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Abstract— We consider the problem of controlling a linear time
invariant process when the controller is located at a location
remote from where the sensor measurements are being generated.
The communication from the sensor to the controller is supported
by a communication network with arbitrary topology composed
of analog erasure channels. Using a separation principle, we
prove that the optimal LQG controller consists of an LQ optimal
regulator along with an estimator that estimates the state of the
process across the communication network. We then determine
the optimal information processing strategy that should be
followed by each node in the network so that the estimator
is able to compute the best possible estimate in the minimum
mean squared error sense. The algorithm is optimal for any
packet-dropping process and at every time step, even though it
is recursive and hence requires a constant amount of memory,
processing and transmission at every node in the network per
time step. For the case when the packet drop processes are
memoryless and independent across links, we analyze the stability
properties and the performance of the closed loop system. The
algorithm is an attempt to escape the viewpoint of treating a
network of communication links as a single end-to-end link with
the probability of successful transmission determined by some
measure of the reliability of the network.

I. INTRODUCTION

Recently a lot of attention has been directed towards net-
worked control systems in which components communicate
over wireless links or communication networks that may also
be used for transmitting other unrelated data (see, e.g., [1],
[2] and the references therein). The estimation and control
performance in such systems is severely affected by the
properties of the communication channels. Communication
links introduce many potentially detrimental phenomena, such
as random delays, data loss and data corruption to name a few,
that lead to performance degradation or even loss of stability.

In this work, we are specifically interested in the problem
of estimation and control across a network of communication
links that drop data packets. We consider a dynamical process
evolving in time that is being observed by a sensor. The sensor
needs to transmit the data over a network to a remote node,
which can either be an estimator or a controller. However, the
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links in the network stochastically drop packets. Preliminary
work in this area has concentrated on networks consisting of a
single link between the sensor and the remote estimator / con-
troller. Within the one-link framework, both the stability [19],
[23] and the performance [15], [19] have been analyzed.
Approaches to compensate for the data loss to counteract the
degradation in performance have also been proposed [16], [9],
[15], [21]. Also relevant are the works of Azimi-Sadjadi [3],
Schenato et al. [18] and Imer et al. [12] who looked at
controller structures to minimize quadratic costs for systems in
which both sensor-controller and controller-actuator channels
are present. The related problem of estimation across a packet-
dropping link was considered by Sinopoli et al. in [20] for
the case of one sensor and packet drops occurring in an i.i.d.
fashion, while Gupta et al. [7] considered multiple sensors and
more general packet drop models.

It has often been recognized that typical network / com-
munication data packets have much more space for carrying
information than required inside a traditional control loop.
For instance, the minimum size of an ethernet data packet
is 72 bytes, while a typical data point may only consume 2
bytes. Many other examples are given in Lian et al. [14].
Moreover, many of the devices used in networked control
systems possess processing and memory capabilities on ac-
count of being equipped to communicate across wireless
channels or networks. Thus, the question arises if we can
exploit these capabilities to pre-process information prior to
transmission and transmit extra data in every packet to combat
the performance degradation due to communication channels.
In Gupta et al. [8] it was shown that pre-processing (or encod-
ing) information before transmission over the communication
link can indeed yield significant improvements in terms of
stability and performance. In this paper, we consider the design
of encoders and decoders when the sensor data has to be
transmitted over a network of arbitrary topology.

Transmission of data over networks for the purpose of esti-
mation and control is largely an open problem. Tatikonda [22]
studied some issues related to the quantization rates required
for stability when data is being transmitted over a network
of digital noiseless channels. Also relevant is the work of
Robinson and Kumar [17] who considered the problem of
optimal placement of the controller when the sensor and
the actuator are connected via a series of communication
links. They ignore the issue of delays over paths of different
lengths (consisting of different number of links) and under a
Long Packet Assumption come up with the optimal controller
structure. There are two main reasons why the problem of
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encoding data for transmission is much more complicated in
the case of transmission over a network:

1) Intermediate nodes have memory and processing abil-
ity. This memory should be used and one should not view
the network as a “passive” memoryless erasure channel.

2) Typically there are many paths from the sensor to the
remote estimator/controller. These paths typically exhibit
different delays and levels of reliability. This diversity
should be exploited by the system designer.

The main contributions of the paper are as follows:

1) We present a separation principle that decomposes the
optimal control problem into an LQ optimal regulator
design and estimation of a process across a network.
Moreover, we show that for the estimation problem, the
intermediate nodes of the network do not require access
to the control inputs.

2) We propose a recursive algorithm for information pro-
cessing at the nodes of the network so that the estimator
can calculate the optimal estimate at every time step. The
estimate is optimal given the maximal possible informa-
tion set that the estimator can have access to given any
causal information processing algorithm. Our algorithm is
optimal for any realization of the packet-dropping process
yet requires a constant amount of memory, processing and
transmission at any node per time step.

3) We analyze the stability of the expected error covari-
ance for this strategy when the packet drops are indepen-
dent across time steps and across channels. For any other
scheme (e.g., transmitting measurements without any
processing), these conditions are necessary for stability.
The analysis identifies a property of the network called
the max-cut probability that completely characterizes the
network for its ability to be used for stabilizing a control
loop. For channels with correlated drops, we show how
to extend this analysis.

4) We calculate the performance for our algorithm for
channels that drop packets independently. We provide a
mathematical framework for evaluating the performance
for a general network and provide expressions for net-
works containing links in series and parallel. We also
provide lower and upper bounds for the performance over
general networks. For any other strategy, these provide
lower bounds for achievable performance.

As shown in [5], the results can also be used for synthesis of
networks from a control oriented viewpoint.

II. PROBLEM SETUP

Consider the problem setup shown in Figure 1. Let a
discrete-time linear process evolve as

z(k + 1) = Az(k) +Bu(k) + w(k), (1)

where z(k) ∈ Rn is the process state, u(k) ∈ Rm is the
control input and w(k) is the process noise assumed to be
white, Gaussian, and zero mean with covariance matrix Rw >
0. The initial condition z(0) is assumed to be independent
of w(k) and to have mean zero and covariance matrix R(0).

Fig. 1. The set-up of the control across communication networks problem.
Every node computes a function of the incoming messages and transmits it.
For most of the discussion in the paper, we ignore the network between the
controller and the actuator. See, however, Remark 4.

The process state is measured by a sensor that generates
measurements according to the equation

l(k) = Cz(k) + v(k). (2)

The measurement noise v(k) is white, zero-mean, Gaussian
(with covariance matrix Rv > 0) and independent of the plant
noise w(k). We assume that the pair (A,B) is stabilizable
and the pair (A,C) is observable. Denote the above setup as
system S1. Even though we consider the time-invariant case to
simplify the presentation, most of the results in the paper con-
tinue to hold for time-varying systems. A time-varying model
can be useful, e.g., if the discrete-time process (1) results from
non-uniform sampling of a continuous-time process.

The sensor communicates with a controller across a network
of communication links that stochastically drop packets. We
make no assumptions about the topology of the network. The
sensor constitutes the source node and is denoted by s. The
controller is designated as the destination node d. The com-
munication network defines a directed graph G with node set
V (in particular, V contains s and d) and edge set E ⊆ V ×V .
The edges of the graph represent the communication links
and are, in general, directed. Specifically, the link e = (u, v)
models a communication channel from node u to node v. We
assume there are M edges or links present in the network.
For any node i ∈ V , the set of outgoing edges corresponds
to the channels along which the node can transmit messages
while the set of incoming edges corresponds to the channels
along which the node receives messages. We denote the set of
in-neighbors of node v by Nv.

The communication links are modeled using an analog
erasure model. Each link takes in as input a vector of real
numbers with a finite dimension. At each time-step, this
message is either dropped or received without any error at the
output node. We assume sufficient bits per data packet so that
the quantization error is negligible. This assumption makes
sense if the communication packet provides enough bits for
transmitting data (as in most modern communication network
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protocols) so that the effect of quantization error is dominated
by the effect of the process and the measurement noises. We
nominally consider the delays introduced by the channel to be
less than one time step according to which the discrete-time
dynamic process evolves. Most of the results in the paper can
however directly be extended to the case when larger delays
are present. In particular, the algorithm in the case of arbitrary
delays and packet rearrangements is provided in Remark 3. In
this paper, we also assume a global clock so that each node is
synchronized. Finally, we assume that each node can receive
all the messages coming along the incoming links without
interference from each other1.

If the packet dropping process is independent from one
time step to the next (or, in other words, memoryless), the
probability of dropping a packet on link e = (u, v) ∈ E is
given by pe (or, equivalently, puv) independent of time. If
the process is uncorrelated in space, each such packet drop
event is independent of packet drops in other links. While our
stability and performance analysis is largely limited to packet
drop processes that are independent in time and uncorrelated
in space, the algorithm that we propose is optimal for more
sophisticated models such as drops occurring according to
a Markov chain. We refer to individual realizations of the
random processes that describes the drops for the networks as
a packet drop sequence. The operation of the different nodes in
the network at every time-step k can be described as follows:

1) Every node computes a function of the information it
has access to at time k.

2) It transmits the function on the out-going edges. Po-
tentially the node can transmit different functions along
different edges. The destination node calculates the con-
trol input u(k) based on the information it possesses.

3) Every node observes the messages from the incoming
links and updates its information set for the next time
step. For the source node, this message is l(k).

This time line ensures a strictly causal operation. At time
step k, the function that the source node transmits depends
on measurements l(0), · · · , l(k − 1). Similarly, even if there
were no packet drops, if the destination node is d hops away
from the source node (i.e., the shortest path from the source
node to the destination node involves d edges), its control input
u(k) can only depend on measurements l(0), · · · , l(k−d−1).
Thus, every communication edge consumes one hop, or one
time step, as data is transmitted across it. We can easily adapt
the discussion presented below to the causal case.

At every time step, the controller calculates a control input
and transmits it to the actuator. For the present, we ignore
any communication channel between the controller and the
actuator. The controller aims at minimizing the cost function

JT = E
[ T∑
k=0

(
zT (k)Qz(k) + uT (k)Ru(k)

)
+ zT (T + 1)P cT+1z(T + 1)

]
, (3)

1This property can be easily achieved by using a division multiple access
scheme like FDMA, TDMA, CDMA etc. Technologies like Software Radio
(SWR) also have this property.

where the expectation is taken over the uncorrelated variables
x(0), {w(k)} and {v(k)} and the horizon T is finite. Note that
the cost functional JT also depends on the random packet-drop
sequences in each link. However, we do not average across
packet-drop processes; the solution we present is optimal for
arbitrary realizations of the packet dropping processes. We
assume that the controller has access to all the previous control
inputs u(0), · · · , u(k − 1) while calculating u(k). Without
the communication network, the control problem is the same
as the classical LQG control synthesis problem. However, in
the presence of the network, it is unclear a priori, what the
structure of the optimal control algorithm should be, and in
what way the links in the network should be used to transmit
information. Clearly, transmitting measurements might not be
optimal, since in such a scheme, dropping a packet would
mean information loss that cannot be compensated for in
the future. We are particularly interested in strategies that do
not entail an increasing amount of transmission, memory and
processing at the nodes. We are not interested in interleaving
bits to transfer infinite amount of data since it is unclear
what the effect of having finite (even though large) number
of bits would be for such a strategy. We will also identify the
conditions on the network for stability. We are interested in
stability in the bounded second moment or the mean squared
sense. Thus, the system is stable if E [J∞] is bounded, where
J∞ = limT→∞ JT

T and the expectation is taken over the
packet dropping processes in the network. We denote this
problem set-up as problem P1.

III. A SEPARATION PRINCIPLE

For the node i, denote by I i(k) the information set that
it can use to generate the message that it transmits at time
step k. This set contains the aggregate of the information the
node has received on the incoming edges at time steps 0, 1,
· · · , k − 1. As an example, for the source node s, I s(k) =
{l(0), l(1), · · · , l(k − 1)}. Without loss of generality, we can
restrict our attention to information-set feedback controllers,
i.e., controllers of the form u(k) = u(I d(k), k). For a given
information set at the destination I d(.), denote the minimal
value of JT that can possibly be achieved by J �T (Id). Let
λpq(k) be the binary random variable describing the packet
drop event on link (p, q) ∈ E at time k. λpq(k) assumes the
value 0 if the packet is erased on link (p, q) at time k and 1
otherwise. For a network with independent and memoryless
packet drops, λpq(k) is distributed according to Bernoulli
distribution with parameter ppq. We define λpp(k) = 1. Given
the packet drop sequences in each link, at time step k we can
define a time stamp ti(k) for node i such that the packet drops
did not allow any information transmitted by the source after
ti(k) to reach the i-th node in time for it to be a part of I i(k).

Now consider an algorithm A1 in which every node takes
the following actions at every time step:

1) Transmit its entire information set on the outgoing
edges.

2) Receive data successfully transmitted along the incom-
ing edges.
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3) Update its information set and affix a time stamp
corresponding to the time of the latest measurement in
it.

For any drop sequence, the information set at node i with this
algorithm is of the form I i(k) = {l(0), l(1), · · · , l (ti(k))},
where ti(k) < k is the time stamp as defined above. This is the
maximal information set I i,max(k) that the node i can possibly
have access to with any algorithm. For any other algorithm,
the information set is smaller than I i,max(k) in the sense that
the smallest sigma algebra generated by the information set is
a subset of the smallest sigma algebra generated by I i,max(k).

Consider two arbitrary information sets I d(k, 1) and
Id(k, 2). Let the smallest sigma algebras generated by the
two information sets be denoted by I

d(k, 1) and I
d(k, 2) re-

spectively. If the two information sets are such that I
d(k, 1) ⊆

I
d(k, 2), we have J�T (Id(k, 1)) ≤ J�T (Id(k, 2)). Thus, one

way to achieve the optimal value of JT is through the com-
bination of an information processing algorithm that makes
the information set Id,max(k) available to the controller and a
controller that optimally utilizes the information set. Further,
one such information processing algorithm is the algorithm A 1

described above. However, this algorithm requires increasing
amount of data transmission as time evolves. Surprisingly, we
can achieve the same performance using a constant amount
of transmission and memory. To see this, we first state
the following separation principle. For any random variable
α(k), denote by α̂ (k|β(k)) the minimum mean squared error
(MMSE) estimate of α(k) given the information β(k).

Proposition 1 (Separation Principle). Consider the packet-
based optimal control problem P1 defined in section II.
Suppose that each node transmits all the measurements it has
access to at every time step, so that the decoder has access to
the maximal information set Id,max(k) at every time step k.
Then, the optimal control input at time k is calculated to be

u(k) = ûLQ
(
k|Id,max(k), {u(t)}k−1

t=0

)
where uLQ(k) is the optimal LQ control law and
ûLQ

(
k|Id,max(k), {u(t)}k−1

t=0

)
denotes its minimum mean

squared error (MMSE) estimate given the information set
Id,max(k) and the previous control inputs u(0), · · · , u(k−1).

Proof: Proof is similar to the standard separation prin-
ciple [10, Chapter9] and is omitted for space constraints.

There are two reasons this principle is useful to us:
1) We recognize that the optimal controller does not need
the information set Id,max(k). The encoders and the de-
coder only need to ensure that the controller receives the
quantity ûLQ

(
k|Id,max(k), {u(t)}k−1

t=0

)
, or equivalently,

ẑ
(
k|Id,max(k), {u(t)}k−1

t=0

)
.

2) If the controller has access to this quantity, the optimal
controller is the solution to the LQ control problem.

We can make another simplification by separating the de-
pendence of the estimate on measurements from the effect
of the control inputs. In the context of our problem, this
implies that the nodes in the network do not need access to
the control inputs, and can concentrate solely on the effect of
measurements. The effect of the control inputs can be included
by the controller that has access to previous control inputs.

Proposition 2 (Separation of the effect of control inputs).
Consider the problem P1 defined in section II. The estimate
ẑ

(
k|Id,max(k), {u(t)}k−1

t=0

)
, where Id,max(k) is of the form

{l(0), · · · , l(td(k))}, can be calculated as

ẑ
(
k|Id,max(k), {u(t)}k−1

t=0

)
= z̄

(
k|Id,max(k)

)
+ ψ(k),

where z̄
(
k|Id,max(k)

)
depends only on Id,max(k) and

ψ(k) depends only on the control inputs. Further, both
z̄

(
k|Id,max(k)

)
and ψ(k) can be calculated recursively.

Proof: For simplicity of notation, let td(k) = j. Define
the quantity z̆(j + 1|j) calculated at any time using the
measurements from time m = 0 to k − 1 according to the
following modified Kalman filter equations.

Measurement update for the modified Kalman filter:

M−1(k|k) = M−1(k|k − 1) + CTR−1
v C

M−1(k|k)z̆(k|k) = M−1(k|k − 1)z̆(k|k − 1) + CTR−1
v l(k),

Time update for the modified Kalman filter:

M(k|k − 1) = AM(k − 1|k − 1)AT +Rw

z̆(k|k − 1) = Az̆(k − 1|k − 1).

The initial conditions are given by z̆ (0|−1) = 0 and
M(0|−1) = P (0). The effect of the control inputs can be
taken care of through the term ψ̆(j + 1) that evolves as

ψ̆(m) = Bu(m− 1) + Γ(m− 1)ψ̆(m− 1)

Γ(m) = A (M(m− 1|m− 1))−1
M(m− 1|m− 2),

with ψ̆(0) = 0. It can readily be verified that

ẑ
(
k|{l(t)}jt=0, {u(t)}k−1

t=0

)
= Ak−j−1 z̆(j + 1|j)

+Ak−j−1ψ̆(j + 1) +
k−j−2∑
i=0

AiBu(k − i− 1).

To complete the proof, we simply identify

z̄
(
k|Id,max(k)

)
= Ak−j−1 z̆(j + 1|j) (4)

ψ(k) = Ak−j−1ψ̆(j + 1) +
k−j−2∑
i=0

AiBu(k − i− 1).

IV. A RECURSIVE OPTIMAL ENCODING ALGORITHM

We now describe an algorithm A2 that achieves the same
performance as algorithm A1 with constant memory, process-
ing and transmission (modulo transmission of a time stamp).
At each time step k, every node i takes the following actions:

1) Calculate the quantity z̄ i(k|{l(t)}ti(k)t=0 ) using data re-
ceived from other nodes at the previous time step k − 1
and the quantity z̄ i(k−1|{l(t)}ti(k−1)

t=0 )) that it calculated
at time k − 1. This can be computed using a switched
linear filter, as follows. The source node implements
a modified Kalman filter and calculates the quantity
z̄s(k|{l(t)}k−1

t=0 ). It sets the time-stamp to k − 1. Every
other node i checks the time-stamps on the data coming
on the incoming edges. The time-stamp on the data
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Fig. 2. A summary of the algorithm A2.

transmitted by a node j at time k− 1 is simply the time-
stamp tj(k−1) of the node j and corresponds to the latest
measurement used in the calculation of the quantity being
transmitted by node j. Then node i updates its time-stamp
using the relation

ti(k) = max
j∈Ni∪{i}

λji(k − 1)tj(k − 1). (5)

Suppose the maximum in (5) is achieved by node n.
The node i calculates z̄ i(k|{l(t)}ti(k)t=0 ) = Az̄n(k −
1|{l(t)}tn(k−1)

t=0 ) and time-stamp ti(k) = tn(k − 1).
2) Transmit the quantities z̄ i(k|{l(t)}ti(k)t=0 ) and the time
stamp ti(k) on the outgoing edges.

3) Receive data on the incoming edges, if any, and store
it for the next time step.

A ‘flow-chart’ version of the algorithm is provided in Figure 2.
To prove that algorithm A2 is indeed optimal, we need the
following intermediate result.

Lemma 1. Consider any node i and any packet drop pattern.
At time step k, the node i transmits the measurement set
Ii,max(k) = {l(0), l(1), · · · , l(ti(k))} on all outgoing edges
if algorithm A1 is executed. If, instead, algorithm A2 is
executed, the node i transmits the quantity z̄

(
k|Ii,max(k)

)
=

z̄(k|{l(0), l(1), · · · , l(ti(k))}) along all outgoing edges.

Proof: The statement about the algorithm A1 follows
from the definition of the algorithm. The proof of the second
statement can be proven by induction on the time step k. For
time k = 1, by definition, the source node s transmits the
quantity z̄(1|y(0)) along all outgoing edges while executing
algorithm A2. Since ts(1) = {y(0)}, the statement is true. No
other node transmits any information at this time. Thus the
statement is true for k = 1. Now assume that the statement
is true for k = n for all nodes. Consider the node i at time
k = n + 1. If the node i is the source node, the statement is
true once again by definition of ts(k) and the first step of the
algorithm. Let us assume that node i is not the source node.
Consider all nodes that transmitted data at time k = n to node
i. For p ∈ Ni such that λpi(n) = 1, by the assumption of the

statement being true at time k = n, the node i receives from
node p the quantity z̄(n|{l(0), · · · , l(tp(n))}). Also, since at
time k = n the node transmitted z̄(n|{l(0), · · · , l(ti(n))}) on
all outgoing edges, it has access to this quantity. Let v be the
node for which

tv(n) = max{ti(n) ∪ {tp(n)|p ∈ Ni and λpi(n) = 1}}.
Clearly, the set {l(0), · · · , l(tv(n))} is the superset of all sets
{l(0), · · · , l(tp(n))} for different nodes p ∈ Ni and the set
{l(0), · · · , l(ti(n))}. Thus, from (4), we have

z̄(n+1|{l(0), · · · , l(ti(n+1))}) = Az̄(n|{l(0), · · · , l(tv(n))}),
with the time-stamp ti(n + 1) = tv(n). But, by definition
from the step 1 of algorithm A2, at time k = n + 1,
the node i transmits along all outgoing edges the quantity
Az̄(n|{l(0), l(1), · · · , l(tv(n))}) and the time-stamp tv(n).
Thus the statement is true at time step k = n + 1 for the
node i. Since the node i was arbitrary, the statement is true
for the entire graph. Thus we have proven that if the statement
is true at time k = n, it is true at time k = n + 1. But it is
true at time k = 1. Thus, by the principle of mathematical
induction, it is true at all time steps.

Proposition 3. The algorithm A2 is optimal in the sense that
it allows the controller to calculate the control input u(k) that
minimizes the quadratic cost in equation (3).

Proof: Consider the controller node d. At time k, let
j ∈ {d} ∪ Nd be a node for which λjd(k − 1) = 1. Denote
the measurement set transmitted from node j to node d at
time step k under algorithm A1 by Sjd. Let v be the node
for which Svd is the superset of all the sets Sjd. Thus,
the controller at time k under algorithm A1 calculates the
quantity z̄(k|Svd). From Lemma 1, when algorithm A2 is
executed, at time step k, the controller has access to the
quantities z̄(k − 1|Sjd). Since Svd is the superset of all the
sets Sjd, the controller under algorithm A2 also calculates
at time k Az̄(k − 1|Svd) = z̄(k|Svd). Now, because of
the Propositions 1 and 2, the control input calculated when
the controller has access to z̄(k|Svd) leads to the minimum
possible quadratic cost. Thus, the algorithm A2 is optimal.

Remark 1 (Boundedness of the Transmitted Quantities). It
is important to emphasize that the quantity z̄

(
k|Id,max(k)

)
is not the estimate of z(k) based only on the measurements
l(0) through l(td(k)) that form the set Id,max(k). In partic-
ular, under the constraints of stabilizability, detectability and
the conditions on erasure probabilities for stability that are
derived in the next section, the system z(k) is stable and
hence the measurements l(k) are bounded. Thus the quantity
z̄i(k|Ii,max(k)) is stable. This can also be seen by rewriting
the equations that govern its evaluation. From the equations
of the Modified Kalman Filter, we have

z̆(k + 1|k) =Az̆(k|k − 1) +K(k)(l(k) − Cz̆(k|k − 1))
=(A−K(k)C)z̆(k|k − 1) +K(k)l(k),

where K(k) is the (conventional) Kalman filter gain. Due
to the detectability and stabilizability assumptions, the matrix
(A −K(k)C) is stable. Thus, if l(k) is a bounded term, the



6

quantity z̆(k|k−1) and, in turn, z̄ i(kIi,max(k)) is stable. Thus,
the quantities that are transmitted by the nodes in the optimal
algorithm are stable. If the closed loop system z(k) is not
stable due to high erasure probabilities, the measurements l(k)
and hence the quantity z̄ i(kIi,max(k)) would, of course, not
be stable. However, the optimality result means that the system
cannot be stabilized by sending any other quantity (whether
measurements l(k) or innovations etc).

Remark 2 (Optimality for any Drop Sequence and the ‘Wash-
ing Away’ Effect). We have made no assumptions on the
packet drop pattern or knowledge of the statistics of the packet
drops at any of the nodes. The algorithm is optimal for an
arbitrary packet drop sequence, irrespective of whether the
packet drop can be modeled as an i.i.d. process or a more
sophisticated model like a Markov chain. The algorithm is
optimal at every time step for any instantiation of the packet
drop sequence, not merely in the optimal average performance.
Also note that any received data vector z̄ d(k|{l(j)}td(k)

j=0 )
‘washes away’ the effect of all previous packet drops. It
ensures that the control input is identical to the case when all
measurements l(0), · · · , l(td(k)) were available, irrespective
of which previous data packets had been dropped.

Remark 3 (Presence of Delays). If the links introduce delays,
the algorithm remains optimal irrespective of the possibility
of packet rearrangements. Each node i, at every time step
k, still calculates the quantity z̄ i(k|{l(j)}ti(k)j=0 ) based on any
information received at that time step and the previous estimate
from its memory, affixes the correct time stamp and transmits it
along outgoing edges. Further if the graph is finite, the stability
conditions in the next section also do not change.

Remark 4 (Channel between the controller and the actuator).
The crucial assumption in the separation principle is that the
controller knows what control input is applied. Thus, if we
have a channel between the controller and the plant, the sepa-
ration principle would still hold, provided there is a provision
for acknowledgment from the receiver to the transmitter for
packets successfully received over that channel2. The optimal
information processing algorithm presented above also carries
over to this case. We can also ask the question of the optimal
encoder-decoder design for the controller-actuator channel.
The optimal decoding at the actuator end depends on the
information assumed to be known to the actuator (e.g. the
cost matrices Q and R). Design of the decoder for various
information sets is an interesting open problem.

It should be noted that a priori we had not made any
assumption about a node transmitting the same message along
all the out-going edges. It turned out that in this optimal
algorithm, the messages are the same along all the edges. This
property is useful in the context of wireless communication
which is inherently broadcast in nature. Finally, the extent of
time synchronization that is strictly necessary for the above
algorithm is that the controller and the process be synchronized
in the sense that a new control input is generated at every time
step. Apart from that, the information that the nodes need to

2We do not require acknowledgements for the sensor-controller channel.

know is the time stamp of the last measurement used to calcu-
late the estimate that they have received. They do not require
to be synchronized to the process. However, for simplicity of
the analysis, we will assume time synchronization.

We now analyze the stability and performance of the above
algorithm by assuming that packets are dropped independently
from one time step to next and uncorrelated in space. We return
to more general packet dropping processes in Section VII.

V. STABILITY ANALYSIS

We begin by posing an alternate problem. Consider an open
loop system S2 that evolves as

x(k + 1) = Ax(k) + w(k) (6)

y(k) = Cx(k) + v(k), (7)

where the noises have the same value at every time step as
those appearing in the description of the system S1 and x(0) =
z(0). An encoder has access to the measurements y(k). The
node d now denotes an estimator across a network of analog
erasure links that needs to calculate the MMSE estimate of
x(k) based on information it receives. The network has the
same topology as the network for the problem P1. The cost
function is to minimize the mean squared error based cost
function

Dk = E
[
(x(k) − x̂(k)) (x(k) − x̂(k))T

]
, (8)

where the expectation is taken over the uncorrelated variables
x(0), {w(k)} and {v(k)}. Every communication link in the
network suffers an erasure at time k if and only if the
corresponding communication link in the network for the
system S1 suffers an erasure. Assume that the algorithm A2 is
implemented for both the problems. Note that for problem P 2,
the quantity x̄(k|{y(t)}jt=0) is precisely the MMSE estimate
of x(k) given the measurements y(0), y(1), · · · , y(j). At
time k, the decoder for the system S1 has access to the
quantity z̄d(k|{l(j)}td(k)

j=0 ) and the decoder for the systems S2

has access to the quantity x̄d(k|{y(j)}td(k)
j=0 ). For the system

S2, denote by ed2(k) the error between the state x(k) and

the estimate at the decoder x̂d(k|{y(j)}td(k)
j=0 ). Also, denote

for the system S1, the error between the state z(k) and

the estimate at the controller ẑ(k|{y(j)}td(k)
j=0 , {u(j)}k−1

j=0 ) by
ed1(k). Due to Proposition 2, ed1(k) = ed2(k) at every time
step k. Also, because of Proposition 1, ed1(k) determines the
stability and performance of the system S1. Thus, to analyze
the stability and performance for the closed-loop system, we
can concentrate on the open-loop system S2. We will denote
this estimation problem as P2.

Remark 5. Note that this problem has been posed merely for
analytical convenience. We need not worry about the quantity
being transmitted being stable for the problem P2 because as
we have seen, the quantity for the closed-loop system S1 is
stable. Of course, problem P2 may be of individual interest.
Estimating an open-loop unstable process has been studied by
many researchers recently for analog erasure channels under a
variety of settings. It may be noted that the quantity transmitted
in all these works is unstable.
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For the problem P2, denote the covariance of the error
ed2(k) at time k by Rd(k) = E

[
ed2(k)(e

d
2(k))

T
]
, where the

expectation is taken over the initial condition x(0), the process
noise and the measurement noise. We can further compute
the expectation with respect to the packet dropping process
and denote P d(k) = E

[
Rd(k)

]
. Finally, compute the steady-

state error covariance P d(∞) = limk→∞ P d(k). If the limit
exists and is bounded, we say that the estimate error is stable.
Because of Proposition 1, the stability conditions for problems
P1 and P2 are identical.

As in problem P1, for node d and time k, let td(k)
denote the time-stamp of the most recent observation used
in estimating x(k) at the destination node d. This time-stamp
evolves according to (5). We have

P d(k) =
k−1∑
l=0

E
[
ed2(k)(e

d
2(k))

T |td(k) = l
]

Pr
(
td(k) = l

)
,

where the expectation with respect to the packet dropping
process has been evaluated. Thus, the effect of the packet
dropping process enters through the distribution of the time-
stamp of the most recent observation used in estimating x(k).
For future use, we denote the latency for the the node d at
time k as ld(k) = k − 1 − td(k). Also, denote the MMSE
estimate of x(k) given all the measurements {y(0), y(1), · · · ,
y(k − 1)} by P (k). We can now rewrite the error covariance
P d(k) as

P d(k) =
k−1∑
l=0

⎡
⎣AlP (k − l)

(
Al

)T
+

l−1∑
j=0

AjRw
(
Aj

)T⎤
⎦

× Pr
(
ld(k) = l

)
. (9)

Thus, the stability of the system depends on how fast the
probability distribution of the latency decreases. To analyze
the stability, we use the following result from [8].

Proposition 4. [From [8]] Consider a process of the form (6)
being estimated using measurements from a sensor of the
form (7) over a packet-dropping link that drops packets in
an i.i.d. fashion with probability q. Suppose that the sensor
transmits the MMSE estimate of the state at every time step.
Then the estimate error at the receiver is stable in the bounded
second moment sense if and only if q|ρ(A)|2 < 1, where ρ(A)
is the spectral radius of the matrix A appearing in (6).

We will also use the following definition. Consider every
possible division of the nodes of the network into two sets with
the source and the destination node being in different sets (also
called a cut-set). For any such cut-set, let p1, p2, · · · , pn denote
the packet erasure probabilities of the edges that connect the
two sets. Define the cut-set erasure probability as pcut set =
p1p2 · · · pn. Then, the max-cut probability is given by

pmax-cut = max
all possible cut-sets

pcut set. (10)

A. Network with Links in Parallel

Let the source and the destination node be connected by a
network with m links in parallel with the probability of packet

drop in the i-th link being pi. Since the same data is being
transmitted over all the links, the distribution of the latency
remains the same if the network is replaced by a single link
that drops packets when all the links in the original network
drop packets and transmits the information if even one link
in the original network allows transmission. Thus the packet
drop probability of this equivalent link is p1p2 · · · pm. The
necessary and sufficient condition for the error covariance to
converge thus becomes p|ρ(A)|2 < 1, where p = p1p2 · · · pm.

B. Necessary Condition for Stability in Arbitrary Networks

Proposition 5. Consider the problem P2 where the links
drop packets i.i.d. in time and independently across links. A
necessary condition for stability is pmax-cut|ρ(A)|2 < 1.

Proof: Consider a cut set of the given network N1,
with the source s being in set A and the destination node
d in set B and the links 1, 2, · · · , n joining the sets A and
B. Form another network N2 by replacing all links within
the sets A and B by links that do not drop packets and do
not consume one time step to transmit data. For any packet
drop pattern, denote the information sets that the destination
node has access to at time step k over networks N1 and N2

by Id,N1(k) and Id,N2(k) respectively. Clearly, the estimate
error covariances at the destination node for the two networks
are related by P d(k|Id,N1(k)) ≥ P d(k|Id,N2(k)). Hence, by
considering the stability of error covariance over network N 2,
we can obtain a necessary condition for the stability of error
covariance over network N1. Since the edges within the source
and the destination sets do not introduce any delay or error, N 2

consists of the source and the destination joined by edges 1,
2, · · · , n in parallel. The condition for the error covariance
across N2 to converge is thus pcut set|ρ(A)|2 < 1, where
pcut set = p1p2 · · · pn. This is, thus, a necessary condition for
error covariance across N1 to be stable. By considering all
cut-sets, we obtain that a necessary condition for the error
covariance to converge is pmax-cut|ρ(A)|2 < 1.

C. Network with Links in Series

Consider a network consisting of two links in series with
probabilities of packet drop p1 and p2 respectively. Denote
the nodes as v1, v2 and v3 with v1 being the source node
and v3 the destination. Also, denote the estimate at node vi
at time k by x̂i(k). Let e1(k) be the error between x(k) and
x̂2(k). Similarly let e2(k) be the error between x̂2(k) and
x̂3(k). We are interested in the second moment stability of
e1(k)+e2(k). Clearly a sufficient condition is that both e1(k)
and e2(k) individually be second moment stable. Applying
Proposition 4, if p1 | ρ(A) |2< 1, e1(k) would be stable. Now
for the second link, we can consider the sensor

x̂2(k) = x(k) + e1(k),

generating the measurements. The quantity transmitted by
node 2 at any time step in the algorithm A2 can be seen to
be the MMSE estimate of x(k) given all the measurements
{x̂2(j)}k−1

j=0 . Consequently, if p2 | ρ(A) |2< 1, then the error
e2(k) is stable. If p be the greater of the probabilities p1 and
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p2, the sufficient condition thus is p|ρ(A)|2 < 1. But this is
identical to the necessary condition stated in Proposition 5.
Thus the condition above is both necessary and sufficient. 3

This argument can be extended to any finite number of links
in series. If there are m links in series with the probability of
drop of the i-th link being pi, then a necessary and sufficient
condition for the estimate error to converge at the destination
node is p|ρ(A)|2 < 1, where p = max(p1, p2, · · · , pm).

D. Sufficient Condition for Arbitrary Networks

Proposition 6. For problem P2 with the assumptions of Propo-
sition 5 on the packet drops, the estimation error covariance
with algorithm A2 is stable if pmax−cut|ρ(A)|2 < 1.

Proof: First note that if a packet dropping link between
two nodes v and u with probability of drop pe is replaced by
two parallel links with drop probabilities p(1)

i and p
(2)
i such

that pi = p
(1)
i p

(2)
i , then P d(k) under algorithm A2 does not

change. This is true because the probability distribution of the
latency does not change with this replacement.

We will prove the proposition by exploiting a technique used
in fluid networks. Consider the set Γ = {γ1, γ2, · · · γm} of
all simple directed paths from the source to the destination in
the network graph. Note that these paths may overlap. If the
edge i is in path γj , we denote that as i ∈ γj . Now consider
the following optimization problem

F �1 = min
βj

m∏
j=1

βj (11)

subject to
∏
j:i∈γj

βj ≥ pi ∀ edges i (12)

0 ≤ βj ≤ 1 ∀j = 1, 2, · · · ,m. (13)

A simple change of variables ψj = − logβj , transforms the
above optimization problem into the following linear program
in the variables ψj’s.

F �2 = max
ψj

m∑
j=1

ψj (14)

subject to
∑
j:i∈γj

ψj ≤ − log pi ∀edges i

ψj ≥ 0 ∀j = 1, 2, · · · ,m.
The solutions {β�j } and {ψ�j } of the optimization problems
(11) and (14) are related through ψ �j = − log β�j . The structure
of the linear program (14) is the same as the one used for
finding the maximum flow possible in a fluid network [4,
Page 59], which has the same topology as our packet dropping
network with the capacity of the link i equal to − log p i. The
solution to the problem of finding the maximum flow through
a fluid network is given by the max-flow min-cut theorem as

F �2 = min
all possible cut-sets

∑
i∈cut

− log pi.

3Another approach to find the necessary and sufficient condition for stability
is to evaluate Pd∞ for a series of links. This approach is taken in Section VI-A.

Thus for the optimization problem (11), the solution is

F �1 = max
all possible cut-sets

∏
i∈cut

pi (15)

= max
all possible cut-sets

pcut set

= pmax-cut.

Consider the paths in the set Γ. Form a new set B of all
those paths γj’s for which the associated optimal variable β �j is
strictly less than one. Now form a new network N ′ as follows.
The node set of N ′ is the union of those nodes of the original
network N that are present on any path in B. Each pair of
nodes (u, v) in the node set of N ′ is connected by (possibly)
multiple links. If an edge i between nodes u and v is present in
a path γj ∈ B, add an edge between nodes u and v in N ′ and
assign an erasure probability β�j . By considering all the edges
in N and following this procedure, we construct the edge set
of N ′. The following properties of N ′ are easily verified.

• By construction, N ′ is a union of edge-disjoint paths.
Furthermore, for each path, the probabilities of packet
drop on all the links are equal.

• By virtue of (15) and the procedure followed to construct
N ′, the product of the probabilities of packet drop of the
different paths is equal to the pmax-cut.

• Because of (12), for any pair of nodes that were con-
nected by a link with erasure probability p in N , the
product of the probabilities of packet dropping of the
links in N ′ connecting these two nodes is no less than p.

Therefore the estimate error covariance at the destination by
following algorithm A2 in the original network N is less than
or equal to the error covariance by following A 2 in the new
network N ′. Thus, to obtain a sufficient condition on stability,
we can analyze the performance of A2 in the network N ′. For
this we consider another algorithm A3 in which we assume
that estimates on the disjoint paths in N ′ are routed separately.
Thus, if a node lies on many paths, on each path it forwards
only the packets it received on that path. The performance of
A3 cannot be better than A2 since in A2 we send the most
recent estimate received from different paths at any node.

Therefore, to prove the theorem, we only need to show the
stability of estimation using protocol A3 assuming that the
condition of Proposition 5 holds. Since we do not mix the
estimates obtained from different paths in A3, the network
can be considered as a collection of parallel paths, with each
path consisting of links with equal drop probability. We further
upper-bound the error covariance through two means:

1) Convert the network N ′ into a network N ′′ by intro-
ducing links in the different paths from the source to the
destination in N ′ such that each path consists of equal
number of links, while retaining the property that every
link in a path has the same probability of drop. Thus,
we can consider nodes present in layers, with layer 0
corresponding to the source, layer 1 consisting of all
nodes one hop away along the different paths from the
source and so on. Let the destination be at layer m.

2) Let the nodes in level t have estimate error covariances
P ti (k)’s at time k. When selecting messages to be trans-
mitted to the nodes in level t+ 1, we use the algorithm
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A4, in which the nodes transmit the estimate that has the
maximum P ti (k)

4.

Let us now prove that the condition in Proposition 5 is suffi-
cient for the stability of the error covariance when algorithm
A4 is executed over network N ′′. Clearly pmax-cut | ρ(A) |2< 1
implies pi | ρ(A) |2< 1 for the probability pi corresponding
to any path i. Thus the error covariance at the nodes in the
layer 1 is stable. Repeating an argument similar to the one in
Section V-C, we can obtain that all the nodes in layer 2, 3, · · · ,
m−1 have stable estimate error covariance as well. Finally for
the estimate at the destination node, all the estimates from the
nodes in layer m− 1 can be considered to be in parallel with
each other. Since for this network pmax-cut =

∏
all paths j pj, if

pmax−cut | ρ(A) |2< 1, the estimate at the destination have
bounded error covariance as well.

Remark 6. We have provided a necessary and sufficient
condition for the expected error covariance to remain bounded
for a network of arbitrary topology. For any other causal data
processing algorithm, it provides a necessary condition for
stability. Let us, in particular, compare the stability conditions
for the algorithm A2 to those for a simpler algorithm Ā in
which the intermediate nodes do not have any memory. At
each time step k, the source node forwards the measurement
y(k − 1). The intermediate nodes compare the time stamps
of the measurements they received at the previous time step
along different incoming edges and forward the most recent
one. If they did not receive any measurement on the previous
time step, they do not transmit anything. The probability that
the destination node receives any particular measurement y(k)
from the source over the network is upper-bounded by the
reliability [6] of the network. For a line network in which n
edges each with drop probability p are combined in series, the
probability that any measurement is received by the destination
node is q = 1 − (1 − p)n. By a method similar to the one
used in [20], it can be proven that a necessary condition for
stability is q|ρ(A)|2 < 1. With our optimal algorithm, the
necessary and sufficient condition for expected estimate error
covariance to be stable is p|ρ(A)|2 < 1. As an example, for
n = 5 links and drop probability p = 0.2, q = 0.67. Thus our
algorithm improves the stability margin from ρ(A) ≤ 1.22 for
Ā to ρ(A) ≤ √

5 ≈ 2.23.

VI. PERFORMANCE ANALYSIS

In this section we calculate the probability mass function
of the latency at any node for various networks, assuming the
erasures to be independent in time and uncorrelated across
various links. This will allow us to study the performance of
the algorithm A2. The latency at any node depends on the
erasure patterns along different links in all the paths from the
source to the node. Since the paths may be overlapping, the
evaluation of the latency may, in general, be very complicated.

Let Zuv(k) denote the time elapsed since any information
was received by the node v over the link (u, v), i.e.,

Zuv(k) = min{j ≥ 1|λuv(k + 1 − j) = 1}.
4Note that all Pt

i (k)’s form an ordered set.

We define Zuu(k) = 1. The last time that any message is
received at node v from link (u, v) is k−Zuv(k)+1 and that
message has time-stamp tu(k − Zuv(k)). Since the erasures
are independent across links and i.i.d. in time, Zuv(k) is a
truncated geometric random variable with the mass function

Pr (Zuv(k) = i) =

{
(1 − puv)pi−1

uv , 1 ≤ i < k

1 − ∑k−1
i=1 Pr (Zuv(k) = i), i = k.

We can express the latest information used by node v in terms
of the variables Zuv(k). From (5) the time stamp is given by

tv(k) = max
u∈Nv∪v

tu(k − Zuv(k)). (16)

For analytical ease, we get rid of the truncation in the
definition of the variable Zuv(k) by extending the definition
of the time stamp tu(k). For all k < 0, define tu(k) = 0.
As an example, for the source node s, without extending the
definition we have ts(k) = k − 1 for k ≥ 1. Using the
extended definition, ts(k) = (k − 1)+for all k, where x+ =
max{0, x}. For any node u, using the extended definition of
tu(k) for all k, (16) continues to hold; however, Zuv(k)’s are
now independent random variables distributed according to a
geometric distribution with parameters puv’s. Thus

Pr (Zuv(k) = i) = (1 − puv)pi−1
uv ∀i ≥ 1, ∀k. (17)

Since Zuv(k)’s do not depend anymore on k, we omit this
argument.

We can now begin to combine the variables Zuv’s to
calculate the latest information received by any node from the
source. Along any path, this involves adding the times since
last successful transmission along different paths. Since there
may be multiple paths from the source, we need to compute
the maximum such sum. From (16), we can write tv(k) in
terms of the time-stamp at the source node (k − 1)+ as

tv(k) = max
P :an s-v path

(k − 1 −
∑

(u,v)∈P
Zuv)+, (18)

where the maximum is taken over all paths from source s to
the node v. The latency at node v can now be written as

lv(k) = k−1− tv(k) = min{k−1, min
P :an s-v path

(
∑

(u,v)∈P
Zuv)}.

For the steady-state error covariance, we consider the steady-
state behavior of the latency lv(k). As k → ∞, the distribution
of lv(k) approaches that of the variable lv defined as

lv = min
P :an s-v path

(
∑

(u,v)∈P
Zuv). (19)

We now concentrate on the destination node5. For the des-
tination node d, denote by ld the steady-state latency of the
network. From (9), the steady-state error covariance is

P d(∞) =
∞∑
l=0

Pr (ld = l)

⎡
⎣AlP �Al + l−1∑

j=0

AjRwA
j

⎤
⎦ , (20)

5For covariance at another node v, simply denote v as the destination node.
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where P � is the steady-state estimation error covariance of
x(k) based on {y(0), y(1), · · · , y(k− 1)} and is the solution
to the Discrete Algebraic Riccati Equation (DARE)

P � = AP �AT +Rw −AP �CT (CP �CT +Rv)−1CP �AT .

Because of the observability and stabilizability assumptions,
the rate of convergence of P (0) to P � is exponential and the
substitution of P � for P (k) in (9) does not change the steady-
state error covariance. On vectorizing (20) we obtain

vec(P d(∞)) = F (A⊗A)vec(P �)+G(A⊗A)vec(Rw), (21)

where A⊗B is the Kronecker product of matrices A and B,
G(X) is the generating function of the complementary density
function and F (X) is the moment generating function F (X)
of the steady state latency ld defined as

G(X) =
∞∑
l=0

Pr (ld ≥ l+1)X l, F (X) =
∞∑
l=0

Pr (ld = l)X l,

for an arbitrary matrix X . Note that

F (X) = (X − I)G(X) + I. (22)

Proposition 7. Consider the problem P2. Let the packet drops
be independent from one time step to the next and across
links. The minimum expected steady-state estimation error
covariance at the receiver is given by (21).

In particular, the system is stable if and only if G(X) is
bounded at A⊗A. Since G(X) is a power series, boundedness
of G(x) at A ⊗ A is equivalent to the boundedness of G(x)
(evaluated for a scalar x) at the square of the spectral radius
of A.

A. Networks with Links in Series

In this case, the network consists of only one path from the
source to the destination. Thus we have

F (X) = E
[
X ld

]
= E

[
X
�

(u,v) Zuv

]
,

where the summation is taken over all the edges in the path.
Since the drops across different links are uncorrelated, the
variables Zuv’s are independent. Thus we have

F (X) = E
[
X
�

(u,v) Zuv

]
=

∏
(u,v)

E
[
XZuv

]
,

where we have used the independence of Zuv’s. Since
from (17) Zuv is a geometric random variable,

E
[
XZuv

]
= (1 − puv)X (I − puvX)−1 ,

provided that ρ(X)puv < 1, where ρ(X) is the spectral radius
of matrix X . Therefore,

F (X) = E
[
X ld

]
=

∏
(u,v)

[
(1 − puv)X (I − puvX)−1

]
.

Using partial fractions and the relation in (22), we then obtain

G(X) =
n−1∑
i=0

X i +Xn
∑
(u,v)

cuv
puv

1 − puv
(I − puvX)−1,

where cuv = (
∏

(r,s) �=(u,v)

(1 − puv
prs

))−1.

Therefore the cost can be written as

vec (P (∞)) = G (A⊗A) vec (Rw)

+
∏
(u,v)

[
(A⊗A)

(
I − puvA⊗A

1 − puv

)−1
]

vec (P �) .

Moreover, the system is stable if for every link (u, v) we have
puv|ρ(A)|2 < 1 or equivalently max(u,v) puv|ρ(A)|2 < 1. This
matches with the condition in section V. Also note that for the
case that some of puv’s are equal, a different partial fraction
expansion applies. In particular for the case when there are n
links all with the erasure probability p, we obtain

vec (P (∞)) = (A⊗A)n
(
I − pA⊗A

1 − p

)−n
vec (P �)

+
n−1∑
i=0

[
p

1 − p
(A⊗ A)n

(
I − pA⊗A

1 − p

)−i−1
]

vec(Rw)

+
n−1∑
i=0

(A⊗A)ivec(Rw).

Finally, when there is only one link between the source and
the destination, the steady state error covariance is the solution
to the Lyapunov equation

P (∞) =
√
pAP (∞)

√
pA+ (Rw + (1 − p)AP �A) .

B. Network of Parallel Links

Consider a network with the sensor connected to a des-
tination node through n links with probabilities of packet
drop p1, . . . , pn. Since the same data is transmitted over
all the links, using (19) the steady state latency is ld =
min1≤i≤n(Zi). Since Zi’s are all independent geometrically
distributed variables with parameters pi’s respectively, their
minimum is itself geometrically distributed with parameter
peq =

∏
i pi. Thus F (X) can be evaluated as

F (X) = (1 − peq)X(I − peqX)−1,

and G(X) can, in turn, be written as

G(X) = (I −
∏
i

piX)−1.

Thus the steady-state error can be evaluated using (21).
Note that convergence of G(X) enforces for stability∏
i pi|ρ(A)|2 < 1, which is the condition derived in Section V.

C. Arbitrary Network of Parallel and Serial Links

We can obtain the following two rules for the steady-state
error covariance of any network derived from the parallel and
serial concatenations of sub-networks. Let ld(G) denote the
steady-state latency function of network G. Also given two
subnetworks G1 and G2, denote their series combination by
G1 ⊕ G2 and their parallel combination by G1‖G2.

1) Suppose the network G can be decomposed as a series
of two subnetworks G1 and G2. Since packet erasures in
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the two subnetworks are independent of each other,

ld(G1 ⊕ G2) = ld(G1) + ld(G2).

Thus, FG1⊕G2 (X) =E
[
X ld(G1⊕G2)

]
=E

[
X ld(G1)+ld(G2)

]
=E

[
X ld(G1)

]
E

[
X ld(G2)

]
=FG1 (X)FG2 (X) .

Finally using (22), the complementary density function
of the network G is given by

GG1⊕G2 (X) = (X − I)−1 (FG1⊕G2 (X) − I)
=(X − I)GG1 (X)GG2 (X)

+GG1 (X) +GG2 (X) ,

where in the second equation we have used the fact that
G(X)(X − I) = (X − I)G(X).

2) If the network G can be decomposed as parallel com-
bination of two sub-networks G1 and G2, we have

ld(G1‖G2) = min{ld(G1), ld(G2)}.
Once again, the erasures in the two subnetworks are
independent of each other. Thus

Pr
(
ld(G1‖G2) ≥ l

)
= Pr

(
ld(G1) ≥ l

)
Pr

(
ld(G2) ≥ l

)
.

Thus we see that if

GG1(X) =
∞∑
i=0

aiX
i GG2(X) =

∞∑
i=0

biX
i,

then GG1‖G2(X) =
∞∑
i=0

aibiX
i.

Thus, we can use (21) with the above two rules to derive the
steady state error of any network consisting of links in series
and parallel with each other.

D. Networks with Arbitrary Topology

Finding the distribution of the steady-state latency ld of a
general network is not an easy task because different paths
may overlap. This can introduce dependency in the delays
incurred along different paths. Thus, the calculation of the
minimum delay and, hence the steady-state latency, becomes
involved. However, we can provide upper and lower bounds
on the performance. We first mention the following intuitive
lemma without proof.

Lemma 2. Let P∞(G, {puv, (u, v) ∈ E}) denote the expected
steady-state error of a system with communication network
represented by graph G = (V , E) and probabilities of packet
drop puv, (u, v) ∈ E . Then the expected steady-state error is
non-increasing in puv’s, i.e., if puv ≤ quv ∀ (u, v) ∈ E
P∞(G, {puv, (u, v) ∈ E}) ≤ P∞(G, {quv, (u, v) ∈ E}),

where A ≤ B means that B −A is positive semi-definite.

1) Lower Bound: We can lower bound the steady-state error
by making a subset of links erasure free. This is similar to the
method we used to obtain a necessary condition for stability
in section V. Thus once again consider any cut-set of the
network. Setting the probability of erasure equal to zero for
every link except those crossing the cut (i.e., of the form (u, v)
where u is in the source set and v in the destination set) gives
a lower bound on the error. Therefore,

P∞(G, {puv, (u, v) ∈ E}) ≥ P∞(G, {quv, (u, v) ∈ E}),

where quv =

{
puv (u, v) crosses the cut

0 otherwise.

Now P∞(G, {quv, (u, v) ∈ E}) can be evaluated using the
results given above for a network of parallel links. By consid-
ering the maximum along all possible cut-sets, we obtain the
closest lower bound.

2) Upper Bound: We use a method similar to the one used
to obtain the sufficient condition for stability in Section V. In
the proof of Proposition 6, it is shown that the performance
of the network N is lower bounded by the performance of
another network N ′ that has series and parallel links only and
has the following properties:

• N and N ′ have the same node set.
• N ′ is the combination of edge-disjoint paths from the

source to destination.
• The value of the max-cut in N ′ is the same as in the

original network N .

The performance of N ′ can be computed based on the results
given above for arbitrary networks composed of subnetworks
in series and parallel. This provides an upper bound on the
performance of the original network.

VII. CORRELATED ERASURE EVENTS

Even though the algorithm A2 is optimal for any packet
dropping pattern, the stability and performance analysis so
far assumed that the erasure events are memoryless and
independent across different links in the network. We now
look at the effect of dropping these assumptions.

A. Markov erasure events

If we assume that the drop events on each link are governed
by a Markov chain (but are still independent of other links), we
can obtain the performance as follows. Suppose that the packet
drop event on link (u, v), denoted by λuv(k) = 0 evolves
according to a Markov chain with transition matrix Muv

assumed to be irreducible and reversible. Let us first consider
the case where the initial distribution of packet drop on each
link is the stationary distribution of the Markov chain on that
link. Then we can rewrite (5) in a similar fashion as (18) with
Zl being a geometric random variable with distribution

Pr (Zuv = l) =

{
αuvMuv(1, 2)Muv(1, 1)l−2 ∀ l ≥ 2
1 − αuv l = 1

,

where αuv is the probability of packet drop based on the
stationary distribution of link e = (u, v) and Muv(i, j) as
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the (i, j)-th element of Muv. Thus, all the previous analysis
goes through. In particular, the stability condition is

max
c:s-d cut

∏
(u,v)∈c

Muv(1, 1)|ρ(A)|2 < 1.

If the initial distribution is not the stationary distribution,
the variables Zuv(k) have time-varying distributions and the
analysis fails. However, since for large k the Markov chains
approach their stationary distribution, the stability condition
remains unchanged.

B. Spatially correlated events

Suppose that the packet drop events are correlated across
the network but memoryless over time. In other words, at
each time step k, the packet drop events occur according
to distribution Pr(λuv, (u, v) ∈ E). Now Zuv(k)’s are not
independent across the network and hence finding the steady-
state error covariance does not seem to be tractable. However,
we can find the condition for stability. For this, we define a
generalized notion of equivalent probability of packet drop for
correlated events. Consider a cut-set c, and let B(c) denote the
set of edges crossing this cut. Then the equivalent probability
of packet drop for this cut is

peq(c) = Prob (λuv = 0, ∀ (u, v) ∈ B(c)).

The value of the max-cut for the network is the maximum of
peq(c) over all the cuts, pmc(G) = maxall cut-sets c peq(c). We
can then show that the condition for stability of the system is
pmc(G)|ρ(A)|2 < 1. To see this, consider the scenario when
only one packet is to be routed from the source to destination
starting at time t0. For each time-step t ≥ t0 let Vr(t) denote
the set of nodes that have received the packet at time t. Clearly
Vr(t0) = {s}. Note that for every time-step between t0 and
t0 + T , Vr(t) defines a cut-set since it contains s and not d.
Now the size of Vr(t + 1) does not increase with respect to
time-step t iff all the links that cross the cut generated by
Vr(t) drop packets. However by the definition of pmc(G) the
probability of this event is at most pmc(G). Therefore, we have

|Vr(t+ 1)|
{
≥ |Vr(t)| + 1 with prob. at most pmc(G)
= |Vr(t)| with prob. at least 1 − pmc(G)

Thus for large T , the probability that at time t0 + T the
destination node has not received the packet is upper bounded
by n(1 − pmc(G))nT npmc(G)T−n, where n is the number of
nodes in the network. Now, the error covariance can be upper-
bounded by considering that the network is only routing the
latest packet generated at time k − l. The probability that the
latency is larger than l thus grows like f(l)pmc(G)l, where f(l)
is polynomial in l with bounded degree and the sufficiency
of the stability condition follows. The necessity part involves
similar ideas and is omitted.

VIII. CONCLUSIONS

In this paper, we considered the problem of estimation
and control of a process across an arbitrary network of
communication links. We identified an optimal information

processing algorithm to be followed by each node in the
network that allows the estimator to calculate the best possible
estimate in the minimum mean square sense and the controller
to minimize a quadratic cost. The recursive algorithm requires
a constant amount of memory, processing and transmission
at every node in the network per time step yet is optimal
for any packet-dropping process and at every time step. It has
numerous other desirable properties as well such as being able
to take care of delays and packet reordering. We also carried
out the stability and performance analysis for this algorithm.
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