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INTRODUCTION 

The study of data structures for facilitating 
rapid searching is a fascinating subject of 
both practical and theoretical interest. 
Knuth [KNUT73] provides a definitive trea- 
tise on the subject of searching when the 
search is based on only one "key," but he 
points out that  not much was known at the 
time his book was published about data 
structures for sets that  have many "keys." 
This subject area, which is often called 
"multikey searching," "multidimensional 
searching," or "multiple attribute re- 
trieval," has been the focus of a great deal 
of research in the past few years. In this 
paper we study a small part of this area by 
surveying the work that has been done on 
one particular multikey searching problem. 
This problem is important in itself (having 
applications in such areas as database sys- 
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tems, statistics, and design automation) 
and, in addition, serves as a representative 
of the entire class of multikey searching 
problems. 

We need some definitions to describe this 
particular searching problem precisely. In 
database terminology a file is a collection 
of records, each containing several attri- 
butes or keys. A query asks for all records 
satisfying certain characteristics. An or- 
thogonal range query asks for all records 
with key values each within specified 
ranges (that is, each key is between speci- 
fied upper and lower bounds). The process 
of retrieving the appropriate records is 
called range searching. This problem can 
also be cast in geometric terms by regarding 
the record attributes as coordinates and the 
k values for each record as representing a 
point in a k-dimensional coordinate space. 
The file of records then becomes a point set 
in k-space. The intersection of the query 
ranges is a k-dimensional hyperrectangle in 
the space {that is, a "box"), and a range 
query calls for finding all points lying inside 
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this hyperrectangle. We will often cast 
range searching in this geometric frame- 
work as an aid to intuition. 

Range searching arises in many applica- 
tions. In a geographic database of U.S. 
cities one might seek a list of all those with 
latitude between 37 ° and 41 ° and longitude 
between 102 ° and 109 ° (defining the state 
of Colorado). To compile an honor list of 
older students, a university administrator 
may wish to know those students whose 
age is between 21 and 24 years and whose 
grade point average is between 3.5 and 4.0. 
In data analysis it is often useful to do 
separate analyses on sets of data lying in 
different regions (hyperrectangles) of the 
observation space and then compare (or 
contrast) the respective results. (At the 
Stanford Linear Accelerator Center, for ex- 
ample, over 10 hours per week of IBM 370/ 
168 time is devoted to this application.) In 
statistics, range searching can be employed 
to determine the empirical probability con- 
tent of a hyperrectangle, to determine em- 
pirical cumulative distributions, and to per- 
form density estimation (see LOFT65). 
Lauther [LAuT78] describes how range 
searching can be used to solve a design 
automation problem in very large-scale in- 
tegrated circuitry (VLSI). 

This paper has been written with two 
distinct audiences in mind. For the expert 
in searching {with background either in 
database systems or theoretical computer 
science), this paper is intended as a survey 

that gathers together and presents in a 
common terminology a number of results 
that have recently appeared on the problem 
of range searching. This problem is of par- 
ticular interest for two reasons: First, it is 
an important problem in many practical 
applications (and a difficult theoretical 
problem!); second, the methods that we 
investigate are broadly applicable to many 
other multikey searching problems. The 
second type of reader for whom this paper 
is intended is a computer scientist who is 
somewhat familiar with data structures for 
single-key searching, and who would like a 
tutorial on the problem of range searching. 
For this reader, the methods that we dis- 
cuss are described on an intuitive level, and 
references are given to more precise de- 
scriptions elsewhere in the literature. 

In Section 1 of this paper we examine six 
data structures for the range searching 
problem in some detail, and then briefly 
compare those structures at the end of the 
section. Additional work (that both has 
been done and needs to be done) is de- 
scribed in Section 2, and conclusions are 
then offered in Section 3. 

1. THE DATA STRUCTURES 

In this section we investigate a number of 
search methods for range searching. Each 
search method is specified by a data struc- 

ture for storing the data and algorithms for 
building (which we call preprocessing) and 
searching the structure. We will analyze a 
search structure (say A) by giving three 
cost functions of N (the number of points) 
and k (the number of dimensions): 

• PA(N, k), the cost of preprocessing N 

points in k-space into a data structure; 
• SA(N, k), the storage required by the 

data structure; 
• QA(N, k), the search time or query cost. 

These costs can be analyzed in terms of 
their average or their worst case; we usually 
speak of the worst-case cost, explicitly men- 
tioning the average whenever we employ it. 
In many applications one may desire var- 
ious utility operations on data structures, 
such as insertion and deletion. In this sec- 
tion we ignore this issue, considering only 
static (unchanging) files; we then return to 
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the question of dynamic structures in Sec- 
tion 2. 

1.1 Sequential Scan 

The simplest approach to range searching 
is to store the N points in a sequential list. 
As each query arrives, all elements of the 
list are scanned and every record that sat- 
isfies the query is reported. If the queries 
do not have to be handled immediately, 
then they can be "batched" so that many 
queries can be processed with one sequen- 
tial pass through the file. Since all k keys of 
the N records must be stored and each 
k-key record is examined as the structure is 
built or searched, it is easy to see that  the 
sequential scan structure SS has the prop- 
erties 

Pss(N, k) = O(Nk),  

Sss(N, k) = O(Nk),  

Qss(N, k) = O(Nk).  

Sequential scanning has the advantage of 
being trivial to implement on any storage 
medium. It is competitive with the more 
sophisticated methods described in this pa- 
per when the file is small and the number 
of attributes is large, or when a large frac- 
tion of the records in the file satisfy the 
query (or queries, if they are batched). 

1.2 Projection 

The projection technique involves keeping, 
for each attribute, a sequence of the records 
in the file sorted by that  attribute. One can 
view this geometrically as a projection of 
the points on each coordinate. The k lists 
representing the projections can be ob- 
tained by using a standard sorting algo- 
rithm k times. After preprocessing, a range 
query can be answered by the following 
search procedure: Choose one of the attri- 
butes, say the ith. Look up the two positions 
in the ith sequence (using a binary search) 
of the extreme values defining the range on 
the ~th attribute of the query. All records 
satisfying the query will be in the list be- 
tween these two positions just found. This 
(smaller} list is then searched by brute 
force. The projection technique is referred 
to as inverted lists by Knuth [KNUT73]. 
This technique was applied by Friedman, 
Baskett, and Shustek [FRIE75] in their so- 
lution of the "nearest neighbor" problem 
and by Lee, Chin, and Chang [LEEC76] to 
a number of database problems. 

The projection technique is illustrated in 
Figure 1. The points represent a set of 
sixteen records of two keys each, repre- 
sented by the x- and y-coordinates. The 
dashed lines are the projection of the r e c -  
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ords onto the x-coordinate ( that  is, the 
records sorted into x-order). The  vertical 
slab is the x-range of the query, the hori- 
zontal slab is the y-range, and the rectangle 
tha t  is their  intersection contains those 
points which satisfy the query. To  answer 
this query, we need only investigate the six 
points tha t  are inside the vertical slab 
marked  by the 45 ° lines. 

One can apply the projection technique 
with only one sorted list (projection). If  the 
distribution of values of the various attri- 
butes is more or less uniform over similar 
ranges and the query ranges of each attri- 
bute  are similar, then one list is sufficient. 
If  this is not  the case, however,  then  keep- 
ing several lists can often lead to substantial  
reductions in the query time. The  multiple 
projections are exploited by performing two 
binary searches in each to find the lower 
and upper  bounds of the respective range, 
and then  searching tha t  project ion with the 
smallest number  of records in the range. 

The  cost analysis of project ion is 
straightforward. To  preprocess a file of N 
records of k keys each, we must  perform k 
sorts of N elements. To  store such a file, we 
must  store k lists of N elements  each. These  
facts immediately yield 

Pp(N, k) = O(kN log N),  

Sp(N, k) = O(kN). 

Friedman, Baskett ,  and Shustek [FreE75] 
show tha t  for searches tha t  have almost 
cubical query regions and find a small num- 
ber of records (and are therefore  similar to 
nearest  neighbor searches), the query t ime 
of projection is given by 

Qp(N, k) = O(N H/k) (average case) 

when the point  set is drawn from a smooth 
underlying distribution. The  projection 
technique is most  effective when the quer- 
ies almost always contain one range tha t  
excludes most  of the file. 

1.3 Cells 

There are two ways they can search [for the murder 
weapon] from the body outward m a spiral, or dwlde 
the room up Into squares--that's the grid method. 

From the CBS series Kojak, 
"Death Is Not a Passing Grade" 

Cartographers  as well as detectives use the 
grid (or cell) method.  S t ree t  maps of met-  

ropoli tan areas are often pr inted in the form 
of books. Th e  first page of the book shows 
the entire area, and the remaining pages 
are detailed maps of (say) one-mile-square 
regions. To  find (for example) all schools in 
a specified rectangle, one would look at the 
first page to find which squares overlap the 
rectangle and then check only on those 
pages of the book to find the schools. This  
approach can be mechanized immediately.  
A square of the map corresponds to a cell 
in k-space, and the points of the file within 
the cell are stored together  in an implemen- 
tation. Th e  first page of the map book 
corresponds to a directory tha t  allows one 
to take a hyperrectangle  and look up the 
set of cells. 

The  cell technique is i l lustrated in Figure 
2. The  sixteen points in tha t  figure repre- 
sent sixteen records containing two keys 
each. Th e  points in each cell are stored 
together  in an implementat ion.  Th e  query 
is given by the rectangle in the upper  par t  
of the figure, and to answer it, only those 
points in the four dashed cells need be 
investigated. Th e  squares in tha t  figure are 
the "di rectory"  corresponding to the first 
page of the map book. 

The  directory can be implemented in two 
ways. If  the points are (say) uniformly dis- 
t r ibuted on [0, 10] 2 and we have chosen 
1 × 1 cells, then  we can use a two-dimen- 
sional array as the directory, named DI- 
R E C T  (0 . .  9, 0 . .  9). In D I R E C T  (i,j) we 
would keep a pointer  to a list of all points 
in the cell [t, t + 1] × [ j , j  + 1]. If  we 
wanted to find all points in [5.2, 6.3] × [1.2, 
3.4], then we would only have to examine 
cells (5, 1), (5, 2), (5, 3), (6, 1), (6, 2), and (6, 
3) - -we call this " translat ing" from a range 
query to a set of cell id's. Th e  multidimen- 
sional array works very well when the 
points are known a priori to be uniformly 
distr ibuted over some given rectangle in the 
key space. When  this is not  known to be 
the case, one would probably use a search 
method,  such as hashing, for the directory. 
In this me thod  we name each cell as before; 
so cell (t, j )  is a pointer  to the points in 
[i, i + 1] × [ j , j  + 1]. Instead of storing all 

cells, however,  we store only those cells 
tha t  actually contain records of the file. To  
process a query, we translate  the rectangle 
into a set of cell id's (as we did above), look 
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FIGURE 2 I l lustrat ion of cells 

up those id's, and check all the points in the 
occupied cells for inclusion in the rectangle. 
The storage required for the cell technique 
is the storage for the directory plus loca- 
tions for the linked list representing points 
in cells; the size of the directory is usually 
much smaller than N. 

Knuth [KNUT73] has discussed this 
scheme for the two-dimensional case. Lev- 
inthal [LEVI66] used a cell technique in 
three-dimensional Euclidean space for de- 
termining all atoms within 5 angstroms of 
every atom in a protein molecule--he re- 
ferred to this as "cubing." The idea of using 
hashing for the cell directory was first de- 
scribed by Yuval [YUVA75], and was later 
used by Rabin [RAm76] to solve the "clos- 
est pair" problem. Bentley, Stanat, and 
Williams [BENT77] discuss a number of 
different implementations for the directory 
(two of which we have seen). 

The basic parameters of the cell tech- 
nique are the size and shape of each cell. In 
analyzing a search there are two costs to 
count: cell accesses (the number of direc- 
tory look-ups) and inclusion tests (testing 
whether a point satisfies the range query). 
If the cell size is extremely large, there will 
be few cell accesses and many inclusion 
tests. If the cell size is very small, on the 

other hand, there will be very many cell 
accesses and very few inclusion tests. 
Clearly, either extreme is to be avoided. 

The best cell size and shape depend on 
the size and shape of the query hyperrec- 
tangle. Bentley, Stanat, and Williams 
[BENT77] show that if the query hyperrec- 
tangles have constant size and shape so 
that only their location (in the coordinate 
space) is unspecified, then for a single grid 
a nearly optimum size and shape for the 
cells are the same as those of the query 
hyperrectangle. For this case the number 
of cells accessed is 2 k, and the expected 
search time is proportional to 2 k times the 
number of points in the range. In this con- 
text the performance of cells is given by 

P~(N, k) -- O(Nk) ,  

S~(N, k) ffi O(Nk) ,  

Qc(N, k) = O(2 k F) (average), 

where F is the number of records found. In 
most applications, however, the queries will 
vary in size and shape as well as in location, 
so there is little information available for 
making a good choice of cell size and shape. 

1.4 k-d Trees 

In this section we examine a data structure 
called the "k-dimensional binary search 
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tree," which is usually abbreviated as "k-d 
tree." This structure is a natural generaliza- 
tion of the standard one-dimensional binary 
search tree, so we will briefly review a spe- 
cial type of that structure (a complete de- 
scription of binary trees can be found in 
KNUT73). To build a file of single-key rec- 
ords into a binary search tree, we choose 
the median of the set as the discriminator 

value and build all records with key values 
less than or equal to the discriminator into 
the left subtree of the root (recursively) and 
all elements with greater key values into 
the right subtree. This process continues 
recursively until there are only a few (say 
six or less} nodes in the set, at which point 
we store them as a linked list. Note that  no 
records are stored in the internal nodes of 
such a binary search tree; they are con- 
tained only in the leaf nodes or "buckets" 
at the bottom of the tree. We can answer a 
range search in this structure by a recursive 
algorithm that compares the range to the 
discriminator of the node it is currently 
visiting. If the range is entirely to one side 
or the other of the discriminator, only the 
appropriate son is searched; otherwise both 
sons are searched recursively. 

The single-key binary search tree per- 
forms three functions at once: It stores the 
records of the file (in the external nodes, or 
"buckets"), it divides the data space into 
segments (by choosing the discriminators), 
and it gives a directory among the segments 
(the tree structure). We now investigate a 
multidimensional generalization of the bi- 
nary search tree that performs these same 
three functions: storing the records, divid- 
ing space into hyperrectangles, and provid- 
ing a directory among the hyperrectangles. 
It accomplishes this by using the same idea 
as the one-dimensional algorithm with one 
critical exception: In the one-dimensional 
tree we only have one key to use as the 
discriminator; in a multidimensional tree 
we have to choose at each internal node 
one of k keys to use as a discriminator. 

The algorithm for constructing a k-d tree 
is to choose for the discriminator that co- 
ordinate j for which the spread of attribute 
values (as measured by any convenient sta- 
tistic, such as variance or distance from 
minimum to maximum) is maximum for 
the subcollection represented by the node. 

The partitioning value is chosen to be the 
median value of this attribute. This algo- 
rithm is then applied recursively to the two 
subcollections represented by the two sons 
of the node just partitioned. The partition- 
ing is stopped, creating a terminal node (or 
bucket), when the cardinality of the sub- 
collection is less than a prespecified maxi- 
mum, which is a parameter of the proce- 
dure. (Friedman, Bentley, and Finkel 
[FRIE77] found empirically that values 
ranging from 8 to 16 work well in a Fortran 
implementation.) The result of this proce- 
dure is that  the coordinate space is divided 
into a number of buckets, each containing 
approximately the same number of points 
(by the stopping criterion) and each ap- 
proximately "cubical" in shape (by choos- 
ing as discriminator the dimension of max- 
imum spread, which slowly chops long and 
skinny rectangles into cubes). 

Range searching with k-d trees is 
straightforward. Starting at the root, the 
k-d tree is recursively searched in the fol- 
lowing manner. When visiting a node that 
discriminates by the f lh  key (which we call 
a j-discriminator), one compares the j th  
range of the query with the discriminator 
value. If the query range is totally above 
(or below) that  value, then one need only 
search the right subtree (respectively, left) 
of that  node; the other son can be pruned 
from the search because any node it con- 
tains does not satisfy the query in that 
particular key. If the query range overlaps 
the node's key (that is, the key is between 
the low and high bounds of the range), then 
both sons need be searched. This can be 
accomplished by searching both sons recur- 
sively (the search being implemented by a 
stack). 

The application of k-d trees to (two-di- 
mensional) range searching is illustrated in 
Figure 3. The k-d tree is depicted in two 
ways: Figure 3a shows the structure in 2- 
space, and Figure 3b shows the abstract 
tree. The root of the tree is internal node 
A; it is an x-discriminator. The vertical line 
in the right part of the figure labeled A is 
the discriminating line. That  is, every point 
to the left of that vertical line is in the left 
subtree of A {with B as root), and every 
point to the right is in the subtree with root 
C. This partitioning continues recursively, 
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FmURE 3. Illustratmn of k-d trees a) Planar representatmn, b) tree representation 

and the resulting cells (buckets) in this tree 
each contain two points. The query rectan- 
gle is illustrated in Figure 3a, and the search 
for all points within the rectangle is illus- 
trated in both figures. The search starts at 
the root, and since the query, rectangle is 
entirely to the right of the vertical line 
defined by A, the left subtree of A {with B 
as root) can be pruned from the search. 
This is illustrated in Figure 3b by the per- 
pendicular line through the son link from A 
to B. The search continues, searching both 
sons of C, both sons of F, and only the left 
son of G. A total of three buckets are 
searched; these buckets are dashed in the 
planar representation and are marked by 
an S in the tree representation. 

In the k-d tree as introduced by Bentley 

[BENT75a], the discriminators are chosen 
cyclically (that is, the root is discriminated 
by the first key, its sons by the second, and 
so on). The idea of "adaptive partitioning" 
was proposed by Friedman, Bentley, and 
Finkel [FRIE77] and makes the k-d tree a 
structure very "sensitive" to the particular 
file that it represents. The application of 
k-d trees to a host of problems can be found 
in BENT79b, GOTL78, and SILv78b. 

Analysis of k-d trees for range searching 
has been considered by several researchers. 
The work required to construct a k-d tree 
and its storage requirements (see BENT79b) 
are 

Pk(N, k) = O(N  log N), 

Sk(N, k) ffi O(Nk).  

Computing Surveys, Vol. 11, No. 4, December 1979 



404 • J. L. Bentley and J. H. Friedman 

The search cost depends on the nature of 
the query. Lee and Wong [LEEW80] have 
shown that in the worst case, 

Qk(N, k) < O ( N  H/k + F) 

where F is the number of points found in 
the region. If the query range is almost 
cubical and the number of records that 
satisfies the query is small (so that  the 
range query is similar to a nearest neighbor 
search), then Friedman, Bentley, and Fin- 
kel's [FRIE77] analysis shows that 

Qk(N, k) = O(log N + F) 

(average case for small answer). 

For the case where a large fraction of the 
file satisfies the query, Bentley and Stanat 
[BENT75b] and Silva-Filho [Smv78a] show 
that 

Qk(N, k) = O(F) 

(average case for large answer). 

The k-d tree structure is most effective in 
situations where little is known about the 
nature of the queries or a wide variety of 
queries are expected. It is also useful if 
other types of queries (in addition to range 
queries) are anticipated; many other quer- 
ies supported by k-d trees are discussed by 
Bentley [BENT79b]. 

1.5 Range Trees 

A number of very similar structures for 
range searching (of primarily theoretical 
rather than practical interest) have recently 
been described by Lueker [LuEK78], Lee 
and Wong [LEEW80], and Willard 
[WILL78a]. In this section we investigate 
the range tree, a structure introduced by 
Bentley [BENT79a] that  is also similar to 
the former structures. It achieves the best 
worst-case search time of all the structures 
we have seen so far in this paper, but has 
relatively high preprocessing and storage 
costs. For most applications the high stor- 
age will be prohibitive, but the range tree 
is very interesting from a theoretical view- 
point. Since the range tree is defined recur- 
sively in dimension (that is, the k-dimen- 
sional structure is defined in terms of the 
(k - 1)-dimensional structure), we begin 
our discussion by looking at a one-dimen- 

sional structure and then generalize that  
structure to higher dimensions. 

The simplest structure for one-dimen- 
sional range searching is a sorted array. 
The preprocessing sorts the N elements in 
ascending order by key. To answer a range 
query, we do two binary searches to find 
the positions of the low and high end of the 
range in the array. After these two positions 
have been found, we can list all the points 
in that  part of the array as the answer to 
the range query. (Note that this is precisely 
the projection method applied to the one- 
dimensional problem.) For this structure 
we use linear storage and O ( N  log N) pre- 
processing time. The two binary searches 
each cost O(log N), and the cost of listing 
the points found in the region will, of 
course, be proportional to the number of 
such points. Letting F be the number of 
points found in the region, we have 

Pr(N, 1) = O ( N  log N), 

Sr(N, 1) = O(N) ,  

Q~(N, 1) = O(log N + F). 

We will now build a two-dimensional 
range tree, using as a tool the one-dimen- 
sional sorted arrays (SA's) we described 
above. The range tree is similar to the 
"binary search trees" described by Knuth 
[KNUT73, Sect. 6.2], so we will use his ter- 
minology in our discussions. The range tree 
is a rooted binary tree in which every node 
has a left son, a right son, a discriminating 
value (all nodes in the left subtree have a 
discriminating value less than the node's), 
and (unlike a regular binary search tree) 
every node contains an SA. The root of the 
range tree contains an SA (sorted by 
y-coordinate) and has as a discriminating 
value the median x-value for all points. The 
left subtree of the root has an SA containing 
the N/2  points with x-value less than me- 
dian sorted by y-coordinate. Similarly, the 
right son of the root represents the N/2  
points with x-value greater than the median 
and has an SA of those points sorted by 
y-coordinate. This partitioning continues so 
that i levels away from the root we have 2' 
subtrees, each representing N/2 L points 
contiguous in the x-dimension and each 
containing an SA of the points sorted by 
y-coordinate. This partitioning continues 
for a total of (approximately) log N levels; 
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we handle small point sets (say, less than a 
dozen points) by brute force. 

The search algorithm for a range tree is 
most easily described recursively. Each 
node in the tree represents a range in the 
x-dimension from the least x-value con- 
tained in the subtree to the greatest. When 
visiting a node, we compare the x-range of 
the query to the range of the node, and if 
the node's range is entirely within the 
query's, then we search that structure's SA 
for all points in the query's y-range and 
return. If the query's range does not wholly 
contain the node's, then we compare the 
query's x-range to the node's discriminator 
value. If the range is entirely below the 
discriminator, we recursively visit the left 
subtree; if it is above, we visit the right; and 
if the range overlaps the discriminator, then 
we visit both subtrees. 

The analysis of the planar tree is rather 
complicated. Since there are log N levels 
in the tree and N points are stored on 
each level, the total storage required is 
O ( N  log N). The preprocessing can be per- 
formed in O ( N  log N) time if clever tech- 
niques are employed. Analysis shows that 
at most two SA searches are done on each 
level of the tree {each of cost approximately 
log N), so the total cost for a search is 
O(log 2 N) plus the time for listing the 
points in the region. Letting F stand, as 
before, for the total number of points found 
in the region we have 

Pr(N, 2) = O ( N  log N), 

Sr(N, 2) = O ( N  log N), 

Qr(N, 2) = O(log '~ N + F). 

If we step back for a moment, we can see 
how we built the structure: We constructed 
a two-dimensional structure by building a 
tree of one-dimensional structures. We can 
perform essentially the same operation to 
yield a three-dimensional structure: We 
construct a tree containing two-dimen- 
sional structures in the nodes. This process 
can be continued to yield a structure for 
k-dimensions, which will be a tree contain- 
ing (k - D-dimensional structures. This 
will yield a structure with performances 

Pr(N, k) = O (Nl og  k-I N), 

S~(N, k) = O ( N  log k-l N), 

Qr(N, k) = O(log k N + F). 

The range tree structure is very interest- 
ing from a theoretical viewpoint. The 
#symptotic search time is very fast, but the 
amount of storage used is usually prohibi- 
tive in practice. Although the application of 
this structure to practical problems will 
probably be limited to cases when k ffi 2 or 
3, it does provide an important theoretical 
benchmark. It also gives us an interesting 
technique (recursion in dimension) that 
might yield fruit in practice. {Indeed, there 
are some very interesting relationships be- 
tween range trees and the k-d trees of Sec- 
tion 1.4.) 

1.6 k-ranges 

The k-range is an efficient worst-case struc- 
ture for range searching introduced by 
Bentley and Maurer [BENT80b]. They  de- 
veloped two types of k-ranges, overlapping 
and nonoverlapping. Both of these struc- 
tures involve storing sets of lists of points 
sorted by different coordinates; additional 
dimensions are added recursively, much 
like the range trees of the last section. Be- 
cause k-ranges are rather complicated to 
describe and are of primarily theoretical 
interest, we will not describe them here but 
only mention their performance. The over- 
lapping k-ranges can be made to have per- 
formance 

Po(N, k) ffi O(N~+~), 

So(N, k) = O(N'+~), 

Qo(N, k) = O(log N + F)  

for any e > 0. It is pleasing to note that the 
constants "hidden" in the O's of the above 
equations are just k/E. Overlapping k- 
ranges have very efficient retrieval time but 
somewhat high preprocessing and storage 
costs; their dual structures, nonoverlapping 
k-ranges, have very efficient preprocessing 
and storage costs but increased query 
times. Their performance is 

Pn(N, k) = O ( N  log N), 

Sn(N, k) = O(N) ,  

Q°(N, k) = O(N) ,  

for any fixed ¢ > 0. The details of these 
structures can be found in BENT80b. Al- 
though these structures were developed pri- 
marily as a theoretical device, they might 
prove efficient in some implementations 
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(Their primary drawback is that their space 
requirements are high, and space is usually 
a critical resource.) 

1.7 Other Structures 

In the previous sections we have investi- 
gated six structures for the range searching 
problem that (in the authors' opinion) dom- 
inate other structures proposed for this 
problem. In this section we briefly investi- 
gate some of these other structures. 

Knuth [KNUT73] points out that the no- 
tion of cells can be applied recursively. That  
is, when one of the cubes has more than 
some certain number of points, the cube is 
further divided into subcubes of yet smaller 
size. This scheme implies a multidimen- 
sional tree with multiway branching. In 
terms of both the partitioning imposed on 
the space and the ease of implementation, 
this idea seems to be dominated by a data 
structure called the quad tree. 

The quad tree was first described by Fin- 
kel and Bentley [FINK74]. It is a generaliza- 
tion of the standard binary search tree, in 
which every node has 2 h sons. Bentley and 
Stanat [BENT75b] analyzed the perform- 
ance of quad trees for "square" range 
searches in uniform planar point sets, and 
Linn [LINN73] discussed the fact that quad 
trees (which he called "search-sort k trees" ) 
have advantages over binary trees when 
used in a synchronized multiprocessor sys- 
tem. This application aside, however, the 
quad tree seems to be dominated by the 
k-d trees of Section 1.4. 

A great deal of work has been done re- 
cently on multikey searching problems that 
are similar in flavor to the range searching 
problem. Dobkin and Lipton [DOBK76] and 

Bentley [BENT80a] have investigated a 
number of searching problems defined on 
sets of points in k-dimensional space. Rivest 
[RIVE76] provides a number of interesting 
data structures for answering "partial- 
match" queries, which are essentially range 
queries in a file in which the keys assume 
discrete values. For discussions of efficient 
search methods in the context of database 
systems, the reader is referred to such pa- 
pers as LIou77, SHNE77, YANG77, and 
YANG78. 

1.8 Comparison of Methods 

In Sections 1.1 through 1.6 we have dis- 
cussed six structures for range searching. 
The performances of these six structures 
(seven including the two variants of k- 
ranges) are summarized in Table 1, which 
shows the preprocessing, storage, and query 
costs of each structure. All the functions in 
that table reflect worst-case costs, except 
those query costs that  are footnoted. For 
those functions the probabilistic assump- 
tions are described in the notes. 

Four of these six structures (sequential 
scan, projection, cells, and k-d trees) have 
been presented as providing practical solu- 
tions to the range searching problem. For 
each structure there are situations in which 
it is clearly superior and other situations 
where it performs badly. In this section we 
will mention some of these situations and 
compare the performance of the four 
methods. 

If the file is small and the number of 
attributes large, if the f'fle is to be searched 
only a few times, or if the queries can be 
batched so that  nearly all the records in the 
file satisfy at least one, then sequential scan 

TABLE 1. Performance of Data Structures for Range Searchmg 

Structure P(N, k) S(N, k) Q(N, k) 

Sequential scan O{N} O(N) O(N) 
Projection O(N log N) O(N) O(N 1-1/* + F) a~) 
Cells O(N) O(N) O(F) a(z) 
k-d trees O(N log N) O(N) O(N H/k + F) 

O(log N + F)  a()) 
Nonoverlappmg k-ranges O(N log N) O(N) O(N ~ + F) 
Range trees O(N logk-lN) O(N log *-1 N) O(log * N + F)  
Overlapping k-ranges O(N ~+~) O(N ~+~) O(log N + F)  

a Query times that  indmate average case analysis Probabihstm assumptions are 
(1) Smooth data sets--very small query region. 
(2) Any data set--cell size equals query size. 
(3) Smooth data set. 
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is the method of choice. In other cases one 
of the more sophisticated methods is likely 
to be more efficient. Projection does best 
when the query range on one of the attri- 
butes is usually sufficient to eliminate 
nearly all the File records. For this case the 
low overhead of searching this structure 
allows it to dominate the others. In situa- 
tions where several or many of the attri- 
butes serve to restrict the range query, the 
projection technique performs relatively 
poorly. 

Both the cell and k-d tree structures are 
appropriate in situations where the query 
restricts several of the attributes. If the 
approximate size and shape of the queries 
are roughly constant and known in ad- 
vance, then cells defined by a fixed grid 
with size and shape similar to those of the 
expected queries is most advantageous. For 
queries with sizes and shapes that differ 
considerably from the design, however, per- 
formance can be quite poor. 

The k-d tree structure is characterized by 
its robustness to wildly varying queries. 
The cell design adapts to the distribution 
of the attribute values of the file records in 
the k-dimensional coordinate space. The 
cells all contain very nearly the same num- 
ber of records; there are no empty cells. In 
dense regions there are many cells and a 
correspondingly fine division of the coordi- 
nate space; in sparse regions there is a 
coarser division with fewer cells. For most 
applications of range searching that are not 
characterized in the preceding paragraphs, 
k-d trees are likely to be the method of 
choice. 

2. ADDITIONAL WORK 

Our discussion of the data structures in 
Section 1 is on a very abstract conceptual 
level, and we have ignored many problems 
that arise in actual applications of range 
searching. In this section we briefly exam- 
ine some of those problems and the solu- 
tions that have been proposed to handle 
them. 

All files that we have discussed so far 
have been static; that is, they represent 
unchanging files. Many applications, how- 
ever, require dynamic structures, in which 
insertions and deletions can be made. The 
sequential scan structure is easy to main- 

tain dynamically, and so is the projection 
structure using methods for maintaining 
one-dimensional sorted lists described by 
Knuth [KNUT73]. The cell technique can 
support insertions and deletions by merely 
keeping a linked list of the points in each 
cell and inserting or deleting the new or old 
record in the appropriate list. Dynamic k-d 
trees are a more subtle problem and have 
been discussed by Bentley [BENT79b] and 
Willard [WILL78b]. 

Considerable research remains to be 
done in the development of heuristics for 
aiding the search methods we have seen. 
For example, if the range queries in a seven- 
dimensional problem almost always involve 
only two of the attributes, then the design 
of the structure should involve only those 
two attributes. Heuristics for detecting 
these and other similar situations would be 
very helpful. Techniques described by Ben- 
tley and Burkhard [BENT76] might prove 
useful in such an investigation. 

Our discussion of all of the data struc- 
tures has been for the case in which they 
are implemented in primary memory. 
Many applications (particularly databases) 
inherently involve secondary storage media 
such as disks and tapes. All the structures 
of Section i can be efficiently implemented 
on such mediaJ 

Several researchers have recently consid- 
ered an interesting generalization of the 
range searching problem, which calls for 
adding a range restriction to an existing 
data structure. That is, we already have 
some structure for performing a particular 
type of query, and we want to have the 
capability of saying "perform that query on 
all records in which this key lies in that 
range." Bentley [BENT79a], Lueker 
[LUEK79], and Willard [WILL78a] have de- 
veloped a number of transformations on 
data structures that allow one to add the 
range restriction capability. (These trans- 
formations actually led to the discovery of 
both the range tree and the k-range data 
structures of Section 1.) Although the stor- 
age requirements of the resulting structures 
seem to be too high to make them of im- 

1 For detai ls  of these Implementat ions ,  the reader  is 
referred to BENT78 whmh m an earl ier  version of thin 
paper  
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mediate practical interest, this approach is 
a novel attack on the problem of construct- 
ing data structures for range searching. 

An interesting theoretical problem that 
could prove to be of practical value is prov- 
ing lower bounds on the complexity of the 
range searching problem. Saxe [SAXE79] 
has investigated this problem using the 
standard "decision tree" model of concrete 
complexity theory and has shown that 
k-ranges have optimal worst-case query 
times. These k-ranges have very high stor- 
age requirements, however; so it would be 
very desirable to have lower bounds that 
make stronger statements of the form, "if 
you only use this much storage and prepro- 
cessing, then this is the fastest search time 
you can have." Fredman [FRED79] has re- 
cently made progress in this direction. An- 
other interesting open problem is to show 
lower bounds on the average complexity, 
rather than just the worst-case complexity. 

3. CONCLUSIONS 

In this paper we have investigated a num- 
ber of data structure for the range searching 
problem. In 1973 Knuth [KNuT73, p. 554] 
was able to write that "no really nice data 
structures seem to exist" for the problem of 
range searching. In this paper we have tried 
to show that this situation has changed in 
the interim, and that these changes can 
have a substantial impact on both the the- 
ory and practice of multikey searching. 
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