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Abstract Applications in the water treatment domain

generally rely on complex sensors located at remote sites.

The processing of the corresponding measurements for

generating higher-level information such as optimization of

coagulation dosing must therefore account for possible

sensor failures and imperfect input data. In this paper, self-

organizing map (SOM)-based methods are applied to

multiparameter data validation and missing data recon-

struction in a drinking water treatment. The SOM is a

special kind of artificial neural networks that can be used

for analysis and visualization of large high-dimensional

data sets. It performs both in a nonlinear mapping from a

high-dimensional data space to a low-dimensional space

aiming to preserve the most important topological and

metric relationships of the original data elements and, thus,

inherently clusters the data. Combining the SOM results

with those obtained by a fuzzy technique that uses marginal

adequacy concept to identify the functional states (normal

or abnormal), the SOM performances of validation and

reconstruction process are tested successfully on the

experimental data stemming from a coagulation process

involved in drinking water treatment.

Keywords Anomaly detection � Coagulation process �
Data validation � Drinking water treatment � Missing data

reconstruction � Self-organizing maps

1 Introduction

To improve drinking water quality while reducing operating

costs, many drinking water utilities are investing in

advanced process control and automation technologies. The

use of artificial intelligence technologies, specifically arti-

ficial neural networks [7, 9, 15], is increasing in the drinking

water treatment industry as they allow for the development

of control tools capable to meet the requirements of these

production units in order to obtain an optimal treatment and

guarantee a good quality of supply. Given the strong evo-

lution of the raw water characteristics, an important prop-

erty for such system is indeed the robustness with regard to

the sensors failings or to the unexpected raw water char-

acteristics, owing to accidental pollution for example.

Coagulation process is one of the critical processes per-

formed in the drinking water treatment, involving many

biological, physical, and chemical phenomena [17]. The

control of a good coagulation is essential for maintenance of

satisfactory treated water quality and economic plant

operation. Thus, an over-dosage can lead both to an increase

in the operating costs and to public health concerns. While

an under-dosage can cause failure to meet the water quality

targets, as the coagulation has a strong impact on the clar-

ification step. The main objective of this work is to validate
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and rebuild the measurements of characteristics raw water

so as to provide reliable inputs to the automatic coagulation

control system (Fig. 1).

In many anomaly detection applications, abnormal

(negative) samples are not available at the training stage. For

instance, in a computer security application, it is difficult, to

have information about all possible attacks. In the machine-

learning approaches, the lack of samples from the abnormal

class causes difficulty in the application of supervised

techniques. Therefore, the obvious machine-learning solu-

tion is to use an unsupervised algorithm. For this, we adopted

an unsupervised learning approach based on the self-orga-

nizing map algorithm introduced by Kohonen [12]. The self-

organizing map is one of the most popular artificial neural

network models in the unsupervised learning category. It has

been successfully applied in various engineering applica-

tions [13] covering, for instance, areas like data classification

[26], process monitoring and control [2, 10], and fault

diagnosis [21]. It has also proven to be a valuable tool in

process control of water treatment [23–25].

This paper will first describe the application site chosen

for data validation and missing data reconstruction. The

integrated research approaches we are undertaking to pre-

processing raw water characteristics are given in Sect. 3.

Finally, experimental results are presented and discussed in

Sect. 4.

2 Overview of study area

The drinking water treatment plant concerned in this study

is the drinking water treatment Rocade plant located at

Marrakech, Morocco. It provides water to more than

1.5 million inhabitants. The raw water is extracted from the

Rocade channel. In case of resource failure (raw, pollution,

etc.), the treatment plant takes raw water from the pumping

plant Takerkoust. Sixty percent of the city needs are ensured

by this plant, the complement is brought by underground

resources (well, drilling, etc.). It has a nominal capacity to

treat 1,400 l/s of water. The treated water is stored in two

tanks and transported through the water supply network.

The drinking water treatment plant involves physical and

chemical processes. Figure 2 presents a schematic overview

of the various operations needed to treat the raw water in the
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Fig. 1 Structure of system for

automatic coagulation control
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Fig. 2 Simplified synopsis of the Rocade water treatment plant
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Rocade plant. The treatment consists essentially of pre-

liminary disinfection, coagulation–flocculation, settling,

filtration, and final disinfection.

Preliminary disinfection (chlorination) is usually a

necessary pre-treatment step that destroys disease-causing

bacteria, parasites and other organisms generating tastes

and undesirable odors. The second stage is coagulation that

involves the addition of a chemical coagulant, typically

aluminum sulfate, used for destabilization (charge neu-

tralization). A bulky precipitate is formed, which electro-

chemically attracts solids and colloidal particles. The solid

precipitate is removed by allowing it to settle at the bottom

of the tank and then periodically removing it as sludge.

Then, the flocculation combines small particles into larger

ones that settle out of the water as sediment. Synthetic

organic polymers are generally used to promote coagula-

tion settling or sedimentation occurring naturally as floc-

culated particles settled out of the water. The next stage is

the filtration process, where the particles passing through

the previous stages are removed. The filtered water is also

treated by a final disinfection to eliminate the last micro-

pollutants. The water is then stored in a tank and ready to

be transported through the water supply network.

3 Anomaly detection approaches

The anomaly detection problem can be stated generally as

a two-class classification problem: given an element of the

space, classify it as normal or abnormal. Different termi-

nologies can be used, such as novelty or surprise detection

[5], fault detection [6], and outlier detection [20].

Accordingly, many approaches have been proposed, which

include statistical [22], machine learning, and immuno-

logical inspired techniques [8].

In a preliminary survey [16], an identification of dif-

ferent functional states (normal or abnormal) describing the

behavior coagulation process has been carried out. The

identification idea is the evaluation of the significant sys-

tem measurements (pH, temperature, total suspends solid,

conductivity, dissolved oxygen), to recognize the normal

and abnormal functional states. The identification of

functional states is based on the iterative application of

LAMDA (learning algorithm for multivariate data analy-

sis) classification technique. The LAMDA methodology

allows the aggregation and exploitation all information

stemming from the environment process as well as expert

knowledge. Raw data associated with normal state are

perfectly valid (positive samples), and in the other case,

raw data are declared outliers (negatives samples).

Although this simple approaches proves to be sufficient in

most cases, the detection of inconsistencies in the data

involving more than one parameter and as well as their

reconstruction requires the use of more sophisticated

techniques such as Kohonen maps. Thus, the main purpose

of this study is to analyze the SOM performances on the

validation and reconstruction of the raw water character-

istics, and this is in combination with classification results

already obtained through LAMDA methodology.

3.1 Fuzzy technique for anomaly detection

The LAMDA (learning algorithm for multivariate data

analysis) methodology is a classification technique intro-

duced by Aguilar-Martin et al. [1] and developed by

Piera-Carreté et al. [19]. More recent studies [11, 16, 18, 29]

have described in detail the methodology as well as the

algorithms and functions used. LAMDA is a fuzzy meth-

odology of conceptual clustering and classification. It

allows the representation of classes or concepts by means of

the logic connection of all marginal information available.

The formation and the recognition of classes are based on

the attribution of each object to a class according to the

heuristic rule of maximal adequacy. An object is then most

likely to belong to the class that presents the greater ade-

quacy degree (GAD). It models the total ‘indistinguish-

ability’ (chaotic homogeneity) or homogeneity inside the

description space from which the information is extracted.

This is done by means of a special class called the non-

informative class (NIC). This class accepts all items with

the same adequacy; therefore, it introduces naturally a

classification threshold. According to Fig. 3, LAMDA has

two fundamental steps: learning and recognition.

3.1.1 Learning

At the first stage of learning step (self-learning or unsu-

pervised learning), no previous information is given and

LAMDA generates clusters or classes. In this case, it

allows obtaining different classifications with the same

data set, by changing LAMDA parameters. Using this

strategy on a known data set, the expert proceeds to a

knowledge-based interpretation of such classes. He modi-

fies the LAMDA parameters in order to improve the quality

of the final classification. The classes and updated learning

parameters are the output of this initial learning stage. On

the second stage (supervised learning), this learning allows

performing a different number of choices, like learning

from an initial set of classes, which can be modified by

adding new classes or by updating their parameters or both.

3.1.2 Recognition

It has two alternatives, either the user allows unclassified

individuals, meaning that an individual has not been rec-

ognized in any class (its adequacy degree is lower than the

Neural Comput & Applic

123



minimum threshold) and has been placed in the NIC class,

or force every individual to be assigned to a class, in this

last case the non informative class is not taken into account

for recognition.

The MAD concept is a term related to how similar is one

object descriptor to the same descriptor of a given class,

and GAD is defined as a membership degree of one object

to a given class. Classification process is performed

according to a similarity criteria computed in two stages

(Fig. 4). First MAD to each existing class is computed for

each object descriptor. Second, these partial results will be

aggregated in order to get a GAD of an individual to a

class. Given that MAD depends on the nature of each

descriptor, the algorithm uses general possibility functions.

For quantitative descriptors, there are several options

introduced in [29] to compute the MAD. One possibility

function applied is a fuzzy extension of the binomial

probability function, which gives as result the following

expression:

MAD xi qj;i

�
�

� �

¼ q1�dj;i

j;i � 1� qj;i

� �dj;i with

dj;i ¼ xi � cj;i

�
�

�
� ð1Þ

where qj,i is the possibility of the observed element to

belong to a class Cj; x is the normalized value of the

quantitative descriptor for a particular element; and cj,i is

center of Cj.

GAD computation is performed as an interpolation

between T-Norm and T-Conorm by means of the a
parameter. a = 1 represents the intersection and a = 0

means the union. In [30], some connectors used for GAD

computation are presented.

GADa MAD1; . . .;MADnð Þ ¼ aT MAD1; . . .;MADnð Þ
þ ð1� aÞS MAD1; . . .;MADnð Þ: ð2Þ
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3.2 Data validation and data reconstruction

using self-organizing maps

3.2.1 General considerations in SOM

The self-organizing feature maps draw some inspiration

from the way we believe the human brain works. Research

has shown that the cerebral cortex of the human brain is

divided into functional subdivisions and that the neuron

activity decreases as the distance to the region of initial

activation increases [12]. There are several public domain

implementations of SOM, of which we would like to

highlight the SOM_PAK and Matlab SOM Toolbox, both

developed by Kohonen’s research group.

The Kohonen’s SOM is trained using unsupervised

learning to produce low-dimensional representation of the

training samples while preserving the topological properties

of the input space. It performs a topology preserving map-

ping from high-dimensional space onto map units so that

relative distances between data points are preserved. The

map units, or neurons, form usually a two-dimensional

regular lattice. The SOM can thus serve as a clustering tool of

high-dimensional data. It also has capability to generalize,

i.e. the network can interpolate between previously

encountered inputs. Each neuron i of the SOM is represented

by an N-dimensional weight mi ¼ mi1;mi2; . . .miN½ �;where n

is the dimensional of the input vectors. The weight vectors of

the SOM form a codebook also called prototype vectors or

referent vectors. The neurons of the map are connected to

adjacent neurons by a neighborhood relation, which dictates

the topology of the map. Usually rectangular or hexagonal

topology is used. Immediate neighbors (adjacent neurons)

belong to neighborhood Ni of the neuron i. In the basic SOM

algorithm, the topological relations and the number of neu-

rons are fixed from the beginning. The number of neurons

determines the granularity of the mapping, witch affects

accuracy and generalization capability of the SOM. In the

training phase, a given training pattern x is presented to the

network, and the closest unit is selected. This unit is called

best matching unit (BMU), denoted here by b:

x� mbk k ¼ min
i

x� mik kf g ð3Þ

where x� mik k is a distance measure, typically Euclidean.

After finding the BMU, the weight vectors of the SOM

are updated. The BMU and its topological neighbors are

moved closer to the input vector in the input space. The

update rule [12, 27] for the weight vector of unit i is:

miðt þ 1Þ ¼ miðtÞ þ aðtÞ � hbiðtÞ � x� miðtÞð Þ½ � ð4Þ

where a(t) is the learning rate and hbi(t) is the neighbor-

hood function how much unit i is updated when unit b is

the winner. Both parameters decrease with time in the

learning phase.

The SOM algorithm can be easily described as shown

below: the first step is to define the network size, the

initial learning rate and neighborhood radius. There are no

theoretical results indicating the optimal values for these

initial parameters. This way the user’s experience plays a

major role in the definition of these parameters and can be

of paramount importance in the outcome of the method.

The second step is the initialization of the unit’s weights.

These may be randomly generated, providing they have

the same dimensionality as the training patterns. The next

step is to initialize the training phase of the algorithm. For

a number of iterations defined by the user, each pattern

from the data set is selected and presented to the network.

Based on Euclidean distance, the nearest unit BMU is

found. The update phase consists on the update of the unit

weights and depends on the distance of each unit to the

BMU and to the training pattern, and on the neighborhood

function and learning rate. In order for the SOM to

converge to a stable solution, both the learning rate and

neighborhood radius should converge to zero. Usually,

these parameters decrease in a linear fashion but other

functions can be used. Additionally, the update of both

parameters can be done after each individual data pattern

is presented to the network (iteration) or after all the data

patterns have been presented (epoch). The former case is

known as sequential training, and the latter is usually

known as batch training.

The sequential training is usually performed in two

phases. In the first phase, relatively large initial learning

rate and neighborhood radius are used. In the second phase,

both learning rate and neighborhood radius are small right

from the beginning. This procedure corresponds to first

tuning the SOM approximately to the same pace as the

input data and then fine-tuning the map. After finding the

BMU, the weight vectors of the SOM are updated

according to equation (Eq. 4) so that the BMU is moved

closer to the input vector in the input space.

The difference in batch training when compared training

relies on the unit’s updating process and on the non-obli-

gation to randomly present the training patters to the net-

work and sometimes the learning rate also be omitted. In

each epoch, the input space is divided according to the

distance between the map units. The division of the input

space is made using Voronoi regions. These regions are

polygons that include all points that are closer to a unit than

to any other. The new units’ weights are in this case cal-

culated [28] according to:

miðt þ 1Þ ¼
Pn

j¼1 hbiðtÞ � xj
Pn

j¼1 hbiðtÞ
ð5Þ

where b is the BMU for the training pattern xi and hbi(t) is a

neighborhood kernel centered on the winner unit. The new

weight vectors are a weighted average of the training
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patterns where the weight of each data pattern is the

neighborhood function value hbi(t) to its BMU.

The quantization error and the topographic error are one

of the several ways to evaluate the quality of a SOM after

the training phase. If two prototype vectors close to each

other in the input space are mapped wide apart on the grid,

this is signaled by the situation where two closest best

matching units of an input vector are not adjacent units.

This kind of folds is considered as an indication of the

topographic error in the mapping. The topographic error

can be calculated as the proportion of sample vectors for

which two best matching units are not adjacent (Eq. 6).

et ¼
1

n

Xn

i¼1

uðxiÞ ð6Þ

where n is the number of samples, xi is the ith sample of the

data set and u(xi) = 1 if the first and second best matching

units of are not adjacent units, otherwise zero.

Moreover, the prototype vectors try to approximate to

the data set. A consequence of this approach is the reso-

lution error or the quantization error. To measure the res-

olution of the mapping, the average quantization error

(Eq. 7) over the whole testing data set is usually used.

eq ¼
1

n

Xn

i¼1

xi � mbk k ð7Þ

The number of map units determines the accuracy and

generalization capability of the SOM. The bigger the map

size the lower the quantization error, but the higher the

topographic error. This is due to the neural network folds to

reduce the quantization error. Moreover, the bigger the

map size the higher the computational cost. Therefore,

there is compromise between the increase in the

topographic error and the reduction in the quantization

error. A reasonable optimum solution of the compromise

among the quantization error and the topographic error to

determine the side lengths of the map is the heuristic

formula (Eq. 8).

N ¼ 5
ffiffiffi
n
p

ð8Þ

N is the number of map units and n is the number of the

training data samples.

3.2.2 Application to data validation

The invalid data have always been considered like a source

of information distortion gotten from raw data. It is

therefore necessary to highlight the diversity of available

methods to interpret or to characterize these abnormal

values, either while rejecting them in order to restore the

data initial properties or while adopting methods that

decrease their impact during the statistical analysis [3, 20].

Neural approaches’ application to invalid data and

reconstruction include generally the auto-associative neural

networks (AANN) and Kohonen’s SOM [25]. The AANN

approach is to train a multilayer feedforward network to

approximate the identity function by using target values

identical to the input values. The hidden layer allows typ-

ically limiting the capacity and forces optimally the net-

work to encode input vectors, to therefore give an
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Fig. 5 Raw water characteristics used for SOM modeling and

LAMDA classification. a Temperature measurement with artificial
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information compression and dimensionality reduction.

With a single hidden layer of linear units, this approach

proved to be equivalent to the principal component analysis

[14]. Consequently, more complex networks with nonlin-

earities can be seen like implementing some form of

‘‘nonlinear PCA’’. In Ref. [3], a multilayer perceptron with

five layers has proposed for data validation and recon-

struction. This network can be considered like two networks

with three layers connected in series. The first network

combines the redundant variables in a smaller number of

variables supposed to represent the essential features of

process. The second network uses the information com-

pressed to rebuild the initial redundant measurements of the

input space. This network can be used to detect invalid data,

which are identified by their higher reconstruction error.

However, the efficiency of such a system in the presence of

incomplete input data is not fully predictable.

In this study, Kohonen’s SOM is used for failure data

detection and reconstruction. The SOM model combines

the goals of projection and clustering algorithms and may

be seen as a method for automatically arranging high-

dimensional data. In our case, self-organizing maps allow

not only to visualize the evolution of raw water charac-

teristics in two dimensions, but also to detect atypical

data by computing the distance between each input vector

and its closest reference vector. The basic idea of data

validation approach consists in determination of a confi-

dence degree in every data sample, based on monitoring

this distance. The validity of a characteristic measure-

ment, for instance, may be put for different reasons: (1)

the value is abnormally high or low; (2) the variation

between two successive measurements is too important;

(3) and the value is incompatible with other measure-

ments of the same quantity obtained by an independent

device, etc.

Given a N prototype vectors mi; . . .mNf g: Every proto-

type mk represents a Ck class. The reference space is

divided thus into N classes N Ckð ÞNk¼1: To determine the

Fig. 6 Anomaly detection

results by LAMDA

methodology. a States

associated. b Descriptors

normalized
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confidence degree involves defining the activation of unit i

for input x using a Gaussian kernel as:

hiðxÞ ¼ exp
�1

2r2
i

x� mik k2

� 	

ð9Þ

where ri
2 is a parameter defining the size of the influence

region of unit i. ri
2 may be computed as the average

empirical variance of the n input features, among the

samples associated with unit i. More ri
2 is bigger; more the

influence region of mi is bigger, and therefore more hi(x) is

closer to 1.

If the activation hb(x) of the winning prototype is

smaller than a specified threshold, the current sample is

considered as abnormal. The contributions of each of the

components of vector x to the distance x� mbk k are then

examined to determine more precisely which data should

be declared as abnormal.

3.2.3 Application to data reconstruction

If vector prototypes provide a good data representation,

each missing value of a given input variable can be esti-

mated by the value of the corresponding component of the

winning prototype.

Given x a new vector, composed of two parts xo and xm,

containing, respectively, observed and missing values. The

main thing is to rebuild xm from the information provided

by Kohonen’s card. The method proposed rest on similarity

between this new vector x = (xo, xm) and the reference

vectors mk. Given Xo and Xm the under-spaces, respec-

tively, of xo and xm variables. mo and mm are the projections

of these under-spaces. According to the activation defined

by the Eq. 9, more xo is closer to mo, more we will have

chance that xm is closer.

hi xoð Þ ¼ exp
�1

2r2
i

xo � mo
i











� 	

ð10Þ

The approaches of missing data estimation call for the

various techniques, generally presupposing a probabilistic

context. For instance, the heuristic methods (such as

average and median replacing techniques) are often used

and also constitute some simple and little expensive

solutions. The parametric methods of maximization, as

the EM (expectation maximization) algorithm [4], are

extensively used and proved their efficiency, but they

require the knowledge or the estimation laws of the

variables probabilities. In our case, we can use a simple

method that estimates missing data by the component value

corresponding to winning prototype mb:

8p 2 MðxÞ; x̂p ¼ mbp ð11Þ

where M(x) is the indexes set of missing values.

This method is very sensitive to the prototype change

between two successive vectors x. To resolve this problem,

we considered another method that takes in account the

influence of the k nearest prototypes. Each missing or

Table 1 States associated with

classes detected by LAMDA

methodology

Class name (11 classes) State associated (8 states) State name Functioning

type

LowSaison Normal NF (S1) NF

HighSaison Normal NF (S1)

Descriptor_Normal Normal NF (S1)

Descriptor_Low Descriptor_Alarm AF_AS (S4) AF

Descriptor_Very_Low Descriptor_Alarm AF_AS (S4)

Descriptor_Slightly_Low Descriptor_Alarm AF_AS (S4)

Descriptor_Elevated Descriptor_(Slow ? Stop) AF_T (S2)

Descriptor_Very_Elevated Descriptor_(Slow ? Stop) AF_T (S2)

Descriptor_Very_Elevated

and artificial Fault

Descriptor_(Slow ? Stop) AF_T (S2)

Artificial Fault Artificial Fault AF_IF (S3)

NIC Not-Recognized State NRS (S0) NRS

Table 2 SOM training parameters

Map lattice Map size Neighborhood function Neighborhood radius Initial learning rate Learning rate function (inv) Epochs

Hexagonal 25 9 10 Gaussian rfin = 1 a0 = 0.95 aðiÞ ¼ a0

1þð100�i=TÞð Þ 125 9 102

Neural Comput & Applic

123



pH Temperature

Conductivity Total Suspend Solids Dissolved Oxygen

0.78

0.8

0.82

0.55

0.6

0.65

0.7

0.75

0.116

0.1165

0.117

0.1175

0.02

0.025

0.03

0.035

0.81

0.82

0.83

Fig. 7 Component planes of

the SOM for 5 descriptors

(a) 

0 500 1000 1500 2000 2500 3000
0.7

0.75

0.8

0.85

0.9

0.95

1

Sample

B
M

U
 a

ct
iv

at
io

n 
 

(b) 

0 500 1000 1500 2000 2500 3000
-0.8

-0.6

-0.4

-0.2

0

0.2

Sample

D
is

ta
nc

e 
be

tw
ee

n 
B

M
U

 a
nd

 p
H

 d
es

cr
ip

to
r 

Fig. 8 a Activation of the winning prototype. b Computed distance

between winning prototype and pH descriptor

(a) 

0 500 1000 1500 2000 2500 3000
0.75

0.8

0.85

0.9

0.95

1

Sample

B
M

U
 a

ct
iv

at
io

n

new samples 
detected

(b) 

0 500 1000 1500 2000 2500 3000
-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Sample

D
is

ta
nc

e 
be

tw
ee

n 
B

M
U

 a
nd

 T
 d

es
cr

ip
to

r

Fig. 9 a Activation of the winning prototype. b Computed distance

between winning prototype and temperature descriptor
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invalid value j is estimated by a combination of the cor-

responding component in the k nearest prototypes:

x̂ðjÞ ¼
Pk

i¼1 hðiÞmiðjÞ
Pk

i¼1 hðiÞ
ð12Þ

where mi(j) denotes component j of prototype i.

4 Results and discussion

4.1 Database description

The experimental data for 4 years (2,511 samples) are used

to identify the functional states (normal, abnormal, transi-

tion) by LAMDA methodology and at once to validate the

detected failures before the reconstruction stage. We used 5

descriptors of raw water quality stemming from Rocade

plant such as temperature (T), pH, TSS (total suspend

solids), dissolved oxygen (DO), and conductivity (COND).

Note that this data set covers a period of 4 years and so can

be expected to account for seasonal variations of water

quality. The temperature, pH and TSS parameters are

strongly dependent on the seasonal phenomena (Fig. 5).

According to knowledge of operator plant and our inter-

pretations, this data set contains 963 negative samples:

• Thirty-seven negative samples associated with very low

variations of pH.

• Seventy-three high measurements of TSS: the Rocade

plant is in alarm state. It is normally in a slowing state,

and it can change from this state to a stop state.

• One hundred and seven negative samples assigned to

some very elevated measures of conductivity (caused

by the presence of chlorides) with a very low variation

of dissolved oxygen.

• Eight hundred and ten negative samples representing

low variations of dissolved oxygen. In order to assess

the robustness of the validation approach, 9 faults are

introduced simultaneously in original samples (808…,

816) of temperature and conductivity descriptors.

Seventy-two low variations of temperature have been

also considered as the negative samples.

4.2 Anomaly detection using LAMDA technique

In this stage, the algorithm carefully chosen to compute the

marginal adequacy degrees is MAD xi qj;i

�
�

� �

¼ q1�dj;i

j;i
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Fig. 10 a Activation of the winning prototype. b Computed distance

between winning prototype and conductivity descriptor
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Fig. 11 a Activation of the winning prototype. b Computed distance

between winning prototype and TSS descriptor
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� 1� qj;i

� �dj;i : The minimum–maximum was selected as

the connective family. To calculate the global adequacy

degrees, we adopted an exigency level equal to a = 0.85.

Figure 6 and Table 1 show the different states obtained by

the unsupervised learning on the coagulation process.

These significant states are characterized from the classi-

fication information (class profile, membership matrix,

etc.) [11]. While exploiting the information stemming from

profile classes, e.g., normalized parameters of every class,

we can note that some classes present sometimes a similar

characteristics and the expert can decide to regroup these

classes in a single state. Eleven classes have been identi-

fied, and according to their profile, eight functional states

have been detected. This information allows us to identify

significant classes and those that can be regrouped in a

single state. To sum up, it was possible to identify tree

types of functional states:

• Normal Functioning ‘‘NF’’. The plant operates in the

normal conditions, e.g., the describers operate with the

optimal values in the high and low season (the plant

operates normally in most of the time). A total of 1,610

samples have been associated with this state.

• Abnormal Functioning ‘‘AF’’. This abnormal state

includes the following: (1) the negative samples of

degraded operation identified beside normal operation.

The plant is in Alarm State ‘‘AF_AS’’; (2) artificial

faults that we introduced ‘‘AF_IF’’; (3) and other

negative samples that can be denoted as Transition

‘‘AF_T’’ (the descriptors may return after one time

more or less long to the normal state). Eight hundred

and ninety-eight samples have been associated with the

functional state ‘‘AF’’. Among 898 samples, 72 low

variations of temperature have been already identified

as the normal samples.

• Not-Recognized State ‘‘NRS’’. We also see that 3

negative samples (213, 2,118, and 2,119) are not

recognized by LAMDA technique. The tree samples

have been placed in the NIC class.

4.3 Data validation and data reconstruction using SOM

approach

For the SOM simulation results, we used the SOM toolbox

version 2.0 beta developed at the Helsinki University of
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Fig. 12 a Activation of the winning prototype. b Computed distance

between winning prototype and dissolved oxygen descriptor
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Technology [28]. All descriptors are normalized in the

same ranges (as by LAMDA). SOM network was trained

using sequential training algorithm. Table 2 presents the

training parameters adopted during this phase. The quan-

tization error and topographic error computed are, respec-

tively, equal to 0.26 and 0.19.

Figure 7 shows the component planes of a Kohonen

map of size 10 9 25 trained on the whole data set. Each

component plane shows the value of each neuron to esti-

mate the data variable of the input space. The value is

indicated with color, and the color bar on the right shows

what the colors mean. The highest values correspond to

dark regions and the lowest ones to light zones. It is useful

to determine the several zones where the variable value is

high or low and to observe any correlation or relationship

among the process variables. These correlations can be

detected by means of the color gradient on each component

plane. Two variables with parallel gradients show a direct

correlation. On the other hand, anti-parallel gradients show

an inverse correlation. For instance, the temperature, pH

and TSS descriptors have parallel gradients in their com-

ponent planes, and therefore these tree variables are posi-

tively correlated. The dissolved oxygen is inversely

(negatively) correlated to these descriptors. Such relation-

ships between input variables are captured by the SOM and

are exploited for the reconstruction of missing measures.

We have 2,511 vectors of the training set. We consid-

ered that 963 measurements (38.35%) of these data are

abnormal. Afterward, we calculated the activation of win-

ning prototype for these vectors. We sorted data in

ascending order of activation. The threshold has corre-

sponded therefore to the BMU activation of (38.35 9 N/

100, N = 2,511) rank. We consider therefore that 38.35%

of data set has a too small activation to be considered like

invalid (abnormal). The threshold computed is equal to

0.984. The input vectors whose hb(x) \ 0.984 are then

declared invalid.

The significance of the components with respect to the

clustering is harder to visualize. One indication of impor-

tance is that on the borders of the clusters, values of

important variables change very rapidly. The mask of the

given map is used. It allows determining the quantization

errors for such descriptor without the other variables con-

tribution total. In order to visualize which descriptor should

be declared precisely as faulty, the contributions of each of

the components of vector x to the distance x� mbk k are

then examined, too. These abnormal samples are then

deleted to compute a new winning prototype with only

normal samples. Figures 8, 9, 10, 11, and 12 show the

distances computed between winning prototype and dif-

ferent descriptors. The variations that are abnormally very

low or very high were correctly identified as being the

faulty parameter. Figures 13 and 14 show the

reconstruction values relating to temperature and conduc-

tivity faulty. The SOM procedure allows for the rejection

of atypical samples and therefore implements some kind of

‘‘novelty detection’’ (Figs. 9, 12). However, this type of

rejection may originate from unreliable data acquisition

sources, faulty sensors, data collection errors, or merely

lack of completeness of the training set. This constitutes a

very conservative approach that prevents the prediction

module of the system from blindly interpolating known

relationships between water characteristics and coagulant

dosage to previously unseen cases. It is therefore necessary

to store the rejected input patterns for subsequent inter-

pretation by the user, and possible retraining of the system

in case of undue rejection of ‘‘normal’’ patterns. Table 3

summarizes and illustrates the various faulty data recog-

nized by means of SOM approach. In parallel, we present

the identification results recognized previously through

LAMDA classification technique. We note that the neu-

ronal approach adopted in this work almost recognized the

faulty samples identified with the help of operator plant.

Besides, SOM approach allows identifying the other vari-

ations that can present an alarm state for Rocade plant. The

reliability and robustness of the neuronal approach are
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justified by the validation–reconstruction process of the

faulty measurements and that LAMDA does not allow it in

the present time.

5 Conclusion

In this paper, we investigated a self-organizing map approach

for anomaly detection and missing data reconstruction.

Experimental results using real data stemming from coagu-

lation process involved in a drinking water treatment showed

the efficiency and soundness of SOM algorithm. The results

that we succeeded by this study in combination with those

obtained by the fuzzy technique LAMDA show the key point

of the validation–reconstruction process. It was possible to

identify almost of the negative samples characterizing

abnormal operation plant and in particular rebuild the faulty

measurements. This approach is an environmental application

that shows the utility of outlier’s treatment techniques in the

monitoring and the surveillance of this process type. It is clear

that the final objective is to spread this neural approach to

other treatment processes in order to detect at the earliest a

drifts functioning or to identify a failures on an upstream unit.

So, it is desirable to test new distance measures and perform

additional experiments using wide variety of data sets,

stemming from other processes, in order to make a fair

comparison. This model will be too integrated to software

neural sensor developed in a preliminary survey [15], for

automatic coagulation control.
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