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ABSTRACT When mechanical products work in complex environments, it is imperative to build an

optimal maintenance strategy, based on accurate positioning of fault locations and prediction of fault

conditions. Based on digital twinning technology, this paper proposes a ‘‘super-network-warning features’’

fault prediction and maintenance method. According to the digital twin five-dimensional structure, a three-

layer super-network model is constructed, providing a quantitative research for data among heterogeneous

subjects in digital twinning. Early-warning-features in the physical layer, virtual layer and service layer

are selected as input parameters of the fault prediction model to accurately predict the cause of the fault.

Then, using the simulation and optimization functions of the virtual model in digital twinning, a real-time

maintenance strategy is formulated for the causes of the fault. It supplements the missing link between

fault prediction and maintenance. Taking an aero-engine bearing as an example, this method is compared

with a traditional method. The results show that the model prediction error of this method is better than the

traditional method.

INDEX TERMS Digital twinning, data super-network, fault prediction, maintenance strategy.

I. INTRODUCTION

Manufacturing technology is continuously improving [1],

while more and more mechanical products operate, for long

periods of time, in various complex environments (e.g. Bear-

ings, marine propulsion, robots). Due to the intricate envi-

ronmental factors, mechanical products will inevitably fail,

during operation. However, maintenance in complex envi-

ronments requires high costs, which has turned the problem

of product fault prediction and maintenance into a research

hotspot, in recent years. On the one hand, mechanical prod-

ucts are extremely difficult or even impossible to repair,

in complex environments. Even if repair is possible, locating

faulty parts and constructing a corresponding maintenance

strategy, in time, are not possible, leading to waste of money

and resources. Furthermore, the accuracy of prediction is

reduced, when using product manufacturing data, for fault
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prediction, because the data is highly susceptible to interfer-

ence from other sources of vibration.

With the continuous development of information physics

systems, digital twinning technology provides new solutions

for fault prediction and maintenance of mechanical prod-

ucts. Digital twin [2] is an intelligent, interdisciplinary and

multi-model based technology that gathers big data. The

characteristic of digital twin technology is to reflect the work-

ing process of physical entity in real time through virtual

model. At the same time, the next work can be simulated

in advance. And then guide the working process of physical

entities. By combining digital twinning technology and fault

prediction and maintenance, some of the present problems,

in this field, are solved, making it possible for mechanical

products, to develop intelligently.

II. OVERVIEW OF DIGITAL TWIN, SUPER-NETWORK,

FAULT PREDICTION AND MAINTENANCE

Many scholars, all over the world, have done a lot of research

on fault prediction and maintenance. Xiao Cheng et al. [3]
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present a new method developed, using radar chart and Sup-

port Vector Machine (SVM) approach, for fault diagnosis

and prediction of wind turbine pitch system. Zhou et al. [4]

developed a fault diagnosis approach, for fuel regulator of

aircraft engine. To build an exact mathematical engine inverse

model, an emerging machine leaning technique, called rel-

evance vector machine, is adopted, to establish the rela-

tionship between sensor readings and fuel consumption.

Qi et al. [5] proposed a stacked Sparse Autoencoder (SAE)-

based fault diagnosis method. Cheng et al. [6] proposed

an enhanced particle filtering algorithm, for the remaining

useful life prediction of wind turbine drivetrain gearboxes.

Prakash et al. [7] present a probabilistic approach for fault

detection and prognosis of rolling element bearings, based

on a two-phase degradation model. Wang et al. [8] proposed

empirical wavelet transform, for extracting bearing fault fea-

tures, formulated as a constrained optimization problem.

The above scholars have made great achievements in the

research of fault prediction and maintenance, but some issues

still remain under investigation. ① The research of fault pre-

diction and maintenance mostly focuses on prediction, while

seldom combines prediction with maintenance. ② There are

some optimization algorithms, adopted in fault prediction,

but, as the developed model becomes more complex, the role

of these algorithms is gradually degrading. ③ According to

the failure prediction results, failure maintenance strategies

cannot be effectively formulated.

Since the ‘‘Digital Twin’’ appeared, its application has

gradually evolved, from product predicting, to product pre-

dicting, maintenance and service, making it possible to solve

the aforementioned problems. Product predicting: The US

Air Force Research Laboratory Structural Science Center

combines high fidelity flight model with calculation model,

affecting the flight structure deviation and temperature, based

on digital twin technology, to predict the life span [9]. The US

Air Force research laboratory uses physical entities, to eval-

uate high-fidelity virtual models and predict the problem of

aeronautical thermal coupling elasticity [10]. Product predict-

ing and maintenance: Grieves and Vickers [11] studied the

application of digital twin in fault prediction and elimination,

in complex systems. Hochhalter [12] detected the operational

status of the spacecraft, in real time, by combining digital

twinning with sensory particle technology. General Electric

(GE) [13] attempted to achieve real-time monitoring and

predictive maintenance of industrial engines, using digital

twinning technology. Product predicting, maintenance, and

service: PTC has built an interaction model, between the real

world and the virtual world, to provide users with efficient

after-sales service [14]. Dassault has established a digital

twin 3D interactive platform, to continuously improve prod-

ucts, in the virtual world, based on feedback from user expe-

rience information [15]. Siemens has built a virtual model of

the production process, to digitize the enterprise [16]. Alam

and El Saddik [17] present a digital twin architecture refer-

ence model, for the cloud-based CPS, C2PS. The model can

be used to identify basic and hybrid computation-interaction

modes, in different degrees. Fei and Zhang [18] proposed

the concept of digital twin workshop, realizing the interaction

and integration of physical and virtual workshops.

The rapid development of digital twinning technology is

tightly connected to the emergence of new Information Tech-

nologies (ITs) [19] (e.g. Internet of Things, cloud comput-

ing and artificial intelligence). The new ITs enable Wireless

Sensor Network (WSN) and Radio Frequency Identification

(RFID) technologies, to be widely used, in the collection

of real-time data [22], [23] (e.g. production factors [20],

materials [21]). The collected data drive the development of

the automated manufacturing industry [24], [25] and provide

technical support to the in-depth study of digital twinning.

Zhuang et al. [26] proposed a digital model framework,

for intelligent production management and control, in com-

plex product assembly workshops, based on real-time data.

Woo et al. [27] developed a big data analysis platform,

for the manufacturing system, realizing the interconnection

between data. Furthermore, other researchers also discussed

the application of big data in product maintenance [28], fault

detection [29], fault prediction [30], risk assessment [31] and

other fields.

Due to the multi-dimensional and multi-modal character-

istics of data among different subjects, in the digital twin

model, it is necessary to use some technologies to realize

the transformation from qualitative research to quantitative

research among different subjects.

Super-network is a multilayer network with large scale,

complex connections and various nodes. Nagurne andWakol-

binger [32] defines super-networks as networks, superior to

existing networks and of higher order. Compared to ordi-

nary complex networks, super-network has the characteristics

of multi-level, multi-attribute or multi-criterion [32], [33].

Super-network is used to describe the interaction and influ-

ence between networks [34].

This paper uses the known new technology (e.g. Neu-

ral network, Density-based data preprocessing algorithm,

Feature matrix clustering), to combine the advantages of

digital twinning and super-networks. According to the fast

response of fault prediction results, a method, integrating

fault prediction and maintenance, is formed. At the same

time, the method solves the problems of fault prediction

and fault location accuracy and optimality of maintenance

strategy. The application framework and workflow of this

method are described in detail in the following sections.

III. DATA SUPER-NETWORK MODEL BASED

ON DIGITAL TWINS

A. DATA-BASED THREE-LAYER SUPER-NETWORK MODE

The core of digital twin is the model and data. In order to

deepen the research into digital twin theory and promote

its application in the whole life cycle of products, the team

of Beihang University developed the digital twin model as

a five-dimensional structural model [38], based on years

of research in intelligent manufacturing services, logistics
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and big data [35]–[37]. The model includes Physical Entity

(PE), Virtual Model (VM), Service System (Ss), Digital twin

Data (DD) and Connection (CN). PE, VM and Ss can interact

with each other. The information among PE, VE and Ss is

transmitted to DD through data stream. DD drives PE, VE and

Ss, as shown in Fig.1.

FIGURE 1. Data three-layer super-network model [38].

In this paper, the digital twin five-dimensional model con-

tains three kinds of elements: physical entity, virtual model

and service system, each of which is a node of different

nature. The data, stored in the resource pool, is a dynamic

set, due to the continuous addition of new data. In the process

of production and operation of physical entities, there is

a coordination relationship among them. Looping relation-

ships are between virtual models, through their continuous

optimization. There is a controlling relationship among the

service systems, due to their function in sequence. Physical

entities are simulated by virtual models, while the virtual

model works through a series of service systems. There is

a pairwise relationship between them. The features above

cannot be clearly expressed in ordinary complex networks.

Therefore, the functional elements of data are studied from

the perspective of multi-level, multi-dimension and multi-

criteria, by means of super-networks. The three types of

elements, in the super-network data, are both independent

and interrelated. The construction of super-network model

includes two aspects: 1) the mathematical model of each sub-

network layer, 2) the mapping relationships between sub-

network layers.

B. CONSTRUCTION OF DATA SUPER-NETWORK MODEL

1) CONSTRUCTION OF SUB-NETWORK MODELS

FOR DATA SUPER-NETWORKS

Data super-network consists of three sub-networks: data

physical layer, data virtual layer and data service layer.

(1) Data physical layer (SNPE )

The network model of SNPE is expressed as:

SNPE = (NPE ,EPE−PE )

where, NPE = {p1, p2, · · · , pi, · · · , pk} represents the

set of nodes in the network and k represents the number

of nodes.

EPE−PE =
{

ep12, ep13, · · · , epij, · · · , ep(k−1)k

∣

∣epij

=
(

pi, pj
)}

represents the set of edges in the network, epij is the

relationship between nodes pi and pj.

Node is the index data of the product during operation.

For example, in physical layer super-network, node pi
refers to the i-th running physical workshop production

factor data. The nodes in each layer of sub-network

are connected to each other due to specific correlation,

as a result, they form the edge of the sub-network. For

example, in the physical layer super-network, different

accelerations of products will result in different vibra-

tion frequencies, which will further affect the wear of

products.

(2) Data virtual layer (SNVE )

The data virtual layer network SNVE is the second sub-

network. The network is used to describe the virtual

model system, corresponding to the data physical layer.

The network model is expressed as:

SNVE = (NVE ,EVE−VE )

where NVE = {v1, v2, · · · , vi, · · · , vk} represents the

set of nodes in the network and k represents the number

of nodes.

EVE−VE =
{

ev12, ev13, · · · , evij, · · · , ev(k−1)k

∣

∣evij

=
(

vi, vj
)}

represents the set of edges in the network, evij is the

relationship between nodes vi and vj.

(3) Data service system (SNSs)

The data service layer network SNSs is the third sub-

network. The network is used to describe the service

application system, corresponding to the data physical

layer or the data virtual layer. The network model is

expressed as:

SNSs = (NS ,ES)

where, NS = {s1, s2, · · · , si, · · · , sk} represents the set

of nodes in the network and k represents the number of

nodes.

ES−S =
{

es12, es13, · · · , esij, · · · , es(k−1)k

∣

∣esij

=
(

si, sj
)}

represents the set of edges in the network, esij is the

relationship between nodes si and sj.
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FIGURE 2. Data three-layer super-network model.

2) MAPPiNG RELATIONSHIP BETWEEN SUB-NETWORK

OF DATA SUPER-NETWORKS

a: RELATIONSHIP MAPPING BETWEEN SUB-NETWORKS

The physical entity (SNPE ), the virtual model(SNVE ), and the

service system (SNSs) complement each other. Separate sub-

networks are aggregated, to form a data super-network with

three nodes. The entire life cycle of the product is reflected

and interconnection between data is achieved.

① Mapping between data physical layer sub-network

(SNPE ) and data virtual layer sub-network (SNVE ).

In the digital twin five-dimensional model, each physical

entity corresponds to a virtual model. In the super-network,

each physical entity in the SNPE , must have a one-to-one

mapping relationship with a virtual model, in SNVE .

The mapping relationship is expressed as:

MPE−VE =
{(

PEj , VEk) |j ∈ SNPE , k ∈ SNVE }

② Mapping between SNPE (SNVE ) and SNSs.

The service system can run effectively because of the

mapping between physical entity and virtual model. In the

digital twin five-dimensional model, the data, collected by

each physical entity (or virtual model), corresponds to the

functional mode of one or several service systems. At the

same time, data, in a service system, is collected by multiple

physical entities (or virtual models). or are inevitably mapped

to the functional modes of several service systems, in.

The mapping of SNPE to SNVE is expressed as:

S (PEi) = {Si |Si ∈ S, ϕ
(

PEi,Sj
)

= 1
}

Among them, S (PEi) represents a set of service modes

corresponding to physical entityPEi. ϕ
(

PEi,Sj
)

= 1 denotes

the relationship betweenPEi and Sj, that is, the service system

mode Sj corresponding to PEi, j = 1, 2, · · · , n, where n

denotes the number of service systems, corresponding to the

physical layer.

The mapping from the data service layer to the data phys-

ical layer is expressed as:

PE (Si) = {PEi |PEi ∈ PE, µ
(

Si,PEj
)

= 1
}

Among them, PE (Si) represents a collection of physical

entities, required by data service mode Si. µ
(

Si,PEj
)

= 1

denotes the relationship between Sj and PEi, that is, the phys-

ical entity PEi required by service system mode Sj, j =

1, 2, · · · , n, where n denotes the number of data physical

entity models, required by service system mode.

According to the above description, a mapping relation-

ship, between the data network layer and the data service

layer subnetwork, is constructed.

MPE−S =
{(

PEj , Sk) |j ∈ SNPE , k ∈ SNSs }

The mapping relationship between the data virtual layer

and the data service layer is similar to the above network

relationship, so it is not described here.

b: FORMAL REPRESENTATION OF SUPER-NETWORKS

According to the mapping relation between each subnetwork

of the data super-network constructed above, the data super-

network model is expressed as:

SN = (SNPE , SNVE , SNSs,MPE−VE ,MPE−Ss,MVE−Ss)

= (PE,VE, Ss,MPE−VE ,MPE−Ss,MVE−Ss)

As mentioned above, the purpose of building a data super-

network model is to analyze the correlation between the data,

to predict product faults and perform respective repairs. The

data from the three-layer super-network model are shown

in Fig.2. The virtual model of physical entity is established

by digital twin technology. By using the super-network tech-

nology, the data super-network model of physical layer, vir-

tual layer and service layer is established. Virtual model is

a faithful mirror image of physical entities, and has simu-

lation and optimization functions for each physical model.

The data needed in the manufacturing process of the data

service layer comes from the physical layer and the vir-

tual layer. At the same time, the manufacturing process can

also give instructions to the physical layer and the virtual

layer.
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FIGURE 3. Product fault prediction and maintenance strategy detailed architecture.

IV. FAULT PREDICTION AND MAINTENANCE STRATEGY

FOR MECHANICAL PRODUCTS

Fig.3 shows the detailed architecture of the mechanical prod-

uct failure prediction and maintenance strategy, including

model layer, information layer, super-network model layer

and support layer. Specifically, the model layer and the

information layer collect the data, in the digital twin five-

dimensional model, by means of collection method, and pre-

processing data. Data is classified hierarchically, through

a super-network model. The support layer is based on the

information from data mining, to predict and maintain faults.

The following section includes a detailed description.

A. DATA ACQUISITION AND DATA PREPROCESSING PHASE

The collected data are stored in the super-network model,

classified and fused effectively. In the data physical layer,

those required to be collected, are mainly the Operation

data (pod), Security data (psd) and Life-time data (pld)

of mechanical products. Operation data include accelera-

tion, voltage/current, speed and other data; Security data

include noise, vibration, temperature rise and other data;

Life-time data include working time, wear extent and other

data. The mathematical model is expressed as PE =

(pod, psd, pld). In the data virtual layer, data mainly include

product model data and virtual operational data (e.g. Model

(md), simulation (sd), evaluation (ed), optimization (od),

prediction (pd)). The mathematical model is expressed as

VE = (md, sd, ed, od, pd). In the data service layer, data

includes full lifecycle service data for mechanical products,

from top-level management to bottom-level production con-

trol (e.g. design service (dsd), material supply chain ser-

vice (mscd), manufacturing service (msd), assembly service
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(asd), transportation service (tsd), sale service (ssd), use

service (usd), after-sale service (a-ssd) and cycle service

data (csd)). The mathematical model is expressed as Ss =

(dsd,mscd,msd, asd, tsd, ssd, usd, a− ssd, csd).

In a fusion system, based on a single criterion, it is diffi-

cult to collect, store and make decisions on twin data. The

three layers of data are interconnected, through a super-

network model, to realize the classification and encapsulation

of multi-type data.

The data in the super-network has the characteristics

of multiple types, large time scale and inconsistent gran-

ularity. First, density-based data preprocessing algorithm

is implemented, to find the abnormal data [39]. Specifi-

cally: given a data set N, object a, b, and positive inte-

ger k, the neighborhood radius of object a is defined as

distk (a), which distk (a, b) is the distance between a and

b, the k-distance neighborhood of a is defined as Nk (a) =

{b |b ∈ N , distk (a, b) ≤ distk (a)}.

The local reachability density of point a is expressed as:

lrdk (a) =
‖Nk (a)‖

∑

b∈Nk (a)
max {distk (a) , distk (a, b)}

The local outlier factor for point a is expressed as:

LOFk (a) =

∑

b∈Nk (a)

lrdk (b)
lrdk (a)

‖Nk (a)‖
=

∑

b∈Nk (a)

lrdk (b)

‖Nk (a)‖
/lrdk (a)

The local outlier factor is the average of the ratio of

lrdk (Nk (a)) to lrdk (a). If the ratio is larger than 1, the more

likely it is the abnormal point. The data points with the highest

anomaly score of 20% are regarded as outliers (After a period

of time analyzing the data, we found that the probability

of outliers is about 2%. From these outliers, we also found

that only 20% of them are erroneous data.). Then, the value

is compared with the original experimental record data to

determine whether it is deleted (human error or laboratory

record error can be deleted).

Then, the remaining clean data are clustered by using the

feature distance formula, in order to improve the accuracy

of fault prediction and provide a basis for the selection of

input parameters in fault prediction. Four eigenvalues are

analyzed: euclidean distance between data λ1, euclidean dis-

tance between data mean λ2, euclidean distance between data

variance λ3 and euclidean distance between data peaks λ4.

The eigenvalue matrix is constructed to solve the eigenvalue

distance between data λ. Let the number of data in an acqui-

sition cycle, be M, while the number of collection points be

N. Then, the b-th sample data of the a-th collection point is

ψab. Among them, a ∈ [1,N ] , b ∈ [1,M ], the eigenvalue

FIGURE 4. Super-network data preprocessing process.

calculation method is as follows.
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Finally, the data in the super-network is unitized and trans-

formed into a dimensionless pure value. Not only a unified

description of the data is achieved, but also data of differ-

ent magnitudes can be compared. The super-network data

preprocessing phase is shown in Fig.4 ((a) The process uses

density-based algorithms to detect outliers. (b) The process

uses clustering algorithm for clustering. (c) The process is to

standardize the data).

B. FAULT PREDICTION

The same type of clustering data in the super-network is

called a data label. After analyzing the vibration signal data,

a series of features of the signal can be obtained. The dif-

ficulty of fault prediction will increase, if all the features
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FIGURE 5. Fault prediction and maintenance strategy model for mechanical products.

are considered as the input. So, it is necessary to use only

the representative features of the signal, as the input of the

model, for fault prediction purposes. The representative fea-

tures of the signal can best represent the data signal. In this

paper, the input, to the aforementioned fault predictionmodel,

is called the early-warning-features. According to the fault

prediction results, corresponding maintenance strategies are

formulated.

(1) Data set preparation: The data set consists the input

and output of the predictive model. The early-warning-

features of the signal is selected as the input parameters

to the model in the super-network of physical layer,

virtual layer and service layer, based on the data label

of historical fault. The historical fault result is used as

the output of the model, as shown in Fig.5(a).

(2) Fault prediction: The aspect of fault prediction can be

solved by two kinds of methods: fault prediction and

fault diagnosis. 1) Fault prediction is about predict-

ing the output of key indicators, through the input of

early-warning-features, based on the predicted model.

It can be divided into machine learning method or

statistical analysis method. Machine learning can be

realized by machine learning techniques. (e.g. support

vector machine, bayesian network and artificial neural

network), as shown in Fig.5(b). Statistical analysis can

be realized by means of regression technique. 2) Fault

diagnosis can be described as determining the cause of

the fault and the fault location by means of a diagnostic

algorithm, when the fault is known (e.g. Group diag-

nosis algorithm, genetic algorithm and particle swarm

optimization algorithm), as shown in Fig.5(c).

C. FAULT MAINTENANCE STRATEGY

Maintenance strategy includes four steps: generating mainte-

nance plan, simulation and verification of maintenance plan,

re-optimizing maintenance plan, and implementing mainte-

nance plan by physical model. The maintenance strategy
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implementation process is illustrated, based on a case of gear

failure prediction. If the predicted results of the fault regards

tooth root damage, the fault should be repaired by welding.

1) According to the predicted damage degree and damage

position of the tooth root, the welding path of the welding

robot is adjusted. Thewelding software is stored in the robot’s

operating system. 2) The procedure is validated in the vir-

tual model, before the physical model executes the welding

procedure. The working environment of the welding robot is

simulated in the virtual model. Then, the robot executes a pro-

cedure, to verify the maintenance plan. 3) The physical entity

performs the welding route for maintenance, when the fault

is handled well. Welding procedure will be optimized, when

failure handling is not good. 4) The optimized maintenance

plan is transferred to the physical model, for implementation.

In terms of maintenance strategy, the standard of fault

handling is determined by the fluctuation of the data signal

of the fault location, during the virtual verification process.

Combining the above cases: 1) The virtual model restores the

working environment of the gear. The signal fluctuation value

of the fault location is compared to the fluctuation threshold.

The threshold is the difference between the maximum and

minimum fluctuations of the faulty location, during normal

operation. 2) If the fluctuation value does not exceed the

fluctuation threshold, the fault processing result is good. If the

fluctuation value exceeds the fluctuation threshold, the fault

repair result is not good. 3) Therefore, the welding procedure

is optimized, for fluctuations beyond the threshold, in order to

limit the signal fluctuation value within the threshold range,

as shown in Fig.5(d). The optimization process is completed

by using the path optimization algorithm contained in the

digital twin service layer.

V. CASE STUDY

A. PROBLEM DESCRIPTION

Aero-engine is the power device of aero-aircraft. The main

shaft bearing is not only the key component of aero-engine,

but also its weak link, which has an important influence on

the safe and stable operation of aero-aircraft. The bearing in

aero-engine is different from the bearing used in ordinary

mechanical devices, while its working environment is more

complex. In addition, the bearing, in aero-engine, is one of the

main fault sources of the aircraft. The main causes of failure

are inner race, outer race and the rolling parts fault. This

chapter takes an aero-engine bearing as an example, to predict

and repair the three types of faults, appearing (e.g. Inner race,

outer race and the rolling parts fault.), while the effectiveness

of the proposed fault prediction and maintenance strategy is

verified.

B. FAULT PREDICTION METHOD

As shown in Fig.6, according to the digital twinning tech-

nology in Section III.A, the virtual model of the bearing

is established, based on four levels of geometry, physics,

behavior and constraint, regarding the actual working con-

ditions of the bearing.

(1) Geometric model: constructing geometric three-

dimensional models of bearing components (e.g. shape, size,

position, structure) (2) Physical model: physical attributes

(e.g. working capacity, wear and temperature.) are added

to the geometric model. Meanwhile, the stress, structure,

deformation and other physical phenomena of the bearing are

simulated and analyzed based on the finite element method.

(3) Behavior model: on the basis of the physical model,

the behavior model of the bearing working state, under com-

plex environmental factors, is constructed. (4) Constraint

model: the constraints of the bearing virtual model include

inter-model constraints, (e.g. operational constraints, envi-

ronmental constraints, temperature constraints, force con-

straints.). The virtual model can be guaranteed to work within

the scope, allowed by the actual environment. Through the

above four levels of structural cooperation and functional

coupling, the information of the physical entity and the vir-

tual model can be interactively integrated, to form a high-

fidelity virtual image of the bearing. Then, the physical

entity and the virtual model are connected to the service

system, for full cycle monitoring of the operational cycle,

as shown in Fig.6(a). According to the data super-network

model, constructed in Sections III.B and III.C, the histor-

ical data and real-time data, during the bearing operation

process, belong to different super-network layers, as shown

in Fig.6(b). Finally, the hierarchical data are preprocessed and

clustered according to the method in Section IV(B). For the

processed data, the early-warning-features of physical layer,

virtual layer and service layer are selected as the input of

the fault prediction model. The clustering results are shown

in Fig.6(c).

Fluctuation of the vibration signal, at the fault location, will

cause significant abnormal changes, before the aero-engine

bearing failure. Therefore, some early-warning-features are

selected, among the altered vibration signals, for fault pre-

diction. In the traditional fault prediction method, only the

kurtosis, root mean square (RMS) frequency and frequency

standard deviation of the bearing vibration frequency signal,

are selected as the early-warning-features. However, due to

the interference of other vibration sources, the prediction

accuracy of vibration signals is greatly reduced. The pre-

diction method of this paper is based on the data super-

network model. The following six features will be selected as

early-warning-features: kurtosis, RMS frequency, frequency

standard deviation of data physical layer, maximum stress

and strain of data virtual layer, theoretical fault character-

istic frequency of data service layer. The above six early-

warning-features are taken as the input parameters to the

prediction model. The interference problem, existing in the

traditional fault prediction approach, is avoided, increasing

the prediction accuracy. Then, Extreme Learning Machine

(ELM) is used as fault prediction model. Because the model

has fast reaction time and is not easy to fall into the minimum

point, this case builds a fault prediction model, based on
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FIGURE 6. Fault prediction and maintenance strategy.

this algorithm, as shown in Fig.6(d). Finally, fault prediction

model and input parameters are used to output fault causes,

as shown in Fig.6(e).

The data was used for the fault prediction model which

comes from the database of a satellite control center. This

paper select 1000 groups of data and their corresponding

failure modes from the databases. In the process of verifi-

cation, 800 data points are selected from 1000 data signals

and corresponding fault modes (e.g. Health status, out-race

fault, inner-race fault and rolling ball fault) as training data,

while the remaining 200 groups of data were used as test data.

Among them, 800 training data sets include four different

failure modes, each with 200 sets of data. The remaining

200 data sample test sets also include four different failure

modes, each with 50 pairs of data. According to themethod of

this paper and the traditional method, four sets of training data

are input into the prediction model, for training. The output

of failure mode is as follows: health state (0,0,0), rolling

ball fault (l,0,0), out-race fault (0,l,0), inner-race fault (0,0,l).

The training data are shown in Table 1. After the training is

completed, the sample test set data is used for verification.

The test output is shown in Table 2.

According to theMATLAB simulation of 1000 sets of data,

the iteration speed and iteration error of the model under

differentmethods can be obtained. In this paper, three kinds of

input-output data are used to train the fault prediction model

respectively: the traditional method, the method in this paper

without preprocessing process, and the method in this paper

after the preprocessing process. The specific results are as

follows.

This paper select two groups of data in the three-layer

data super-network that reflect more representative features

of faults, the accuracy is higher, as shown in Fig. 7(B) and

Fig. 7(C). Compared with Fig. 7 (A) and Fig. 7 (C), the sim-

ulation results show that for the same sample, the result

of this method is better iteration error than the traditional
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TABLE 1. Test experimental data (section).

FIGURE 7. Fault prediction results.

method when the iteration speed is similar. Compared with

Fig. 7(B) and Fig. 7(C), the simulation results show that

under the condition of similar iteration speed, the result of

the method in this paper is better iteration error than without

preprocessing. The accuracy rate of test results in Fig. 7(D)

shows that the prediction accuracy rate of the method in

this paper after preprocessing is higher than the method in

this paper without preprocessing and the traditional method.

Therefore, thismethod is effective and efficiency in aerospace

bearing fault prediction.

C. FAULT MAINTENANCE STRATEGY

As shown in Fig. 6(e), the prediction result of bearing failure

in the experiment is out-race wear, and the amount of wear

is small. According to the result of this fault prediction, it is

necessary to carry out brush-plating repair process for this

fault. This maintenance process is shown in Fig.6(f).

① According to the wear position of the outer-ring of

the bearing, the working path of the electroplating pen is

programmed in the virtual model, and the program is the

maintenance process scheme.

② Before the physical model executes the program, the

running program of the electroplating pen is verified in the

virtual model. The virtual model restores the actual working

environment. Then, the electroplating pen executes the pro-

gram to repair.

③ After the electroplating pen is repaired in the virtual

model, the bearing is put in the virtual model to actual work-

ing. Researchers observe the fluctuation value and fluctuation

threshold of the vibration acceleration curve of the repaired

part in the Y-direction for a period of time. If the fluctuation
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FIGURE 8. Vibration curve of fault location.

TABLE 2. Test set data output (section).

value of the vibration acceleration curve is found to exceed

the fluctuation threshold value, this means that the fault is

poorly maintained, as shown in Fig. 8 (A). Threshold is

the range of maximum and minimum fluctuation when the

fault part works normally for several times. At this time, the

electroplating pen program is optimized again until the fluc-

tuation value does not exceed the threshold value, as shown

in Fig. 8(B). The optimization process is completed by using

the trajectory optimization algorithm embedded in the digital

twin service layer.

④ The optimized maintenance process scheme is transmit-

ted to the physical model for execution.

VI. CONCLUSION

When mechanical products work in complex environment,

they are faced with problems, such as unreliable prediction

of product failure, precise location of fault and unreason-

able construction of optimal maintenance strategy, which

reduces the stability and life of the project at hand. Based

on digital twinning technology, this paper proposes a ‘‘super-

network-warning features’’ fault prediction and maintenance

method. Specifically: 1) In order to quantitatively study the

interaction among heterogeneous agents in the digital twin

model. A three-layer super-network model of data is con-

structed, based on digital twin five-dimensional structure,

which provides a classified data resource pool for distributed

data resources. 2) Through the process of data collection and

preprocessing, the early-warning-features in different data

super-network layers are selected as the input parameters of

the prediction model, and the fault causes can be accurately

predicted. At the same time, according to the simulation and

optimization function of the virtual model in digital twinning,

a real-time maintenance strategy is formulated for the fault

causes. This method has realized the effective combination of

fault prediction and maintenance. 3) Taking an aero-engine

bearing as an example, this method is compared with the

traditional method. The results show that the model predic-

tion error of this method is better than the traditional method

when the convergence rate is similar. At present, this research

is still in the initial stage, and the matching algorithm is

not perfect and cannot be applied on a large scale. Future

research workwill mainly focus on the following two aspects:

1) According to the deep-level data characteristics of digital

twins, perfect the data model of three-layer super-network.

2) Develop algorithms which are more suitable for model

operation.
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