
a general class of models (also known as random- or mixed-effect 
generalized1 linear models) that takes into account the hierarchical 
nature (i.e., the non-independence) of data.

Unlike in other experimental sciences (e.g., sociology, demogra-
phy), in more than 25 years of existence, MLMs have seldom been 
used in psychology – with noticeable exceptions, mainly in the field 
of educational psychology. The reason may be that many research-
ers in psychology underestimate the severity of the problem. Yet, 
when the hierarchical structure of the data is not recognized and 
ordinary least squares methods (e.g., ANOVAs, linear regressions) 
are performed on non-independent data, researchers draw incor-
rect conclusions because the estimates they base their conclusions 
on are biased (Aitken and Longford, 1986; Kenny and Judd, 1986; 
see also McCoach and Adelson, 2010).

The first aim of the present article is to demonstrate the severity 
of the problem through a series of simulations. A secondary aim 
is to discuss the effectiveness and shortcomings of the still widely 
used correction for non-independence proposed by Kish (1965). We 
conclude with solutions and advice on how to collect and analyze 
correctly hierarchically structured data, particularly in the case of 
groups nested under treatment experimental designs, the type of 
design which is extensively used when the goal is to evaluate the 
effectiveness of an intervention/treatment.

IntroductIon
Hierarchical data structures, with lower level units being part of (or 
“nested under”) higher level units, are inherent to most research 
questions in psychology. A classic example is that of children learn-
ing to read with different teaching methods. Each child (level-1 
unit) is in a class, and each class (level-2 units) is part of a school 
(level-3 units). Thus, in addition to the treatment effect (i.e., the 
intervention concerning the learning method, the independent 
variable that is manipulated), a child’s reading performance will 
depend partly on the class s/he is in, and partly on the school s/he 
is in. As a result, children from the same class will have final reading 
scores more similar one to another than children from different 
classes of the same grade, and final reading scores of children of 
the same grade from the same school will be more similar one to 
another than those of children of the same grade from different 
schools. The same applies to other fields in psychology. For instance, 
a researcher in organizational psychology must take into account 
that employees from the same department will have “job satisfac-
tion” scores that are more similar one to another than those of 
employees from different departments, and “job satisfaction” scores 
of employees from the same department in the same corporation 
will be more similar one to another than those of employees from 
the same department but working in different corporations.

Given the ubiquity of hierarchical data, substantial effort was 
devoted by statisticians to formulate models that are adequate to the 
analysis of hierarchical data and allow researchers to draw correct 
conclusions. These efforts gave birth to the multilevel model (here-
after MLM: Mason et al., 1983; Goldstein, 1986; Longford, 1987), 
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We will exemplify our point using one of the simplest hier-
archical models, a two-level model that compares a new reading 
method to the one in use. Unlike in the previous example (which 
considered three levels, pupils within classes within schools), we 
consider for each school pupils selected at random within those 
of the same grade. We will thus speak of pupils within (different) 
schools, a two-level data hierarchy. The intervention variable (i.e., 
type of reading method) is administered at the school level, with the 
new reading method used in 15 schools, and the standard method in 
15 other schools. Twenty pupils were selected per school, resulting 
in 300 pupils per learning method. In MLM language, pupils are 
level-1 units and schools are level-2 units. A researcher who would 
(mistakenly) run a t-test with 598 degrees of freedom (hereafter 
df) would most likely found a difference between the two reading 
methods, but this result would be spurious, and may lead to the 
unwarranted conclusion of an effect of the learning method on 
reading achievement. Indeed, a t-test requires that the observa-
tions be independent, and the 20 observations per school are not 
independent: the reading scores of pupils from the same school 
are more similar one to another than those of pupils from differ-
ent schools. This non-independence is captured by the concept of 
intraclass correlation (hereafter ICC): the fact that pupils belong to 
a particular school causes the reading scores of the pupils from that 
particular school to be similar one to another and to systematically 
differ from those of pupils from another school. More precisely, ICC 
is the fraction of the total variation in the data that is accounted for 
by between-group (in our example, the between-school) variation 
(Gelman and Hill, 2007). In the case of a two-level model the ICC is:

ICC = +( )σ σ σu u e0 0

2 2 2/ ,
 

(1)

with σu0

2  being the between-groups variance (i.e., between level-2 
units) and σe

2 the within-group variance (see Appendix A for the 
calculation).

Intraclass correlation takes values from 0 to 1. As one can see 
from Eq. 1, along this continuum, at one extreme, an ICC of zero (a 
situation where least squares analyses are of application) is obtained 
when σu0

2  is nil, that is, when the proportion of variability in the 
outcome that is accounted for by the groups is nil – i.e., all vari-
ability lies within groups. At the other extreme, an ICC of one is 
obtained when σe

2 is nil, that is, when the variance within the groups 
is nil – i.e., there is no difference in the scores within each group, 
all variability lies between the groups. In practice, ICC values are 
usually small (a value of 0.5 would be exceptional), but as we shall 
illustrate, even a very small ICC can have dramatic consequences 
on the Type-I error rate.

What are the alternatives to the incorrect use of a t-test with 
598 df? The best option is the use of multilevel modeling. Indeed, 
what distinguishes MLMs from classical regression models is the 
fact that the variation between the groups is part of the model. In 
other words, the level-1 parameters (the regression coefficients) are 
modeled (i.e., are given a probability model), and the level-2 model 
has parameters of its own (the hyperparameters of the model), 
which, importantly, are also estimated from the data (Gelman and 
Hill, 2007). MLMs can also easily accommodate more than two 
levels. However, MLMs use iterative procedures that yield unbiased 
estimates only under certain (ideal)  circumstances. While it may be 

difficult to define a priori (i.e., without taking into  consideration 
power, variance, whether one is interested in the interaction between 
levels or not, etc.) the minimum level-2 units to be included in a 
study, having too few level-2 units is clearly a problem because with 
few level-2 units the MLM estimates are very likely to be biased 
(Raudenbush and Bryk, 2002; Gelman and Hill, 2007).

What if the number of higher level units (here, level-2 units) is 
clearly insufficient for allowing MLM modeling? Statistically speak-
ing, the best scenario is simply to avoid this situation. In practice 
however, one does not always have the choice. For example, it is not 
always feasible to obtain the authorization from 20 plus schools. 
Assuming that 6 schools participated to the evaluation of a new read-
ing method (as compared to the one already in use), with 50 pupils 
of the same grade selected at random within each school (resulting in 
150 pupils per learning method), one possible way to analyze these 
data is to pool over pupils from each school, which would result in 
6 values, 3 per reading method. The reading performance across 
the two teaching conditions can then be compared using a t-test 
with 4 df. Technically, this t-test would be correct because now the 
values of each observation (i.e., school) are independent. However, 
there is no valid statistical interpretation to the result of this t-test 
because any interpretation at the level of pupils while analyzing the 
data at the school level is unwarranted – it is a case of ecological 
fallacy (see Freedman, 2001; see also Bryk and Raudenbush, 1992, 
who advise against the use of pooling). Another option would be to 
avoid pooling, perform a t-test with 298 df and apply a correction for 
the non-independence of the observations. The most widely used 
correction is that suggested by Kish (1965) – see Appendix B for its 
calculation. However, as we will show below, Kish’s correction does 
not always succeed in reducing the Type-I error rate to 5%. Indeed, 
the Type-I error rate of a Kish-corrected t statistic varies as a func-
tion of the level-1 and level-2 sample size and of ICC.

MaterIals and Methods
In the following we use simulation data to illustrate how the actual 
Type-I error rate departs from zero and exceeds the conventional 
threshold (α = 5%) when the hierarchical structure of the data 
is not taken into account. More precisely, we examine the Type-I 
error rate as a function of ICC, the number of level-2 units and the 
number of level-1 units per level-2 unit. For each simulation, half of 
the level-2 units were randomly assigned to a “treatment” condition 
and the other half to a “control” condition, an assignment called 
“groups nested under treatment,” which is known to result in false 
positive results (i.e., increased Type-I errors, incorrect rejection of 
the null hypothesis) when ICC departs from 0 (Kenny and Judd, 
1986). Most importantly, no systematic difference was introduced 
between the conditions, i.e., the treatment effect in the data is zero. 
The underlying model for data simulation is a varying-intercept 
model defined by the Eqs 2 and 3:

y N x i nj i i y∼ +( ) = …α β σ[ ] , , , ,2 1for
 

(2)

with n being the level-1 sample size for the jth level-2 unit;

α µ σα αj N j J∼ …, , , ,2 1( ) =for
 

(3)

with J being the total number of level-2 units.

Musca et al. Analyses of hierarchically structured data

Frontiers in Psychology | Quantitative Psychology and Measurement  April 2011 | Volume 2 | Article 74 | 2

http://www.frontiersin.org/Quantitative_Psychology_and_Measurement
http://www.frontiersin.org/Quantitative_Psychology_and_Measurement/archive


Considering the first of the examples discussed above, with 
20 pupils (i.e., level-1 units) per school (level-2 units) and 30 
schools (15 per learning method), in the absence of any differ-
ence between the efficiency of the two learning methods, there 
are 36.66% false positive results with the realistic ICC value of 
0.2 (see Table 1). Considering again an ICC of 0.2, in the second 
example, with 50 pupils per school and 6 schools, the results are 
similarly worrying: a clearly unacceptable false positive rate of 
62.26%. Even with the ICC value of 0.01 (considered here as a 
mere example of a very small non-zero value), the rate of false 
positive results is above 5% for both previous cases, respectively 
of 7.10 and 5.2%. Considering an ICC value of 0.3 (common for 
classroom-based clustering), the false positive rate for the sample 
sizes considered above is very worrying, with Type-I error rates of 
46.50% and respectively 68.84%. These results make it clear how 
one may incorrectly conclude to a difference between conditions 
when in fact no such difference exists.

More generally, two main conclusions can be drawn from the 
results of the simulations that did not use the Kish (1965) cor-
rection. First, even with an ICC as low as 0.01, Type-I errors are 
always higher than 5% (except for ICC = 0.01, 6 level-2 units, 
and 10 level-1 units), with values well above 5% for many level-1/
level-2 combinations (see Table 1). For an ICC value such as 0.2, 
Type-I error rates reach extremely high values, the minimum 
being 20% and the maximum 72.4%. With the equally plausi-
ble ICC value of 0.3, similarly worrying results are found, the 
minimum false positive rate being 31.42% and the maximum 
76.62%. Second, the Type-I error rates increase with the number 
of participants per group, so that one would be better off having 
more groups with fewer participants per group than few groups 
with a lot of participants per group – note this is not an original 
conclusion but a well-known fact (e.g., Murray, 1998; Donner 
and Klar, 2000).

Considering Kish’s (1965) correction, it is clear from the results 
presented in Table 2 that this correction is clearly helpful, though 
not perfect. Indeed, while it brings the Type-I error rate down to 

The simulations were conducted in R (R Development Core Team, 
2009), with the following parameters (taken from the varying intercepts 
example distribution of the display function of the arm package, Gelman 
and Hill, 2007)2: σ

y
 = 1, μα = 0, μβ = 3, σβ = 4; a between-group correlation 

parameter (σ = 0.56) was also introduced. The parameter σα was varied 
to obtain the different ICC values: σα = 0.5 for ICC = 0.01, σα = 2.5 for 
ICC = 0.2, and σα = 3.3 for ICC = 0.3 (see Appendix C for the R code). 
For each simulation, the number of level-1 units per level-2 unit was the 
same within each level-2 unit (perfectly balanced design). We computed 
Type-I error rates once without and once with the application of the 
Kish (1965) procedure. Five thousand simulation results are considered 
per case, with each case being the combination of an ICC value, a cer-
tain number of level-2 units, and a certain number of level-1 units per 
level-2. It was checked that the simulation results are stable. ICC values 
considered were 0.01 (a very small non-zero value), 0.2 (a value that is 
plausible for school-based clustering, as in the example we offer below), 
and 0.3 (a value that is plausible for classroom-based clustering) – see 
Hedges and Hedberg (2007). The number of level-2 units (i.e., 6, 10, 12, 
20, 30, 50, 100) and the number of level-1 units per level-2 unit (i.e., 10, 
20, 50, 100) considered were chosen so as to cover reasonably the range 
of possible sample sizes that may be used in different areas in psychology. 
Degrees of freedom for the t-tests that were run were

df (number of level-2units) (number of level-1units)-testt = × − 2

 
(4)

so, for example the t-test df for 6 level-2 units and 10 level-1 units 
per level-2 unit is 58.

results
Table 1 displays the Type-I error rates in percentage format (i.e., the 
percentage of times a significant difference was found between the 
two conditions). Likewise, Table 2 displays the Type-I error rates 
after correction with Kish’s (1965) procedure.

Table 1 | Type-I error percentage as a function of ICC value and of the number of level-1 units (rows) and the number of level-2 units (columns).

Level-1 units ICC   Level-2 units

  6 10 12 20 30 50 100

10 0.01 3.88 5.14 5.92 5.36 5.82 5.50 6.80

 0.2 30.28 27.64 20.00 25.62 26.02 24.62 23.39

 0.3 36.90 34.80 34.38 33.82 31.42 31.80 31.94

20 0.01 5.20 6.64 7.56 7.66 7.10 7.24 7.04

 0.2 43.88 40.42 40.90 38.78 36.66 38.36 38.28

 0.3 52.54 48.76 47.08 47.04 46.50 46.02 44.66

50 0.01 10.22 10.88 11.20 11.54 10.46 10.78 10.94

 0.2 62.26 60.02 57.84 57.48 55.86 55.80 55.70

 0.3 68.84 65.64 64.92 63.36 63.10 62.82 61.86

100 0.01 19.70 19.18 16.60 16.56 17.12 16.40 16.84

 0.2 72.40 68.34 69.32 68.10 67.32 68.08 67.02

 0.3 76.62 74.44 74.38 73.52 73.08 73.32 73.16

Actual	ICC	values	are	those	displayed	±	0.001.

2See also the reference manual: http://cran.r-project.org/web/packages/arm/arm.pdf
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incorrect conclusions. If researchers analyze non- independent data 
coming from a “groups nested under treatment” design as if these 
data were independent, they will frequently obtain a statistically 
significant result, even when the treatment effect is zero. The infla-
tion in Type-I error is more pronounced if the number of higher-
order units is low, the number of lower-order of units is high, and 
the ICC is high. The extremely high values of Type-I errors – in 
some cases as high as 70% – demonstrate that non-independence 
of data is not just a minor problem the researchers can afford to 
ignore. Quite to the contrary, the present simulations suggest that 
researchers will most likely draw incorrect conclusions if they fail 
to take the non-independence into account.

Ideally, hierarchically structured data should be analyzed 
with MLM. In cases when multilevel modeling cannot be used 
because of the low number of higher-order units, one may resort 
to the correction method popularized by Kish (1965) because 
such a method is always better that resorting to pooling over 
level-1 units – the latter entailing the ecological fallacy, a mis-
interpretation of the data whereby one posits that relationships 
observed for groups necessarily hold for individuals (within the 
groups). However, simulation results presented here show that 
the Kish correction is not equally efficient in all cases. Assuming 
a perfectly balanced design (i.e., the same number of level-1 
units per level-2 unit) Table 2 can be used to derive the opti-
mal number of level-1 units that researchers should include in 
a study once they know the number of level-2 units that are 
sure to participate in the study and once they have estimated 
(based on previous experiments) the value of the ICC that they 
expect to find.
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around its nominal value (i.e., 5%), less than 50% of the cases 
considered here have a Type-I error rate at or below 5%. In many 
cases it is not conservative enough (mainly for a high number of 
level-1 units and for ICCs of 0.2 and 0.3 – but 0.01).

Starting from this table, one can derive the optimal number 
of level-1 and level-2 units that s/he should use, given the ICC 
that is common in her/his field. For instance, taking up again the 
reading method evaluation example with 20 pupils of the same 
grade per school and 15 schools per learning method (i.e., an 
intervention at the school level) and assuming an ICC of 0.2, one 
can read from Table 2 that applying Kish’s correction is a more 
or less valid solution (though slightly too liberal), since after 
Kish’s correction the Type-I error rate (5.30%) is just above 5%. 
Moreover, an examination of Table 2 shows that, having secured 
30 level-2 units (and assuming the ICC is still of 0.2), one should 
use MLM analysis procedures because Kish’s correction does 
not guarantee a Type-I error rate at or below its nominal value 
whatever the number of level-1 units. With the second example, 
if only six schools (level-2 units) are available and ICC is of 0.2, 
Kish’s correction produces Type-I error rates below 5% if 10 or 
20 level-1 units but not if more level-1 units are recruited per 
level-2 unit. Otherwise, if one has specific reasons for using 50 
level-1 units per level-2 unit, the number of level-2 units that 
should be recruited in order to successfully apply Kish’ correc-
tion is 20 or 100. Again, in this latter case (i.e., 50 level-1 units 
per level-2 unit), MLM methods allow for analyses that often 
require the recruitment of a lesser and more reasonable number 
of level-2 units.

conclusIon
The simulation results presented here show that failing to recognize 
a hierarchical data structure or failing to take into account that 
the observations are nested under higher-order groups results in 

Table 2 | Kish-corrected Type-I error percentage as a function of ICC value and of the number of level-1 units (rows) and the number of level-2 

units (columns).

Level-1 units ICC   Level-2 units

  6 10 12 20 30 50 100

10 0.01 2.48 3.96 4.40 4.14 4.78 4.36 5.64

 0.2 4.72 5.06 3.54 5.16 5.34 4.86 4.86

 0.3 6.08 6.80 4.20 5.94 4.84 5.28 5.16

20 0.01 2.24 4.34 4.74 5.38 4.80 4.98 4.74

 0.2 4.74 5.28 5.68 5.12 5.30 5.36 4.90

 0.3 6.94 6.06 6.04 5.86 5.20 4.96 4.90

50 0.01 2.22 3.78 4.38 4.47 4.28 4.90 5.38

 0.2 5.14 5.64 5.34 4.92 5.12 5.16 4.76

 0.3 6.90 6.76 6.44 5.22 5.22 4.90 4.22

100 0.01 2.46 4.38 3.82 4.28 4.90 4.98 4.74

 0.2 5.22 5.16 5.68 5.24 5.20 5.44 5.00

 0.3 6.94 6.18 5.70 5.60 4.86 5.14 5.44

Actual	ICC	values	are	those	displayed	±	0.001.
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to ta lnumberof l ines<- lv l2uni t s *lv l1uni t sp er lv l2uni t , 
subjectspercondition<-totalnumberoflines/2
ICCinfbound<-targetICC-0.001, ICCsupbound<-targetICC + 0.001, 
j<-0, counter<-0
zr<-c(0,0,0,0,0,0,0), rho<-0.56, mu.a<-0, mu.b<-3, sigma.b<-4, 
sigma.y<-1, replications<-5000
group<-rep(1:lvl2units,rep(lvl1unitsperlvl2unit,lvl2units)), 
cond<-gl(2,subjectspercondition)
lvl2groups<-gl(lvl2units,lvl1unitsperlvl2unit)
Sigma.ab<-array(c(sigma.a^2,rho*sigma.a*sigma.b,rho*sigma.a*s
igma.b,sigma.b^2),c(2,2))
repeat { ab<-mvrnorm(lvl1unitsperlvl2unit,c(mu.a,mu.b),Sigma.
ab), a<-ab[,1], b<-ab[,2]
x<-rnorm(lvl2units*lvl1unitsperlvl2unit)
a<-rnorm(lvl2units*lvl1unitsperlvl2unit,a[group] + b*x,sigma.y)
data lm.fit<-lm(data∼cond), sumary<-summary(lm.fit), cond.
estimate<-sumary$coefficients[2]
cond.se<-sumary$coefficients[4], t.value<-cond.estimate/cond.se, 
p.value<-sumary$coefficients[8]
lm.lvl2groups.fit<-lm(data∼lvl2groups)
MSEwithin<-anova(lm.lvl2groups.fit)[2,2]/anova(lm.lvl2groups.
fit)[2,1]
MSEgroups<-anova(lm.lvl2groups.fit)[1,2]/anova(lm.lvl2groups.
fit)[1,1]
MSEbetween<-((MSEgroups-MSEwithin)/lvl1unitsperlvl2unit)
ICC<-MSEbetween/(MSEwithin + MSEbetween), t.Kish.
correctn<-sqrt((1 + (lvl1unitsperlvl2unit-1)*ICC))
Kishcorrctd.t.value<-t.value/t.Kish.correctn
Kishcorrectd.p.value<-2*pt(-abs(Kishcorrctd.t.value),anova(lm.
fit)[2,1])
if(ICC>ICCinfbound){ if(ICC < ICCsupbound){ counter<-counter + 1
zr<-c(zr,counter,t.value,p.value,ICC,t.Kish.correctn,Kishcorrctd.t
.value,Kishcorrectd.p.value)}}
j<-counter, if(j>(replications-1)) break }
endofzr<-7*(replications + 1), zrOK<-zr[8:endofzr], tmp<-
array(zrOK,c(7,counter)), writethis<-t(tmp)
write.table(writethis,file = ″c:\30L2w50L1icc0.01.txt″,sep = ″t″,col.
names = FALSE,append = T)

Note: each comma followed by a space means what follows should 
be placed on a new paragraph; the ″arm″ package is required to 
run this code.

appendIces
appendIx a
Though there is no perfect analytical solution unless the number of 
level-1 units per level-2 unit is exactly the same, a good approxima-
tion of ICC (see Eq. 1) can still be derived (see below).

To calculate σu0

2  and σe
2 proceed as follows. First, run an 

ANOVA with the level-1 units (e.g., pupils) as basic level, 
the scores as dependent variables, and the higher-order units 
(e.g., the n classes), coded as 1, 2, 3, … n, as independent vari-
able. σe

2  is simply the MSE corresponding to the error term 
in the ANOVA. σu0

2  is somewhat more difficult to compute: 
σu0

2  = (MSE corresponding to the higher-order units term in 
the ANOVA − σe

2 )/“mean number of level-1 units per level-2 
unit.” If there are exactly m lower-order units per higher-order 
unit, then σu0

2  = (MSE corresponding to the error term in the 
ANOVA − σe

2)/m.
Otherwise, m′, an approximation of m, is the harmonic mean 

of lower-order units per higher-order unit:
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with m
j
 being the number of lower-order units within the 

 higher-order unit j and n the total number of higher-order units.

appendIx B
The correction proposed by Kish (1965) consists in correcting the 
SE value that is used to compute a t-test value, and using this cor-
rected value to compute a corrected t-test value:
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The value of the corrected t-test is used to draw the statistical 
inference (using the same number of degrees of freedom as for 
the original t-test).

appendIx c
R code used to run the simulations:
lvl2units<-30, lvl1unitsperlvl2unit<-50, targetICC<-0.01, sigma.
a<-0.5 ## use 2.5 for ICC 0.2
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