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ABSTRACT: A number of data structures for representing 
images by quadtrees without pointers are discussed. The 
image is treated as a collection of leaf nodes. Each leaf node 
is represented by use of a locational code corresponding to a 
sequence of directional codes that locate the leaf along a 
path from the root of the tree. Somewhat related is the 
concept of a forest which is a representation that consists of 

a collection of maximal blocks. It is reviewed and refined to 

enable the representation of a quadtree as a sequence of 

approximations. In essence, all BLACK and WHZTE nodes 
are said to be of type GB and GW, respectively. GRAY nodes 
are of type GB if at least two of their sons are of type GB; 

otherwise, they are of type GW. Sequences of approximations 
using various combinations of locational codes of GB and 
GW nodes are proposed and shown to be superior to 
approximation methods based on truncation of nodes below 
a certain level in the tree. These approximations have two 
important properties. First, they are progressive in the sense 
that as more of the image is transmitted, the receiving 
device can construct a better approximation (contrast with 
facsimile methods which transmit the image one line at a 
time). Second, they are proved to lead to compression in the 
sense that they never require more than MlN@, W) nodes 
where B and W correspond to the number of BLACK and 
WHZTE nodes in the original quadtree. Algorithms are given 
for constructing the approximation sequences as well as 
decoding them to rebuild the original quadtree. 
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1. INTRODUCTION 
Region representation is an important issue in graphics 
and image processing applications. A number of repre- 
sentations are currently in use. These have been tradi- 
tionally dominated by run lengths, binary arrays, and 

chain codes. Recently, the quadtree of Klinger [12, 241 

has received considerable attention as a data structure 

for such applications. This renewed interest was due in 
a large measure to the work of Hunter and Steiglitz in 
the domain of computer graphics and animation [6-g], 
and work showing the interchangeability of the quad- 
tree representation with other representations such as 
boundary codes [4, 191 and rasters [20]. A variant of the 

quadtree, termed an octree, has also been used for 
three-dimensional data [6, 9, 15, 301. 

The quadtree was originally conceived as an alterna- 
tive to binary array image representation with the goal 
of saving space by aggregation of similar regions. Of 
course, if there is no aggregation (e.g., a checkerboard 
image), then the quadtree will require more space than 
the binary array. However, more importantly, the hier- 
archical nature of the quadtree also results in savings 

in execution time. In particular, algorithms using quad- 
trees have execution times that are only dependent on 
the number of blocks in the image and not on their size 
(e.g., connected component labeling [21]). Nevertheless, 
by virtue of the tree structure, the amount of space 
required for pointers from a node to its sons is not 
trivial. As a result, there has recently been a consider- 

able amount of interest in pointerless quadtree repre- 
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sentations. They can be grouped into two categories. 
The first represents the image in the form of a preorder 
traversal of ihe nodes of its quadtree [ll]. The second 
treats the image as a collection of leaf nodes. Each leaf 
is represented by use of a locational code corresponding 
to a sequence of directional codes that locate the leaf 
along a path from the root of the tree. It has a large 
number of v,ariants and is used by many researchers 
[l-3, 5, 13, 16, 17, 28, 291. Somewhat closely related is 
the concept of a forest of quadtrees of Jones and Iyengar 
[lo] which uses a variant of ,a locational code to repre- 
sent the roots of the elements of the forest. 

In this article, we define a sequence of approxima- 
tions to quad.trees that are based on the notions of for- 
ests. In essence, all BLACK and WHITE nodes are said 
to be of type GB and GW, respectively. GRAY nodes are 
of type GB if at least two of their sons are of type GB; 
otherwise, th.ey are of type GW. Thus, we see that this 
redefinition of a GRAY node does not cost any extra 
storage. We propose a number of approximation se- 
quences using various combinations of the locational 
codes of GB and GW nodes and show them to be supe- 
rior to the inner and outer approximations discussed in 
[18]. Our sequences of approximations possess two im- 
portant properties. First, they are progressive. This 
means that a:s more of the image is transmitted, the 
receiving device can construct a better approximation. 
Progressive approximation methods are to be contrasted 
with facsimile methods that transmit the image one 
line at a time. Second, use of our approximation meth- 
ods also leads to image compression in the sense that 
the image never requires more nodes when our approx- 
imation methtods are used. In fact, they never lead to 
fewer nodes than are required were the image to be 
represented solely by BLACK nodes or solely by WHITE 
nodes. 

This article is organized as follows. In the remainder 
of this section we give a brief definition of a quadtree. 
Section 2 contains a discussion of the pointerless quad- 
tree representation that we use. In particular, we elabo- 
rate on a number of different ways of defining a loca- 
tional code and motivate our choice. Section 3 is a brief 
overview of hierarchical approximation methods. Sec- 
tions 4 and 5 constitute the heart of the article. In 
Section 4 we define the concept of a forest-based ap- 
proximation method and in Section 5 we discuss the 
degree of image compression that is achievable when 
our approximation methods are used. Section 6 pre- 
sents experimental results from the use of our approxi- 
mation methods and an interpretation of their signifi- 
cance. Section 7 concludes our presentation with a set 
of open questions for future research. 

Given a 2” x 2” array of unit pixels, a quadtree is 
constructed by repeatedly subdividing the array into 
quadrants, subquadrants, . . . until we obtain blocks 
which consist of a single value (e.g., a gray level). This 
process is represented by a tree of out degree 4 in 
which the root node corresponds to the entire array, 
the four sons of the root node correspond to the quad- 

rants, and the terminal nodes correspond to those 
blocks of the array for which no further subdivision is 
necessary. The nodes at level k (if any) represent blocks 
of size zk x zk and are often referred to as nodes of size 
Zk. Thus, a node at level 0 corresponds to a single pixel 
in the image, while a node at level .n is the root of the 
quadtree. For example, Figure lb is a block decomposi- 
tion of the region in Figure la while Figure IC is the 
corresponding quadtree. In general, we will be dealing 
with two values 1 and 0 where BLACK and WHITE 
square nodes in the tree represent blocks consisting 
entirely of l’s and O’s, respectively. Circular nodes, also 
termed GRAY nodes, denote nonterminal nodes. 

Each node in a quadtree is stored as a record contain- 
ing six fields. The first five fields contain pointers to tht3 
node’s father and its four sons, labeled NW, NE, SW, 
and SE. Given a node P and a son I, these fields are 
referenced as FATHER(P) and SON(P, I), respectively. 
We can determine the specific quadrant in which a 
node, say P, lies relative to its father by use of the 
function SONTYPE such that SONTYPE = I if 
SON(FATHER(P), I) = P. The sixth field, NODETYPE, 
describes the contents of the block of the image which 
the node represents, that is, BLACK, WHITE, or GRAY. 

2. POINTERLESS QUADTREE REPRESENTATIONS 
Instead of using a tree consisting of BLACK, WHITE, 
and GRAY nodes, we use a representation in the form 
of a collection of the leaf nodes of the quadtree. Each 
leaf node is represented by a locational code which 
corresponds to an encoding of the path from the root of 
the tree to the node. In fact, we only need to maintain ;1 
collection of the BLACK nodes since we represent bi- 
nary images and the only GRAY nodes are internal to 
the data structure which means that the WHITE nodes 
can be determined given the BLACK nodes. As men- 
tioned in Section 1, there exist many variants of the 
locational code. In this article, we make use of the 
following definition of a locational code. Let the se- 
quence (xi) represent the path of nodes from the root of 
a quadtree to x,,,, the desired node, such that x, = root 
of the quadtree and Xi = FATHER(xi-I). The directions 
NW, NE, SW, and SE are represented by the directional 
codes 1, 2, 3, and 4, respectively, and are accessed by 
the function SONTYPES. The encoding of the locational 
code for node x,,, is given by z,, where Zi is defined: 

0 i=m 

zi = 5 . z;-1 + SONTYPE5(xi) rn < i 5 II. 

For example, node 10 of Figure 1 would be encoded 
by the number 24 = 582. It can be decoded into the 
sequence of directional codes (b,) = (2, 1, 3, 4) = 
(NE, NW, SW, SE)-that is, z4 = 4 . !? + 3 . 5’ + 1 . 5’ 

+ 2 . 50. 
The above encoding method has a number of useful 

features. First, it lends itself easily to decoding a loca- 
tional code into the sequence of directional codes by 
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FIGURE 1. 

24 

A Region, its Maximal Blocks, and the Corresponding Quadtree. Blocks in the region are shaded, background blocks 

(a) Region. (b) Block decomposition of the region in (a). (c) Quadtree representation of fhe blocks in (b). 

using a combination of modulo and integer division BLACK nodes in increasing order, results in a list 
operations. This is an important operation and must be which is a variant of a breadth-first traversal of the 
fast and computationally simple. In essence, we are BLACK portion of the tree, that is, for i < j, BLACK 
able to decode the number in such a way that we ob- nodes at level j will appear in the list before BLACK 
tain the directional codes in the order in which we nodes at level i. For example, listing the BLACK nodes 
traverse a path from the root of the quadtree to the root of Figure 1, in increasing order of locational codes, 
of the subquadtree. Second, sorting the codes of the yields 25, 16, 22, 23, 28, 14, 27, 29, 20, 38, 19, 21, and 10 
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with codes 13, 17, 96, 121, 184, 196, 284, 309, 446, 459, 

546, 571, and 582, respectively. This breadth-first prop- 
erty means that as the list grows, we get a better ap- 
proximation of the image, that is, suc:cessive nodes in 
the list lead to a better approximation. Finally, increas- 
ing the resolution of the image does not require exten- 
sive recoding of the codes far the existing nodes. 

Our locational codes differ from those used by Gar- 
gantini [5] and Abel and Smith [l]. They make use of 
fixed length codes, that is, for a 2” x 2” image, all nodes 
are encoded by a sequence of n base 5 digits where one 
of the five values designates a do not care condition. It 
is used in the codes of nodes corresponding to blocks 
that are larger than one pixel. The coding sequence is 
defined as follows. Each node in the quadtree is repre- 
sented by an n element sequence (9i) = ( 9n-r, . . . ,91, 
90) constructed from the digits 10, 1, 2, 3, 4). Once 
again, let (Xi) represent the path of nodes from the root 

0 

(a) lb) 

25 16 25 16 25 

0’0 (0 (j) 

A 
A 

of the quadtree to x,,,, the desired node, such that xn = 
root of the quadtree and xi = FATHER(Xi-1). The direc- 
tions NW, NE, SW, and SE are represented by direc- 
tional codes 0, 1, 2, and 3, respectively, and are ac- 
cessed by the function SONTYPE4. 4 corresponds to a 
do not care condition. 

1 

4 Oci<m 
9i = SONTYPE4(xi) m s i < n. 

For example, node 10 of Figure 1 would be encoded by 
the rmmber 9 = 138. It can be decoded into the se- 
quence of directional codes (9i) = (1, 0, 2, 3), that is, 
9=1.53+0.52+2-51+3-50. 

This encoding, termed a 9i sequence, has the interest- 
ing property that when the codes of the BLACK nodes 
are sorted in increasing order, the resulting sequence is 
the postorder traversal of the BLACK portion of the 
tree. A comparison of 9; with the Zi sequence described 
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FIGURE 2. The Steps in Adding Nodes 25,16, %, and 23 When 
Constructing the Quadtree Corresponding to Fgure 1 

22 23 
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earlier reveals a number of shortcomings. First, using qi 
it is more complex to decode a locational code to yield 
the path from the root of a quadtree to the root of the 
subquadtree. Second, increasing the resolution of the 
image requires recoding 9i for the existing nodes. In 
particular, their codes must be multiplied by 5 to a 
power equal to the increase in resolution. Finally, 9i 
does not have the progressive approximation property 
Of Zi. 

Using a 9i or zi sequence encoding for the BLACK 
nodes of the quadtree, the tree representation (i.e., with 
pointers) is quite easy to obtain. For example, proce- 
dures BUILD-TREE and ADDNODE, given below, en- 
able reconstruction of the tree representation from Zi. 
To facilitate the explanation of the algorithm, we refer 
to Figure 1 as an example and build its tree for the 
sequence of nodes 25, 16, 22, 23, 28, 14, 27, 29, 20, 38, 

19, 21, and 10 in this order. Figures Za-j show the 
intermediate trees obtained during the process of add- 
ing nodes 25, 16, 22, and 23. BUILD-TREE has as its 
input a list of codes for the BLACK nodes and invokes 
ADDNODE to add each element thereof to the tree. 
Initially, the image is assumed to be WHITE and thus 
the root is initialized to be of type WHITE (e.g., node A 

in Figure 2a). ADDNODE decodes the code for the node 
(i.e., the path to the node from the root of the tree) and 
in the process may need to expand a node (e.g., the 
transition from Figure 2a to Figures 2b and 2c when 
adding node 25). In such a case, the node’s type is 
changed to GRAY and its four sons take on its previous 
value (e.g., the color of node A is changed to GRAY in 
the transition from Figure 2a to Figure 2b). When the 
decoding process is done, the node’s type is comple- 
mented (e.g., node 25 becomes BLACK in the transition 
from Figure 2c to Figure 2d). Applying procedures 
BUILD-TREE and ADDNODE to the remaining nodes 
(i.e., nodes 28, 14, 27, 29, 20, 38, 19, 21, and 10) yield 
Figure 1. 

node procedure BUILD-TREE(L); 
/* Construct a quadtree from the list L of nodes in 

terms of locational codes. L is a pointer to a list 
implemented as a record of type nlist having two 
fields DATA and NEXT corresponding to the data 
stored in the list and a pointer to the next element 
in the list. */ 

begin 
value pointer nlist L; 
pointer node ROOT; 
ROOT c create(node); /* Assume that the initial 

image is not empty */ 
NODETYPE(ROOT) c ‘WHITE’; 
while not empty(L) do 

begin 
ADDNODE(ROOT,DATA(L)); 
L + NEXT(L); 

end; 
return(ROOT); 

end; 

procedure ADDNODE(ROOT,B); 

/* Add a node with locational code B to the quadtree 
rooted at node ROOT. */ 

begin 

value pointer node ROOT; 
value integer B; 
quadrant Q; 

while (B mod 5) # 0 do 
begin 

if not GRAY(ROOT) then 
begin /* Expand a terminal node */ 

for I in (‘NW’, ‘NE’, ‘SW’, ‘SE’] do 

begin 
SON(ROOT,I) t create(node); 
NODETYPE(SON(ROOT,I)) 

+ NODETYPE(ROOT); 
end; 

NODETYPE(ROOT) c GRAY; 
end; 

ROOT t SON(ROOT,DIR(B mod 5)); 

/* DIR converts a directional code to a 
quadrant */ 

B c B div 5; 
end; 

NODETYPE(ROOT) 
+ COMPLEMENT(NODETYPE(ROOT)); 

/* The node’s type is opposite to the type of the node 
that was being added or expanded, that is, a 
WHlTE(BLACK) node is being replaced by a 
BLACK(WHITE) node. */ 

end; 

3. HIERARCHICAL APPROXIMATION METHODS 
By virtue of its hierarchical structure the quadtree 
lends itself to serve as an image approximation device. 
By truncating the tree (i.e., ignoring all nodes below a 
certain level), we get a crude approximation. Ranade, 
Rosenfeld, and Samet [18] define two basic variants 
termed an inner and outer approximation. Given an 
image I, the inner approximation IB(k) is the binary 
image defined by the BLACK nodes at levels rk. Fig- 
ures 3a and 3b (p. 978) show IB(2) and IB(l), respec- 
tively, for Figure 1. The outer approximation, OB(k), is 
the binary image defined by the BLACK nodes at levels 
rk and the GRAY nodes at level k. Figures 4a and 4b 
(p. 978) show OB(2) and OB(l), respectively, for Figure 
1. At this point, let us use C and > to indicate set 
inclusion in the sense that A c B and B > A imply that 
the space spanned by A is a subset of the space spanned 
by B. It can be shown that IB(n) c IB(n - 1) c . . . C 
IB(0) = I and OB(n) > OB(n - 1) 2 . . . > OB(0) = 1. 
Alternatively, we can approximate the image by using 
its complement, E that is, the WHITE blocks. We define 
IW(k) and OW(k) in an analogous manner to that of IB(k) 
and OB(k), respectively, except in terms of WHITE 
blocks. It can be shown that IW(n) C IW(n - 1) C . . . C 
IW(0) = iand OW(n) 2 OW(n - 1) > . . . > OW(0) = 1. 
Moreover, Ranade, Rosenfeld, and Samet [18] show that 
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(a) (b) 

FIGIJRE 3. (a) B(2) and (b) B(l) for Figure 1 FIGURE 4. (a) OB(2) and (b) 06(l) for Figure 1 

the outer approximations to I are actually the inner 
approximations to r= that is, OB(k) = IW(k). Similarly, 
it can be shaswn that the inner approximations to I are 
actually the outer approximations to r that is, IB(k) = 
OW(k). 

Sloan and Tanimoto [26] treat the problem of trans- 
mitting an image by successively approximating it by 
use of pyramid-based approaches [27]. They are able to 
handle gray scale images. They propose a number of 
methods. However, none feature any compression. 
Knowlton [PI] addresses a similar problem. He makes 
use of a binary tree version of a quadtree. In essence, 
an image is split into two halves alternating between 
horizontal and vertical splits. Much of the compression 
is obtained by using special coding techniques to en- 
code primitive 2 x 3 blocks. The methods we discuss in 
the following section make no use of such techniques. 

4. FOREST-BASED APPROXIMATION METHODS 
Jones and Iylangar [lo] introduced the concept of a for- 
est of quadtrees which is a decomposition of a quadtree 
into a collection of subquadtrees, each of which corre- 
sponds to a maximal square. The maximal squares are 
identified by refining the concept of a nonterminal 
node to indicate some information about its subtrees. 
An internal node is said to be of type GB if at least two 
of its sons are BLACK or of type GB. Otherwise, the 
node is said to be of type GW. For example, in Figure 1, 

nodes F, 1, and M are of type GB and nodes A, B, C, D, E, 
G, H, I, K, L, and N are of type GW. Each BLACK node 
or an internal node with a label GB is said to be maxi- 
mal square. A BLACK forest is the minimal set of maxi- 
mal squares that are not contained in other maximal 
squares and that span the BLACK area of the image. 
Thus, the BLACK forest corresponding to Figure 1 is 
(F, 10, 16, 25, 27, M, 38) and their corresponding sub- 
trees. The elements of the BLACK forest are specified 
by locational codes (although Jones and Iyengar use a 
different definition than zi). Such a representation can 
lead to a savings of space since large WHITE areas are 
ignored by it. 

A forest can also be used as an approximation where 
we treat its elements as BLACK and all remaining 
nodes as WHITE. In the remainder of this section, we 

expand on the use of a forest to approximate images. It 
is useful to sort the nodes of the forest according to 
their codes. We use the locational codes given by zi. For 
example, for Figure 1, the nodes will appear in the 
order 25, 16, F, M, 27, 38, and 10. This order is a partial 
ordering (S, 2) such that Si 2 Si+l means that the block 
subsumed by Si is 2 in size than the block subsumed by 
Si+r. In fact, for a breadth-first traversal we only need 
to process the nodes in an order that satisfies the above 
subsumption relation. It should be clear that a sorted 
list is just one of many possible orderings satisfying the 
subsumption relation. 

The BLACK forest approximation can be defined as 
follows. Let FB(P) be the quadtree constructed by color- 
ing BLACK the roots of the subquadtrees comprising 
the forest of the quadtree rooted at node P. FB(P) is 
empty when P is a WHITE terminal node and likewise 
it is equal to P when P is a BLACK terminal node. FB(P) 
can be further refined to more closely mirror the con- 
cept of an approximation. Let FB(P, k), the kth order 
approximation to FB(P), be the nodes at levels 
rk of FB(P). For example, in Figure 1 we have FB(A, 2) 

= 125, 16, F); FB(A, 1) = 125, 16, F, M); FB(A, 0) = 

(25, 16, F, M, 27, 38, 10) = FB(A). FB(A, 4) = FB(A, 3) 

= J ). Figures 5a, 5b, and 5c show FB(A, 2), 
FB(A, l), and FB(A, 0), respectively. Clearly, 
FB(P, n) c FB(P, n - 1) c . . . C FB(P, 0) = FB(P). 

Note that any node can be approximated by a BLACK 
forest of quadtrees, that is, not just the root of the quad- 
tree corresponding to the image. Thus, we can approxi- 
mate an image by a sequence of BLACK forests of quad- 
trees where the sequence is defined by replacing non- 
terminal node components of a BLACK forest by their 
BLACK forests. More formally, let FBB(i), 0 5 i 5 n, be 
defined as follows: 

FBB(i) 

i 

(FB(root, 0)) i=n 
(FB( j, 0) J j E FBB(i + 1) and not(GRAY( j))) 

= U JFB(k, 0) J j E FBB(i + 1) 

and GRAY(j) and FATHER(k) = j) 

0 5 i< ;n. 

For example, in Figure 1 we have FBB(4) = (25, 16, F, 
M, 27, 38, 10). FBB(3) is obtained by adding the BLACK 
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(a) 
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> 

(4 

FIGURE 5. (a) FB(A, 2), (b) FB(A, l), and (c) FB(A, 0) for Figure 1 

forests of nodes F (i.e., nodes 19, J, 22, and 23) and M 

(i.e., nodes 28 and 29) to yield FBB(3) = ( 25, 16, J, 22, 

23, 28, 27, 29, 38, 19, 10). FBB(2) is obtained by adding 
the BLACK forests of node ] (i.e., nodes 14, 20, and 21) 
to yield FBB(2) = 125, 16, 22, 23, 20, 14, 27, 29, 28, 38, 

19, 21, 10). No additional nodes are added by FBB(l) 
and FBB(O), that is, FBB(2) = FBB(l) = FBB(0) = I. Fig- 

ures 6a and 6b show FBB(4) and FBB(3), respectively. 
Clearly, FBB(n) 2 FBB(n - 1) 2 . . . > FBB(0) = I. 

Approximation FBB provides a closer approximation 
to the image than OB in the sense that OB(i) > FBB(i) 
for all i. This is because the BLACK forest approxima- 
tion (FBB) only includes GRAY nodes at level i if they 

represent 2’ x ~‘blocks that are at least 1/Z’ BLACK 
and OB includes GRAY nodes at level i if any fraction 
of their corresponding 2’ X Z’block is BLACK. Actually, 
the index i in FBB(i) corresponds to an iteration 

(cl 

whereas the index i in OB(i) corresponds to a level. 
Nevertheless, OB(i) 2 FBB(i) because both OB(i) and 
FBB(i) contain all terminal nodes at levels k 2 i, and all 

nodes of FBB(i) at levels j C i are contained in the 
GRAY nodes at level i which are part of OB(i). 

We can also have a forest approximation that is made 

up entirely of nodes corresponding to WHITE blocks. In 
other words, we are approximating the complement of 

the image r Such a forest is defined analogously to the 
one presented earlier using the BLACK blocks, that is, 
each quadtree is a collection of subquadtrees, each of 
which corresponds to a maximal square. A WHITE jor- 
est is the minimal set of maximal squares that are not 
contained in other maximal squares and that spans the 
WHITE area of the image. Now, all that remains is to 
define a maximal square. As in the case of BLACK 
forests, maximal squares are defined in terms of inter- 

(a) 

FIGURE 6. (a) FBB(4) and (b) FBB(3) for Figure 1 
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(4 (b) 

FIGURE 7. (a) FBW(4) and (b) FBW(3) for Figure 1 

nal (i.e., GRAY) nodes. There are two ways in which 

we can proceed. First, we can retain our definitions of 
internal nodes in terms of GW and GB. Alternatively, 

we can define an internal node to be of type GW’ if at 
least two of its sons are WHITE or of type GW’. Other- 
wise, the node is said to be of type GB’. We choose to 

retain the o:riginal definition because it complements 

the way the nodes were defined to build the BLACK 
forest. Thus, given a tree labeled with GB and GW, both 
BLACK and WHITE forests may be extracted; whereas 

when using GW’ and GB’, prior to extracting the 
WHITE forest from a tree labeled with GB and GW, the 
tree must be relabeled. We use the following notation 

in our discussion of WHITE forests. FW(P) is the WHITE 
forest corresponding to the quadtree rooted at node P. 
FM’(P) is further refined in terms of FW(P, k), the kth 
order approximation to FW(P), as the nodes at levels zk 
of FW(P). For example, in Figure 1, we have FW(A, 4) = 
(A] and, in fact, FW(A, 3) = FW(A, 2) = FW(A, 1) = 
FW(A, 0) = :FW(A) = (A]; FW(F, 2) = { ); FW(F, 1) = (I); 
FW(F, 0) = (I, 15); FW(H, 2) = (H); FW(H, 1) = @I); 
FW(H, 0) = (H]. Clearly, FW(P, n) C FW(P, n - 1) C . . . 
C_ FW(P, 1) := FW(P). 

Similarly, we can approximate the complement of 

the image by a sequence of forests of WHITE quadtrees 
where the sequence is defin.ed by replacing nonter- 
minal node components by their WHITE forests. More 
formally, let FWW(i), 0 s i s n, be defined as follows: 

(FW(root, 0)) 
(FW(j, 0) 1 j E FWW(i + 1) 

i=n 

FWW(i) =$ 
and not(GRAY(j))J 

U (FW(k, 0) 1 j E FWW(i + 1) 
and GRAY(j) 
and FATHER(k) = j) Osi<n. 

For example, in Figure 1 we have FWW(4) = {A]. 

FWW(3) is obtained by adding the WHITE forests of 
node A (i.e., nodes B, C, D, and E) to yield FWW(3) = 

(B, C, D, El. FWW(2) is obtained by adding the WHITE 
forests of node B (i.e., nodes 1, 2, 11, I, and 15), C (i.e, 

nodes G, 5, and 17), D (i.e., nodes 24, 40, and 41), and E 
(i.e., nodes H, 30, 42, and 43) to yield FWW(2) = (1, 2, 

11, I, 15, G, 5, 17, 24, 40, 41, H, 30, 42, 43). Continuing 
this procedure we find FWW(1) = (1, 2, 11, 12, 13, 18, 

15, 3, 4, K, 8, 5, 17, 24, 40, 41, L, 33, 34, N, 37, 30, 42, 43) 

and FWW(0) = (1, 2, 11, 12, 13, 18, 15, 3,4, 6, 7, 9, 8, 5, 

17, 24.40.41, 26, 31, 32, 33, 34, 35, 36, 39, 37, 30, 42, 

43) = x Clearly, FWW(n) > FWW(n - 1) 2 . . . 2 
FWW(o) = IW(0) = T: 

Earlier we saw that OB(i) 3 FBB(i) for all i and we 
have an analogous relationship between OW(i) and 

FWW(i), that is, OW(i) 2 FWW(i) and hence FWW pro- 
vides a closer approximation to the inverse image than 
OW. We can also make use of FWW to approximate I 
by working with its complement, FWW, defined as fol- 
lows: 

FWW(i) = 

I 

r (FW(root, 0)) 
(FW( j, 0) 1 j E FWW(i + 1) 

and not(GRAY( j))] 
U (FW(k, 0) 1 j E FWW(i + 

and GRAY(j) 

c and FATHER(k) = j) 

ii 

i == n 

OsiCn. 

Clearly, FWW(I’) 2 ow(i) for all i. Recalling that ow(ir 
= IB(i), we have IB(i) _C FWW(I’). Also, FWW(i) 2 T 

implies that FMTW(i) C 1. In fact, we have just shown 
the existence of better approximations to 1 (i.e., FBB 
and FWW) than OB and IB and in the process have 
proven the following theorem. 

THEOREM 1. 

lB(i) C FWW(i) C I c FBB(i) c OB(i) for all i 0 5 i 5 n. 

Use of approximation FBB results in overestimating 
the area spanned by the image while use of FWW re- 
sults in underestimating the area. In essence, we are 
approximating the image solely by use of BLACK blocks 
or solely by use of WHITE blocks. However, we could 
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also aunroximate the image bv a combination of BLACK 
1 I 

and WHITE blocks. What-we do is use FBB(n) for the 
first level of approximation; augment all elements of 
FBB(n) which correspond to GRAY nodes in the original 

quadtree by use of FWW; and repeat the alternating 
process until no GRAY nodes are left. More formally, 
we define a sequence FBW(i) as follows: 

empty i = II + 1 

FBB(n) i = n 

FBW(i + 1) U (FW(j)) j E FBW(i + 1) 

FBW(i) = 
and j e FBW(i + 2)) 

(n - i) mod 2 = 1 and i < n 

FBW(i + 1) U (FB(j)l j E FBW(i + 1) 
and j @ FBW(i + 2)l 

(n-i)mod~=oandicn. 

For example, in Figure 1 we have FBW(4) = (25, 16, F, 

M, 27, 38, 10). FBW(3) is obtained by adding the WHITE 
forests of node F (i.e., nodes I and 15) and M (i.e., nodes 
33 and 34) to yield FBW(3) = (25, 16, F, M, 27, 38, 10, I, 

15, 33, 34). FBW(2) is obtained by adding the BLACK 

forests of node I (i.e., node 19) to yield FBW(2) = 
125, 16, F, M, 27, 38, 10, I, 15, 33, 34, 19) = FBW(1) = 
FBW(0) = 1. Figures 7a and 7b show FBW(4) and 

FBW(3], respectively. Note that in Section 5 we discuss 
a symmetric approximation which makes use of FWW. 

Procedure ENCODE-FBW, given below, generates 
the FBW(0) encoding of an image. It does this by suc- 

cessively generating in order, FBW(n), FBW(n - l), . . . 
until FBW(i) is encountered such that no more GRAY 

nodes need to be expanded. In essence, as FBW(n) 
(i.e., a BLACK forest) is generated, all of its elements 
that correspond to GRAY nodes are output as well as 
placed on a list termed WLIST (e.g., nodes F and M in 
Figure 1). Next, we replace all elements of WLIST by 
their WHITE forests and thereby generate FBW(n - 1). 
During this process all elements of FBW(n - 1) that 
correspond to GRAY nodes are output as well as placed 

on the BLIST (e.g., node I) to be used in the generation 
of FBW(n - 2). The process terminates when encoun- 
tering an empty BLIST or WLIST. Note that WLIST is 
initially empty and BLIST is initialized to the entire 

image (e.g., node A in Figure 1). ENCODE-FBW makes 
use of procedures FOREST-BLACK2 and FOREST- 

WHITE2 to generate the BLACK and WHITE forests cor- 
responding to elements of BLIST and WLIST, respec- 
tively. Note that in addition to outputting a forest of the 
appropriate color, they also construct a list of the non- 

terminal nodes of the forest to serve as input for the 
next level of encoding. 

ENCODE-FBW yields the nodes for FBW(0) in the 
order of FBW(n), FBW(n - l), FBW(n - 2) . . ., FBW(0). 
This is useful because it means that the reverse process 
of building a quadtree from the transmitted codes re- 
sults in obtaining successive approximations to the im- 
age. In fact, procedure BUILD-TREE, given earlier in 
Section 2, to construct a quadtree given the set of loca- 
tional codes for all of its BLACK blocks can be used to 
construct the quadtree from the FBW approximation. 

Research Contributions 

This is true as long as the codes for the nodes are 
processed (i.e., added to the tree) in an order so that for 
any two nodes P and Q such that P is an ancestor of Q, 

P is added to the tree before Q. It should be clear that 
procedure ENCODEEFBW yields the nodes in such an 
order. In fact, as will become apparent from the discus- 

sion of BUILD-TREE below, if we do not have such an 
order, then we would have to specify the colors corre- 
sponding to the elements of FBW (i.e., BLACK, WHITE, 

GB, or GW). Note that this ordering property can also 
be satisfied by a sorted sequence, a breadth-first traver- 
sal, and even a preorder traversal. In the subsequent 
discussion, we use the term transmit to denote the en- 

coding process. 

procedure ENCODE-FBW(P): 
/“: Given a 2N x 2N image represented by a quadtree 

such that P points to its root, construct its FBW 
approximation. The approximations are output in 

the order FBW(N), FBW(N - l), . . , FBW(0). For 
each approximation FBW(i), all nodes at level k are 

output before nodes of level j where j <k. The 
approximations alternate between BLACK forests 
and WHITE forests with the first approximation 

being a BLACK forest. BLIST is a list of nodes for 

whom a BLACK forest is to be constructed and 
WLIST is a list of nodes for whom a WHITE forest is 

to be constructed. BLIST and WLIST are both of 
type list which is a record having four fields PTR, 

PATH, LEV, NEXT corresponding respectively to a 

pointer to a node, the locational code for the path 
from the root of the quadtree to the node, N minus 
the level of the node, and a pointer to the next 
element in the list. BLIST is initially set to P. */ 

begin 
value pointer node P; 

pointer list BLIST, WLIST; 
global integer N; 
WLIST t “empty”; 
/“’ Initialize BLIST to P with locational code 0 and 

level N: */ 

ADDTOLIST(BLIST,P,o,O); 
while true do 

begin 
if empty(BLIST) then return; 

while not empty(BLIST) do 

begin 
FOREST_BLACK2(PTR(BLIST), 

PATH(BLIST), LEV(BLIST), WLIST); 

BLIST t NEXT(BLIST); 
end; 

if empty(WLIST) then return; 

while not empty(WLIST) do 
begin 

FOREST-WHITEZ(PTR(WLIST), 
PATH(WLIST), LEV(WLIST), BLIST); 

WLIST t NEXT(WLIST); 

end; 
end; 

end; 
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procedure FOREST~BLACK2(P,B,I,WLIST); 

/“’ Output 1:he BLACK forest nodes for the quadtree 

rooted at P with locational code R and at level N - I 

given a 12~ x ZN image. All elements of the BLACK 
forest which are nonterrninal nodes are also added 

to the list WLIST for subsequent expansion into a 
WHITE forest. “/ 

begin 

value poiuter node P; 
value integer B, I; 
reference pointer node WLIST; 

global integer N; 
quadrant Q; 
if GB(P) then 

begin 
output(B); 
ADDTOLIST(WLIST,P,B,I); 

end 
else if BLACK(P) then output(B) 
else if GW(P) then 

begin 

for Q in I‘NW’, ‘NE’, ‘ISW’, ‘SE’) do 
FOREST-BLACKZ(SON(P,Q), 

B+QCODE(Q)*5**1, I+l,WLIST); 

/* QCODE converts a quadrant to a locational 
code */ 

end; 
end: 

procedure FOREST-WHITE2(P,B,I,BLIST); 
/:’ Output the WHITE forest for the quadtree rooted at 

P with locational code B and at level N - I given a 
2N x 2N image. All elements of the WHITE forest 
which are nonterminal nodes are also added to the 
list BLIST for subsequent expansion into a BLACK 
forest. “1’ 

begin 

value pointer node P; 
value integer B, I; 
reference pointer node BLIST; 

global integer N ; 

quadrant Q; 
if GW(P) thten 

begin 

output(B); 
ADDTOLIST(BLIST,P,B,I); 

end 
else if WHITE(P) then output(B) 
else if GB(P) then 

begin 
for Q in (‘NW’, ‘NE’, ‘SW’, ‘SE’] do 

FOREST-WHITEz(SON(P,Q), 
13 + QCODE(Q)+*I, I+l,BLIST); 

end; 
end; 

At this point, let us examine the mechanics of 
BUILD-TREE more closely to see how and why it 
works correctly. Recall that whenever a node is added, 

a path (designated by the node’s locational code) is 
traced from the root of the quadtree to the node. In the 

process, nodes may need to be expanded (e.g., the tran- 

sition from Figure 2a to Figures 2b and 2c when adding 

node 25). In such a case, the node’s type is changed to 
GRAY and its four sons take on its previous value (e.g., 
node A in the transition from Figure 2a to Figure 2b). 
When the decoding process is done, the node’s type is 
complemented (e.g., node 25 changes from WHITE to 
BLACK in the transition from Figure 2c to Figure 2d). 
In the case of the FBW sequence, replacement of a 
BLACK (WHITE) node by its WHITE (BLACK] forest 
proceeds in the same way. For example, Figure 8a 
shows the result of applying BUILD-TREE to FBW(4) == 

(25, 16, F, M, 27, 38, 10) of Figure 1. Next, we process 
FBW(3) which means that we must add nodes I, 15, 33, 
and 34. Figures 8b-8h illustrate this process. The pres- 

ence of node I implies that BLACK node F must be 
replaced by its WHITE forest. This is accomplished in 
two steps. First, node F is changed to a GRAY node and 
gains four BLACK sons (Figure 8b). Next, node I is la- 

beled and in the process is changed from BLACK to 
WHITE (Figure 8~). Figures 8d and 8e show how node 

15 is added while Figures 8f-8h show the process of 

adding nodes 33 and 34. The final step is to process 
FBW(2) which means that we must add node 19. In this 
case, the presence of node 19 implies that WHITE node 

I must be replaced by its BLACK forest. Figures 8i and 
8j illustrate this process. 

Approximation FBW satisfies the following relation- 

ships FBW(n) > FBW(n - l), FBW(n - 1) C FBW(n - 2), 

FBW(n - 2) > FBW(n - 3), and, in general, FBW(n - 2i) 

> FBW(n - 2i - 1) and FBW(n - 2i - 1) c FBW(n - 2i 

- 2). Furthermore, it is easy to show that FBW(n) 2 
FBW(n - 2) 2 . . . > FBW(n - 2i) > . . . > FBW(0) = 
I1 . . . > FBW(n - 2i - 1) 1 . . . 1 FBW(n - 3) 1 
FBW(n - 1). In other words, the approximations FBW 
spiral in from both sides of I in converging to 1. Note 
that individually, FBB and FWW may, at times, be bet- 
ter approximations to I than FBW-that is, there exist 
images for which the amount of BLACK by which FBB 

overestimates I is less than the amount of BLACK by 
which FBW underestimates I. As an example, suppose 
that WHITE node 18 in Figure 1 has been replaced by 

GRAY node P and four sons 44,45,46, and 47 where 
nodes 44,45, and 46 are WHITE and node 47 is BLACK 
(see Figure 9 where the subtree rooted at node F is 

shown). In such a case FBB(3) = 125, 16, J, 22, 23, 28, 27, 
29, 38, 19, 10, 471, FBW(3) = (25, 16, F, M, 27, 38, 10, I, 

15, 33, 341, and FBB(3) overestimates the BLACK area 

spanned by node F by 4 pixels while FBW(3) underesti- 
mates the same BLACK area by 5 pixels. Of course, an 
image can also be constructed where the opposite is 
true-that is, the amount of BLACK by which FBB 
overestimates I is greater than the amount of BLACK by 
which FBW underestimates 1. As an example, suppose 
that BLACK node 20 in Figure 1 has been changed to a 

WHITE node. In this case, FBB(3) = 125, 16, J, 22, 23, 28. 

27, 29, 38, 19, lo), FBW(3) = (25, 16, F, M, 27, 38, 10, I, 
15, 33, 34, 201, and FBW(3) underestimates the BLACK 
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FIGURE 8. The Steps in Adding Nodes I, 15, 33, 34, and 19 When Reconstructing 

the Quadtree from the FBW Encoding of Figure 1 

22 23 
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area spanned by node F by 1 pixel while FBB(3) overes- 
timates the same area by z pixels. 

FBW is attractive as an approximation method be- 
cause it converges to the image from both sides (i.e., it 
alternately overestimates and underestimates the 
BLACK component). Thus, it strikes a balance between 
using all BLACK nodes or all WHITE nodes to approxi- 
mate the image as is the case with FBB and FWW. 
FBW, by definition, also has the property that FBW(j) G 
FBW(i) for 0 5 i 5 j 5 II. In this case, by c we mean 
that the nodes comprising approximation j are included 
in approximation i. Of course, FBB and FWW could also 
have been defined in an analogous manner by includ- 
ing GRAY nodes. Recall that FBW(0) = I and thus when 
we use procedure ENCODE-FBW to encode the image, 

we can get the successive approximations to I as the 
elements of FBW(0) are transmitted. Therefore, the first 
elements that are transmitted make up FBW(n) and the 
next terms lead to FBW(n - 1). etc. 

FIGURE 9. Modifications to Figure 1 Showing the Example Where 
FBB Overestimates the Image by Less Than What FBW Under- 

estimates it 
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5. COMPRESSION 
The FBW approximation has the interesting property 

that its use will often lead to compression in the sense 

that it reduces the amount of data that is needed to 
encode the image (and transmit it). Recall that we can 

represent a quadtree by merely specifying all of the 
BLACK blocks or all of the WHITE blocks. Depending 
on the image, we would use the color with the smaller 
cardinality in order to save storage. The FBW approxi- 
mation consists of a combination of GRAY, BLACK, and 
WHITE nodes thereby striking a balance between using 
all BLACK or all WHITE. For example, encoding Figure 

1 with FBW requires 12 nodes whereas the image con- 
tains 13 BLACK and 30 WHITE nodes. 

Thus, aside from its superiority with respect to the 

quality of the resulting approximation, FBW also leads 

to compressilan. Let F, B, and W denote the number of 
nodes when encoding the quadtree using FBW, BLACK, 

and WHITE nodes, respectively. Compression is said to 

exist whenever F < MIN(B, W). As we shall see below, 
variants of F.BW can be constructed so that F is always 

s MIN(B, W). Thus, we can guarantee that our approxi- 

A 
Cl 
I A 

I234 

(a) (W 

I6 I7 I8 I9 

(c) 

FIGURE 10. Examples Illustrating the Compression Factors 
Available Through the Use of FBW 
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mation methods are always at least as good or better 

than encoding the quadtree by listing its BLACK nodes 

(or its WHITE nodes). 

To see the type of compression that is achievable, le-t 

C = F/MIN(B, W) be a compression factor. C can be 
made as close to zero as desired. Figure 1Oa demon- 
strates the empty tree which has F = 0 (i.e., a WHITE 
node at the root) which we exclude. Figure lob illus- 

trates a tree with F = 1 but C = 1. Figure 1Oc is an 
example of the type of tree that yields much compres- 
sion-that is, a small C value although it is by no 

means the minimum C for a 2” x 2” image. In this case, 

F = 3 (nodes 1. D, and 19) while B = 10, W = 9, and C == 
%. For a 2” X 2” image, a tree having depth n = 2 . m 

can be constructed such that F = 3 and C = 3/(3 . m) q = 
l/m. Figure 10~ is such a tree with n = 6. Note that 
such a tree has 3 . m - 1 WHITE nodes at levels n - 1 

to n/2, 1 BLACK node at level n - 1, 3 . (m - 1) BLACK 

nodes at levels n/2 - 1 to 1, 1 WHITE node at level 0, 

and 3 BLACK nodes at level 0. An upper bound on the 
number of nodes comprising FBW (i.e., F) is given by 

the following theorem whose proof appears in the 
Appendix. 

THEOREM 2. 

The maximum number of nodes in an FBW approximation is 
less than or equal to one plus the number of WHlTE nodes 
in the quadtree (i.e., F 5 W + 1). 

Figure 1Oc demonstrated how the lower bound on 
the compression factor can be approached. A checker- 

board image is an example of the upper bound on F. 
Its FBW approximation has FBW(n) = (root] and 
FBWN(n - 1) = (all terminal WHITE nodes]. Thus F = 

W + 1 = B + 1. Note that by Theorem 2 the upper 
bound on F is solely in terms of the WHITE nodes. This 
is better than the weaker upper bound of MAX@, W) -I- 

1 because W 5 MAX(B, W). 
The FBW approximation relies on alternating FBB 

and FWW approximations. We can also define an ap- 
proximation, FWB, which alternates between FWW and 

FBB as follows: 

FWB(i) = 

I 

empty i = n + 1 

FWW(n) i = n 
FWB(i + 1) 

U {FB(j)l j E FWB(i + 1) 
and j 4 FWB(i + 2)) 

(n - i) mod 2 = 1 and i < n 

FWB(i + 1) 
U {FW(j)l j E FWB(i + 1) 

and j @ FWB(i + 2)) 
(n - i) mod 2 = 0 and i < II. 

For example, in Figure 1 we have FWB(4) = {A). 
FWB(3) is obtained by adding the BLACK forests of 
node A resulting in {A, 25, 16, F, M, 27, 38, 10). FWB(2) 
is obtained by adding the WHITE forests of node F (i.e., 
nodes I and 15) and M (i.e., nodes 33 and 34) to yield 

FWB(2) = {A, 25, 16, F, M, 27, 38, 10, I, 15, 33, 34). 
FWB(l) is obtained by adding the BLACK forests of 
node I (i.e., node 19) to yield FWB(l) = (A, 25, 16, F, M, 
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27, 38, 10, I, 15, 33, 34, 191 = FWB(0) = 1. Of course, 
procedures ENCODE-FBW and BUILD-TREE must be 
slightly modified. In particular, we create a procedure 
ENCODE-FWB which differs from ENCODE-FBW 
only in that FOREST-WHITE2 is invoked before 
FOREST-BLACK2. The only necessary change to pro- 
cedure BUILD-TREE is that initially the tree is BLACK 
rather than WHITE. Note that for our example FWB(3) 
= (root) + FBW(4), and, in general, as we shall see 
below, when the root of the tree is of type GB, {root) + 
FWB(i) = FBW(i - l), and when the root is of type GW, 
FWB(i - 1) = (root) + FBW(i). We have the following 
theorem whose proof appears in the Appendix. 

THEOREM 3. 

The maximum number of nodes in an FWB approximation is 

less than or equal to the number of WHITE nodes in the 

quadtree (i.e., F 5 W). 

As we see from Theorems 2 and 3 there really is not 
a big difference between using FBW and FWB. If we 
want to have the lowest upper bounds, then we can use 
FBW when the root is of type GW and FWB when the 
root is of type GB. 

We can also obtain upper bounds in terms of B, the 
number of BLACK nodes. To do this, we redefine our 
approximation sequence. In particular, we relabel our 
quadtree with GB’ and GW’ as follows. An internal 
node is said to be of type GW’ if at least two of .its sons 
are WHITE or of type GW’. Otherwise, the node is said 
to be of type GB’ (i.e., at least three of its sons are 
BLACK or of type GB’). For example, in Figure 1, nodes 
A, B, C, D, E, G, H, I, K, L, M, and N are of type GW’ 
and nodes F and J are of type GB’. We now redefine FB, 
FW, FBB, and FWW in terms of GB’ and GW’ to yield 
FB’, FW’, FBB’, and FWW’, respectively. This leads us 
to the following definition for FWB’: 

FWB’(i) = 

empty i = n + 1 
FWW’(n) i = n 
FWB’(i + 1) 

u {FB’( j)l j E FWB’(i + 1) 

and j B FWB’(i + 2)j. 

In - il mod 2 = 1 and i < n 

Similarly, 

FWB’(i + 1) . . 
U (FW’(j)[ j E FWB’(i + 1) 

and j e FWB’(i + 2)] 

(n - i) mod 2 = 0 and i < n. 

we have FBW’: 

empty i = n + 1 
FBB’(n) i = n 
FBW’(i + 1) 

U (FW’(j)J j E FBW’(i + 1) _ .~~~~.. 
FBW’(i) = and j e FBW’(i + 2)) 

FBW,(I”+ 1) (n - i) mod 2 = 1 and i < n 

U {FB’(j)J j E FBW’(i + 1) 

and j B FBW’(i + 2)) 
(n - i) mod 2 = o and i < n. 

Approximations FWB’ and FBW’ are formed in the 

TABLE I. Summary of the Upper Bounds on the Number of Nodes 

Rewired for the Various Approximations 

FBW W+? W-l 

FWB W W 

FBW’ B B 
FWB’ B-l B+1 

same manner as approximations FBW and FWB, respec- 
tively, with the roles of BLACK and WHITE (i.e., GB 
and GW) interchanged and we obtain the following up- 
per bounds. 

THEOREM 4. 

For the FWB’ approximation, F I B + 1 when the root is of 

type GW’ and F 5 B - 1 when the root is of type GB’. 

THEOREM 5. 

For the FBW’ approximation, F I B. 

Theorems 4 and 5 are interesting because they bring 
us back a full circle to our starting point. Recall that we 
mentioned that a quadtree can be encoded just by list- 
ing its BLACK blocks. We say that this method did not 
lead to a useful approximation. Subsequently, we de- 
fined sequences of approximations based on the notion 
of a forest that also have the property that they never 
require more nodes than merely listing the BLACK 
nodes. Of course, Theorems 2 and 3 yield the analogous 
results were we to use WHITE blocks to encode the 
quadtree. A summary of these results is given in 
Table I. 

The compression that is attainable as a result of using 
FBW and its variants reinforces our definition of a 
WHITE forest in terms of GB and GW in Section 2. 
Recall that we could have defined a WHITE forest to be 
analogous to a BLACK forest-that is, an internal node 
was of type GW’ if at least two of its sons are WHITE or 
of type GW’ rather than GW which required that at 
least three of its sons must be WHITE or of type GW. If 
we would have used the GW’ definition, we would 
constantly have to relabel the tree as we encode the 
tree using FBW. More importantly, our FBW approxi- 
mation and its variants would not have the compres- 
sion properties of Theorems 2-5. For example, the FBW 
encoding of a checkerboard would require us to list all 
of the intermediate GRAY nodes as well as all of the 
terminal nodes of one color. 

6. EMPIRICAL RESULTS 
The various encoding schemes discussed in Sections 3 
and 4 were applied to a 512 X 512 image (i.e., n = 9) 
consisting of a floodplain used in prior experiments 
with quadtrees [25]. This floodplain is shown in Figure 
11 (p. 986). A quadtree encoding of the image contains 
2235 BLACK nodes and 2452 WHITE nodes. Table II (p. 
986) contains a summary of the results for the FBW and 
FBW’ approximations. No results are tabulated for the 
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FWB and FWB’ approximations because their node 
counts will differ by one. To see this, we consider the 
two possible cases depending on the type of the root. 
When the root is of type GE%, FBW(n) = (root) and 
FBW(n - 1) = lroot) + FWB(n). When the root is of type 
GW, FWB(n) = (root) and FWB(n - 1) = (root) + 
FBW(n). An. analogous statement can be made with re- 
spect to the FBW’ and FWEI’ approximations. Since the 
approximations alternate between BLACK and WHITE 
nodes, our table specifies the counts for them as well as 
the total number of nodes. 

Table II c.orrelates with our theoretical results with 
respect to upper bounds on the number of nodes neces- 
sary. In particular, we find that FBW’ requires 1704 
nodes to encode the image while FBW requires 1796 
nodes. Thus, comparing these counts with the mini- 
mum of the BLACK and WHITE nodes in the quadtree 
(i.e., 2235 BLACK nodes), we find that FBW’ leads to 
23.8 percent fewer nodes while FBW leads to 19.6 per- 
cent fewer nodes. These compression factors increase 
considerably as larger images are used (i.e., greater than 
2’ x 2’ as in. this example). :Figures 12 and 13 (p. 988) 
give an example of what the images corresponding to 
these approximations look like. Figure 12 corresponds 
to FBW(n), FBW(n - l), FBW(n - 2), and FBW(n - 3) 
while Figure 13 corresponds to FBW’(n), FBW’(n - l), 
FBW’(n - 2) and FBW’(n - 3). The idea is to compare 
approximations when they contain a similar number of 
nodes, that is, 939 for FBW(n - 1) and 984 for FBW’(n). 
From Table II we also observe that FBW(n) and FBW’(n) 
have a different number of nodes. This is because of 
the different definition of GB. Recall, that for FBW, GB 
corresponds to at least two sons of type GB or BLACK 
terminal nodes; whereas for FBW’, we use GB’ which 
corresponds to at least three sons of type GB’ or BLACK 
terminal nodes. Thus, it should be clear that the GB’ 
criterion of FBW’ is harder to satisfy than the GB cri- 
terion of FBW thereby causing the initial approxima- 
tion FBW’(n) to contain nodes from lower levels in the 
tree (and hence more of them!). 

We also discussed approximations IB, OB, and FBB. 
Table III (p. !)89) contains a summary of this data. Note 
that entries such as IB(8) = 0 and OB(8) = 4 imply 0 
BLACK nodes and 4 WHITE nodes at level 8. Actually, 
if merges would have occurred, then we would have 0 
BLACK and :I WHITE node at level 9. However, our 
goal is to examine the approximation of level 8 and 

TABLE II. 9ummaty of FBW and FBW’ Approximations for 

Figure 11 (II = 9) 

9 39 a _ 39 984 ” 0 ” 984 
8 39 900 ,939 98-e $4&t $!a6 
7 255 900 1155 1376 “242 2618 
6 2% 1422 1677 tsnq 394 em 
5 325 $422 1747 1405 , a34 ‘,%a9 
4 325 1468 1793 14Q8 /~ as? ml2 
3 328 1468 1786 1461 ‘2% “TO4 

FIGURE 11. Floodplain Image 

these nodes are WHITE because some part of the space 
spanned by them was WHITE in accordance with the 
definition of OW. Figures 14, 15, and 16 (p. 989) corre- 
spond to IB(2), OB(2), and FBB(n - 3) respectively. Our 
goal is to compare FBB and OB when approximately 
the same number of nodes are transmitted. This is im- 
possible for IB because it treats a GRAY node as WHITE 
if there is any WHITE pixel within it. In this case, we 
show the IB approximation at the same level as that for 
OB. The following observations should be apparent. 
First, as expected, the FBB approximation is less 
“blocky” at the edge than OB or IB. Second, IB does not 
preserve connectivity whereas OB and FBB do so at the 
possible expense of creating holes where there may not 
be any as is seen in Figure 16. These observations are 
not surprising in light of the above comments about IB 
underestimating the BLACK region. 

Note that the FBW and FBW’ approximations have 
connectivity problems similar to IB. In particular, FBW 
alternates between GB and GW nodes. At iterations 
that use GW nodes, connectivity may be destroyed. As 
an example, consider Figure 17 (p. 990). Its FBW ap- 
proximations are shown in Figure 18 (p. 990). We see 
that FBW(3) = {AJ, FBW(2) = (A, 9, 13, F, G, D, El, and 
FBW(l) = (A, 9, 13, F, G, D, E, 3, 5, 7, 8) = image. Figure 
18b shows that FBW(2) results in the loss of connectiv- 
ity. It should be clear that FWB has the same problem 
with respect to connectivity while iterations using GW’ 
cause problems for FBW’ and FWB’. 

On the other hand, FWB’ approximations lead to the 
creation of spurious holes in the same way as does OB. 
In particular, FWB’ alternates between GW’ and GB’ 
nodes. At iterations that use GB’ nodes, spurious holes 
may result. As an example, consider Figure 19 
(p. 991). Its FWB’ approximations are shown in Figure 
29 (p. 991). We see that FWB’(3) = {A], FWB’(2) = 
(A, 13, 14, 15, 21, 22, C], and FWB’(1) = (A, 13, 14, 15, 
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(a) (b) 

(d) 

FIGURE 12. FBW Approximation. (a) FBW(n) = FEW(S). (b) FBW(n - 1) = FBW(8). 
( (c) FBW(n - 2) = FBW(7). (d) FBW(n - 3) = FBW(8). 

21, 22, C, 5, 6) = image. Figure 26b shows that FWB’(2) 
results in the creation of a spurious hole. It should be 
clear that FBW’ has the same problem with respect to 
the creation of a spurious hole. However, it can be 
shown that FBW and FWB cannot create spurious 
holes. 

7. CONCLUDING REMARKS 
A number of methods for representing quadtrees of im- 
ages without space for links have been presented. In 
particular, approximation techniques were demon- 

strated which were superior to merely listing the 
BLACK nodes (or just the WHITE nodes). Furthermore, 
these approximations were also seen to lead to com- 
pression in the sense that the number of nodes required 
was always less than or equal to MIN(B, W). There are a 
number of reasons for the success of the FBW approxi- 
mation (we shall use the term FBW to mean FBW and 
its variants FWB, FBW’, and FWB’). First, FBW yields a 
saving of space whenever the situation arises that 3 out 
of 4 sons have the same type (i.e., BLACK or WHITE). 
This, coupled with the alternation between BLACK and 
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(b) 

(d) 

FIGURE 13. FEW’ Approximation. (a) FBW’(n) = FBW’(9). (b) FBW’(n - 1) = FBW’(8). 

(c) FBW’(n - 2) = FBW’(7). (d) FBW’(n - 3) = FBW’(6). 

WHITE forests, enables the approximation to zoom in 
on the final goal. Second, the encoding and decoding 
procedures ENCODE-FBW and BUILD-TREE enable 
us to have an encoding which makes use of BLACK, 

WHITE, and CRAY nodes without needing to specify 
their type. In addition, these procedures are very effi- 
cient. ENCOLIE-FBW takes time proportional to the 

size of the quadtree being encoded since it is nothing 
but a tree traversal. BUILD-TREE takes time propor- 
tional to the product of the number of nodes in the 
FBW encoding and the resolution of the image (i.e., n 

for a 2” x 2” image) since the node is represented by an 

n digit base 5 code indicating the path from the root 
which must be decoded. 

The FBW approximation was shown to yield com- 
pression. Clearly, the compression increases with the 
frequency of the occurrence of 3 out of 4 sons of the 
same color at different levels of the tree (e.g., Figure 
10~). It is desirable to categorize the class of images 

where the compression factor is a maximum. Other 
interesting questions include the determination of the 
average amount of compression for a 2” X 2” image as a 
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function of n. Similarly, what is the maximum com- 
pression factor for an image as a function of n? Note 
that the Quadtree Medial Axis Transform [23] also ex- 
hibits compression albeit in a different way. 

Use of FBW as an approximation method is superior 
to the inner and outer approximations of [18]. The ap- 
proximation is biased in favor of objects with so called 
“panhandles” rather than “staircases” as shown in Fig- 
ures 21a and 21b (p. 9%). The effectiveness of the ap- 
proximation could be evaluated by defining a measure 
such as “nodes”/“area in the approximation” or, even 
better, some measure that reflects the amount of area 
by which members of the sequence of approximations 
underestimate or overestimate the true area. 

TABLE III. Summary of 18, 08, and FBE Approximations for 
Figure 11 (II = 9) 

9 011 l/O 
8 014 311 
7 O/l 3 914 
6 l/39 23/l 7 
5 8198 63143 
4 271224 1491122 
3 1181372 3721265 
2 36711032 8461553 
1 1008/l 828 162511211 
0 223512452 223512452 

39 
109 
265 
537 
878 

1308 
1745 
2079 
2235 

FIGURE 14. lB(2) 

It would be desirable to compare FBW with other 
representations such as run lengths, boundary codes, 
arrays, quadtrees, etc. How hard is it to perform basic 
image processing operations given an FBW encoding? If 
we know the type of each node (i.e., BLACK, WHITE, or 
GRAY), then we can compute neighbors, in the sense of 
[22], in the various directions with some work. The 
concept of a locational code is useful in representing a 
map consisting of polygons (e.g., a county map) where 
the map is stored as a collection of quadtrees. There is 
one quadtree per polygon and what is stored is a loca- 
tional code to the root of the smallest enclosing square 
for the polygon. This is currently being used in a carto- 
graphic database project [25]. Labeling internal nodes of 
a quadtree with GB and GW to indicate information 
about the subtrees may find application in using quad- 
trees for matching of images. There is no need for extra 
storage since a type field already exists for each node. 
Nonterminal nodes can be distinguished from terminal 
nodes by the fact that the latter have four empty sons. 
Thus, internal nodes can also be labeled BLACK or 
WHITE corresponding to GB and GW, respectively. 

FIGURE 15. OB(2) FIGURE 16. FBB(n - 3) = FBB(6). 
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(a) 

IO II 3 12 14 I5 I6 5 

03 

FIGURE 17. (a) Sample Image and (b) Its Quadtree that Demonstrates 
Loss of Connectivity by using the FBW Approximation 

(W (c) 

FIGURE 18. (a) FBWQ), (b) FBW(P), and (c) FBW(l) for Figure 17 

APPENDIX 
THEOREM 2. 

The maximum number of nodes in an FBW approximation is 
less than or equal to one plus the number of WHITE nodes 
in the quadtree (i.e., F 5 W + 11. 

PROOF. 

Our proof makes use of induction on the tree size and 
also on the selquence of approximations comprising 

FBW. It is clear that the theorem holds for the empty 
tree as well as all variants of a root and four sons which 
are terminal nodes (e.g., Figures 22a-22e (p. 992)). This 
forms the base case. Our proof consists of two cases 
depending on whether the root is of type GB or type 
GW. Assume a 2” X 2n image. 

Case a: The rolot is of type GB. Therefore, FBW(n) = 
{root). For this discussion, we shall use type GW to 
include terminal WHITE nodes as well and likewise for 
GB and terminal BLACK nodes. Define FBWN(i) = 
{j) j E FBW(i) and j @ FBW(i + 1)) for 0 5 i < n. For 

each element ‘of FBW(n), say p, FBWN(n - 1) contains 

all descendants of p of type GW that do not have an 
ancestor of type GW in the tree rooted at p (i.e., nodes I, 

15, 33, and 34 in Figure 1). Suppose FBWN(n - 1) has m 
elements. For each element of FBWN(n - 1) that is not 
a terminal node, say x,, FBWN(n - 2) contains all de- 
scendants of Xi of type GB that do not have an ancestor 

of type GB in the tree rooted at Xi (i.e., node 19 in 

Figure 1). Let the tree rooted at node Xi contribute yi 
nodes of type GB to FBWN(n - 2). The tree rooted at 

node X, has at least 3 . y; + 1 nodes of type GW. To see 
this, we observe that each GB node contributed by xi 
must have three GW brothers since its father is of type 
GW. The 1 is contributed by node Xi since it is itself of 

type GW. Of these 3 . y; + 1 nodes, yi of them must be 
nonterminal nodes of type GW where each such node 
corresponds to the father of one of the yi GB nodes. Of 
course, these fathers are unique-that is, a node can 
only have one father. Therefore, 3 . y, + 1 - yi = 
2 . yl + 1 of the GW nodes are terminal WHITE nodes 
which have been subsumed by our construction of 
FBWN(n - 2). Two items are worthy of note. First, by 
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14 3 15 4 6 17 I8 19 

(a) (t-4 

FIGURE 19. (a) Sample Image and (b) Its Quadtree that Demonstrates 

Spurious Holes by Using the FBW’ Approximation 

A 

(a) (‘4 

FIGURE 20. (a) FBW’(3), (b) FBW’(2), and (c) FBW’(l) for Figure 19 

(4 (b) 

FIGURE 21. Sample Image Illustrating the Biases of the FBW 
Approximation: (a) Panhandle, (b) Staircase 

use of the term subsumed we are also including nodes 
already in FBWN(n - 1) when yi = 0. Second, 2 . yi + 1 

is a lower bound on the number of terminal WHITE 
nodes which are subsumed. For example, in Figure 
23 (p. 992), FBW(n] = {A], FBWN(n - 1) = (B), 

FBWN(n - 2) = 14, 5, 9, 16). The tree rooted at B con- 
tributes yi = 4 nodes of type GB to FBWN(n - 2) and it 

has 17 nodes of type GW of which 12 > 2 . yi + 1 are 
terminal WHITE nodes. The next step is to construct 
the sequence FBWN(n - 3) through FBWN(0). Let w(z) 
denote the number of WHITE nodes in the tree rooted 
at node z. We use induction to note that for each ele- 

ment of FBWN(n - 2), say z, its FBW approximation has 
%u(z) + 1 nodes. Therefore, the FBW approximation for 
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A A A 
f-zB=O, W=l 

(a) 

F=B= I, W=O F=EI=l, W=3 F=3, B= W=2 F=2, B=3, W=l 

(W (cl (d) @I 

FIGURE 22. Variants of All Quadtrees for a 2’ x 2’ Image 

our original tree consists of at most Q elements where 
Q is 

Q=l+m+?yi+ 
i=l zEFBIYCNln--Zl (w(z) + l) 

Letting P = xzl y; we can rewrite Q as 

Q=l+m+P+ c w(z) + P 
zcFBWN(n-2) 

=1+2.lJ+m+ 1 w(z). 
ZEFBWN(~-2) 

But 2 . P + m is a lower bound on the number of 
WHITE termnral nodes in the tree subsumed by the 

construction of FBWN(n - 2) which means that Q 5 W 
+ 1 and our theorem holds when the root of the tree is 
of type GB. Note that in our proof it makes no differ- 
ence whether or not elements of FBWN(n - 1) are ter- 
minal WHITE nodes. 

Case b: The root is of type GW. This is analogous to 
treating a ficiitious FBW(n + 1) = (root) and construct- 
ing FBW(n) in the manner done in Case a. Thus, since 

there is only one GW node in FBW(n + 1) (i.e., root), we 
say that the root contributes y nodes of type GB that do 
not have an ancestor of type GB to FBW(n). Using the 
same reasoning as in Case a we have at least z . y + 1 

(a) (W 

terminal WHITE nodes which are subsumed by the 
construction of FBW(n). Next, construct the sequence 

FBW(n - 1) through FBW(0). Let w(z) denote the num- 
ber of WHITE nodes in the tree rooted at node z. We 

use induction by appealing to Case a to note that for 

each element of FBW(n), say z, its approximation has 
SW(Z) + 1 nodes. Therefore, the FBW approximation for 
our original tree consists of at most Q elements where 
Q is 

Q = Y + C (w(z) + 1) 
zcFBW(n) 

=y+ c w(z) + y 
zeFBW(n) 

=z.y+ c w9. 
z~FBw(n) 

But 2 . y + 1 is a lower bound on the number of 
WHITE terminal nodes in the tree subsumed by the 

construction of FBW(n) which means that Q = W - 1 
and our theorem holds when the root of the tree is of 

type GW. 

THEOREM 3. 

The maximum number of nodes in an FWB approximation is 

less than or equal to the number of WHITE nodes in the 
quadtree (i.e., F 5 W). 

FIGURE 23. (a) Sample Quadtree and (b) Its GB/GW Encoding Illustrating 
the Amount of Subsumption of Nodes Attainable by Using FBW 
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PROOF. 9. 

Our proof relies heavily on the proof for the FBW ap- 
proximation of Theorem 2. It consists of two cases de- 
pending on whether the root is of type GB or GW. 
Assume a 2” X 2” image. 

10. 

11. 

Case a: The root is of type GB. Therefore, FWB(n) ig- 
nores the root and now proceeds to collect all descend- 
ants of the root of type GW that do not have an ances- 
tor of type GW (as in Theorem 2, we use the type GW 
to include terminal WHITE nodes as well and likewise 
for GB and terminal BLACK nodes). But as we saw in 
the proof of Case a of Theorem 2, these are precisely 
the nodes that comprise FBW(n - 1). In other words, 
{root) + FWB(n) = FBW(n - 1). The rest of the sequence 
is constructed in an analogous manner-that is, (root) 
+ FWB(2’) = FBW(i - 1) for 1 5 i 5 n. Approximation 
FBW has an upper bound of W + 1 nodes and since 
FWB does not include the root node we find that the 
size of FWB is bounded from above by W. 
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