
Data Warehousing and Analytics Infrastructure at Facebook
Ashish Thusoo

Zheng Shao
Suresh Anthony

Dhruba Borthakur
Namit Jain

Joydeep Sen Sarma
Raghotham Murthy

Hao Liu

Facebook
{athusoo,dhruba,rmurthy,zshao,njain,hliu,suresh,jssarma}@facebook.com

ABSTRACT
Scalable analysis on large data sets has been core to the functions of
a number of teams at Facebook - both engineering and non-
engineering. Apart from ad hoc analysis of data and creation of
business intelligence dashboards by analysts across the company, a
number of Facebook's site features are also based on analyzing large
data sets. These features range from simple reporting applications
like Insights for the Facebook Advertisers, to more advanced kinds
such as friend recommendations. In order to support this diversity of
use cases on the ever increasing amount of data, a flexible
infrastructure that scales up in a cost effective manner, is critical. We
have leveraged, authored and contributed to a number of open
source technologies in order to address these requirements at
Facebook. These include Scribe, Hadoop and Hive which together
form the cornerstones of the log collection, storage and analytics
infrastructure at Facebook. In this paper we will present how these
systems have come together and enabled us to implement a data
warehouse that stores more than 15PB of data (2.5PB after
compression) and loads more than 60TB of new data (10TB after
compression) every day. We discuss the motivations behind our
design choices, the capabilities of this solution, the challenges that
we face in day today operations and future capabilities and
improvements that we are working on.

Categories and Subject Descriptors
H.m [Information Systems]: Miscellaneous.

General Terms
Management, Measurement, Performance, Design, Reliability,
Languages.

Keywords
Data warehouse, scalability, data discovery, resource sharing,
distributed file system, Hadoop, Hive, Facebook, Scribe, log
aggregation, analytics, map-reduce, distributed systems.

1. INTRODUCTION
A number of applications at Facebook rely on processing large
quantities of data. These applications range from simple reporting
and business intelligence applications that generate aggregated

measurements across different dimensions to the more advanced
machine learning applications that build models on training data
sets. At the same time there are users who want to carry out ad hoc
analysis on data to test different hypothesis or to answer one time
questions posed by different functional parts of the company. On
any day about 10,000 jobs are submitted by the users. These jobs
have very diverse characteristics such as degree of parallelism,
execution time, resource-needs, and data delivery deadlines. This
diversity in turn means that the data processing infrastructure has to
be flexible enough to support different service levels as well as
optimal algorithms and techniques for the different query
workloads.

What makes this task even more challenging is the fact that the data
under consideration continues to grow rapidly as more and more
users end up using Facebook as a ubiquitous social network and as
more and more instrumentation is added to the site. As an example
of this tremendous data growth one has to just look at the fact that
while today we load between 10-15TB of compressed data every
day, just 6 months back this number was in the 5-6TB range. Note
that these sizes are the sizes of the data after compression – the
uncompressed raw data would be in the 60-90TB range (assuming a
compression factor of 6). Needless to say, such a rapid growth
places very strong scalability requirements on the data processing
infrastructure. Strategies that are reliant on systems that do not scale
horizontally are completely ineffective in this environment. The
ability to scale using commodity hardware is the only cost effective
option that enables us to store and process such large data sets.

In order to address both of these challenges – diversity and scale, we
have built our solutions on technologies that support these
characteristics at their core. On the storage and compute side we
rely heavily on Hadoop[1] and Hive[2] – two open source
technologies that we have significantly contributed to, and in the
case of Hive a technology that we have developed at Facebook.
While the former is a popular distributed file system and map-
reduce platform inspired by Google's GFS[4] and map-reduce[5]
infrastructure, the latter brings the traditional data warehousing tools
and techniques such as SQL, meta data, partitioning etc. to the
Hadoop ecosystem. The availability of such familiar tools has
tremendously improved the developer/analyst productivity and
created new use cases and usage patterns for Hadoop. With Hive,
the same tasks that would take hours if not days to program can now
be expressed in minutes and a direct consequence of this has been
the fact that we see more and more users using Hive and Hadoop for
ad hoc analysis in Facebook – a usage pattern that is not easily
supported by just Hadoop. This expanded usage has also made data
discovery and collaboration on analysis that much more important.
In the following sections we will also touch upon some systems that
we have built to address those important requirements.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
SIGMOD’10, June 6–10, 2010, Indianapolis, Indiana, USA.
Copyright 2010 ACM 978-1-4503-0032-2/10/06...$10.00.

1013

Just as Hive and Hadoop are core to our storage and data processing
strategies, Scribe[3] is core to our log collection strategy. Scribe is
an open source technology created at Facebook that acts as a service
that can aggregate logs from thousands of web servers. It acts as a
distributed and scalable data bus and by combining it with Hadoop's
distributed file system (HDFS)[6] we have come up with a scalable
log aggregation solution that can scale with the increasing volume
of logged data.

In the following sections we present how these different systems
come together to solve the problems of scale and job diversity at
Facebook. The rest of the paper is organized as follows. Section 2
describes how the data flows from the source systems to the data
warehouse. Section 3 talks about storage systems, formats and
optimizations done for storing large data sets. Section 4 describes
some approaches taken towards making this data easy to discover,
query and analyze. Section 5 talks about some challenges that we
encounter due to different SLA expectations from different users
using the same shared infrastructure. Section 6 discusses the
statistics that we collect to monitor cluster health, plan out
provisioning and give usage data to the users. We conclude in
Section 7.

2. DATA FLOW ARCHITECTURE
In Figure 1, we illustrate how the data flows from the source
systems to the data warehouse at Facebook. As depicted, there are
two sources of data – the federated mysql tier that contains all the
Facebook site related data and the web tier that generates all the log
data. An example of a data set that originates in the former includes
information describing advertisements – their category, there name,
the advertiser information etc. The data sets originating in the latter
mostly correspond to actions such as viewing an advertisement,
clicking on it, fanning a Facebook page etc. In traditional data
warehousing terminology, more often than not the data in the

federated mysql tier corresponds to dimension data and the data
coming from the web servers corresponds to fact data.

The data from the web servers is pushed to a set of Scribe-Hadoop
(scribeh) clusters. These clusters comprise of Scribe servers running
on Hadoop clusters. The Scribe servers aggregate the logs coming
from different web servers and write them out as HDFS files in the
associated Hadoop cluster. Note that since the data is passed
uncompressed from the web servers to the scribeh clusters, these
clusters are generally bottlenecked on network. Typically more than
30TB of data is transferred to the scribeh clusters every day –
mostly within the peak usage hours. In order to reduce the cross
data center traffic the scribeh clusters are located in the data centers
hosting the web tiers. While we are exploring possibilities of
compressing this data on the web tier before pushing it to the
scribeh cluster, there is a trade off between compression and the
latencies that can be introduced as a result of it, especially for low
volume log categories. If the log category does not have enough
volume to fill up the compression buffers on the web tier, the data
therein can experience a lot of delay before it becomes available to
the users unless the compression buffer sizes are reduced or
periodically flushed. Both of those possibilities would in turn lead to
lower compression ratios.

Periodically the data in the scribeh clusters is compressed by copier
jobs and transferred to the Hive-Hadoop clusters as shown in Figure
1. The copiers run at 5-15 minute time intervals and copy out all the
new files created in the scribeh clusters. In this manner the log data
gets moved to the Hive-Hadoop clusters. At this point the data is
mostly in the form of HDFS files. It gets published either hourly or
daily in the form of partitions in the corresponding Hive tables
through a set of loader processes and then becomes available for
consumption.

The data from the federated mysql tier gets loaded to the Hive-
Hadoop clusters through daily scrape processes. The scrape
processes dump the desired data sets from mysql databases,
compressing them on the source systems and finally moving them
into the Hive-Hadoop cluster. The scrapes need to be resilient to
failures and also need to be designed such that they do not put too
much load on the mysql databases. The latter is accomplished by
running the scrapes on a replicated tier of mysql databases thereby
avoiding extra load on the already loaded masters. At the same time
any notions of strong consistency in the scraped data is sacrificed in
order to avoid locking overheads. The scrapes are retried on a per
database server basis in the case of failures and if the database
cannot be read even after repeated tries, the previous days scraped
data from that particular server is used. With thousands of database
servers, there are always some servers that may not be reachable by
the scrapes and by a combination of using retries and scraping stale
data a daily dump of the dimension data is created in the Hive-
Hadoop clusters. These dumps are then converted to top level Hive
tables.

As shown in Figure 1, there are two different Hive-Hadoop clusters
where the data becomes available for consumption by the down
stream processes. One of these clusters – the production Hive-
Hadoop cluster - is used to execute jobs that need to adhere to very
strict delivery deadlines, where as the other cluster – the ad hoc
Hive-Hadoop cluster is used to execute lower priority batch jobs as
well as any ad hoc analysis that the users want to do on historical
data sets. The ad hoc nature of user queries makes it dangerous to
run production jobs in the same cluster. A badly written ad hoc job

Web Servers

Production Hive-Hadoop
Cluster

Federated MySQL

Scribe-Hadoop Clusters

Adhoc Hive-Hadoop
Cluster

Hive replication

Figure 1: Data Flow Architecture

1014

can hog the resources in the cluster, thereby starving the production
jobs and in the absence of sophisticated sandboxing techniques, the
separation of the clusters for ad hoc and production jobs has become
the practical choice for us in order to avoid such scenarios.

Some data sets are needed only in the ad hoc cluster where as others
are needed in both the clusters. The latter are replicated from the
production cluster to the ad hoc cluster. A Hive replication process
checks for any changes made to the Hive tables in the production
cluster. For all changed tables, the replication process copies over
the raw data and then reapplies the meta data information from the
production Hive-Hadoop cluster to the ad hoc Hive-Hadoop cluster.
It is important to load the data to the production cluster first as
opposed to the ad hoc cluster both from the point of view of making
the data available earlier to the critical production jobs and also
from the point of view of not putting the less reliable ad hoc cluster
on the path of the data arriving at the production cluster. The
replication process relies on the logging of all the Hive commands
submitted to the production cluster. This is achieved by
implementing a “command logger” as a pre-execution hook in Hive
– the pre-execution hook API enables Hive users to plug in any kind
of programming logic that gets executed before the execution of the
Hive command.

Finally, these published data sets are transformed by user jobs or
queried by ad hoc users. The results are either held in the Hive-
Hadoop cluster for future analysis or may even be loaded back to
the federated mysql tier in order to be served to the Facebook users
from the Facebook site. As an example all the reports generated for
the advertisers about their advertisement campaigns are generated in
the production Hive-Hadoop cluster and then loaded to a tier of
federate mysql data bases and served to the advertisers from the
advertiser Insights web pages.

2.1 Data Delivery Latency
As is evident from this discussion, the data sets arrive in the Hive-
Hadoop clusters with latencies ranging from 5-15 minutes in case of
logs to more than a day in case of the data scraped from the
federated mysql databases. Moreover, even though the logs are
available in the form of raw HDFS files within 5-15 minutes of
generation (unless there are failures), the loader processes loads the
data into native Hive tables only at the end of the day. In order to
give users more immediate access to these data sets we use Hive's
external table feature[7] to create table meta data on the raw HDFS
files. As the data gets loaded into the native tables, the raw HDFS
files are removed and thus get purged from the external tables. By
running the loaders daily we are able to compact the data to fit in
smaller number of files while still providing user access to the most
recent data through external tables on the raw HDFS files.

In general this scheme has worked well for us so far, but going
forward there are requirements to reduce latencies even further,
especially for applications that want to incrementally build indexes
or models that are time critical. At the same time in order to scale
with the increasing amount of data, it has also become important for
us to move towards continuously loading log data into our clusters,
so that bandwidth and cluster resources can be used in a more
incremental manner as opposed to a bulk manner – which is what
happens today when the copiers are executed at 15 minute time
intervals. Similarly for scrapes, as the size of our database tier
increases we are working on solutions to incrementally scrape those

databases both to reduce the load on the databases and also to
reduce the data delivery latencies for the dimension data in Hive.

3. STORAGE
With such large incoming data rates and the fact that more and more
historical data needs to be held in the cluster in order to support
historical analysis, space usage is a constant constraint for the ad
hoc Hive-Hadoop cluster. The production cluster usually has to hold
only one month's worth of data as the periodic production jobs
seldom look at data beyond that time frame. However, the ad hoc
cluster does need to hold all the historical data so that measures,
models and hypotheses can be tested on historical data and
compared with the recent data. Due to the huge quantity of data
involved, we keep all our data compressed using gzip. Hadoop
allows us the ability to compress data using a user specified codecs.
For the majority of our data sets we rely on the gzip codec. We get a
compression factor of 6-7 on most of our data sets.

In addition to using gzip we have also developed and deployed row
columnar compression in Hive for many of our tables. This
compression scheme is based on PAX[8] storage layout for data
records. With this scheme we have seen between 10% and 30%
reduction in space requirements when compared with using plain
gzip on our data sets stored in Hadoop SequenceFiles (a file format
that supports storing binary data in HDFS). Moreover, this
compression has resulted in slight improvement in CPU utilization
on some of our benchmarks with marked improvements on queries
that use a small subset of table columns.

Though better space utilization through better compression
techniques and in some cases domain specific compression
techniques are obvious, a major inefficiency in HDFS that can be
addressed to tremendously reduce the storage footprint is the fact
that 3 copies of the same is stored by default in HDFS, in order to
prevent data loss due to node failures. However, by using erasure
codes this multiple can be brought down to 2.2 - by storing two
copies of the data and 2 copies of the error correction codes for the
data[10]. This does reduce the copies of the raw data and thus can
reduce data locality for user jobs as Hadoop tries to execute tasks on
the nodes that hold the corresponding data and by reducing the
number of nodes that hold the copy of the data the likelihood of the
task running on a node that does not have a copy of the data,
increases. However, in our cluster we hardly see the network as a
bottleneck and with 100MB/s bandwidth between any two nodes
that are located on the same rack, executing tasks on racks that have
a local copy of the data is sufficient to ensure that network does not
become a bottleneck for user jobs. We are still experimenting with
erasure codes or Hadoop RAID and we have seen a lot of positive
results by using it on our test data sets. Moreover, if parallelism does
become an issue, with Hadoop we have the option of applying this
technique on a per data set partition basis. We can enable Hadoop
RAID on older data sets which are not accessed by too many jobs
while keeping the newer data sets replicated 3 ways.

3.1 Scaling HDFS NameNode
Though raw storage can be addressed through compression
techniques and through using RAID for error correction, another
significant resource constraint that we have encountered in our
clusters is the memory used by the HDFS NameNode. The
NameNode is the master server that holds the file to block mappings
for HDFS and as the number of files and the number of blocks in the
system increases, the memory required to hold all this state on the

1015

NameNode also increases. Currently we have close to 100 million
blocks and files on the ad hoc Hive-Hadoop cluster and the
NameNode heap size is configured to use 48GB of memory. Apart
from more and more optimizations on the NameNode data
structures, we are also exploring simple techniques like creating
archive files by concatenating a number of HDFS files together in
order to reduce the number of files in the file system. With tools like
Hive and SQL the explosion of files is further compounded
primarily because it is very easy to write jobs that can produce
outputs that is fragmented over a large number of small sized files.
As an example a simple filter query in Hive when run over a large
data set would create the same number of files as the number of map
tasks used to scan the input data set. However, if the filter is
extremely selective, most of these files would end up being empty
and this would end up creating a very large number of small files in
HDFS, putting even more memory pressure on the NameNode.
Moreover, if this Hive query was periodically run every day – as is
often the case – the problem would just get worse. In order to
address such cases we have enhanced Hive to produce plans which
include a concatenation step for such queries, trading off some bit of
job latency for the reduced pressure on the NameNode memory. We
have also implemented the HiveCombinedFileInputFormat which
also significantly reduces the number of map tasks needed by
downstream jobs in case the data set is already fragmented across a
large number of files. With this input format, a single map task
executing on a node is able to read blocks from different files that
are stored on that node – a capability that is not available on the
default input formats in Hadoop.

3.2 Federation
With the continued growth in our data sets at some point in the near
future we will have to seriously consider federating data across
multiple Hadoop clusters housed in different data centers. In general
there are two approaches that we have considered – distributing data
across clusters on the basis of time so that older data sets are held in
clusters that have more storage than compute, or distributing data
across clusters on the basis of application groups e.g. separating the
ads data sets from other data sets in a separate cluster of its own.
Both approaches have their pros and cons. While the benefits of the
first one are easy to understand, and to some extent techniques used
in hierarchical storage management can be applied to manage these
data sets, the fact that the data sets have been growing rapidly make
its benefits less clear. Rapid and compounded growth means that
much more data is newer and that separation of old data into another
cluster would end up saving only 20-25% space on the existing
cluster. Additionally it also means more user intervention in case
data sets across the “time boundary” have to be compared or joined.
On the other hand, federating on the basis of applications has the
down side that some of the common dimension data would have to
be replicated and that would mean more storage overhead. At this
time though, we think that this overhead is very low and by
federating on the basis of applications we can balance out the
storage and query workloads on different clusters more evenly.

4. DATA DISCOVERY AND ANALYSIS
At Facebook querying and analysis of data is done predominantly
through Hive. The data sets are published in Hive as tables with
daily or hourly partitions. The primary interfaces to interact with
Hive for ad hoc query purposes are a web based GUI - HiPal - and
the Hive command line interface – Hive CLI. In addition a home
grown job specification framework called Databee is used for

specifying job and data dependencies. In this section we discuss in
more detail these tools and systems that are used heavily to find,
query and analyze data sets in Hive.

4.1 Hive
Hive[8] is a data warehousing framework built on top of Hadoop. It
was created at Facebook and then contributed back to the Hadoop
ecosystem as a Hadoop subproject. Inside Facebook it is used
heavily for reporting, ad hoc querying and analysis. The basic
motivation behind the creation of Hive was the observation that
while Hadoop promised scalability and while map/reduce was a
good lowest common denominator to express diverse kinds of jobs,
it was too low level to be used to develop pipelines in a productive
manner. In addition, SQL and the concepts of tables, columns and
partitions are concepts and tools that many users are familiar with.
As a result it was natural to conclude that by putting structure on top
of the data in Hadoop and by providing SQL as a tool to query that
data, the power of this platform could be brought to the masses.
Without Hive, the same job would take hours if not days to author in
map-reduce. Using Hive the task could be expressed very easily in a
matter of minutes. It has been possible with Hive to bring the
immense scalability of map-reduce to the non engineering users as
well – business analysts, product managers and the like who, though
familiar with SQL would be in a very alien environment if they
were to write map-reduce programs for querying and analyzing
data.

Figure 2 shows the major components of Hive and how it interacts
with Hadoop. The tables and partitions in Hive are stored as HDFS
directories and these mappings and the structural information of
these objects are stored in the Hive Metastore. The Driver uses this
information to convert transformations expressed in HiveQL (Hive
query language - a SQL variant) into a sequence of map-reduce jobs
and HDFS operations. A number of optimizations are employed
during this compilation phase. These optimizations include regular

Figure 2: Hive System Architecture

1016

optimizations like pruning files to be scanned on the basis of the
partitioning predicates specified in the query, pushing down of
predicates so that data filtering happens immediately after the scan
so that as few a rows as possible flow through the operator tree and
across map-reduce jobs and finally pruning of columns which are
not used by the query, again with the intention of reducing the
amount of data flowing through the query plan. In addition to these
optimizations, other optimizations needed to generate efficient plans
in the presence of data skew are also done by the optimizer e.g. a
group by computation done on a data set with a skewed distribution
on the group by key is done through two map-reduce jobs – the first
job for generating partial aggregates and the second job for
generating complete aggregates from these partial aggregates. In
addition a number of optimizations to do partial aggregations in the
map tasks also help in reducing the amount of data crossing the
map-reduce boundary. A number of different join techniques such as
reordering join orders so that the larger tables are streamed in the
reduce tasks and not held in memory, map side joins for increased
parallelism in the case where one of the join tables is small enough
to fit in the memory of a map task and bucketed joins that employ
the knowledge of how the data is hashed into the HDFS files of a
table and many other optimizations, also help in creating efficient
plans which only an expert map-reduce programmer could encode
into map-reduce programs. All these lead to not just big productivity
gains or the users but also lead to more efficient usage of the cluster
resources.

Apart from increasing developer productivity and cluster efficiency,
Hive is also extensible in many different ways. This flexibility
enables it to be used for transformations that cannot be easily
expressed in SQL. By allowing users to plug in their own
computation through user defined functions, user defined table
functions or by specifying their own custom scripts with
TRANSFORM/MAP/REDUCE keywords in HiveQL, Hive
provides a truly flexible way of expressing different types of
transformations. In addition it provides interfaces that allow users to
specify their own types or data formats which becomes very useful
while dealing with legacy data or rich data types.

All these capabilities have been instrumental in making it the core
system for doing analysis – both ad hoc as well as periodic – on
large data sets at Facebook.

4.2 Interactive Ad hoc queries
At Facebook ad hoc queries are executed by the users through either
HiPal, a web based graphical interface to Hive or Hive CLI a
command line interface similar to mysql shell. HiPal specially
enables users who are not very familiar with SQL to graphically
create queries for ad hoc analysis. It supports capabilities to show
job progress, inspect results, upload and download results and small
data sets in CSV format and capabilities to report and debug errors.
In addition the results of any query are stored in the cluster for 7
days so that they can be shared amongst users. HiPal is an extremely
popular tool which is used heavily in Facebook for authoring and
executing ad hoc queries. While it has truly democratized the ability
to query large data sets, it has also lead to novel usage patterns and
use cases for Hadoop, use cases that were not core to the original set
of applications that it was designed for. As an example the ability to
submit bad queries has exposed deficiencies in Hadoop when it
comes to protecting jobs from side effects of poorly written queries.
It has also opened interesting scheduling questions around how to
ensure that long running periodic jobs in the cluster do not starve the

smaller ad hoc jobs of resources and poor user experience for users
executing ad hoc queries. We will discuss these issues around
isolation and fair sharing in section 5. Also, in general ad hoc users
tend to be more interactive and we are still evolving our systems to
support this interactivity on what has traditionally been a batch
processing system. Despite these limitations, the ability to be able to
query these data sets in an easy and intuitive manner has been the
driving force behind the continued adoption and popularity of HiPal
throughout Facebook.

4.3 Data Discovery
A direct consequence of the increasing data sets and their diverse
uses is the explosion in metadata itself. Today we have more than
20,000 tables on the ad hoc Hive-Hadoop cluster with hundreds of
users querying these tables every month. As a result discovering
data is itself challenging. This is further compounded by the fact
that there is no central process to author this data as is usually the
case with data warehouses in other companies. Decentralization if
augmented with the right tools can itself develop into a highly
efficient process by itself, which is a must have in a dynamic and
fast paced environment like Facebook. As a result we have
embraced and experimented with some ideas and concepts around
using a combination of machines and people to make data discovery
efficient.

We have created internal tools that enable a wiki approach to
metadata creation. Users can add and correct table and column
descriptions and can also tag tables with searchable tags and project
names. The idea here is that users can collaborate on generating this
information so that over a period of time this becomes an accurate
and searchable corpus of metadata that keeps adapting to schema
changes and changes in data sets. Apart from the user generated
content we have also written tools to extract lineage information
from query logs. This information has been used to build tools that
enable users to navigate tables and quickly see the base data sets
that have been used to generate any particular data set and also all
the data sets derived from a particular table. This capability along
with simple tools for inspecting a small set of rows of the table gives
a lot of information to the users about the origin and structure of
data and aids in data discovery. The query logs have also been a
mined to identify expert users on a per table basis. These are users
who have frequently queried the associated tables in the recent past.
We have also built tools that enable the users to connect to these
expert users and ask questions about the data. All these tools are
integrated into HiPal and provide the necessary data discovery tools
within the context of a query session – right at the time when the
user needs these tools the most.

4.4 Periodic Batch Jobs
Apart from ad hoc jobs a large part of the cluster is used by periodic
jobs that are run at different periodicities, ranging from 5 minutes to
once every week. For such jobs, inter job dependencies and the
ability to schedule jobs when certain data sets are available are
critical. In addition a common pattern in these jobs involves waiting
for certain base data sets, transforming them in one or more steps
using Hive and then loading the results to various different mysql
database tiers. Moreover such jobs require monitoring and alerting
in case of failures and good dashboards to check their current status,
past runs or time of completion.
All these capabilities are provided by Databee, which is a python
framework for specifying such jobs. It supports different operators
for moving data between different systems as well as operators for

1017

transforming data or running queries in different clusters. It provides
the ability to specify dependencies on data sets or on other Databee
jobs and it also generates monitoring information that tracks
completion times and latencies for the job and its intermediate steps.
In addition it also collects stats on the amount of data handled by
different stages in the data pipeline. These stats in some cases are
useful to discover bugs in the transformation logic.
Facebook analysts also use Microstrategy for dimensional analysis.
In such situations the periodic jobs construct the cubes for
Microstrategy and then load them into Microstrategy server
instances. The ODBC drivers in Hive enable Microstrategy servers
to submit such jobs directly to Hive.

5. RESOURCE SHARING
The co-existence of interactive ad hoc queries and periodic batch
jobs on the same set of cluster resources has many implications on
how resources are shared between different jobs in the cluster. Ad
hoc users require minimal response times from the system and the
ability to tweak and change the jobs as they refine their queries. On
the other hand the periodic batch jobs require a predictable
execution time/latency as they are more concerned with data being
available before a certain deadline. The deadline is what comprises
of an SLA between the authors of these jobs and the downstream
consumers of the data that they produce. The goals of
experimentation for ad hoc users and predictability for periodic
batch jobs are at odds with each other. At the same time since a job
in Hadoop cannot be pre-empted to give up its resources, there are
scenarios where a long running periodic job can deprive a short
running interactive ad hoc query of cluster resources thereby
significantly increasing the latency for such jobs. These opposing
requirements have been central in shaping our strategy on how
resources are shared and allocated to different Hadoop jobs.

In order to support co-existence of interactive jobs and batch jobs on
the same Hadoop cluster, Facebook has been instrumental in the
development of the Hadoop Fair Share Scheduler [10] and we use it
in all our clusters. Users are divided into pools and cluster resources
are shared equally among pools. Each user in the system gets her
own pool. We set limits on the number of concurrent jobs and tasks
per pool. The periodic jobs are run in their own separate special
pools. These types of special pools have minimum resource quotas
associated with them and the jobs that use these pools are likely to
get at least their minimum quota even when there is a high load
average on the cluster. These techniques have played a critical part
in supporting both interactive ad hoc jobs and periodic batch jobs on
our clusters. There are still challenges especially since we have not
enabled pre-emption of tasks on our clusters. A direct consequence
of not having pre-emption is that starvation is still an issue as fair
sharing is done only for new task allocations and does not actually
kill tasks for jobs which have already used up their fair share.

In order to isolate the cluster from poorly written queries – which
can happen quite easily because of ad hoc queries supported by our
clusters – we have made improvements to the Hadoop Fair Share
Scheduler to make it more aware of system resources, - primarily
the memory and CPU consumed by each job. Before these
improvements a common scenario in our ad hoc cluster would
involve a user submitting a bad query whose tasks would consume a
lot of memory on a majority of nodes in the cluster. As a result these
machines would start swapping at best and would even crash in the
worst case. Either scenario would have an adverse side effect on all

the jobs running on the cluster, including the periodic batch jobs that
require a lot of predictability in their run times. Needless to say, this
would soon snowball into a big problem for the users. In order to
prevent such scenarios from playing out on the cluster, we have
improved the Fair Share Scheduler to actively monitor the CPU and
memory usage of all the nodes in the cluster. The scheduler kills
existing tasks on a node if memory usage on that node exceeds
configured thresholds. Moreover, the scheduler allocates new tasks
to a slave node only if the CPU and memory usage of that node is
within configured limits. This improvement in the scheduler has
gone a long way in isolating our clusters from bad jobs. The
allocations still do not take into account network usage and disk I/O
usage per task, but we have seen that those resources are less of an
issue in our deployments. Apart from these improvements, we have
also enabled the locality wait feature in the scheduler. This feature
delays scheduling a task - up to a certain period of time - till it finds
a node with a free task slot that also contains a copy of the data that
is needed by the task. However, this strategy does not work well for
jobs working on small data sets – which we also find a lot in our ad
hoc cluster. For those small jobs, we do not use locality wait.
Moreover, for such jobs the map and reduce tasks are scheduled
simultaneously instead of scheduling the reduce tasks only after a
fraction of the map tasks are completed.

As mentioned previously, we execute periodic batch jobs that have
to deliver data to very strict deadlines in a separate production
cluster. This simple method of separation further ensures that ad hoc
jobs that take up too many resources cannot impact the execution
times of critical production jobs in any way. Predictability of
execution times is extremely critical for these jobs and this method
further isolates these jobs from the unpredictable patterns of the ad
hoc queries. Physically separating the clusters does mean that we
may not be getting the maximum utilization from our hardware –
there are times when the nodes in the ad hoc cluster are idle while
there are plenty of jobs pending in the queue of the other cluster and
vice versa. We are experimenting with a system called the “dynamic
clouds” where in we can decommission nodes from one cluster and
move them over to another cluster on demand. This movement of
nodes is only across map-reduce clusters and not across HDFS
cluster as it is easy to move compute resources but very difficult to
move storage resources, and it is usually the former that is needed
for the jobs that have accumulated in the cluster queue. This is still
an experimental system which is still being developed.

6. OPERATIONS
There have been a lot of lessons that we have learnt while operating
the data warehousing and analytics infrastructure at Facebook. With
such a huge deployment and with vast parts of the company
depending on this infrastructure for analysis needs – including parts
that run business critical jobs on this infrastructure – it is natural that
we devote a lot of our energies on the operational aspects of these
deployments. Broadly speaking, operations comprises of two things
– supporting the systems that this infrastructure is built on and
supporting the data pipelines that run on this infrastructure. We
collect a lot of statistics for these purposes, which we will talk about
in this section.

We have added a lot of monitoring to the nodes in our clusters and
the Hadoop daemon processes. We collect regular system level stats
such as CPU usage, I/O activity, memory usage etc. from all the
nodes. In addition to these we also track Hadoop specific statistics
both for the JobTracker (which is the master for the map-reduce

1018

cluster) and the NameNode (which is the master for the HDFS
cluster). From the JobTracker we collect statistics like average job
submission rate, number of utilized map and reduce slots, job
tracker JVM heap utilization as well as the frequency of garbage
collection in the job tracker. From the NameNode, apart from the
statistics related to the JVM heap and garbage collection we also
monitor the space usage as well as the “balancedness” of the cluster
– the latter comprising of a measure of standard deviation for the
distribution of the space used across the nodes in the HDFS cluster.
In addition we also track the count of bad blocks in HDFS as well as
the number of slave nodes in both the map-reduce cluster and the
HDFS cluster. These measures help us to quickly identify problems
in the cluster and take any remedial action. We have hooked these
up with our internal systems to generate appropriate alerts in case
these measures cross certain thresholds. Apart from these measures
which are critical in identifying problems in the cluster, there are
others that we regularly collect for figuring out our provisioning
needs. These include the HDFS space usage and the aggregated
amount of CPU and memory being used in the cluster. Moreover,
we have also developed simple tools like htop – a top like utility
which gives CPU and memory usage across the entire cluster on a
per job basis. This has been very helpful in identifying jobs that take
up inordinate amount of system resources in the cluster.

Along with system level monitoring, we also provide a number of
dashboards to our users to provide them feedback on the space and
compute that they are using on the cluster. We track the space usage
by users and teams as well as the growth rate of the different data
sets. We regularly track tables or data sets that suffer from
fragmentation - those tables that store a small data set in a large
number of files. We also provide ways in which users and teams can
set up retention limits on their data sets in Hive, so that their table
partitions can be automatically cleaned up. Going forward we are
adding more and more capabilities to give us more intelligence on
how the cluster is used and how this usage can be further optimized.

For users that run periodic batch jobs we also provide capabilities to
monitor the run time and failures for their jobs. Databee collects a
lot of this information and hooks them up with our monitoring
systems. We also track the publish time for a number of our data sets
so that consumers for those data sets can be alerted in case of
delays. This enables us to get a better end to end picture of our
entire infrastructure and helps us identify weak links or under
provisioned tiers/clusters involved in the data flow. We constantly
measure the uptimes of our clusters and track how we are doing
against our service levels to our users and we are constantly looking
at ways and measures to improve the user experience for our users.

7. CONCLUSION
A lot of different components come together to provide a
comprehensive platform for processing data at Facebook. This
infrastructure is used for various different types of jobs each having
different requirements – some more interactive in nature as
compared to others, some requiring a predictable execution time as
compared to others that require the ability to experiment and tweak.
This infrastructure also needs to scale with the tremendous amount
of data growth. By leveraging and developing a lot of open source
technologies we have been able to meet the demands placed on our
infrastructure and we are working on many other enhancements to it
in order to service those demands even more and in order to evolve
this infrastructure to support new use cases and query patterns.

8. ACKNOWLEDGMENTS
The current state of the data warehousing and analytics
infrastructure has been the result of on going work over the last
couple of years. During this time a number of people at Facebook
have made significant contributions and enhancements to these
systems. We would like to thank Scott Chen, Dmytro Molkov and
Rodrigo Schmidt for contributing a number of enhancements to
Hadoop - including htop, resource aware scheduling, dynamic
clouds, Hadoop RAID etc. We would also like to thank He
Yongqiang, John Sichi, Ning Zhang, Paul Yang and Prasad Chakka
for a number of contributions to Hive. These include features like
row column compression, table functions, various join
optimizations, views, Hive metastore etc. Also thanks are due to
Andrew Ryan and Rama Ramasamy for doing a lot of work on
operations, monitoring and the statistics setup that makes these tasks
easy. Thanks are also due to Anthony Giardullo, Gautam Roy and
Aron Rivin for their continued support and enhancements to Scribe
and for helping make scribe-hdfs integration possible. Vijendar
Ganta has been instrumental in building a number of web based
tools including the collaboration features in HiPal. HiPal owes its
genesis to a Facebook hackathon project contributed to by David
Wei and Ravi Grover amongst others. Acknowledgements are also
due to Matei Zaharia for implementing the Fair Share Scheduler as
part of his internship at Facebook and the open source Hadoop and
Hive communities that have contributed immensely to both these
projects. Last but not the least thanks are also due to the users of our
infrastructure who have patiently dealt with periods of instability
during its evolution and have provided valuable feedback that
enabled us to make continued improvements to this infrastructure.
They have constantly kept the bar high for us and have had a major
contribution in the evolution of this infrastructure.

9. REFERENCES
[1] Apache Hadoop wiki. Available at

http://wiki.apache.org/hadoop.
[2] Apache Hadoop Hive wiki. Available at

http://wiki.apache.org/hadoop/Hive.
[3] Scribe wiki. Available at

http://wiki.github.com/facebook/scribe.
[4] Ghemawat, S., Gobioff, H. and Leung, S. 2003. The Google

File System. In Proceedings of the 19th ACM Symposium on
Operating Systems Principles (Lake George, NY, Oct. 2003).

[5] Dean, J. and Ghemawat S. 2004. MapReduce: Simplified Data
Processing on Large Clusters. In Proceedings of the 6th
Symposium on Operating System Design and Implementation
(San Francisco, CA, Dec. 2004). OSDI'04.

[6] HDFS Architecture. Available at
http://hadoop.apache.org/common/docs/current/hdfs_design.pd
f.

[7] Hive DDL wiki. Available at
http://wiki.apache.org/hadoop/Hive/LanguageManual/DDL.

[8] Thusoo, A., Murthy, R., Sen Sarma, J., Shao, Z., Jain, N.,
Chakka, P., Anthony, A., Liu, H., Zhang, N. 2010. Hive – A
Petabyte Scale Data Warehouse Using Hadoop. In Proceedings
of 26th IEEE International Conference on Data Engineering
(Long Beach, California, Mar. 2010). ICDE’10.

1019

[9] Ailamaki, A., DeWitt, D.J., Hill, M.D., Skounakis, M. 2001.
Weaving Relations for Cache Performance. In Proceedings of
27th Very Large Data Base Conference (Roma, Italy, 2001).
VLDB'01.

[10] Zaharia, M., Borthakur, D., Sen Sarma, J., Elmeleegy, K.,
Shenker, S., Stoica, I. 2009. Job Scheduling for Multi-User

MapReduce Clusters. UC Berkeley Technical Report
UCB/EECS-2009-55 (Apr. 2009).

[11] Fan, B., Tantisiriroj, W., Xiao, Lin, Gibson, G. 2009.
DiskReduce: RAID for Data-Intensive Scalable Computing. In
Proceedings of 4th Petascale Data Storage Workshop
Supercomputing Conference (Portland, Oregon, Nov. 2009).
Supercomputing PDSW’09.

1020

