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ABSTRACT 
Scalable analysis on large data sets has been core to the functions of 
a number of teams at Facebook - both engineering and non-
engineering. Apart from ad hoc analysis of data and creation of 
business intelligence dashboards by analysts across the company, a 
number of Facebook's site features are also based on analyzing large 
data sets. These features range from simple reporting applications 
like Insights for the Facebook Advertisers, to more advanced kinds 
such as friend recommendations. In order to support this diversity of 
use cases on the ever increasing amount of data, a flexible 
infrastructure that scales up in a cost effective manner, is critical. We 
have leveraged, authored and contributed to a number of open 
source technologies in order to address these requirements at 
Facebook. These include Scribe, Hadoop and Hive which together 
form the cornerstones of the log collection, storage and analytics 
infrastructure at Facebook. In this paper we will present how these 
systems have come together and enabled us to implement a data 
warehouse that stores more than 15PB of data (2.5PB after 
compression) and loads more than 60TB of new data (10TB after 
compression) every day. We discuss the motivations behind our 
design choices, the capabilities of this solution, the challenges that 
we face in day today operations and future capabilities and 
improvements that we are working on.   

Categories and Subject Descriptors 
H.m [Information Systems]: Miscellaneous. 

General Terms 
Management, Measurement, Performance, Design, Reliability, 
Languages. 

Keywords 
Data warehouse, scalability, data discovery, resource sharing, 
distributed file system, Hadoop, Hive, Facebook, Scribe, log 
aggregation, analytics, map-reduce, distributed systems. 

1. INTRODUCTION 
A number of applications at Facebook rely on processing large 
quantities of data. These applications range from simple reporting 
and business intelligence applications that generate aggregated 

measurements across different dimensions to the more advanced 
machine learning applications that build models on training data 
sets. At the same time there are users who want to carry out ad hoc 
analysis on data to test different hypothesis or to answer one time 
questions posed by different functional parts of the company. On 
any day about 10,000 jobs are submitted by the users. These jobs 
have very diverse characteristics such as degree of parallelism, 
execution time, resource-needs, and data delivery deadlines. This 
diversity in turn means that the data processing infrastructure has to 
be flexible enough to support different service levels as well as 
optimal algorithms and techniques for the different query 
workloads. 

What makes this task even more challenging is the fact that the data 
under consideration continues to grow rapidly as more and more 
users end up using Facebook as a ubiquitous social network and as 
more and more instrumentation is added to the site. As an example 
of this tremendous data growth one has to just look at the fact that 
while today we load between 10-15TB of compressed data every 
day, just 6 months back this number was in the 5-6TB range. Note 
that these sizes are the sizes of the data after compression – the 
uncompressed raw data would be in the 60-90TB range (assuming a 
compression factor of 6). Needless to say, such a rapid growth 
places very strong scalability requirements on the data processing 
infrastructure. Strategies that are reliant on systems that do not scale 
horizontally are completely ineffective in this environment. The 
ability to scale using commodity hardware is the only cost effective 
option that enables us to store and process such large data sets. 

In order to address both of these challenges – diversity and scale, we 
have built our solutions on technologies that support these 
characteristics at their core. On the storage and compute side we 
rely heavily on Hadoop[1] and Hive[2] – two open source 
technologies that we have significantly contributed to, and in the 
case of Hive a technology that we have developed at Facebook. 
While the former is a popular distributed file system and map-
reduce platform inspired by Google's GFS[4] and map-reduce[5] 
infrastructure, the latter brings the traditional data warehousing tools 
and techniques such as SQL, meta data, partitioning etc. to the 
Hadoop ecosystem. The availability of such familiar tools has 
tremendously improved the developer/analyst productivity and 
created new use cases and usage patterns for Hadoop. With Hive, 
the same tasks that would take hours if not days to program can now 
be expressed in minutes and a direct consequence of this has been 
the fact that we see more and more users using Hive and Hadoop for 
ad hoc analysis in Facebook – a usage pattern that is not easily 
supported by just Hadoop. This expanded usage has also made data 
discovery and collaboration on analysis that much more important. 
In the following sections we will also touch upon some systems that 
we have built to address those important requirements. 
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Just as Hive and Hadoop are core to our storage and data processing 
strategies, Scribe[3] is core to our log collection strategy. Scribe is 
an open source technology created at Facebook that acts as a service 
that can aggregate logs from thousands of web servers. It acts as a 
distributed and scalable data bus and by combining it with Hadoop's 
distributed file system (HDFS)[6] we have come up with a scalable 
log aggregation solution that can scale with the increasing volume 
of logged data. 

In the following sections we present how these different systems 
come together to solve the problems of scale and job diversity at 
Facebook. The rest of the paper is organized as follows. Section 2 
describes how the data flows from the source systems to the data 
warehouse. Section 3 talks about storage systems, formats and 
optimizations done for storing large data sets. Section 4 describes 
some approaches taken towards making this data easy to discover, 
query and analyze. Section 5 talks about some challenges that we 
encounter due to different SLA expectations from different users 
using the same shared infrastructure. Section 6 discusses the 
statistics that we collect to monitor cluster health, plan out 
provisioning and give usage data to the users. We conclude in 
Section 7. 

2. DATA FLOW ARCHITECTURE 
In Figure 1, we illustrate how the data flows from the source 
systems to the data warehouse at Facebook. As depicted, there are 
two sources of data – the federated mysql tier that contains all the 
Facebook site related data and the web tier that generates all the log 
data. An example of a data set that originates in the former includes 
information describing advertisements – their category, there name, 
the advertiser information etc. The data sets originating in the latter 
mostly correspond to actions such as viewing an advertisement, 
clicking on it, fanning a Facebook page etc. In traditional data 
warehousing terminology, more often than not the data in the 

federated mysql tier corresponds to dimension data and the data 
coming from the web servers corresponds to fact data. 

The data from the web servers is pushed to a set of Scribe-Hadoop 
(scribeh) clusters. These clusters comprise of Scribe servers running 
on Hadoop clusters. The Scribe servers aggregate the logs coming 
from different web servers and write them out as HDFS files in the 
associated Hadoop cluster. Note that since the data is passed 
uncompressed from the web servers to the scribeh clusters, these 
clusters are generally bottlenecked on network. Typically more than 
30TB of data is transferred to the scribeh clusters every day – 
mostly within the peak usage hours.  In order to reduce the cross 
data center traffic the scribeh clusters are located in the data centers 
hosting the web tiers. While we are exploring possibilities of 
compressing this data on the web tier before pushing it to the 
scribeh cluster, there is a trade off between compression and the 
latencies that can be introduced as a result of it, especially for low 
volume log categories. If the log category does not have enough 
volume to fill up the compression buffers on the web tier, the data 
therein can experience a lot of delay before it becomes available to 
the users unless the compression buffer sizes are reduced or 
periodically flushed. Both of those possibilities would in turn lead to 
lower compression ratios. 

Periodically the data in the scribeh clusters is compressed by copier 
jobs and transferred to the Hive-Hadoop clusters as shown in Figure 
1. The copiers run at 5-15 minute time intervals and copy out all the 
new files created in the scribeh clusters. In this manner the log data 
gets moved to the Hive-Hadoop clusters. At this point the data is 
mostly in the form of HDFS files. It gets published either hourly or 
daily in the form of partitions in the corresponding Hive tables 
through a set of loader processes and then becomes available for 
consumption. 

The data from the federated mysql tier gets loaded to the Hive-
Hadoop clusters through daily scrape processes. The scrape 
processes dump the desired data sets from mysql databases, 
compressing them on the source systems and finally moving them 
into the Hive-Hadoop cluster. The scrapes need to be resilient to 
failures and also need to be designed such that they do not put too 
much load on the mysql databases. The latter is accomplished by 
running the scrapes on a replicated tier of mysql databases thereby 
avoiding extra load on the already loaded masters. At the same time 
any notions of strong consistency in the scraped data is sacrificed in 
order to avoid locking overheads. The scrapes are retried on a per 
database server basis in the case of failures and if the database 
cannot be read even after repeated tries, the previous days scraped 
data from that particular server is used. With thousands of database 
servers, there are always some servers that may not be reachable by 
the scrapes and by a combination of using retries and scraping stale 
data a daily dump of the dimension data is created in the Hive-
Hadoop clusters. These dumps are then converted to top level Hive 
tables. 

As shown in Figure 1, there are two different Hive-Hadoop clusters 
where the data becomes available for consumption by the down 
stream processes. One of these clusters – the production Hive-
Hadoop cluster - is used to execute jobs that need to adhere to very 
strict delivery deadlines, where as the other cluster – the ad hoc 
Hive-Hadoop cluster is used to execute lower priority batch jobs as 
well as any ad hoc analysis that the users want to do on historical 
data sets. The ad hoc nature of user queries makes it dangerous to 
run production jobs in the same cluster. A badly written ad hoc job 

 

Web Servers

Production Hive-Hadoop
Cluster

Federated MySQL

Scribe-Hadoop Clusters

Adhoc Hive-Hadoop
Cluster

Hive replication

Figure 1: Data Flow Architecture 
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can hog the resources in the cluster, thereby starving the production 
jobs and in the absence of sophisticated sandboxing techniques, the 
separation of the clusters for ad hoc and production jobs has become 
the practical choice for us in order to avoid such scenarios.  

Some data sets are needed only in the ad hoc cluster where as others 
are needed in both the clusters. The latter are replicated from the 
production cluster to the ad hoc cluster. A Hive replication process 
checks for any changes made to the Hive tables in the production 
cluster. For all changed tables, the replication process copies over 
the raw data and then reapplies the meta data information from the 
production Hive-Hadoop cluster to the ad hoc Hive-Hadoop cluster. 
It is important to load the data to the production cluster first as 
opposed to the ad hoc cluster both from the point of view of making 
the data available earlier to the critical production jobs and also 
from the point of view of not putting the less reliable ad hoc cluster 
on the path of the data arriving at the production cluster. The 
replication process relies on the logging of all the Hive commands 
submitted to the production cluster. This is achieved by 
implementing a “command logger” as a pre-execution hook in Hive 
– the pre-execution hook API enables Hive users to plug in any kind 
of programming logic that gets executed before the execution of the 
Hive command. 

Finally, these published data sets are transformed by user jobs or 
queried by ad hoc users. The results are either held in the Hive-
Hadoop cluster for future analysis or may even be loaded back to 
the federated mysql tier in order to be served to the Facebook users 
from the Facebook site. As an example all the reports generated for 
the advertisers about their advertisement campaigns are generated in 
the production Hive-Hadoop cluster and then loaded to a tier of 
federate mysql data bases and served to the advertisers from the 
advertiser Insights web pages. 

2.1 Data Delivery Latency 
As is evident from this discussion, the data sets arrive in the Hive-
Hadoop clusters with latencies ranging from 5-15 minutes in case of 
logs to more than a day in case of the data scraped from the 
federated mysql databases. Moreover, even though the logs are 
available in the form of raw HDFS files within 5-15 minutes of 
generation (unless there are failures), the loader processes loads the 
data into native Hive tables only at the end of the day. In order to 
give users more immediate access to these data sets we use Hive's 
external table feature[7] to create table meta data on the raw HDFS 
files. As the data gets loaded into the native tables, the raw HDFS 
files are removed and thus get purged from the external tables. By 
running the loaders daily we are able to compact the data to fit in 
smaller number of files while still providing user access to the most 
recent data through external tables on the raw HDFS files. 

In general this scheme has worked well for us so far, but going 
forward there are requirements to reduce latencies even further, 
especially for applications that want to incrementally build indexes 
or models that are time critical. At the same time in order to scale 
with the increasing amount of data, it has also become important for 
us to move towards continuously loading log data into our clusters, 
so that bandwidth and cluster resources can be used in a more 
incremental manner as opposed to a bulk manner – which is what 
happens today when the copiers are executed at 15 minute time 
intervals. Similarly for scrapes, as the size of our database tier 
increases we are working on solutions to incrementally scrape those 

databases both to reduce the load on the databases and also to 
reduce the data delivery latencies for the dimension data in Hive. 

3. STORAGE 
With such large incoming data rates and the fact that more and more 
historical data needs to be held in the cluster in order to support 
historical analysis, space usage is a constant constraint for the ad 
hoc Hive-Hadoop cluster. The production cluster usually has to hold 
only one month's worth of data as the periodic production jobs 
seldom look at data beyond that time frame. However, the ad hoc 
cluster does need to hold all the historical data so that measures, 
models and hypotheses can be tested on historical data and 
compared with the recent data. Due to the huge quantity of data 
involved, we keep all our data compressed using gzip. Hadoop 
allows us the ability to compress data using a user specified codecs. 
For the majority of our data sets we rely on the gzip codec. We get a 
compression factor of 6-7 on most of our data sets.  

In addition to using gzip we have also developed and deployed row 
columnar compression in Hive for many of our tables. This 
compression scheme is based on PAX[8] storage layout for data 
records. With this scheme we have seen between 10% and 30% 
reduction in space requirements when compared with using plain 
gzip on our data sets stored in Hadoop SequenceFiles (a file format 
that supports storing binary data in HDFS). Moreover, this 
compression has resulted in slight improvement in CPU utilization 
on some of our benchmarks with marked improvements on queries 
that use a small subset of table columns.  

Though better space utilization through better compression 
techniques and in some cases domain specific compression 
techniques are obvious, a major inefficiency in HDFS that can be 
addressed to tremendously reduce the storage footprint is the fact 
that 3 copies of the same is stored by default in HDFS, in order to 
prevent data loss due to node failures. However, by using erasure 
codes this multiple can be brought down to 2.2 - by storing two 
copies of the data and 2 copies of the error correction codes for the 
data[10]. This does reduce the copies of the raw data and thus can 
reduce data locality for user jobs as Hadoop tries to execute tasks on 
the nodes that hold the corresponding data and by reducing the 
number of nodes that hold the copy of the data the likelihood of the 
task running on a node that does not have a copy of the data, 
increases. However, in our cluster we hardly see the network as a 
bottleneck and with 100MB/s bandwidth between any two nodes 
that are located on the same rack, executing tasks on racks that have 
a local copy of the data is sufficient to ensure that network does not 
become a bottleneck for user jobs. We are still experimenting with 
erasure codes or Hadoop RAID and we have seen a lot of positive 
results by using it on our test data sets. Moreover, if parallelism does 
become an issue, with Hadoop we have the option of applying this 
technique on a per data set partition basis. We can enable Hadoop 
RAID on older data sets which are not accessed by too many jobs 
while keeping the newer data sets replicated 3 ways. 

3.1 Scaling HDFS NameNode 
Though raw storage can be addressed through compression 
techniques and through using RAID for error correction, another 
significant resource constraint that we have encountered in our 
clusters is the memory used by the HDFS NameNode. The 
NameNode is the master server that holds the file to block mappings 
for HDFS and as the number of files and the number of blocks in the 
system increases, the memory required to hold all this state on the 
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NameNode also increases. Currently we have close to 100 million 
blocks and files on the ad hoc Hive-Hadoop cluster and the 
NameNode heap size is configured to use 48GB of memory. Apart 
from more and more optimizations on the NameNode data 
structures, we are also exploring simple techniques like creating 
archive files by concatenating a number of HDFS files together in 
order to reduce the number of files in the file system. With tools like 
Hive and SQL the explosion of files is further compounded 
primarily because it is very easy to write jobs that can produce 
outputs that is fragmented over a large number of small sized files. 
As an example a simple filter query in Hive when run over a large 
data set would create the same number of files as the number of map 
tasks used to scan the input data set. However, if the filter is 
extremely selective, most of these files would end up being empty 
and this would end up creating a very large number of small files in 
HDFS, putting even more memory pressure on the NameNode. 
Moreover, if this Hive query was periodically run every day – as is 
often the case – the problem would just get worse. In order to 
address such cases we have enhanced Hive to produce plans which 
include a concatenation step for such queries, trading off some bit of 
job latency for the reduced pressure on the NameNode memory. We 
have also implemented the HiveCombinedFileInputFormat which 
also significantly reduces the number of map tasks needed by 
downstream jobs in case the data set is already fragmented across a 
large number of files. With this input format, a single map task 
executing on a node is able to read blocks from different files that 
are stored on that node – a capability that is not available on the 
default input formats in Hadoop. 

3.2 Federation 
With the continued growth in our data sets at some point in the near 
future we will have to seriously consider federating data across 
multiple Hadoop clusters housed in different data centers. In general 
there are two approaches that we have considered – distributing data 
across clusters on the basis of time so that older data sets are held in 
clusters that have more storage than compute, or distributing data 
across clusters on the basis of application groups e.g. separating the 
ads data sets from other data sets in a separate cluster of its own. 
Both approaches have their pros and cons. While the benefits of the 
first one are easy to understand, and to some extent techniques used 
in hierarchical storage management can be applied to manage these 
data sets, the fact that the data sets have been growing rapidly  make 
its benefits less clear. Rapid and compounded growth means that 
much more data is newer and that separation of old data into another 
cluster would end up saving only 20-25% space on the existing 
cluster. Additionally it also means more user intervention in case 
data sets across the “time boundary” have to be compared or joined. 
On the other hand, federating on the basis of applications has the 
down side that some of the common dimension data would have to 
be replicated and that would mean more storage overhead. At this 
time though, we think that this overhead is very low and by 
federating on the basis of applications we can balance out the 
storage and query workloads on different clusters more evenly. 

4. DATA DISCOVERY AND ANALYSIS 
At Facebook querying and analysis of data is done predominantly 
through Hive. The data sets are published in Hive as tables with 
daily or hourly partitions. The primary interfaces to interact with 
Hive for ad hoc query purposes are a web based GUI - HiPal - and 
the Hive command line interface – Hive CLI. In addition a home 
grown job specification framework called Databee is used for 

specifying job and data dependencies. In this section we discuss in 
more detail these tools and systems that are used heavily to find, 
query and analyze data sets in Hive. 

4.1 Hive 
Hive[8] is a data warehousing framework built on top of Hadoop. It 
was created at Facebook and then contributed back to the Hadoop 
ecosystem as a Hadoop subproject. Inside Facebook it is used 
heavily for reporting, ad hoc querying and analysis. The basic 
motivation behind the creation of Hive was the observation that 
while Hadoop promised scalability and while map/reduce was a 
good lowest common denominator to express diverse kinds of jobs, 
it was too low level to be used to develop pipelines in a productive 
manner. In addition, SQL and the concepts of tables, columns and 
partitions are concepts and tools that many users are familiar with. 
As a result it was natural to conclude that by putting structure on top 
of the data in Hadoop and by providing SQL as a tool to query that 
data, the power of this platform could be brought to the masses. 
Without Hive, the same job would take hours if not days to author in 
map-reduce. Using Hive the task could be expressed very easily in a 
matter of minutes. It has been possible with Hive to bring the 
immense scalability of map-reduce to the non engineering users as 
well – business analysts, product managers and the like who, though 
familiar with SQL would be in a very alien environment if they 
were to write map-reduce programs for querying and analyzing 
data. 

 
Figure 2 shows the major components of Hive and how it interacts 
with Hadoop. The tables and partitions in Hive are stored as HDFS 
directories and these mappings and the structural information of 
these objects are stored in the Hive Metastore. The Driver uses this 
information to convert transformations expressed in HiveQL (Hive 
query language - a SQL variant) into a sequence of map-reduce jobs 
and HDFS operations. A number of optimizations are employed 
during this compilation phase. These optimizations include regular 

Figure 2: Hive System Architecture
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optimizations like pruning files to be scanned on the basis of the 
partitioning predicates specified in the query, pushing down of 
predicates so that data filtering happens immediately after the scan 
so that as few a rows as possible flow through the operator tree and 
across map-reduce jobs and finally pruning of columns which are 
not used by the query, again with the intention of reducing the 
amount of data flowing through the query plan. In addition to these 
optimizations, other optimizations needed to generate efficient plans 
in the presence of data skew are also done by the optimizer e.g. a 
group by computation done on a data set with a skewed distribution 
on the group by key is done through two map-reduce jobs – the first 
job for generating partial aggregates and the second job for 
generating complete aggregates from these partial aggregates. In 
addition a number of optimizations to do partial aggregations in the 
map tasks also help in reducing the amount of data crossing the 
map-reduce boundary. A number of different join techniques such as 
reordering join orders so that the larger tables are streamed in the 
reduce tasks and not held in memory, map side joins for increased 
parallelism in the case where one of the join tables is small enough 
to fit in the memory of a map task and bucketed joins that employ 
the knowledge of how the data is hashed into the HDFS files of a 
table and many other optimizations, also help in creating efficient 
plans which only an expert map-reduce programmer could encode 
into map-reduce programs. All these lead to not just big productivity 
gains or the users but also lead to more efficient usage of the cluster 
resources. 

Apart from increasing developer productivity and cluster efficiency, 
Hive is also extensible in many different ways. This flexibility 
enables it to be used for transformations that cannot be easily 
expressed in SQL. By allowing users to plug in their own 
computation through user defined functions, user defined table 
functions or by specifying their own custom scripts with 
TRANSFORM/MAP/REDUCE keywords in HiveQL, Hive 
provides a truly flexible way of expressing different types of 
transformations. In addition it provides interfaces that allow users to 
specify their own types or data formats which becomes very useful 
while dealing with legacy data or rich data types.  

All these capabilities have been instrumental in making it the core 
system for doing analysis – both ad hoc as well as periodic – on 
large data sets at Facebook. 

4.2 Interactive Ad hoc queries 
At Facebook ad hoc queries are executed by the users through either 
HiPal, a web based graphical interface to Hive or Hive CLI a 
command line interface similar to mysql shell. HiPal specially 
enables users who are not very familiar with SQL to graphically 
create queries for ad hoc analysis. It supports capabilities to show 
job progress, inspect results, upload and download results and small 
data sets in CSV format and capabilities to report and debug errors. 
In addition the results of any query are stored in the cluster for 7 
days so that they can be shared amongst users. HiPal is an extremely 
popular tool which is used heavily in Facebook for authoring and 
executing ad hoc queries. While it has truly democratized the ability 
to query large data sets, it has also lead to novel usage patterns and 
use cases for Hadoop, use cases that were not core to the original set 
of applications that it was designed for. As an example the ability to 
submit bad queries has exposed deficiencies in Hadoop when it 
comes to protecting jobs from side effects of poorly written queries. 
It has also opened interesting scheduling questions around how to 
ensure that long running periodic jobs in the cluster do not starve the 

smaller ad hoc jobs of resources and poor user experience for users 
executing ad hoc queries. We will discuss these issues around 
isolation and fair sharing in section 5. Also, in general ad hoc users 
tend to be more interactive and we are still evolving our systems to 
support this interactivity on what has traditionally been a batch 
processing system. Despite these limitations, the ability to be able to 
query these data sets in an easy and intuitive manner has been the 
driving force behind the continued adoption and popularity of HiPal 
throughout Facebook. 

4.3 Data Discovery 
A direct consequence of the increasing data sets and their diverse 
uses is the explosion in metadata itself. Today we have more than 
20,000 tables on the ad hoc Hive-Hadoop cluster with hundreds of 
users querying these tables every month. As a result discovering 
data is itself challenging. This is further compounded by the fact 
that there is no central process to author this data as is usually the 
case with data warehouses in other companies. Decentralization if 
augmented with the right tools can itself develop into a highly 
efficient process by itself, which is a must have in a dynamic and 
fast paced environment like Facebook. As a result we have 
embraced and experimented with some ideas and concepts around 
using a combination of machines and people to make data discovery 
efficient. 

We have created internal tools that enable a wiki approach to 
metadata creation. Users can add and correct table and column 
descriptions and can also tag tables with searchable tags and project 
names. The idea here is that users can collaborate on generating this 
information so that over a period of time this becomes an accurate 
and searchable corpus of metadata that keeps adapting to schema 
changes and changes in data sets. Apart from the user generated 
content we have also written tools to extract lineage information 
from query logs. This information has been used to build tools that 
enable users to navigate tables and quickly see the base data sets 
that have been used to generate any particular data set and also all 
the data sets derived from a particular table. This capability along 
with simple tools for inspecting a small set of rows of the table gives 
a lot of information to the users about the origin and structure of 
data and aids in data discovery. The query logs have also been a 
mined to identify expert users on a per table basis. These are users 
who have frequently queried the associated tables in the recent past. 
We have also built tools that enable the users to connect to these 
expert users and ask questions about the data. All these tools are 
integrated into HiPal and provide the necessary data discovery tools 
within the context of a query session – right at the time when the 
user needs these tools the most. 

4.4 Periodic Batch Jobs 
Apart from ad hoc jobs a large part of the cluster is used by periodic 
jobs that are run at different periodicities, ranging from 5 minutes to 
once every week. For such jobs, inter job dependencies and the 
ability to schedule jobs when certain data sets are available are 
critical. In addition a common pattern in these jobs involves waiting 
for certain base data sets, transforming them in one or more steps 
using Hive and then loading the results to various different mysql 
database tiers. Moreover such jobs require monitoring and alerting 
in case of failures and good dashboards to check their current status, 
past runs or time of completion. 
All these capabilities are provided by Databee, which is a python 
framework for specifying such jobs. It supports different operators 
for moving data between different systems as well as operators for 
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transforming data or running queries in different clusters. It provides 
the ability to specify dependencies on data sets or on other Databee 
jobs and it also generates monitoring information that tracks 
completion times and latencies for the job and its intermediate steps. 
In addition it also collects stats on the amount of data handled by 
different stages in the data pipeline. These stats in some cases are 
useful to discover bugs in the transformation logic. 
Facebook analysts also use Microstrategy for dimensional analysis. 
In such situations the periodic jobs construct the cubes for 
Microstrategy and then load them into Microstrategy server 
instances. The ODBC drivers in Hive enable Microstrategy servers 
to submit such jobs directly to Hive. 

5. RESOURCE SHARING 
The co-existence of interactive ad hoc queries and periodic batch 
jobs on the same set of cluster resources has many implications on 
how resources are shared between different jobs in the cluster. Ad 
hoc users require minimal response times from the system and the 
ability to tweak and change the jobs as they refine their queries. On 
the other hand the periodic batch jobs require a predictable 
execution time/latency as they are more concerned with data being 
available before a certain deadline. The deadline is what comprises 
of an SLA between the authors of these jobs and the downstream 
consumers of the data that they produce. The goals of 
experimentation for ad hoc users and predictability for periodic 
batch jobs are at odds with each other. At the same time since a job 
in Hadoop cannot be pre-empted to give up its resources, there are 
scenarios where a long running periodic job can deprive a short 
running interactive ad hoc query of cluster resources thereby 
significantly increasing the latency for such jobs. These opposing 
requirements have been central in shaping our strategy on how 
resources are shared and allocated to different Hadoop jobs. 

In order to support co-existence of interactive jobs and batch jobs on 
the same Hadoop cluster, Facebook has been instrumental in the 
development of the Hadoop Fair Share Scheduler [10] and we use it 
in all our clusters. Users are divided into pools and cluster resources 
are shared equally among pools. Each user in the system gets her 
own pool. We set limits on the number of concurrent jobs and tasks 
per pool. The periodic jobs are run in their own separate special 
pools. These types of special pools have minimum resource quotas 
associated with them and the jobs that use these pools are likely to 
get at least their minimum quota even when there is a high load 
average on the cluster.  These techniques have played a critical part 
in supporting both interactive ad hoc jobs and periodic batch jobs on 
our clusters. There are still challenges especially since we have not 
enabled pre-emption of tasks on our clusters. A direct consequence 
of not having pre-emption is that starvation is still an issue as fair 
sharing is done only for new task allocations and does not actually 
kill tasks for jobs which have already used up their fair share.  

In order to isolate the cluster from poorly written queries – which 
can happen quite easily because of ad hoc queries supported by our 
clusters – we have made improvements to the Hadoop Fair Share 
Scheduler to make it more aware of system resources, - primarily 
the memory and CPU consumed by each job. Before these 
improvements a common scenario in our ad hoc cluster would 
involve a user submitting a bad query whose tasks would consume a 
lot of memory on a majority of nodes in the cluster. As a result these 
machines would start swapping at best and would even crash in the 
worst case. Either scenario would have an adverse side effect on all 

the jobs running on the cluster, including the periodic batch jobs that 
require a lot of predictability in their run times. Needless to say, this 
would soon snowball into a big problem for the users. In order to 
prevent such scenarios from playing out on the cluster, we have 
improved the Fair Share Scheduler to actively monitor the CPU and 
memory usage of all the nodes in the cluster. The scheduler kills 
existing tasks on a node if memory usage on that node exceeds 
configured thresholds. Moreover, the scheduler allocates new tasks 
to a slave node only if the CPU and memory usage of that node is 
within configured limits. This improvement in the scheduler has 
gone a long way in isolating our clusters from bad jobs. The 
allocations still do not take into account network usage and disk I/O 
usage per task, but we have seen that those resources are less of an 
issue in our deployments. Apart from these improvements, we have 
also enabled the locality wait feature in the scheduler. This feature 
delays scheduling a task - up to a certain period of time - till it finds 
a node with a free task slot that also contains a copy of the data that 
is needed by the task. However, this strategy does not work well for 
jobs working on small data sets – which we also find a lot in our ad 
hoc cluster. For those small jobs, we do not use locality wait. 
Moreover, for such jobs the map and reduce tasks are scheduled 
simultaneously instead of scheduling the reduce tasks only after a 
fraction of the map tasks are completed. 

As mentioned previously, we execute periodic batch jobs that have 
to deliver data to very strict deadlines in a separate production 
cluster. This simple method of separation further ensures that ad hoc 
jobs that take up too many resources cannot impact the execution 
times of critical production jobs in any way. Predictability of 
execution times is extremely critical for these jobs and this method 
further isolates these jobs from the unpredictable patterns of the ad 
hoc queries. Physically separating the clusters does mean that we 
may not be getting the maximum utilization from our hardware – 
there are times when the nodes in the ad hoc cluster are idle while 
there are plenty of jobs pending in the queue of the other cluster and 
vice versa. We are experimenting with a system called the “dynamic 
clouds” where in we can decommission nodes from one cluster and 
move them over to another cluster on demand. This movement of 
nodes is only across map-reduce clusters and not across HDFS 
cluster as it is easy to move compute resources but very difficult to 
move storage resources, and it is usually the former that is needed 
for the jobs that have accumulated in the cluster queue. This is still 
an experimental system which is still being developed. 

6. OPERATIONS 
There have been a lot of lessons that we have learnt while operating 
the data warehousing and analytics infrastructure at Facebook. With 
such a huge deployment and with vast parts of the company 
depending on this infrastructure for analysis needs – including parts 
that run business critical jobs on this infrastructure – it is natural that 
we devote a lot of our energies on the operational aspects of these 
deployments. Broadly speaking, operations comprises of two things 
– supporting the systems that this infrastructure is built on and 
supporting the data pipelines that run on this infrastructure. We 
collect a lot of statistics for these purposes, which we will talk about 
in this section. 

We have added a lot of monitoring to the nodes in our clusters and 
the Hadoop daemon processes. We collect regular system level stats 
such as CPU usage, I/O activity, memory usage etc. from all the 
nodes. In addition to these we also track Hadoop specific statistics 
both for the JobTracker (which is the master for the map-reduce 
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cluster) and the NameNode (which is the master for the HDFS 
cluster). From the JobTracker we collect statistics like average job 
submission rate, number of utilized map and reduce slots, job 
tracker JVM heap utilization as well as the frequency of garbage 
collection in the job tracker. From the NameNode, apart from the 
statistics related to the JVM heap and garbage collection we also 
monitor the space usage as well as the “balancedness” of the cluster 
– the latter comprising of a measure of standard deviation for the 
distribution of the space used across the nodes in the HDFS cluster. 
In addition we also track the count of bad blocks in HDFS as well as 
the number of slave nodes in both the map-reduce cluster and the 
HDFS cluster. These measures help us to quickly identify problems 
in the cluster and take any remedial action. We have hooked these 
up with our internal systems to generate appropriate alerts in case 
these measures cross certain thresholds. Apart from these measures 
which are critical in identifying problems in the cluster, there are 
others that we regularly collect for figuring out our provisioning 
needs. These include the HDFS space usage and the aggregated 
amount of CPU and memory being used in the cluster. Moreover, 
we have also developed simple tools like htop – a top like utility 
which gives CPU and memory usage across the entire cluster on a 
per job basis. This has been very helpful in identifying jobs that take 
up inordinate amount of system resources in the cluster. 

Along with system level monitoring, we also provide a number of 
dashboards to our users to provide them feedback on the space and 
compute that they are using on the cluster. We track the space usage 
by users and teams as well as the growth rate of the different data 
sets. We regularly track tables or data sets that suffer from 
fragmentation - those tables that store a small data set in a large 
number of files. We also provide ways in which users and teams can 
set up retention limits on their data sets in Hive, so that their table 
partitions can be automatically cleaned up. Going forward we are 
adding more and more capabilities to give us more intelligence on 
how the cluster is used and how this usage can be further optimized. 

For users that run periodic batch jobs we also provide capabilities to 
monitor the run time and failures for their jobs. Databee collects a 
lot of this information and hooks them up with our monitoring 
systems. We also track the publish time for a number of our data sets 
so that consumers for those data sets can be alerted in case of 
delays. This enables us to get a better end to end picture of our 
entire infrastructure and helps us identify weak links or under 
provisioned tiers/clusters involved in the data flow. We constantly 
measure the uptimes of our clusters and track how we are doing 
against our service levels to our users and we are constantly looking 
at ways and measures to improve the user experience for our users. 

7. CONCLUSION 
A lot of different components come together to provide a 
comprehensive platform for processing data at Facebook. This 
infrastructure is used for various different types of jobs each having 
different requirements – some more interactive in nature as 
compared to others, some requiring a predictable execution time as 
compared to others that require the ability to experiment and tweak. 
This infrastructure also needs to scale with the tremendous amount 
of data growth. By leveraging and developing a lot of open source 
technologies we have been able to meet the demands placed on our 
infrastructure and we are working on many other enhancements to it 
in order to service those demands even more and in order to evolve 
this infrastructure to support new use cases and query patterns. 
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