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ABSTRACT

In the context of interactive query sessions, it is common
to issue a succession of queries, transforming a dataset to
the desired result. It is often difficult to comprehend a suc-
cession of transformations, especially for complex queries.
Thus, to facilitate understanding of each data transforma-
tion and to provide continuous feedback, we introduce the
concept of “data tweening”, i.e., interpolating between re-
sultsets, presenting to the user a series of incremental visual
representations of a resultset transformation. We present
tweening methods that consider not just the changes in the
result, but also the changes in the query. Through user stud-
ies, we show that data tweening allows users to efficiently
comprehend data transforms, and also enables them to gain
a better understanding of the underlying query operations.

1. INTRODUCTION
Over the past decade, the interactivity of data analysis

interfaces has increased dramatically. This change has been
driven by a number of factors, including relatively easy-to-
use visualization toolkits such as D3.js [2], as well as im-
provements in hardware and database technology [6] [21].
As database response times begin to rival the frame rate for
animation, it is possible to provide near-instantaneous feed-
back to the user during their interaction with the interface.
These changes have forced the entire notion of querying from
a ‘question-answering’ interaction to instantaneous and iter-
ative exploration of the query / result space. Modern query
interfaces employ high levels of interactivity with the end
user, situating the user in a session of successive queries, as
opposed to a single query.

As an example, consider a query session where the user
is currently looking at the resultset T1. Now, the user per-
forms a new pivot transformation, shown in Figure 1. The
resultset T1 is transformed to T12. While being a very useful
operation for analytical purposes, the transformation yields
a large change in the result for a relatively small change
in the query itself (i.e., changing from SELECT StudentId,
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EnrollmentYear, Dept FROM StudentEnrollment E;
to query Q, below).

Q = SELECT * FROM (
SELECT EnrollmentYear , Dept
FROM StudentEnrollment E)

PIVOT (COUNT(Dept) FOR Dept IN ("ECE", "CSE"));

On a traditional query-result interface, this would involve is-
suing a single text query, yielding a new result. On modern
interactive interfaces, the same query can be issued by di-
rectly manipulating the original resultset through means of
user actions, for example a dragging operation on a mouse-
based interface, or a rotate gesture on a touch screen-based
interface (Figure 1). Such direct manipulation [24]-style in-
teraction has become increasingly popular, especially with
the growing use of touch screen-based devices such as smart
phones and tablets. In such settings, the absence of contin-
uous visual feedback during each interaction can disorient
the user. Thus, providing a fluid experience with constant
visual explanation and feedback is often a hard requirement
in modern interaction modalities [9] [17].

Some data transforms can lead to abrupt transitions in
the query output visualization, as shown in Figure 1. Here,
the output changes directly from T1 to T12. The outputs T1

and T12 are quite dissimilar with completely different schema
and data, which can leave users disoriented. The users can
clearly notice something changed, but are left with no clue
about what the exact changes were or how and why they
came about. Such abrupt transitions in resultsets can occur
for even the simplest of query changes, such as the addition
or removal of a WHERE clause. Being overwhelmed with tran-
sitions during interactive sessions is not new – in a Lotus Im-
prov sales video from the 1990s [http://youtu.be/dsYsZmhnXR4],
the developer mentions users were “left flabbergasted” by
the pivot function, requiring a repetition of the operation to
fully understand the transformation.

We define such transitions where users cannot compre-
hend the change in state of output as breaks in result space
continuity. Result space continuity can be defined as main-
taining a smooth and coherent transition between two dis-
tinct results. As a principal, we believe that result space con-
tinuity is a fundamental requirement of instantaneous query
interfaces. Discontinuities in the result space confuse the
user, breaking the illusion of direct manipulation. In such
cases, it might be crucial to provide a visual explanation of
the result transformation for the user to connect the dots –
wherein the users can see the transformation played out as
a sequence of easily understandable basic transformations.

In this paper we propose data tweening as a way to achieve
result space continuity. The concept of tweening (based on
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Figure 1: Visualization Spaces for Tweening: Result transformations are often too abrupt, and can be aided by
intermediate steps. To do this, we use the query session and the results to lift out of the standard space into the
tweening space, where we show the user a series of tweening frames, ending in the final result. Figure 2 lists complete
set of tweening frames for the running example. A video (http://go.osu.edu/tweening) is provided for elucidation.

the term “in-betweening”), which has roots in graphics an-
imation [3], is to generate a smooth transition sequence be-
tween distant states by adding interpolating frames. We ex-
tend this idea to query-result interfaces, where data tween-
ing would mean generating smooth transition sequences to
interpolate between consecutive resultsets in a query session.
This is done by adding intermediate result representations
between consecutive result states in a query session, mak-
ing it a smooth non-breaking transition. This definition is
different from traditional animation tweening; data tween-
ing is a mechanism to generate intermediate resultset states
(equivalent to keyframes in computer animations), and not
interpolating between visual keyframes. For conciseness, we
use ‘tweening’ to represent data tweening from here on out.

This paper describes a framework for generation of inter-
mediate resultset states given a pair of consecutive queries
and their corresponding results. The query-result interfaces
can implement the transition visualization as an animated
transition between the intermediate resultset states.

Figure 1 shows the tweening space (Section 2) in contrast
to standard space. Instead of the pivot transformation visu-
alized as an abrupt and discontinuous transformation from
T1 to T12, we have an incremental visualization through a
series of intermediate resultsets T2 to T11 in the tweening
space, shown in Figure 2. Tweening breaks down the com-
plex pivot transformation into simple, easy-to-understand
steps for the users. It should be noted that such com-
plex tweening cannot be achieved by merely interpolating
between two resultsets in pixel space without considering
queries for context (Section 4.3). The pivot query Q pro-
vides the required context to generate a meaningful tweening
(Section 4.3.2) from T1 to T12.

Challenges: Data tweening seems to have great promise
as a solution to the result space continuity problem. How-
ever, if done poorly, it could be more of a hindrance than
help: the effects could possibly be distracting, confusing,
and time-consuming for users to understand [26]. Adding

intermediate steps could confuse the user even more, or even
slow down the user’s query session to the point that they lose
continuity or patience. Thus, tweening needs to not only en-
able smooth transitions between disjoint outputs, but to also
satisfy a principle of “do no harm” to the user’s comprehen-
sion abilities and overall experience.

Contributions: We propose data tweening as a means to
make resultset transformations in a query session more in-
formative and comprehensible. We introduce a grammar of
transforms and visual cues to express tweening sequences.
We provide methods to generate these sequences, interpo-
lating between resultsets or a combination of resultsets and
their corresponding queries. Through user studies, we estab-
lish that tweening does not diminish a user’s understanding
of transformations, and helps them gain insight into trans-
formations otherwise unavailable in standard visualization.

2. DATA MODEL: RESULT SPACES
A critical challenge when visually conveying intermediary

representations of resultsets is that they may not conform
to the original data model. E.g., as shown in Figure 2, while
the original resultset (T1) is in the relational model, demon-
strating a clustering by attribute (T5) to the user would
require us to break out of the relational space.

Thus, we employ a two-space model (Figure 1): the choice
of visual representations (and the underlying models) needs
to be done carefully and with design principles in mind.
Tversky et al. [26]’s analysis of the impacts of animation
suggested two principles for successful animated graphics:
‚ Congruence Principle: The structure and content of the

external representation should correspond to the desired
structure and content of the internal representation.

‚ Apprehension Principle: The structure and content of the
external representation should be readily and accurately
perceived and comprehended.
We use these principles as guiding factors in the design

of the tweening space. Perception research has shown that
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Figure 2: Tweening frames for motivating pivot example

users face challenges tracking more than four or five objects
simultaneously [4]. Hence, a good tweening sequence should
minimize the points of changes at each step. To this end,
we make use of the Gestalt principle of common fate [25]
as a design guide. This principle states that the entities in
visualizations which move or function in a similar manner
are perceived as a unit. An additional advantageous side
effect of this design choice is a reduction in the number of
reflows (Section 4.4).

Given these design principles, we propose our two spaces.
The first space, known as the standard space or query space,
is where the user queries are expressed in SQL and follow
the SQL data model. In the second space, known as the
tweening space, we introduce intermediate steps that help
communicate transitions to the user. The application of a
tweening sequence (Section 3) on a resultset lifts the repre-
sentation out of the standard space into the tweening space.
The tweening space is characterized by visual cues such as
highlights, gaps, etc. as described in the following section.

Figure 2 shows the resultset visualizations in the tweening
space. We can see how certain frames representing aggrega-
tion and cross-tabs are expressed using a nested relational
model. A hierarchical representation is an intuitive way of
showing groupings, but the relational model is not expressive
enough to portray it. Hence, we use the nested relational
model for representing resultsets during tweening.

The rows, columns, and cells in a nested relation are in-
dexed: the address for a table entity is derived by concate-
nating row/column indices of the entities containing it in
order starting from the topmost row/column in the table
hierarchy (Figure 3).

3. GRAMMAR
We propose a standard representation that allows us to

encode tweening sequences described in the previous sec-
tions (and illustrated in Figure 2). A well-defined visual
grammar withmicro-operations corresponding to basic struc-
tural data transforms across these representations, along

Department Student Details

ECE

StudentId LastName

1 Lee

2 Watson

CSE

StudentId LastName

6 Harvey

9 Quinn

11 Jane

ISE
StudentId LastName

17 Benedict

r3c2r2c2 r3c1

r2c2r2 r4

r1 r3c2c1

Table Entity Indexing

Figure 3: Indexing table entities in tweening space.
Indexes for the highlighted table entities are shown in
the legend on the right with the cell background colors
corresponding to the entities they index.

with visual cues can provide a principled way to encode
tweening sequences. A resultset transformation because of
a query change can be expressed as a sequence of trans-
forms from the described grammar. These transforms en-
code the schema and data level changes to the resultsets
in terms of basic row / column / cell-level changes such as
insertion, deletion, and rotation. We include visual cues
in these tweening sequences to make the transforms no-
ticeable. A tweening sequence is an ordered set of micro-
operations which sufficiently describes a resultset transfor-
mation in terms of basic transforms. The micro-operations
can be divided into the following two categories:
1. Transforms – These micro-operations change the data

or the structure of the table e.g., row deletion.
2. Visual Cues – These micro-operations draw attention

to the parts of the table about to change or provide a
transformation description e.g., emphasize, annotation.
The set of visual cues specified here provide examples
which can be used to identify and interpret the transforms
better. This set can be extended or the specifics of the
implementation modified as per requirement.
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All micro-operations need a required positional parame-
ter - positions, which specifies the table entities on which
the micro-operation is supposed to act. The parameter can
be a list of cells, rows, or columns. The table entities are
indexed as described in Section 2 and Figure 3. The ex-
act specification of this parameter depends on the type of
micro-operation (Section 3.1 and 3.2).

The relation to be transformed undergoes a series of step-
by-step basic transformations during a tweening sequence.
For example, S “ po1, o2, ..., oi, oi`1, ..., onq represents a tween-
ing sequence with n steps. The parameters for any micro-
operation oi in a tweening sequence are based on the result
of its preceding micro-operation oi´1. Let us consider T0

to be the original resultset which gets transformed into Tn

through the tweening sequence. We use Ti to represent the
resultset generated by application of micro-operation oi on
Ti´1 during the tweening sequence.

3.1 Transforms
‚ order(positions) - Reorders the list of rows or columns in

the order specified by positions. E.g., If Ti´1 has three
rows, opiq “ orderprr3, r1, r2sq micro-operation will re-
order the rows such that the last row in the input becomes
first in the output, and the first row becomes second in the
output. The occlusion of table regions because of an ani-
mated sort would violate the apprehension principle (Sec-
tion 2). Hence, this transform should be implemented as
a static transform (repainting the entire table).

‚ rotate(positions, direction) - Rotates table entities or text
specified by position by 90 degrees. The parameter in
this case is specified as a key-value pair. The key is one
of cellgroup or text which specifies if the rotate micro-
operation is to be carried out on a table block or text in
specified cells. The value parameter is a list of cell indices.
The direction parameter takes one value from {clockwise,
counterclockwise} specifying the direction of rotation.

‚ delete(positions) - Removes the list of rows, columns, or
cells specified by positions from Ti.

‚ insert(positions) - Inserts new rows, columns, or cells in
Ti. The parameter is a list of key-value pairs. Each item
in the list has the row index or the column index or the
cell index where the new data is supposed to be inserted
as the key. The value part contains the list of data values
to be inserted at position specified by the key.

‚ nest(positions) - Merges entity groupings specified by list
of items in positions. Each item in the list is an n-tuple
which specifies cells or ranges of cells by their indices.
Each item represents a group, and the constituent cells
are replaced by a single cell by deleting borders between
them with the common text filled in.

‚ unnest(positions) - Unnests groups into constituting tu-
ples. The parameter is a list of key-value pairs, each item
corresponding to one group. The key is the cell index to
be unnested. The value field is a 2-tuple with the first
value indicating the number of rows - nr, and second
field indicating the number of columns - nc. The cell
specified by key is split into nr ˆ nc cells, with each cell
having the text value replicated from the original cell.

It is trivial to demonstrate that the nested relations are
closed under all these transforms.

3.2 Visual Cues
‚ emphasize(positions, cause) - Highlights the table enti-

ties in Ti identified by positions. The cause parameter

defines the reason for highlighting. We recommend this
micro-operation to be implemented as background color
change, with well-separated colors for following causes -
insertion, deletion, aggregation. Highlights for insertion
and deletion can be represented by one color each. High-
lighting for aggregation requires a minimum of two colors.
This is required to represent adjacent groups as visually
distinct entities on screen.

‚ deemphasize(positions) - The inverse of emphasizemicro-
operation. Removes the effects of the last emphasize

micro-operation preceding it in the tweening sequence.
‚ annotate(positions, data, cause) - Some basic transforms

are not obvious, and can benefit from additional informa-
tion for a user to make sense of them. Annotations can op-
erate on different levels, from cells to the entire table. The
data parameter specifies what the user would be shown
or how the annotation is supposed to be represented. For
example before an order operation, we can show users a
note with the name of the column on which the data is to
be sorted and the order(ascending or descending) before
playing the actual order micro-operation.

‚ separate(positions) - Creates gaps at the right borders (in
case of columns) or bottom borders (in case of rows) of
the entity indices listed in positions parameter.

‚ bridge(positions) - The inverse of separatemicro-operation.
Removes the gaps at the right or bottom borders depend-
ing on whether the specified entity type is row or column.

Figure 4 illustrates examples of different micro-operations.

4. TWEENING FRAMEWORK
The grammar provides a way to encode tweening sequences.

We need a methodology to generate these sequences auto-
matically for any transform corresponding to a SQL query
change. We describe a system that generates a tweening se-
quence to represent the transition between two given SQL
resultsets. We propose two ways to construct a tweening se-
quence for a resultset transformation: Result-based Tween-
ing, and Query-based Tweening. Result-based tweening con-
siders only the resultset changes to construct a tweening se-
quence, whereas query-based tweening considers both the
query changes and the resultset changes.

4.1 Session Model
A query session is defined as a sequence of queries issued

over a certain period of time, with the resultset of each query
serving as feedback for the formation of the next query in
the session. We impose the limit that queries in a session
are required to have the same ‘FROM’ clause.

At each step, the user views the results and performs an-
other query on the dataset, with each intermediate result
informing the next query (e.g., reviewing the results, factor-
ing in external data, etc.). Thus, the task of tweening is that
of presenting an intermediate explanation between each of
the Qi and Qi`1 steps.

4.2 Result­based Tweening
It is possible to generate a tweening sequence between

two SQL resultsets by comparing just the resultsets, and
not considering the corresponding queries. We provide de-
tails for a naive result-based tweening algorithm based on
grid/table diffing. The algorithm works at the level of rows
and columns. Since we are considering only the resultset
changes, the system does not have any knowledge of the
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Figure 4: Micro-operations in the Visual Grammar

database schema or the queries. Therefore, all transforma-
tions are treated as addition/deletion/reordering of result-
set rows and/or columns. The transformation of a SQL
resultset Told into resultset Tnew can be described by a se-
quence of micro-operations. After each micro-operation,
the state of the resultset changes on screen. Let us call
the resultset being transformed at any stage Ttween, which
gets updated after every micro-operation. Initially Ttween

is set to Told. A sequence of micro-operations is succes-
sively applied on Ttween to transform it into Tnew. A naive
result-based tweening sequence can be described with a se-
quence of insert, delete, and order transforms (Section 3.1)
on row / columnn level along with emphasize and deempha-
size operations for visual cues (Section 3.2).

The naive result-based tweening for a pair of resultsets
Told and Tnew is carried out as follows:

1. Columns which are present in Told but not in Tnew are
highlighted for deletion to give the initial Ttween, followed
by deletion of the highlighted columns.

2. Rows which are present in Told but not in Tnew are now
highlighted for deletion in resulting Ttween, followed by
their deletion. For each row in the input and output ta-
ble, a representative string is calculated by concatenating
the common attributes in the order they appear in the
input table. The rows in the input and output table are
compared using their representative strings.

3. Rows which are present in Tnew but not in Told are now
added to Ttween and highlighted.

4. Rows in Ttween are reordered to match that of Tnew

5. Columns which are present in Tnew but not in Told are
now added to Ttween and highlighted.

6. Columns in Ttween are reordered to match that of Tnew

It should be noted that the naive result-based tweening al-
gorithm produces a unique tweening sequence for any pair
of resultsets. This is because the order of micro-operations
is fixed by the procedure described above. It is trivial to
show that reordering these transforms in the sequence would
lead to the same result. The described sequence is de-
signed to show the addition/deletion of tuples on the com-
mon schema(common columns) between the input and out-
put tables by deleting the columns which are not present in
the output table first and then carrying out row transforms.
With row transforms, the row deletions appear before row
insertions because if new rows were added first, the system
would have a larger table to search for the rows to be deleted

in the next step.

4.2.1 Tree Diff approach to Result­based Tweening

Even though the naive way of tweening resultsets de-
scribed earlier is intuitive, and quite informative for basic
transformations, it fails to capture complex transformations
like nesting/unnesting or pivot, where the pivoting can only
be represented as a reflection, transpose, or rotation of table
cells. The tweening primitives described earlier cannot de-
pict any of these three transformations. An alternative for
generating tweening sequences can be developed by mapping
resultsets to ordered trees. Minimum tree edit distance al-
gorithms can be used to generate an optimum sequence of
tree edit operations required for transforming a resultset to
another [1]. The tweening micro-operations in this case can
be described by the basic tree edit operations which are ap-
plicable to tree nodes, and hence would work on table-cell
and table-row level. Cell-level transformation adds the ca-
pability of depicting transformations like transpose where
transpose can be explained as sequence of node moves in
the corresponding tree.

We illustrate the tree-diff approach to result-based tween-
ing by a sample transformation of a table T1 to another T2 by
mapping the relational representation to an XML structure
(Figure 5a), which can be be conceptually interpreted as an
ordered tree. We use diffxml (http://diffxml.sourceforge.net/)
utility to generate the required transformation/edit sequence
(Figure 5b). The operations in the edit sequence are en-
coded in the Data Update Language format used by the
diffxml utility. The XML nodes are named for the edit op-
erations they describe- move, delete, and insert. The node
attributes are XPath expressions referencing nodes in the
source and destination XML documents. The charpos and
length attributes describe the character position and string
length for text nodes on which the described edit has to
performed.

The node move operations in the edit sequence will oc-
clude the other parts of the table during tweening, which
violates apprehension principle and is undesirable [8].

4.3 Query­based Tweening
There are certain issues with result-based tweening which

can only be addressed by using query changes as context for
generating tweening sequences. We list these issues followed
by description of the query-based tweening framework.
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Figure 5: An example of result-based tweening using tree
diff approach.

Aggregation and Pivot – There is no way for a result-
based tweening algorithm to identify aggregation transfor-
mation on a resultset, and the resulting nodes/cells with
aggregate values will be treated as new nodes/cells or rela-
beled. This problem stems from the fact that representation
of aggregation would require complete information about
row-groupings and selection predicates which can only be
obtained from corresponding queries. A result-based tween-
ing for complex data transformations like pivot is mislead-
ing. It fails to capture, and hence represent, the important
steps which constitute the pivot transformation namely ag-
gregation and rotation/reflection. As shown in Figure 8, the
naive result-based tweening fails to convey any visual cues
which might indicate that the described transformation is
pivot. An alternative result-based tweening sequence can
be constructed using the tree diff approach. However, even
that cannot portray the aggregation step in the tweening
sequence, which is one of the crucial parts of a pivot trans-
formation.
High Visual Cost – With tree diff algorithms, many trans-
formations are carried out on the table cell level. This in-
creases the number of tweening steps that are needed for
describing any transformation. Moreover, with move opera-
tions, there will be a high number of table-entity cross-overs
resulting in occlusion of table regions if they are shown as
cell swaps on screen. This can be seen in Figure 5 where a
simple table transformation requires a relatively large num-
ber of tree node edits.
Lineage – A result-based tweening can only show what
changed in the resultset but it cannot describe why the
particular changes occurred, i.e., it cannot describe what
changed in the query. For example, consider a basic ‘SE-
LECTION’ transformation from Told to Tnew represented in
Figure 6. This transformation corresponds to the following
query changes in the session:

Q_old = SELECT FirstName , LastName , City
FROM Employee;

Q_new = SELECT FirstName , LastName , City
FROM Employee WHERE City <> ‘London ’;

Even though a result-based tweening will generate the same
tweening sequence as a query-based tweening, considering
the query change in the query-based approach makes it pos-
sible for us to highlight the transformation cause in the
tweening sequence. In this case, the visualization can show
the users that rows r1 and r3 were deleted in Tnew because
the value for ‘City’ column was ‘London’, not because they
had ‘Smith’ for ‘LastName’. This can be achieved with
the annotate micro-operation. Additionally, it is impossible
for result-based tweening algorithms to accurately represent
the row-to-row correspondence between Told and Tnew (Fig-
ure 7) [5]. If there exists a schema change between Told and
Tnew, it is difficult to establish the lineage of data rows of
Tnew from Told. For example, in Figure 7 we see row r1 in
Told can correspond to either row r2 or row r3 in Tnew. For
each row in Told, we assume the first matching instance in
Tnew to correspond to it. If there are more than one match-
ing instances, the others are treated as new rows. In this
case, the row r3 is treated as a new row in Tnew, whereas
row r2 is assumed to be the row r1 from Told.

RowIndex FirstName LastName City

r1 Angelica Smith London

r2 Sam Lee Berlin

r3 Sam Smith London

Told Tnew

RowIndex FirstName LastName City

r2 Sam Lee Berlin

Figure 6: Ambiguous transformation cause

RowIndex EmployeeId FirstName City

r1 200159 Sam Berlin

r2 131256 Angelica London

Told Tnew

RowIndex FirstName Department

r1 Angelica Engineering

r2 Sam Finance

r3 Sam Engineering

Figure 7: Ambiguous data lineage in a transformation

In contrast to the result-based tweening, where we have a
single fixed tweening sequence for all transformations, query-
based tweening is generated from a rulebase with rules of the
following form:p ñ po1, o2, ..., onq.
The rule antecedent p is defined as the change in query

∆Q “ Qnew ´Qold. The rule consequent po1, o2, ..., onq is an
ordered set of micro-operations from our defined grammar.
Each of these micro-operations is a function of the resultset
change for the transformation ∆T “ Tnew ´ Told, and ∆Q.

A fixed rulebase is sufficient to describe all transforma-
tions. This is because all query changes can be represented
as a combination of one or more SQL clause changes. More-
over, each type of SQL clause change entails a fixed sequence
of tweening micro-operations. Hence we only need to de-
scribe tweening sequences for all possible changes in each
clause. The combination of clause changes can be expressed
as a concatenation of sequences for all the changes.

4.3.1 Rulebase for Query­based Tweening

Table 1 shows the tweening sequences for the basic clause
changes between two SQL queries. We have included only
the transforms in the tweening sequences. There are stan-
dard visual cues defined for each transform, which are in-
serted in the sequences in Table 1 at proper places as per
the following rules:
‚ delete is preceded by emphasize, and followed by deempha-

size on the table entities on which delete is to be applied.
‚ insert is followed by emphasize, and then deemphasize on

the newly inserted table entities.
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StudentId EnrollmentYear Dept

1 2012 CSE

4 2012 CSE

2 2012 ECE

3 2012 ECE

5 2012 ECE

6 2013 CSE

10 2013 CSE

11 2013 CSE

12 2013 CSE

7 2013 ECE

8 2013 ECE

9 2013 ECE

StudentId EnrollmentYear Dept

1 2012 CSE

4 2012 CSE

2 2012 ECE

3 2012 ECE

5 2012 ECE

6 2013 CSE

10 2013 CSE

11 2013 CSE

12 2013 CSE

7 2013 ECE

8 2013 ECE

9 2013 ECE

EnrollmentYear

2012

2012

2012

2012

2012

2013

2013

2013

2013

2013

2013

2013

EnrollmentYear

2012

2012

2012

2012

2012

2013

2013

2013

2013

2013

2013

2013

EnrollmentYear

2012

2013

EnrollmentYear ECE CSE

2012 3 2

2013 3 4

EnrollmentYear ECE CSE

2012 3 2

2013 3 4

T
1

T
2

T
3

T
4

T
7

T
6

T
5

Figure 8: Result-based tweening for pivot transformation

‚ order is preceded by annotate showing a note with sorting
column, and order(ascending or descending).
The more complex changes in the queries are treated as

follows:
‚ A change in GROUP BY clause is treated as a removal

of a GROUP BY clause followed by an insertion of a new
GROUP BY clause.

‚ A change in HAVING clause between two aggregation
queries is treated as removal/insertion of row groups sim-
ilar to change in WHERE clause for queries which do not
involve aggregation.

‚ In cases where the second query is a pivot query, the tran-
sition is played in following sequence: Told Ñ Tstaging Ñ
Tnew. The resultset Tnew represents the resultset corre-
sponding to the pivot query. Tstaging is the resultset corre-
sponding to a simple aggregation query Qstaging over the
base relation. The aggregation column and the aggrega-
tion measure is the same as that in the pivot query. For
instance for a pivot query Qnew, we specify the staging
query as Qstaging.

Qnew : SELECT * FROM
(SELECT EnrollmentYear , Dept
FROM StudentEnrollment E)
PIVOT (COUNT(Dept) FOR Dept IN ("ECE", "CSE"))

Qstaging : SELECT EnrollmentYear , Dept , COUNT (*)
FROM StudentEnrollment E
GROUP BY EnrollmentYear , Dept

The tweening Told Ñ Tstaging is governed by the rulebase
described in Table 1. We describe the Tstaging Ñ Tnew

transition with the help of the motivating pivot example
tweening shown in Figure 2. This stage can be seen in the
transition from T7 to T12. In this example Count column
is the aggregation measure, Dept column is the pivot col-
umn, and Y ear is the non-pivot column. The transition-
Tstaging Ñ Tnew is designed as follows (Pointers to each
step in the Figure 2 example are provided):
1. Express groupings on non-pivot column using an em-

phasize followed by nest on non-pivot column cells fol-
lowed by separate to differentiate groups and column
headers (T7 Ñ T8).

2. Separate non-pivot column out, and mark column head-
ers for pivot column and aggregation measure for dele-
tion (T7 Ñ T8).

3. Rotate cell-blocks of groups under pivot-column, and
aggregation measure using rotate (T8 Ñ T9).

4. Rotate text in the cells rotated in previous step using
rotate (T9 Ñ T10).

5. Move individual group headers to table column headers
using a delete followed by an insert (T10 Ñ T11).

6. Merge along all separated boundaries usingmerge (T11 Ñ
T12).

Input: Qold, Qnew

Output: Qissue

if typepQoldq ‰ aggregate and

typepQnewq ‰ aggregate then
Qissue ÐÝ Qnew

end

else if typepQoldq ‰ aggregate and

typepQnewq “ aggregate then

if Qold Ă disaggpQnewq then

Qissue ÐÝ disaggpQnewqelse if disaggpQnewq Ă
Qold then Qissue ÐÝ H
else Qissue ÐÝ Qold Y disaggpQnewq

end

else if typepQoldq “ aggregate and

typepQnewq ‰ aggregate then

if disaggpQoldq Ă Qnew then Qissue ÐÝ Qnew

else if Qnew Ă disaggpQoldq then

Qissue ÐÝ disaggpQoldq
else Qissue ÐÝ disaggpQoldq Y Qnew

end

else
if disaggpQoldq “ disaggpQnewq then

Qissue ÐÝ disaggpQoldq
else if disaggpQoldq Ă disaggpQnewq then

Qissue ÐÝ disaggpQnewq
else if disaggpQnewq Ă disaggpQoldq then

Qissue ÐÝ disaggpQoldq
else Qissue ÐÝ disaggpQoldq Y disaggpQnewq

end

return Qissue

Algorithm 1: Query Issue Check

4.3.2 Query Rewriting for Meaningful Tweening

Constructing tweening sequences for most changes through
concatenation is trivial. However, in certain cases where at
least one of Qnew and Qold is an aggregation query, the re-
sults of just these two queries can’t provide enough data
to produce meaningful tweening. We consider tweening se-
quences which convey all the information about construc-
tion of aggregation from constituent tuples as ‘meaningful ’.
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Table 1: Query-based tweening rulebase

Differing Clause Change Tweening Sequence
SELECT delete(columns), insert(columns), order(columns)
WHERE delete(rows), insert(rows), order(rows)

GROUP BY New Group By Clause
order(rows), highlight(rows, cause=aggregation), in-
sert(aggregateColumn), separate(groups), nest(rows), bridge(groups)

GROUP BY Removed Group By Clause delete(aggregateColumn), unnest(rows)

We introduce a check before issuing queries to the backend
to verify if the query being issued would fetch a resultset
that is sufficient to animate the transition to it from the
previous resultset in the session. For cases we know where
it would not be possible to provide a meaningful transition
with the new resultset, we replace the query with an alterna-
tive query without the aggregation clause, and then perform
the required aggregation on client along with tweening. This
is true for pivot queries as well. If we do not have the pivot
aggregation as the preceding query in session, we replace
the pivot query with the statement to fetch all contributing
rows, and perform the aggregation and pivoting on client
along with tweening (as described in the previous section).
The query issue check algorithm is detailed in Algorithm
1. The function disagg(Q) represents the SQL query which
would return the constituent tuples forming the resultset
corresponding to query Q. To construct disagg(Q), we sim-
ply need to strip the group-by clause from Q and substitute
the aggregate-function(measure) part in select clause of Q

with measure.
The algorithm checks if one or both of the queries are ag-

gregate queries. If both of them are not aggregate queries,
then it proceeds normally with the tweening rulebase de-
scribed in the previous sub-section. However, if one or both
of the queries are aggregate queries, it proceeds to check for
containment. A query Q1 is said to be contained in query
Q2, if irrespective of the underlying database, the result of
Q1 is a proper subset of the result of Q2[23]. The relation-
ship between Q1 and Q2 is represented as Q1 Ă Q2. The
algorithm issues the corresponding dissagregation query of
either Qnew or Qold, whichever contains the other. In case
there’s no efficient way of evaluating the containment or the
two queries cannot be described by a containment relation,
the algorithm issues a union of disaggregation queries of
both Qold and Qnew. The union of two queries Q1 and Q2

refers to a query Q which would fetch a result R “ R1 YR2,
where Ri represents the result of query Qi. It is trivial to
show that Q contains both Q1 and Q2.
Correctness Proof: We need to show that Algorithm 1
always issues a query Qissue which would fetch the result-
set that has all the tuples required to generate a meaning-
ful tweening from Rold to Rnew, where Rold corresponds to
the result of Qold and Rnew corresponds to the result of
Qnew. To show a tweened removal/addition of a group-by
clause from/to an aggregate query Q, we need to fetch the
resultset corresponding to disagg(Q). Hence, it is sufficient
to show that for the Algorithm 1 to be correct, Qissue “
disaggpQoldqYdisaggpQnewq for all possible cases. Since the
corresponding resultselt would have all the tuples to show
aggregation/disaggregation to/from Rold and Rnew. By the
earlier definition of disagg, for a query Q without an aggre-
gation clause:

disaggpQq “ Q (1)

For a pair of queries Q1 and Q2, if Q1 Ă Q2 then:

Q1 Y Q2 “ Q2 (2)

Evaluating the expression disaggpQoldq Y disaggpQnewq
for each scenario described in the Algorithm 1, and simplify-
ing the expression by using equations 1 and 2 wherever appli-
cable, we can see that Qissue “ disaggpQoldqYdisaggpQnewq
for all scenarios except one. The exception is for the case
where disaggpQoldq Y disaggpQnewq evaluates to Qold, and
the algorithm sets Qissue to null. This is because Qold has
already been evaluated by the system and its result is avail-
able so it does not need to be issued again.

4.4 Optimizing Tweening Sequence for Reflows
Reflow is the user-blocking UI process for re-calculating

the positions of elements on screen. Tweening sequences
cause reflows for every operation which changes the struc-
ture of the table. It might be possible for us to reduce the
reflow time by reordering the rows before certain insertions
and deletions. We aim to reduce the number of points of
structural changes in the table for reflow-optimization. This
works because the UI would have to recalculate positioning
of fewer blocks with fewer points of changes. Note that
the ‘order’ operation is supposed to be implemented as a
static transformation as opposed to an animated one unlike
the other grammar micro-operations. To optimize a gener-
ated tweening sequence for reflows, we insert the following
procedure before each row-level transforms in the tweening
sequence as it is played out:
1. Find an ordering of rows which would result in least num-

ber of contiguous row blocks to be transformed by the
following micro-operation in the tweening sequence.

2. Insert an order micro-operation in the sequence to achieve
this ordering.
The ordering in the first step is found out by trying out

a sort on each sortable column. It is feasible to try out
a sort on each column as the table size is limited by the
screen size. The mechanism to find the best ordering can be
configured to work by sorting on more than one column at
once. However, this can blow up the search space quickly.
For example, a table with N sortable columns would need
only N sorts if we used single column sorts. The same table
would need N ` NP2 sorts if we checked all the two-column
pairs for sort along with single column sorts. The queries
can be used to determine suitable sorting candidates. In
case the where clause has continuous range conditions, we
use the where-clause columns to determine the appropriate
sorting order. For example, in figure 9, sorting by the year
column on which the where predicate is defined gives the de-
sired tweening sequence. An additional benefit of designing
tweening sequences for reduced reflows is that the opera-
tions now have positional parameters in contiguous blocks,
i.e., we have groups of rows getting inserted to/deleted from
the table instead of the changes being scattered across the
table. This makes it easier for the user to track changes, as
described earlier in Section 2. Figure 9 shows an example
of reflow optimization. The insertion of an order micro-
operation in the original sequence changes the number of
contiguous blocks of table undergoing change from 3 to 1.
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Album Year Rating

A Head Full of 

Dreams

2015 3.52

A Rush of Blood

to the Head

2002 3.50

Ghost Stories 2014 3.02

Mylo Xyloto 2011 3.28

Parachutes 2000 2.57

Viva la Vida 2008 2.60

X & Y 2005 2.37

Album Year Rating

Parachutes 2000 3.52

A Rush of Blood

to the Head

2002 3.50

X & Y 2005 3.02

emphasize(

[r2, r4, r5 , 

r7], cause= 

‘delete’)

delete([r2, 

r4, r5 , r7])

Qold = SELECT Album, Year, 

Rating FROM Table 

ORDER BY Album

Qnew = SELECT Album, 

Year, Rating FROM Table 

WHERE YEAR < 2007

Told

Tnew

Album Year Rating

A Head Full of 

Dreams

2015 3.52

A Rush of Blood

to the Head

2002 3.50

Ghost Stories 2014 3.02

Mylo Xyloto 2011 3.28

Parachutes 2000 2.57

Viva la Vida 2008 2.60

X & Y 2005 2.37

(a) Original tweening sequence

Album Year Rating

Parachutes 2000 3.52

A Rush of Blood

to the Head

2002 3.50

X & Y 2005 3.02

Viva la Vida 2008 3.28

Mylo Xyloto 2011 2.57

Ghost Stories 2014 2.60

A Head Full of 

Dreams

2015 2.37

Album Year Rating

A Head Full of 

Dreams

2015 3.52

A Rush of Blood

to the Head

2002 3.50

Ghost Stories 2014 3.02

Mylo Xyloto 2011 3.28

Parachutes 2000 2.57

Viva la Vida 2008 2.60

X & Y 2005 2.37

Album Year Rating

Parachutes 2000 3.52

A Rush of Blood

to the Head

2002 3.50

X & Y 2005 3.02

Viva la Vida 2008 3.28

Mylo Xyloto 2011 2.57

Ghost Stories 2014 2.60

A Head Full of 

Dreams

2015 2.37

ORDER BY YEAR 

ASCENDING

Album Year Rating

Parachutes 2000 3.52

A Rush of Blood

to the Head

2002 3.50

X & Y 2005 3.02

Told

Tnew

o1 = order([r1, r6, r3, r8, r7, r5, r4, r2]) o2 = annotate(order, {column: Year, order: Ascending} )

o3  = emphasize([r5, r6, r7, r8], cause = ‘delete’) o4 = delete([[r5, r6, r7, r8]])

o1, 

o2

o3 o4

(b) Tweening sequence optimized for reflows
Figure 9: Optimizing tweening sequence for reflows using
row reordering

4.5 Backtracking for low cost tweening
We define the total number of contiguous row/column/-

cell blocks which undergo a transformation throughout the
tweening sequence as the visual cost of tweening. In cer-
tain circumstances, the visual cost of tweening between two
successive queries may be significantly higher than tweening
from a prior query in the session. At this point, it might be
easier to simply ‘backtrack’ to a previous query/result pair,
and then tween to the new query. For example, consider
a query session given by the ordered set tQ1, Q2, Q3u. It
may not be possible to merge these queries, since the inter-
mediate result may inform the next query. Thus, tweening
between each of the Qi and Qi`1 is useful.

Now, there might also be cases where the user backtracks,
or makes slight modifications. E.g.,

Q1= SELECT COUNT (*) FROM TABLE WHERE x > 4;

followed by a generalization of the selection clause, probably
because of fewer data points than expected.

Q2= SELECT COUNT (*) FROM TABLE;

followed by

Q3= SELECT COUNT (*) FROM TABLE WHERE x > 3;

It is possible that there is only one row in TABLE with value
of 3 ă x ď 4, and hundreds of rows with value of x ď 3. In
this case tweening from T2 will involve dropping hundreds of
rows, whereas tweening to T3 from T1 will involve addition
of just one row. If we consider the number of table enti-
ties changing in a tweening sequence as its visual cost, the
tweening from T2 to T3 is around two orders of magnitude
costlier than tweening from T1 to T3. In cases like this, it
might make more sense to backtrack to the resultset T1 from
T2, and then tween to T3. Otherwise it would involve two
consecutive tweening sequences countering each other, and
both with equally high cost.

A similar case can be explained in the context of inter-
active map exploration. The user might be zoomed into a
particular state, and finds it to be of no interest, and de-
cides to focus on another far off state. It is intuitive that a
zoom-out followed by a zoom-in to the new state of interest
would be preferred over a long panning motion.

5. EVALUATION
It is important to provide empirical evidence that tween-

ing does not hurt users’ understanding of resultset trans-
formations, and helps them gain knowledge from otherwise
hard-to-comprehend transformations. We conducted user
studies for objective evaluation of tweening [13].

5.1 User study design
The user studies were designed to validate our system and

to test the following hypotheses:
‚ Tweening does not negatively affect users’ understanding

of transformations
‚ Tweening helps understand and retain changes during ba-

sic transformations, and chains of basic transformations.
‚ Tweening helps understand and learn complex transfor-

mations.
The first two user studies were deployed as online surveys

on Amazon Mechanical Turk (Section 5.2 and Section 5.3).
The pivot user study (Section 5.4) was designed as an in-
person user study. The number of subjects surveyed is re-
ported in each experiment, and statistical test results are
also provided.

5.2 Basic transformation identification
This study was designed to confirm the hypothesis that

“tweening does not negatively affect users’ understanding
of transformations.”, observing whether people can iden-
tify the basic relational algebra operation or the SQL clause
change when shown a representative tweening sequence cor-
responding to it. For relational algebra operations, the users
were tasked with identifying the underlying relational alge-
bra operation from one of these three - selection, projection,
and aggregation. For SQL clause change, the users were
asked to identify the SQL clause which changed between the
input and output query. In addition, they were also asked to
frame the corresponding SQL query for the transformation.
The users were also asked for a text description of the trans-
formation, and whether the tweened transformation helped
them arrive at an answer more quickly. To target users that
were familiar with data transforms, we included two addi-
tional questions to evaluate a user’s familiarity with SQL.
Both the qualification questions required the user to frame
the SQL query which would generate a given resultset from
the provided relation. The response to these questions were
used as a qualification criterion, and the rest of a user’s re-
sponse was evaluated only if they correctly answered these
two questions. The results for these studies are shown in
Table 2.

Table 2: Basic transformation identification
Type of trans-
formation

#
users

Users with correct
operation or query

identification

Users who
found

animation
helpful

Selection 50 50 49
Projection 50 50 48
Aggregation 50 50 42
Change in SE-
LECT

50 49 46

Change in
WHERE

50 50 49

These studies indicate that it is trivial for users familiar
with relational algebra or basic SQL to identify transforma-
tions when they are animated. Most of the users found the
tweening to be helpful in identifying the operation thereby
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validating the tweening sequences generated by our system
as a good representation of the operations. This study con-
firms our hypothesis “tweening does not negatively affect
users’ understanding of basic transformations”.

5.3 Quantifying changes studies
To test the hypothesis that “tweening helps understand

and retain changes during basic transformations”, we showed
a group of users resultset transformations resulting from ba-
sic query changes. We randomly split the users into two
groups with 50 users in each. The non-tween group was
shown just the input and output tables of the transformation
without intermediate visual steps, while the tween group was
shown a tweened version of the same transformation. The
users were asked quantitative questions about the changes
in the transformation corresponding to the query change
such as ‘how many rows were deleted’ in the case of a where
clause change. For each question, users were assigned a score
based on the absolute difference between their response and
the true value. The total user score was calculated as the
sum of such differences across all questions. Thus a lower
score indicates better performance on the task. We ran a
Mann-Whitney U test to analyze the score distributions be-
tween the two groups. We chose this test as the scores do
not follow an approximately normal distribution and the ob-
servations in both groups are independent of each other [16].

Table 3 shows the test statistics for a one-tailed test corre-
sponding to the null hypothesis H0 : P pT ă NT q “ P pT ą
NT q and alternative hypothesis Ha : P pT ă NT q ą P pT ą
NT q where P pT ą NT q denotes the probability of a score
from the tween group exceeding a score from the non-tween
group. The results for this study support our hypothesis
that tweening helps the user retain changes in a transfor-
mation. The test statistics show that the difference in the
tween and non-tween groups was statistically significant for
a significance level of α “ 0.01.

To test how tweening affects a user’s understanding of a
chain or sequence of basic transformations, we replaced the
basic transformations in the previous study with a compos-
ite transformation. The transformation involved selection
on the basis of two different columns, followed by a pro-
jection, and then an aggregation. We asked the users the
same questions as that in the earlier study. These questions
are about the structural information about the transforma-
tions, concerned only with the transforms and the table en-
tity (rows/columns) positions. Another important aspect of
a data transformation is the semantic aspect, which can be
defined as the encoding of table entities (rows/columns) in
terms of the containing data values. Specifically, this en-
tails identification of transforming columns and the shared
data characteristics between transforming rows. In order
to ascertain whether tweening increases the semantic infor-
mation gained from a data transformation, we asked the
users to identify the selection criteria for filtering rows in
the transformation chain described above. The initial selec-
tion in the transformation chain filtered out tuples based on
the data values of two columns. In addition to that, tuples
from the base relation which satisfied a certain criteria on
the data values of one of the columns were added which were
not present in the initial resultset. The users were asked to
identify these criteria on the basis of which rows were deleted
or inserted in the first transformation in the chain. For each
correctly identified criterion, 1 point was awarded.
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Figure 10: User rating for pivot tweening

Table 3: Mann-Whitney U test for quantifying changes
task - basic transformations. The U statistic shows the
number of times observations in one group precede ob-
servations in the other, when all scores are placed in
ascending order. (p ă α) denotes statistical significance.

Type of query change / Ques-
tions

Test statistics (p ă α)?

Change in SELECT clause
1. Number of columns dropped
2. Number of columns added

U “ 547.5, p “

1.026 ˆ 10´9

Yes

Change in WHERE clause
1. Number of rows dropped
2. Number of rows added

U “ 466, p “

3.998 ˆ 10´9

Yes

Change in GROUP BY clause
1. Number of rows constitut-
ing a group

U “ 789, p “

4.79 ˆ 10´4

Yes

Table 4: Mann-Whitney U test for quantifying changes
task - chain of transformations
Questions Test statistics (p ă α)?
Structural info. questions
1. Number of rows dropped
2. Number of rows added
3. Number of columns dropped
4. Number of columns added
5. Number of rows constitut-
ing a group

U “ 414, p “

3.863 ˆ 10´9

Yes

Semantic info. questions
1. Row deletion criteria
2. Row insertion criteria

U “ 528, p “

1.613 ˆ 10´7

Yes

For the analysis of the responses we used the same null and
alternative hypotheses as the previous study and conducted
a one-tailed test. The Mann-Whitney U test statistics are
provided in Table 4. The test statistics reveal the difference
between the score distributions of the tween group and the
non-tween group is statistically significant for α “ 0.01.

5.4 Pivot study
To test the third and final hypothesis – “tweening helps

understand and learn complex transformations”, we had to
design studies that incorporated tweening animations for a
complex transformation.

Given the anecdotal observations discussed in the intro-
duction, we considered pivot to be a complex transformation
for people to identify or work with, given the large and unin-
tuitive schema and data changes involved. We verified this
assumption through a user survey in which we asked 221
people about their experience/knowledge of the pivot trans-
formation. Only 58 of them said they could pivot a table as
per given specification. 201 of these users were workers from
Amazon Mechanical Turk. The other 20 were undergradu-
ate and graduate students from different backgrounds who
participated in an in-person user study in which they had
to rate our pivot tweening sequences for clarity and under-
standability on a scale of 0´10. In addition, we asked them
to specify if the tweening helped them understand the Pivot
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transformation. Figure 10 shows the rating for pivot tween-
ing by each user. 18 out of the 20 users we surveyed found
tweening helpful in understanding Pivot. The users gave the
tweening sequence a mean rating of 8.225 for clarity with a
standard error of 1.24. For understandability, the tweening
sequence got a mean rating of 8.475 with a standard error of
1.31. Hence, from this study it can be concluded users find
tweening helpful in understanding complex transformations.

5.5 Performance Experiment
We evaluated the efficiency of our tweening sequence gen-

eration framework for two OLAP workloads.
Configuration: Workloads were executed on a web app
running an in-memory database set up with sql.js – a
JavaScript port of SQLite (https://github.com/kripken/sql.js/).
Performance was recorded inside Google Chrome running on
a Ubuntu 16.04 PC (Intel Core i7-6500U CPU, 12GB RAM).
Datasets and Workloads: We ran our performance ex-
periment on two datasets - IPUMS, and Datacenter. Dat-
acenter conforms to the motivating example in [11], with a
table events (3 dimensions, two of which are hierarchical):
location[zone:datacenter:rack], time[month:week:hour], iops
The table comprises of 1000 generated tuples. The work-

load run against this dataset is a concatenation of 5 user
query sessions from the DICE user studies, with 10 aggre-
gate queries in each session. The IPUMS dataset is based
on the Integrated Public Use Microdata Series, International
and uses a 2000 unit sample extracted from the 1980 US cen-
sus IPUMS[22]. The database table consists of 4 dimensions,
3 of which are hierarchical:
city[region:state:city], race[mrn:racegroup:race], sex, occupa-
tion[category:subcategory:branch:occupation]

A workload with an exploratory user query session of 13
aggregate queries against this dataset was generated using
the CubeLoad [19] parametric OLAP workload generator.

The table size used for studies is well over the number of
rows displayable on a regular screen without visual clutter.
Results: For both workloads, we ignore the execution of
the 1st query as the first result in the query session is not
tweened. The total time taken for execution of rest of the
queries along with tweening sequence generation is com-
pared against the total time taken for the execution of queries
without tweening. The execution times are averaged over 5
runs. For IPUMS, the total time required for workload ex-
ecution with tweening is 830.7 ms – 57.11 ms more than
without tweening. Tweening adds on an overhead of about
7.3 percent. The average query execution time goes up from
64.47 ms to 69.23 ms which is low enough to maintain in-
teractivity. For Datacenter, the total time taken for query
execution without tweening is 747.91 ms. Tweening adds
a 2.63 percent overhead to make the total execution time
767.55 ms. The average query execution time goes up from
15.26 ms to 15.66 ms, showing little change. This validates
that our approach of tweening generation can provide sub-
stantial benefits without sacrificing interactivity.

6. RELATED WORK
While our research focuses on solving a core database

problem, we build our ideas upon a wide body of litera-
ture, ranging from data-focused research in provenance and
data diffing to animation and visualization research.
Provenance Visualization: Cheney et al. [5] describe the
notion of provenance (“why”, “how”, and “where” prove-

nance) and their applications. We visualize all three prove-
nances of records in a resultset while tweening a transforma-
tion. Ragan et al. [18] present an organizational framework
for different types of provenance(data, visualization, insight,
interaction, rationale) in visual analytics. In this work, while
we only visualize data provenance and make use of data/in-
teraction provenance for tweening sequence optimizations,
there is tremendous scope to build more provenance capa-
bilities upon our framework.
Diffing heuristics: There are several methods in litera-
ture to effectively find deltas between structured data. Pe-
ters’ [14] survey of change detection in XML trees can be di-
rectly applied to the DOM trees of the new and old resultsets
for web based query interfaces. Zhang and Shasha [10] pro-
vide fast algorithms for finding the edit distance between two
trees, which is equivalent to finding the delta between two
consecutive resultset DOM trees in a query session. Face-
book’s React (https://facebook.github.io/react/) uses heuris-
tics to further reduce this complexity from O(n3) to O(n).
Impact of Animation: There is a significant body of work
studying and motivating the role of animation in user inter-
faces. Gonzalez [7] established through user studies that
smooth, realistic, and interactive animations can facilitate
decision making. Heer and Robertson [8] studied the effects
of animated transitions in graphical perception of changes
between statistical data graphics. Their findings suggest
animated transitions are favored by users even in the cases
where they do not significantly aid in perception of changes,
heavily motivating our work.

Tversky et al. [26] present the conditions required for an-
imated graphics to be better than their static counterparts,
and proposed the congruence and apprehension principles
for building successful animated graphics, which we follow.
Robertson et al. [20] justify the use of animation, remark-
ing that “user interfaces must maintain continuity as abrupt
transitions cause a momentary sense of disorientation in
users.” While these principles and insights are designed for
graphical animations, there has not been any work studying
applicability of these principles to structured information,
which this paper investigates.
Animation and Visualization techniques: Wu et al. [28]
presented animation techniques to visualize focus and con-
text regions in volumetric data, and their 3D relationships.
Wittenberg and Sigman [27] used variable font scaling and
color to accomplish visual emphasis in their animated tran-
sitions for Web Information Treeviewer. Building upon this
work, we use visual cues such as colors, action annotation,
and directional arrows alongside animation to highlight re-
gions of focus, and positional layout of the animation to
establish context and data lineage.
Temporal data visualization: Kim and Cova [12] in-
troduced a rule-based grammar for interpolating between
discrete temporal snapshots of geographic processes. They
use a generalized set of process-informed rules to provide
a tweening sequence in a better geographical context. Our
tweening grammar is a rule-based grammar where the rule
antecedent is the change or delta between two consecutive
queries. Tweening in query sessions can be thought of as
event-based visualization in case they involve a human-in-
the-loop. Muller and Schumman [15] in their work present a
study of visual exploration of time-dependent or event-based
data using aforementioned visualization techniques.
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7. CONCLUSION AND FUTURE WORK
In this paper, we introduce the concept of data tweening,

and detail a framework for the incremental visualization of
SQL resultset transformations that considers both the re-
sultsets and the queries in the session. Through controlled
user studies, we demonstrate that tweening helps users gain
more information about data transforms as compared to the
standard visualization. While the inclusion of new visual
feedback is a concern, we discovered that tweening does not
negatively affect the users’ understanding. Additionally, we
verified that generating tweening sequences during a query
session execution does not add a significant overhead.

We began with establishing the need for animation in re-
sultset transformations, especially for highly interactive di-
rect manipulation interfaces. We designed a visual gram-
mar based on established graphics and animation design
principles, and developed a framework to automatically in-
terpolate between resultsets and generate tranformation se-
quences based on changes in the resultsets, using the visual
grammar. Further, we were able to generate better tween-
ings by considering not just the changes in the resultsets,
but also looking into changes in the query itself.

We then conducted user studies to verify the efficacy of
tweening in correct portrayal of transformations, and its
advantages over standard visualization of transforms. We
found significant advantages of tweening over standard trans-
formation visualization, with a majority of the users pre-
ferring tweening over standard visualization. Users found
tweening helpful in understanding a complex transforma-
tion – the pivot operation, most of them citing “highlighted
groupings” and “breaking down into simpler steps” as pri-
mary reasons. We conducted a performance experiment
to establish that tweening sequence generation can be per-
formed without hampering system’s interactivity during a
query session. For two different OLAP workloads, we com-
pared the total execution time of queries with and without
tweening. We found that introducing tweening increases the
overall execution time by a small fraction.

A natural follow-up for this work would be tweening for
very large resultsets. The grammar provided here works well
for data that fits on screen, with ample space to accommo-
date changes in layout because of operations like ‘separate’
and ‘rotate’. One way to handle large resultsets would be
to provide template tweening sequences for a smaller sample
of the resultset and providing visual generalization cues for
the rest of the resultset. The template tweening sequence
will have to satisfy the following constraints:
‚ The maximum number of tuples in any of the intermedi-

ate resultsets in the tweening sequence cannot exceed a
certain number which is limted by the screen size

‚ The sequence of micro-operations in the template tween-
ing sequence should be the same as that in the original
tweening sequence (tweening sequence with no screen size
constraint)
We also plan to study the difference in user performance

and satisfaction for data analysis tasks on direct manipula-
tion based query specification interfaces with and without
tweening.
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