 19 When Reconstructing

the Quadtree from the FBW Encoding of Figure 1

22 23

44 4546 47

area spanned by node F by 1 pixel while FBB(3) overes-
timates the same area by z pixels.

FBW is attractive as an approximation method be-
cause it converges to the image from both sides (i.e., it
alternately overestimates and underestimates the
BLACK component). Thus, it strikes a balance between
using all BLACK nodes or all WHITE nodes to approxi-
mate the image as is the case with FBB and FWW.
FBW, by definition, also has the property that FBW(j) G
FBW(i) for 0 5 i 5 j 5 II. In this case, by c we mean
that the nodes comprising approximation j are included
in approximation i. Of course, FBB and FWW could also
have been defined in an analogous manner by includ-
ing GRAY nodes. Recall that FBW(0) = I and thus when
we use procedure ENCODE-FBW to encode the image,

we can get the successive approximations to I as the
elements of FBW(0) are transmitted. Therefore, the first
elements that are transmitted make up FBW(n) and the
next terms lead to FBW(n - 1). etc.

FIGURE 9. Modifications to Figure 1 Showing the Example Where
FBB Overestimates the Image by Less Than What FBW Under-

estimates it

Septewrber 7985 Voluw~e 28 Number 9 Communications of the ACM 983

Research Contributions

5. COMPRESSION
The FBW approximation has the interesting property

that its use will often lead to compression in the sense

that it reduces the amount of data that is needed to
encode the image (and transmit it). Recall that we can

represent a quadtree by merely specifying all of the
BLACK blocks or all of the WHITE blocks. Depending
on the image, we would use the color with the smaller
cardinality in order to save storage. The FBW approxi-
mation consists of a combination of GRAY, BLACK, and
WHITE nodes thereby striking a balance between using
all BLACK or all WHITE. For example, encoding Figure

1 with FBW requires 12 nodes whereas the image con-
tains 13 BLACK and 30 WHITE nodes.

Thus, aside from its superiority with respect to the

quality of the resulting approximation, FBW also leads

to compressilan. Let F, B, and W denote the number of
nodes when encoding the quadtree using FBW, BLACK,

and WHITE nodes, respectively. Compression is said to

exist whenever F < MIN(B, W). As we shall see below,
variants of F.BW can be constructed so that F is always

s MIN(B, W). Thus, we can guarantee that our approxi-

A
Cl
I A

I234

(a) (W

I6 I7 I8 I9

(c)

FIGURE 10. Examples Illustrating the Compression Factors
Available Through the Use of FBW

984 Commuuicatkms of the ACM September 1985 Volume 28 Number 9

mation methods are always at least as good or better

than encoding the quadtree by listing its BLACK nodes

(or its WHITE nodes).

To see the type of compression that is achievable, le-t

C = F/MIN(B, W) be a compression factor. C can be
made as close to zero as desired. Figure 1Oa demon-
strates the empty tree which has F = 0 (i.e., a WHITE
node at the root) which we exclude. Figure lob illus-

trates a tree with F = 1 but C = 1. Figure 1Oc is an
example of the type of tree that yields much compres-
sion-that is, a small C value although it is by no

means the minimum C for a 2” x 2” image. In this case,

F = 3 (nodes 1. D, and 19) while B = 10, W = 9, and C ==
%. For a 2” X 2” image, a tree having depth n = 2 . m

can be constructed such that F = 3 and C = 3/(3 . m) q =
l/m. Figure 10~ is such a tree with n = 6. Note that
such a tree has 3 . m - 1 WHITE nodes at levels n - 1

to n/2, 1 BLACK node at level n - 1, 3 . (m - 1) BLACK

nodes at levels n/2 - 1 to 1, 1 WHITE node at level 0,

and 3 BLACK nodes at level 0. An upper bound on the
number of nodes comprising FBW (i.e., F) is given by

the following theorem whose proof appears in the
Appendix.

THEOREM 2.

The maximum number of nodes in an FBW approximation is
less than or equal to one plus the number of WHlTE nodes
in the quadtree (i.e., F 5 W + 1).

Figure 1Oc demonstrated how the lower bound on
the compression factor can be approached. A checker-

board image is an example of the upper bound on F.
Its FBW approximation has FBW(n) = (root] and
FBWN(n - 1) = (all terminal WHITE nodes]. Thus F =

W + 1 = B + 1. Note that by Theorem 2 the upper
bound on F is solely in terms of the WHITE nodes. This
is better than the weaker upper bound of MAX@, W) -I-

1 because W 5 MAX(B, W).
The FBW approximation relies on alternating FBB

and FWW approximations. We can also define an ap-
proximation, FWB, which alternates between FWW and

FBB as follows:

FWB(i) =

I

empty i = n + 1

FWW(n) i = n
FWB(i + 1)

U {FB(j)l j E FWB(i + 1)
and j 4 FWB(i + 2))

(n - i) mod 2 = 1 and i < n

FWB(i + 1)
U {FW(j)l j E FWB(i + 1)

and j @ FWB(i + 2))
(n - i) mod 2 = 0 and i < II.

For example, in Figure 1 we have FWB(4) = {A).
FWB(3) is obtained by adding the BLACK forests of
node A resulting in {A, 25, 16, F, M, 27, 38, 10). FWB(2)
is obtained by adding the WHITE forests of node F (i.e.,
nodes I and 15) and M (i.e., nodes 33 and 34) to yield

FWB(2) = {A, 25, 16, F, M, 27, 38, 10, I, 15, 33, 34).
FWB(l) is obtained by adding the BLACK forests of
node I (i.e., node 19) to yield FWB(l) = (A, 25, 16, F, M,

Research Contributions

27, 38, 10, I, 15, 33, 34, 191 = FWB(0) = 1. Of course,
procedures ENCODE-FBW and BUILD-TREE must be
slightly modified. In particular, we create a procedure
ENCODE-FWB which differs from ENCODE-FBW
only in that FOREST-WHITE2 is invoked before
FOREST-BLACK2. The only necessary change to pro-
cedure BUILD-TREE is that initially the tree is BLACK
rather than WHITE. Note that for our example FWB(3)
= (root) + FBW(4), and, in general, as we shall see
below, when the root of the tree is of type GB, {root) +
FWB(i) = FBW(i - l), and when the root is of type GW,
FWB(i - 1) = (root) + FBW(i). We have the following
theorem whose proof appears in the Appendix.

THEOREM 3.

The maximum number of nodes in an FWB approximation is

less than or equal to the number of WHITE nodes in the

quadtree (i.e., F 5 W).

As we see from Theorems 2 and 3 there really is not
a big difference between using FBW and FWB. If we
want to have the lowest upper bounds, then we can use
FBW when the root is of type GW and FWB when the
root is of type GB.

We can also obtain upper bounds in terms of B, the
number of BLACK nodes. To do this, we redefine our
approximation sequence. In particular, we relabel our
quadtree with GB’ and GW’ as follows. An internal
node is said to be of type GW’ if at least two of .its sons
are WHITE or of type GW’. Otherwise, the node is said
to be of type GB’ (i.e., at least three of its sons are
BLACK or of type GB’). For example, in Figure 1, nodes
A, B, C, D, E, G, H, I, K, L, M, and N are of type GW’
and nodes F and J are of type GB’. We now redefine FB,
FW, FBB, and FWW in terms of GB’ and GW’ to yield
FB’, FW’, FBB’, and FWW’, respectively. This leads us
to the following definition for FWB’:

FWB’(i) =

empty i = n + 1
FWW’(n) i = n
FWB’(i + 1)

u {FB’(j)l j E FWB’(i + 1)

and j B FWB’(i + 2)j.

In - il mod 2 = 1 and i < n

Similarly,

FWB’(i + 1) . .
U (FW’(j)[j E FWB’(i + 1)

and j e FWB’(i + 2)]

(n - i) mod 2 = 0 and i < n.

we have FBW’:

empty i = n + 1
FBB’(n) i = n
FBW’(i + 1)

U (FW’(j)J j E FBW’(i + 1) _ .~~~~..
FBW’(i) = and j e FBW’(i + 2))

FBW,(I”+ 1) (n - i) mod 2 = 1 and i < n

U {FB’(j)J j E FBW’(i + 1)

and j B FBW’(i + 2))
(n - i) mod 2 = o and i < n.

Approximations FWB’ and FBW’ are formed in the

TABLE I. Summary of the Upper Bounds on the Number of Nodes

Rewired for the Various Approximations

FBW W+? W-l

FWB W W

FBW’ B B
FWB’ B-l B+1

same manner as approximations FBW and FWB, respec-
tively, with the roles of BLACK and WHITE (i.e., GB
and GW) interchanged and we obtain the following up-
per bounds.

THEOREM 4.

For the FWB’ approximation, F I B + 1 when the root is of

type GW’ and F 5 B - 1 when the root is of type GB’.

THEOREM 5.

For the FBW’ approximation, F I B.

Theorems 4 and 5 are interesting because they bring
us back a full circle to our starting point. Recall that we
mentioned that a quadtree can be encoded just by list-
ing its BLACK blocks. We say that this method did not
lead to a useful approximation. Subsequently, we de-
fined sequences of approximations based on the notion
of a forest that also have the property that they never
require more nodes than merely listing the BLACK
nodes. Of course, Theorems 2 and 3 yield the analogous
results were we to use WHITE blocks to encode the
quadtree. A summary of these results is given in
Table I.

The compression that is attainable as a result of using
FBW and its variants reinforces our definition of a
WHITE forest in terms of GB and GW in Section 2.
Recall that we could have defined a WHITE forest to be
analogous to a BLACK forest-that is, an internal node
was of type GW’ if at least two of its sons are WHITE or
of type GW’ rather than GW which required that at
least three of its sons must be WHITE or of type GW. If
we would have used the GW’ definition, we would
constantly have to relabel the tree as we encode the
tree using FBW. More importantly, our FBW approxi-
mation and its variants would not have the compres-
sion properties of Theorems 2-5. For example, the FBW
encoding of a checkerboard would require us to list all
of the intermediate GRAY nodes as well as all of the
terminal nodes of one color.

6. EMPIRICAL RESULTS
The various encoding schemes discussed in Sections 3
and 4 were applied to a 512 X 512 image (i.e., n = 9)
consisting of a floodplain used in prior experiments
with quadtrees [25]. This floodplain is shown in Figure
11 (p. 986). A quadtree encoding of the image contains
2235 BLACK nodes and 2452 WHITE nodes. Table II (p.
986) contains a summary of the results for the FBW and
FBW’ approximations. No results are tabulated for the

September 1985 Volume 28 Number 9 Communications of the ACM 985

Research Contributions

FWB and FWB’ approximations because their node
counts will differ by one. To see this, we consider the
two possible cases depending on the type of the root.
When the root is of type GE%, FBW(n) = (root) and
FBW(n - 1) = lroot) + FWB(n). When the root is of type
GW, FWB(n) = (root) and FWB(n - 1) = (root) +
FBW(n). An. analogous statement can be made with re-
spect to the FBW’ and FWEI’ approximations. Since the
approximations alternate between BLACK and WHITE
nodes, our table specifies the counts for them as well as
the total number of nodes.

Table II c.orrelates with our theoretical results with
respect to upper bounds on the number of nodes neces-
sary. In particular, we find that FBW’ requires 1704
nodes to encode the image while FBW requires 1796
nodes. Thus, comparing these counts with the mini-
mum of the BLACK and WHITE nodes in the quadtree
(i.e., 2235 BLACK nodes), we find that FBW’ leads to
23.8 percent fewer nodes while FBW leads to 19.6 per-
cent fewer nodes. These compression factors increase
considerably as larger images are used (i.e., greater than
2’ x 2’ as in. this example). :Figures 12 and 13 (p. 988)
give an example of what the images corresponding to
these approximations look like. Figure 12 corresponds
to FBW(n), FBW(n - l), FBW(n - 2), and FBW(n - 3)
while Figure 13 corresponds to FBW’(n), FBW’(n - l),
FBW’(n - 2) and FBW’(n - 3). The idea is to compare
approximations when they contain a similar number of
nodes, that is, 939 for FBW(n - 1) and 984 for FBW’(n).
From Table II we also observe that FBW(n) and FBW’(n)
have a different number of nodes. This is because of
the different definition of GB. Recall, that for FBW, GB
corresponds to at least two sons of type GB or BLACK
terminal nodes; whereas for FBW’, we use GB’ which
corresponds to at least three sons of type GB’ or BLACK
terminal nodes. Thus, it should be clear that the GB’
criterion of FBW’ is harder to satisfy than the GB cri-
terion of FBW thereby causing the initial approxima-
tion FBW’(n) to contain nodes from lower levels in the
tree (and hence more of them!).

We also discussed approximations IB, OB, and FBB.
Table III (p. !)89) contains a summary of this data. Note
that entries such as IB(8) = 0 and OB(8) = 4 imply 0
BLACK nodes and 4 WHITE nodes at level 8. Actually,
if merges would have occurred, then we would have 0
BLACK and :I WHITE node at level 9. However, our
goal is to examine the approximation of level 8 and

TABLE II. 9ummaty of FBW and FBW’ Approximations for

Figure 11 (II = 9)

9 39 a _ 39 984 ” 0 ” 984
8 39 900 ,939 98-e $4&t $!a6
7 255 900 1155 1376 “242 2618
6 2% 1422 1677 tsnq 394 em
5 325 $422 1747 1405 , a34 ‘,%a9
4 325 1468 1793 14Q8 /~ as? ml2
3 328 1468 1786 1461 ‘2% “TO4

FIGURE 11. Floodplain Image

these nodes are WHITE because some part of the space
spanned by them was WHITE in accordance with the
definition of OW. Figures 14, 15, and 16 (p. 989) corre-
spond to IB(2), OB(2), and FBB(n - 3) respectively. Our
goal is to compare FBB and OB when approximately
the same number of nodes are transmitted. This is im-
possible for IB because it treats a GRAY node as WHITE
if there is any WHITE pixel within it. In this case, we
show the IB approximation at the same level as that for
OB. The following observations should be apparent.
First, as expected, the FBB approximation is less
“blocky” at the edge than OB or IB. Second, IB does not
preserve connectivity whereas OB and FBB do so at the
possible expense of creating holes where there may not
be any as is seen in Figure 16. These observations are
not surprising in light of the above comments about IB
underestimating the BLACK region.

Note that the FBW and FBW’ approximations have
connectivity problems similar to IB. In particular, FBW
alternates between GB and GW nodes. At iterations
that use GW nodes, connectivity may be destroyed. As
an example, consider Figure 17 (p. 990). Its FBW ap-
proximations are shown in Figure 18 (p. 990). We see
that FBW(3) = {AJ, FBW(2) = (A, 9, 13, F, G, D, El, and
FBW(l) = (A, 9, 13, F, G, D, E, 3, 5, 7, 8) = image. Figure
18b shows that FBW(2) results in the loss of connectiv-
ity. It should be clear that FWB has the same problem
with respect to connectivity while iterations using GW’
cause problems for FBW’ and FWB’.

On the other hand, FWB’ approximations lead to the
creation of spurious holes in the same way as does OB.
In particular, FWB’ alternates between GW’ and GB’
nodes. At iterations that use GB’ nodes, spurious holes
may result. As an example, consider Figure 19
(p. 991). Its FWB’ approximations are shown in Figure
29 (p. 991). We see that FWB’(3) = {A], FWB’(2) =
(A, 13, 14, 15, 21, 22, C], and FWB’(1) = (A, 13, 14, 15,

986 Communications of the ACM September 1985 Volume 28 Number !)

Research Contributions

(a) (b)

(d)

FIGURE 12. FBW Approximation. (a) FBW(n) = FEW(S). (b) FBW(n - 1) = FBW(8).
((c) FBW(n - 2) = FBW(7). (d) FBW(n - 3) = FBW(8).

21, 22, C, 5, 6) = image. Figure 26b shows that FWB’(2)
results in the creation of a spurious hole. It should be
clear that FBW’ has the same problem with respect to
the creation of a spurious hole. However, it can be
shown that FBW and FWB cannot create spurious
holes.

7. CONCLUDING REMARKS
A number of methods for representing quadtrees of im-
ages without space for links have been presented. In
particular, approximation techniques were demon-

strated which were superior to merely listing the
BLACK nodes (or just the WHITE nodes). Furthermore,
these approximations were also seen to lead to com-
pression in the sense that the number of nodes required
was always less than or equal to MIN(B, W). There are a
number of reasons for the success of the FBW approxi-
mation (we shall use the term FBW to mean FBW and
its variants FWB, FBW’, and FWB’). First, FBW yields a
saving of space whenever the situation arises that 3 out
of 4 sons have the same type (i.e., BLACK or WHITE).
This, coupled with the alternation between BLACK and

September 1985 Volume 28 Number 9 Communications of the ACM 987

Research Contributions

(b)

(d)

FIGURE 13. FEW’ Approximation. (a) FBW’(n) = FBW’(9). (b) FBW’(n - 1) = FBW’(8).

(c) FBW’(n - 2) = FBW’(7). (d) FBW’(n - 3) = FBW’(6).

WHITE forests, enables the approximation to zoom in
on the final goal. Second, the encoding and decoding
procedures ENCODE-FBW and BUILD-TREE enable
us to have an encoding which makes use of BLACK,

WHITE, and CRAY nodes without needing to specify
their type. In addition, these procedures are very effi-
cient. ENCOLIE-FBW takes time proportional to the

size of the quadtree being encoded since it is nothing
but a tree traversal. BUILD-TREE takes time propor-
tional to the product of the number of nodes in the
FBW encoding and the resolution of the image (i.e., n

for a 2” x 2” image) since the node is represented by an

n digit base 5 code indicating the path from the root
which must be decoded.

The FBW approximation was shown to yield com-
pression. Clearly, the compression increases with the
frequency of the occurrence of 3 out of 4 sons of the
same color at different levels of the tree (e.g., Figure
10~). It is desirable to categorize the class of images

where the compression factor is a maximum. Other
interesting questions include the determination of the
average amount of compression for a 2” X 2” image as a

980 Communications of the ACM September 1985 Volume 28 Number 9

Research Contributions

function of n. Similarly, what is the maximum com-
pression factor for an image as a function of n? Note
that the Quadtree Medial Axis Transform [23] also ex-
hibits compression albeit in a different way.

Use of FBW as an approximation method is superior
to the inner and outer approximations of [18]. The ap-
proximation is biased in favor of objects with so called
“panhandles” rather than “staircases” as shown in Fig-
ures 21a and 21b (p. 9%). The effectiveness of the ap-
proximation could be evaluated by defining a measure
such as “nodes”/“area in the approximation” or, even
better, some measure that reflects the amount of area
by which members of the sequence of approximations
underestimate or overestimate the true area.

TABLE III. Summary of 18, 08, and FBE Approximations for
Figure 11 (II = 9)

9 011 l/O
8 014 311
7 O/l 3 914
6 l/39 23/l 7
5 8198 63143
4 271224 1491122
3 1181372 3721265
2 36711032 8461553
1 1008/l 828 162511211
0 223512452 223512452

39
109
265
537
878

1308
1745
2079
2235

FIGURE 14. lB(2)

It would be desirable to compare FBW with other
representations such as run lengths, boundary codes,
arrays, quadtrees, etc. How hard is it to perform basic
image processing operations given an FBW encoding? If
we know the type of each node (i.e., BLACK, WHITE, or
GRAY), then we can compute neighbors, in the sense of
[22], in the various directions with some work. The
concept of a locational code is useful in representing a
map consisting of polygons (e.g., a county map) where
the map is stored as a collection of quadtrees. There is
one quadtree per polygon and what is stored is a loca-
tional code to the root of the smallest enclosing square
for the polygon. This is currently being used in a carto-
graphic database project [25]. Labeling internal nodes of
a quadtree with GB and GW to indicate information
about the subtrees may find application in using quad-
trees for matching of images. There is no need for extra
storage since a type field already exists for each node.
Nonterminal nodes can be distinguished from terminal
nodes by the fact that the latter have four empty sons.
Thus, internal nodes can also be labeled BLACK or
WHITE corresponding to GB and GW, respectively.

FIGURE 15. OB(2) FIGURE 16. FBB(n - 3) = FBB(6).

September 1985 Volume 28 Number 9 Communications of the ACM 989

Research Contributions

(a)

IO II 3 12 14 I5 I6 5

03

FIGURE 17. (a) Sample Image and (b) Its Quadtree that Demonstrates
Loss of Connectivity by using the FBW Approximation

(W (c)

FIGURE 18. (a) FBWQ), (b) FBW(P), and (c) FBW(l) for Figure 17

APPENDIX
THEOREM 2.

The maximum number of nodes in an FBW approximation is
less than or equal to one plus the number of WHITE nodes
in the quadtree (i.e., F 5 W + 11.

PROOF.

Our proof makes use of induction on the tree size and
also on the selquence of approximations comprising

FBW. It is clear that the theorem holds for the empty
tree as well as all variants of a root and four sons which
are terminal nodes (e.g., Figures 22a-22e (p. 992)). This
forms the base case. Our proof consists of two cases
depending on whether the root is of type GB or type
GW. Assume a 2” X 2n image.

Case a: The rolot is of type GB. Therefore, FBW(n) =
{root). For this discussion, we shall use type GW to
include terminal WHITE nodes as well and likewise for
GB and terminal BLACK nodes. Define FBWN(i) =
{j) j E FBW(i) and j @ FBW(i + 1)) for 0 5 i < n. For

each element ‘of FBW(n), say p, FBWN(n - 1) contains

all descendants of p of type GW that do not have an
ancestor of type GW in the tree rooted at p (i.e., nodes I,

15, 33, and 34 in Figure 1). Suppose FBWN(n - 1) has m
elements. For each element of FBWN(n - 1) that is not
a terminal node, say x,, FBWN(n - 2) contains all de-
scendants of Xi of type GB that do not have an ancestor

of type GB in the tree rooted at Xi (i.e., node 19 in

Figure 1). Let the tree rooted at node Xi contribute yi
nodes of type GB to FBWN(n - 2). The tree rooted at

node X, has at least 3 . y; + 1 nodes of type GW. To see
this, we observe that each GB node contributed by xi
must have three GW brothers since its father is of type
GW. The 1 is contributed by node Xi since it is itself of

type GW. Of these 3 . y; + 1 nodes, yi of them must be
nonterminal nodes of type GW where each such node
corresponds to the father of one of the yi GB nodes. Of
course, these fathers are unique-that is, a node can
only have one father. Therefore, 3 . y, + 1 - yi =
2 . yl + 1 of the GW nodes are terminal WHITE nodes
which have been subsumed by our construction of
FBWN(n - 2). Two items are worthy of note. First, by

Communications of the ACM September 1985 Volume 28 Number 9

Research Contributions

14 3 15 4 6 17 I8 19

(a) (t-4

FIGURE 19. (a) Sample Image and (b) Its Quadtree that Demonstrates

Spurious Holes by Using the FBW’ Approximation

A

(a) (‘4

FIGURE 20. (a) FBW’(3), (b) FBW’(2), and (c) FBW’(l) for Figure 19

(4 (b)

FIGURE 21. Sample Image Illustrating the Biases of the FBW
Approximation: (a) Panhandle, (b) Staircase

use of the term subsumed we are also including nodes
already in FBWN(n - 1) when yi = 0. Second, 2 . yi + 1

is a lower bound on the number of terminal WHITE
nodes which are subsumed. For example, in Figure
23 (p. 992), FBW(n] = {A], FBWN(n - 1) = (B),

FBWN(n - 2) = 14, 5, 9, 16). The tree rooted at B con-
tributes yi = 4 nodes of type GB to FBWN(n - 2) and it

has 17 nodes of type GW of which 12 > 2 . yi + 1 are
terminal WHITE nodes. The next step is to construct
the sequence FBWN(n - 3) through FBWN(0). Let w(z)
denote the number of WHITE nodes in the tree rooted
at node z. We use induction to note that for each ele-

ment of FBWN(n - 2), say z, its FBW approximation has
%u(z) + 1 nodes. Therefore, the FBW approximation for

September 1985 Volume 28 Number 9 Communications of the ACM 991

Research Contributiorzs

0 8

A A A
f-zB=O, W=l

(a)

F=B= I, W=O F=EI=l, W=3 F=3, B= W=2 F=2, B=3, W=l

(W (cl (d) @I

FIGURE 22. Variants of All Quadtrees for a 2’ x 2’ Image

our original tree consists of at most Q elements where
Q is

Q=l+m+?yi+
i=l zEFBIYCNln--Zl (w(z) + l)

Letting P = xzl y; we can rewrite Q as

Q=l+m+P+ c w(z) + P
zcFBWN(n-2)

=1+2.lJ+m+ 1 w(z).
ZEFBWN(~-2)

But 2 . P + m is a lower bound on the number of
WHITE termnral nodes in the tree subsumed by the

construction of FBWN(n - 2) which means that Q 5 W
+ 1 and our theorem holds when the root of the tree is
of type GB. Note that in our proof it makes no differ-
ence whether or not elements of FBWN(n - 1) are ter-
minal WHITE nodes.

Case b: The root is of type GW. This is analogous to
treating a ficiitious FBW(n + 1) = (root) and construct-
ing FBW(n) in the manner done in Case a. Thus, since

there is only one GW node in FBW(n + 1) (i.e., root), we
say that the root contributes y nodes of type GB that do
not have an ancestor of type GB to FBW(n). Using the
same reasoning as in Case a we have at least z . y + 1

(a) (W

terminal WHITE nodes which are subsumed by the
construction of FBW(n). Next, construct the sequence

FBW(n - 1) through FBW(0). Let w(z) denote the num-
ber of WHITE nodes in the tree rooted at node z. We

use induction by appealing to Case a to note that for

each element of FBW(n), say z, its approximation has
SW(Z) + 1 nodes. Therefore, the FBW approximation for
our original tree consists of at most Q elements where
Q is

Q = Y + C (w(z) + 1)
zcFBW(n)

=y+ c w(z) + y
zeFBW(n)

=z.y+ c w9.
z~FBw(n)

But 2 . y + 1 is a lower bound on the number of
WHITE terminal nodes in the tree subsumed by the

construction of FBW(n) which means that Q = W - 1
and our theorem holds when the root of the tree is of

type GW.

THEOREM 3.

The maximum number of nodes in an FWB approximation is

less than or equal to the number of WHITE nodes in the
quadtree (i.e., F 5 W).

FIGURE 23. (a) Sample Quadtree and (b) Its GB/GW Encoding Illustrating
the Amount of Subsumption of Nodes Attainable by Using FBW

992 Communication:; of the ACM September 1985 Volume 28 Number :?

Research Contributions

PROOF. 9.

Our proof relies heavily on the proof for the FBW ap-
proximation of Theorem 2. It consists of two cases de-
pending on whether the root is of type GB or GW.
Assume a 2” X 2” image.

10.

11.

Case a: The root is of type GB. Therefore, FWB(n) ig-
nores the root and now proceeds to collect all descend-
ants of the root of type GW that do not have an ances-
tor of type GW (as in Theorem 2, we use the type GW
to include terminal WHITE nodes as well and likewise
for GB and terminal BLACK nodes). But as we saw in
the proof of Case a of Theorem 2, these are precisely
the nodes that comprise FBW(n - 1). In other words,
{root) + FWB(n) = FBW(n - 1). The rest of the sequence
is constructed in an analogous manner-that is, (root)
+ FWB(2’) = FBW(i - 1) for 1 5 i 5 n. Approximation
FBW has an upper bound of W + 1 nodes and since
FWB does not include the root node we find that the
size of FWB is bounded from above by W.

12.

13.

Jackins. C.L., and Tanimoto, S.L. Ott-trees and their use in repre-
senting three-dimensional objects. Comput. Graphics and Image Pro-
cess. 14, 3 (Nov. 1980), 249-270.
Jones, L., and Iyengar, S.S. Representation of regions as a forest of
quadtrees. In Proceedings of the IEEE Conference on Pattern Recognition
and Image Processing, Dallas, Tex., 1981, pp. 57-59.
Kawaguchi, E., and Endo. T. On a method of binary picture repre-
sentation and its application to data compression. IEEE Trans. Pattern
Anal. Machine Intell. 2, 1 (Jan. 1980). 27-35.
Klinger, A. Patterns and search statistics. In Optimizing Methods in
Stafistics. J.S. Rustagi, Ed., Academic Press, NY, 1971. pp. 303-337.
Klinger. A., and Rhodes, M.L. Organization and access of image data
by areas. IEEE Trans. Paftern Anal. Machine Intell. 1. 1 (Jan. 1979).
50-60.

14.

15.

16.

17.

18.

19.

20.

Knowlton, K. Progressive transmission of grey-scale and binary pic-
tures by simple, efficient, and lossless encoding schemes. In Proceed-
ings of the IEEE 68, 7 (July 19801, pp. 885-896.
Meagher, D. Geometric modeling using octree encoding. Compvf.
Graphics and image Process. 19, 2 (June 1982), 129-147.
Morton, G.M. A computer oriented geodetic data base and a new
technique in file sequencing, IBM Canada, 1966.
Oliver. M.A.. and Wiseman, N.E. Operations on quadtree-encoded
images, Conrput. J. 26, 1 (Feb. 1983). 83-91.
Ranade. S., Rosenfeld. A., and Sam&, H. Shape approximation using
quadtrees. Paftern Recognifion 15, 1 (1982), 31-40.
Samet, H. Region representation: Quadtrees from boundary codes.
Conmur~. ACM 23, 3 (Mar. 19801, 163-170.

Samet. H. An algorithm for converting rasters to quadtrees. IEEE
Trans. Pattern Anal. Machine Intell. 3, 1 (Jan. 1981). 93-95.

Case b: The root is of type GW. Therefore, FWB(n) in-
cludes the root and now proceeds to form FWB(n - 1).
FWB(n - 1) consists of the root and all descendants of
the root of type CB that do not have an ancestor of type
GB. But as we saw in the proof of Case b of Theorem 2,
these are precisely the nodes that comprise FBW(n). In
other words, FWB(n - 1) = (root) + FBW(n). The rest of
the sequence is constructed in an analogous manner-
that is, FWB(i - 1) = {root] + FBW(i) for 1 5 i 5 n.
Approximation FBW has an upper bound of W - 1
nodes and since FWB also includes the root node we
find that the size of FWB is bounded from above by W.

21. Sam&, H. Connected component labeling using quadtrees. I, ACM
28,3 (July1981) 487-501.

22. Sam&, H. Neighbor finding techniques for images represented by
quadtrees. Comput. Graphics and Image Process. 18, 1 (Jan. 1982),
37-57.

23. Samet. H. A quadtree medial axis transform. Commun. ACM 26, 9
(Sept. 1983). 680-693.

24. Samet, H. The quadtree and related hierarchical data structures.
ACM Comput. Sure. 162 (June 1984), 187-260.

25. Sam&. H.. Rosenfeld, A., Shaffer. C., and Webber, R.E. Quadtree
region representation in cartography: Experimental results. IEEE
Trans. Syst., Man, Cybern. 13, 6 (Nov./Dee. 1983). 1148-1154.

26. Sloan, K.R.. Jr., and Tanimoto, S.L. Progressive refinement of raster
images. IEEE Trans. Comput. 28, 11 (Nov. 1979), 871-874.

27. Tanimoto, S., and Pavlidis, T. A hierarchical data structure for pic-
ture processing. Comput. Graphics and Image Process. 4. 2 (June 1975).
104-119.

ACKNOWLEDGMENTS
I would like to thank Robert E. Webber for his valuable
comments and criticisms, and Yuangeng Huang for gen-
erating Figures 11-16 and Tables II and III.

28. Weber, W. Three types of map data structures, their ANDs and
NOTs, and a possible OR. In Proceedings of the First International
Advartced Study Symposium on Topological Dafa Structures for Geo-
graphic hformtion Systems, G. Dutton. Ed., Harvard Papers on Geo-
graphic Information Systems, 1978.

29. Woodwark, J.R. The explicit quadtree as a structure for computer
graphics. Comput. 1. 25, 2 (May 1982). 235-238.

30. Yau. M.. and Srihari. S.N. A hierarchical data structure for multidi-
mensional digital images. Commun. ACM 26, 7 (July 1983), 504-515.

REFERENCES
1. Abel, D.J.. and Smith, J.L. A data structure and algorithm based on a

linear key for a rectangle retrieval problem. Comput. Vision, Graph-
ics, and tnrage Process. 24, 1 (Oct. 1983). 1-13.

2. Burton, F.W.. and Kollias, J.G. Comment on the explicit quadtree as
a structure for computer graphics. Comput. 1. 26. 2 (May 1983). 188.

3. Cook, B.C. The structural and algorithmic basis of a geographic data
base. In Proceedings of fhe first International Advanced Study Sympo-
sium on Topological Data Structures for Geographic Information Systems.
G. Dutton. Ed., Harvard Papers on Geographic Information Systems,
1978.

CR Categories and Subject Descriptors: E.l [Data]: Data Structures-
trees; E.4 [Data]: Coding and Information Theory-data compaction and
compression; 1.2.10 [Artificial Intelligence]: Vision and Scene Under-
standing-representations, data sfrucfures and transforms; 1.4.2 [Image
Processing]: Compression (Coding)-approximafe methods, exact coding

General Terms: Algorithms, Theory
Additional Key Words and Phrases: quadtrees. hierarchical data

structures, image databases, image transmission, progressive approxima-
tion.

4. Dyer, C.R.. Rosenfeld. A.. and Sam&, H. Region representation:
Boundary codes from quadtrees. Commun. ACM 23, 3 (Mar. 1980),
171-179.

Received 12/83; revised 9/84; accepted 3/85

5. Gargantini. 1. An effective way to represent quadtrees. Commun.
ACM 25,lZ (Dec. 1982). 905-910.

6. Hunter, GM. Efficient computation and data structures for graphics.
Ph.D. dissertation, Dept. of Electrical Engineering and Computer
Science, Princeton Univ., N.J.. 1978.

7. Hunter, G.M.. and Steiglitz. K. Operations on images using quad
trees. IEEE Trans. Patfern Anal. Machine Intell. I, 2 (Apr. 1979), 145-
153.

Author’s Present Address: Hanan Samet, Computer Science Department,
University of Maryland, College Park, MD 20742.

8. Hunter, G.M., and Steiglitz. K. Linear transformation of pictures
represented by quad trees. Comput. Graphics and Image Process. IO,
3 (July 1979). 289-296.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

September 1985 Volume 28 Number 9 Communications of the ACM 993

