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A database of decaying homogeneous, isotropic turbulence is constructed including reference direct

numerical simulations at two different Reynolds numbers and a large number of corresponding

large-eddy simulations at various subgrid resolutions. Errors in large-eddy simulation as a function

of physical and numerical parameters are investigated. In particular, employing the Smagorinsky

subgrid parametrization, the dependence of modeling and numerical errors on simulation parameters

is quantified. The interaction between these two basic sources of error is shown to lead to their

partial cancellation for several flow properties. This leads to a central paradox in large-eddy

simulation related to possible strategies that can be followed to improve the accuracy of predictions.

Moreover, a framework is presented in which the global parameter dependence of the errors can be

classified in terms of the ‘‘subgrid activity’’ which measures the ratio of the turbulent to the total

dissipation rate. Such an analysis allows one to quantify refinement strategies and associated model

parameters which provide optimal total simulation error at given computational cost. © 2003

American Institute of Physics. @DOI: 10.1063/1.1597683#

I. INTRODUCTION

As an integral part of the development of large-eddy

simulation ~LES!, the closure of the filtered Navier–Stokes

equations has arisen as an important issue. Kolmogorov’s

theory ~translated, e.g., in Ref. 1! indicates a universal be-

havior of the ‘‘small scales’’ in high Reynolds number turbu-

lence. In this context LES is considered a promising ap-

proach to treat high Reynolds number flows. Indeed, LES

explicitly calculates the large flow-specific turbulent eddies

and adopts a so-called subgrid-scale ~sgs! model to represent

the dynamic effects of the universal small-scale flow features

which are not resolved in the simulation. However, next to

subgrid modeling, effects arising from inadequate subgrid

resolution constitute an equally important element in the de-

velopment of LES. In addition, the various sources of error

can interact, which may lead to further complications in the

interpretation of LES. In this paper we analyze the total in-

teracting error dynamics through a judicious combination of

simulations at appropriately chosen numerical and physical

parameters.

Research in the past three decades revealed that the de-

velopment of the basic LES philosophy in actual flow appli-

cations is not straightforward. Witness to this is, e.g., the lack

of a universal subgrid-scale model. The existing models can

be roughly grouped into a number of basic categories includ-

ing eddy-viscosity models,2–5 stochastic models,6,7 similarity

models,8–11 mixed models,12–16 inverse modeling,17–19 and,

quite recently, assumed sgs velocity models20–23 and regular-

ization models.24 In addition, an important development in

subgrid scale modeling arose with the dynamic

procedure25–27 which allows optimization of parameters in

subgrid models in accordance with the turbulent flow that is

simulated. This leads to an explicit determination of model

coefficients without introducing external ad hoc parameters.

Although several of these models give good results in

various specific simulations, the quality of actual LES pre-

dictions in general depends on a large number of additional

factors that are part of the computational modeling of a flow.

In fact, complications may arise from the specific flow ge-

ometry, from the flow regime, e.g., specified by the value of

the Reynolds number, from the mesh and mesh size, and

from the numerical method. All these factors can simulta-

neously be quite important in view of the marginal resolution

of many dynamically significant features of the flow. This

marginal resolution is imposed by practical restrictions aris-

ing from the computational capabilities of present-day com-

puters.

The variety of elements that constitute a complete nu-

merical large-eddy modeling of a turbulent flow may lead to

an intricate, nonlinear interaction among the modeling and

numerical errors. Indeed, in many simulations to date, the

magnitude of numerical errors can be in the range of the
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magnitude of the subgrid-scale stresses.28 In this ‘‘implicit

modeling’’ by numerical errors one relies heavily on the

properties of the particular spatial discretization method in

relation to the smoothing of the flow. This introduces a con-

siderable uncertainty in the predictions, e.g., when refining

the computational grid. In an actual LES of a temporal mix-

ing layer, Vreman et al.29 quantified the modeling and dis-

cretization errors for various flow properties. In this analysis,

modeling and numerical errors were found to be of compa-

rable magnitude and could partially cancel each other. This

gives rise to some counter-intuitive effects related to im-

provements of LES predictions that might be achieved by

adopting improved subgrid models and/or numerical meth-

ods. In this context, further error analysis for LES was pre-

sented in Refs. 30 and 31 where a clear error-pattern was

observed in terms of the so-called ‘‘subgrid-activity’’ param-

eter s , which measures the relative subgrid-model dissipation

rate. Hence s quantifies the dynamic relevance of the small

unresolved scales in a simulation. Roughly speaking, s char-

acterizes the ‘‘distance’’ between a direct numerical simula-

tion ~DNS! resolving all flow features at sufficiently high

spatial resolution and an actual LES that corresponds to a

specific filter width and mesh spacing.

Though, as mentioned earlier, various studies on simula-

tion error exist, a practical systematic simulation framework

in which the error analysis can be interpreted is still lacking.

It is the aim of this paper to introduce a database approach

for such an error analysis, where important parameters, such

as the filter-width to mesh-size ratio, the integral length

scale, the Reynolds number, etc., are included. To this end,

decaying, homogeneous isotropic turbulence is considered at

two different initial Taylor Reynolds numbers. For these

flows reference DNS data are generated next to a corre-

sponding set of LES based on the use of the Smagorinsky

subgrid model. The database approach followed in the

present paper complements the theoretical work by Ghosal

~for an overview see Ref. 32! and provides an ‘‘experimen-

tal’’ approach to quantify the errors that arise in LES of

homogeneous turbulence. In this approach the interactions

between flow features of various length scales in the mod-

eled equations are fully taken into account as well as the

interaction between numerical and modeling errors. In par-

ticular, the database approach allows for a detailed decom-

position of the total error effect in a numerical and a subgrid

modeling contribution. This clarifies questions related to the

dominant limitations of the accuracy of LES and clearly in-

dicates in what way further improvements can be achieved.

From such extensive comparative studies one may expect to

distill a priori guidelines for the development of LES that

meet pre-specified quality criteria.

The organization of this paper is as follows. First, in Sec.

II, the results of the reference DNS are discussed with atten-

tion to the proper convergence of the solution field as a func-

tion of spatial resolution. Moreover, we specify the large-

eddy formulation that is adopted. Next, in Sec. III the precise

definition of the simulation error is provided and we concen-

trate on the temporal development of the total error and its

main contributions. It is shown that the various ‘‘error com-

ponents’’ can have effects with opposite sign and conse-

quently may lead to simulations that are more accurate than

could be expected from the individual error components.

This leads to some interesting paradoxes which are discussed

in more detail. Subsequently, in Sec. IV global error behavior

is characterized in terms of the subgrid activity as proposed

by Ref. 31 for different Reynolds numbers. This allows one

to distinguish between different LES operating regions with

respect to error behavior. Section V concentrates on the de-

pendence of the total error on important simulation param-

eters such as spatial resolution and flow smoothing, e.g.,

through the specification of the filter width. A framework for

visualizing these error dependencies is presented from which

optimal simulation strategies can be inferred, e.g., concen-

trating on simulation error and/or computational effort. Fi-

nally, we summarize our findings in Sec. VI.

II. REFERENCE SIMULATIONS AND LARGE-EDDY
APPROACH

In the following we first define the numerical model

used to simulate decaying homogeneous isotropic turbulence

and present a grid-refinement study establishing the accuracy

of the DNS in Sec. II A. Then, in Sec. II B we show predic-

tions of some basic flow properties such as the decay of the

kinetic energy, the Taylor length-scale evolution and the

skewness, which forms a point of reference for the error

analysis in this paper. Finally, in Sec. II C we introduce the

LES approach and specify the simulation settings.

A. Direct numerical simulation: Numerical model and
grid refinement

In the direct numerical simulation approach the Navier–

Stokes equations are solved on a sufficiently fine mesh which

is adequate for resolving all relevant flow features. Incom-

pressible flow is governed by

] ju j50,

~1!

] tu i1] j~u iu j!1] ip2

1

Re
] j ju i50; i51, 2, 3

where u i denotes the velocity in the x i direction and p is the

pressure. The summation convention for repeated indices is

adopted and ] t (] j) denotes the partial derivative with re-

spect to time t ~coordinate x j). Moreover, Re is the compu-

tational Reynolds number based on the length of a side of the

cubical flow domain. We adopt a physical space formulation

in which the convective fluxes are discretized using a fourth-

order accurate finite volume discretization33 while either a

second- or a fourth-order accurate finite volume method is

adopted for the viscous fluxes.34 In fact, the second-order

scheme is used for the lower Reynolds number flow while a

fourth-order scheme was found more suitable at the higher

Reynolds number as will be discussed further. The time in-

tegration is done with an explicit four-stage compact storage

Runge–Kutta scheme of second-order accuracy. The time

steps are bounded by a stability condition. The grid used in

the simulations is uniform with n3 grid cells. Periodic con-

ditions are enforced in all three coordinate directions.
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The reference decaying homogeneous isotropic turbu-

lence is simulated at two different computational Reynolds

numbers. These simulations can be characterized by different

initial Taylor Reynolds numbers Rel for which we selected

Rel550 and Rel5100. The Taylor Reynolds number is de-

fined as Rel5u8l/n, where u8 is the rms value of the veloc-

ity, n is the kinematic viscosity, and l denotes the transverse

Taylor length scale, which for homogeneous isotropic turbu-

lence is defined by

1

l2 5

1

2u8
2 K S ]u1

]x2
D 2L 5

1

u8
2 K S ]u1

]x1
D 2L . ~2!

The corresponding values of the computational Reynolds

number Re are on the order of 1061 and 4243 for Rel550,

100, respectively.

The initial condition for the DNS is constructed based on

a prescribed initial energy spectrum E(k). The procedure to

generate the initial state proceeds in three steps.

~1! A velocity field is generated in Fourier space with com-

ponents u i(k). The phases of the components are ran-

dom and taken from a uniform distribution. The ampli-

tude of the components is taken equal to one at this

stage.

~2! The solenoidal part of this field is calculated using

u i
s(k)5P i ju i(k), with

Pij5dij1

kikj

uku

a projection operator, which provides the perpendicular

projection of u on k.

~3! Finally, the Fourier amplitudes of the solenoidal field are

rescaled such that the resulting spectrum corresponds to

the prescribed E(k).

The initial energy spectrum E(k) is prescribed using an

empirical expression which shows good resemblance with

turbulent spectra of several types of flows.35 In detail, E(k)

is given by

E~k !5a«2/3k25/3f L~kL ! f h~kL ReL
23/4!. ~3!

Here, a is the universal Kolmogorov constant ~with value

'1.5) and « the mean energy dissipation. Moreover, f L and

f h are further defined as

f L~z !5S z

@z2
1c1#1/2D 11/3

, ~4!

f h~z !5exp~2c2~@z4
1c3

4#1/4
2c3!!. ~5!

This spectrum is constructed consistent with a k25/3 spec-

trum. It is adapted in the low wavenumber range by a damp-

ing function f L(kL) and in the high wavenumber range by

f h(kL ReL
23/4). In fact, f L(kL) adapts the spectrum toward a

Von Karman spectrum, which is characteristic for low wave-

number behavior of homogeneous isotropic turbulence. The

integral length scale, L , used in this function is formally

defined as

L5

E
3/2

«
, ~6!

where E denotes the total turbulent kinetic energy contained

in the solution, i.e., the appropriate integral of E(k) over k .

Further, f h(kL ReL
23/4) adapts the spectrum to an exponential

decay beyond the inertial subrange. The Reynolds number

ReL used here is defined as

ReL5

E
1/2L

n
. ~7!

Its corresponding values are 375 and 1500 for Rel

550,100, respectively.

In the empirical expression for E(k), three parameters

c1 , c2 , and c3 remain. They can be determined based on

three consistency relations. First, E(k) integrated over all

wavenumbers should add up to the total kinetic energy. Fur-

ther, the integration of k2E(k) should correspond to a correct

level of total enstrophy. Analogously, *k4E(k)dk should cor-

respond to the correct palinstrophy level. An elaboration of

these relations allows one to express c1 , c2 , and c3 in terms

of the Reynolds number ReL , the Kolmogorov constant a,

and the ‘‘formal’’ skewness of the longitudinal velocity de-

rivative. The skewness is defined by

S35 K S ]u1

]x1
D 3L Y K S ]u1

]x1
D 2L 3/2

. ~8!

For S3 , an initial value of 20.7 is adopted. Since the initial

field is generated with random phases for the Fourier com-

ponents the actual skewness according to Eq. ~8! will be

zero; hence the parameter S3520.7 is only a formal param-

eter.

Finally, the reference length used in these simulations is

the computational box size L. For both initial Taylor Rey-

nolds numbers the ratio of the box size to the integral length

scale L/L is 2. Further the initial energy level is 0.5. This

indicates that the viscosity at Rel550 is four times the vis-

cosity in the Rel5100 simulation.

The direct numerical simulations at both Reynolds num-

bers are performed using a compressible Navier–Stokes

solver. The Mach number is set to a low value of 0.2, which

assures that the flow is nearly incompressible. This provides

a representation of homogeneous turbulence which is suit-

able for our purposes here. In order to assess the quality of

the direct simulations a detailed grid refinement study was

conducted. We used grids with 643, 963, 1283, 1923, 2563,

and 3843 grid cells and considered the convergence of the

predictions on these grids.

For the grid convergence we first turn to the flow at

initial Rel550. In Fig. 1~a! the total energy decay at differ-

ent resolutions is plotted. Similarly, the Taylor length scale at

different resolutions is displayed in Fig. 1~b!. It is clear that

the convergence is quite good, especially for the energy in

which case all included resolutions appear to yield virtually

the same result. In contrast, the Taylor length scale displays a

more gradual convergence and it appears that the 1923 and

the 2563 grids provide accurate predictions.

Apart from such visual inspection, convergence may be

further checked in a more rigorous way. This also allows one

to estimate the remaining error in the DNS. Consider solu-

tion properties fn obtained on three different grids with n1
3,
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n2
3, and n3

3 grid cells and corresponding mesh sizes 1/n1 ,

1/n2 , and 1/n3 , assuming n1,n2,n3 . If the mesh sizes are

sufficiently small a pth order accurate numerical method im-

plies

fn32fn2

fn22fn1
5

12~n2 /n3!p

~n2 /n1!p
21

, ~9!

fex
2fn35en35~fn32fn2!

~n2 /n3!p

12~n2 /n3!p . ~10!

At sufficient resolution the order of the discretization method

can be determined from Eq. ~9!. Moreover, Eq. ~10! allows

one to estimate the error on the n3 grid as the difference of

the exact solution fex with fn3.

In principle, Eqs. ~9! and ~10! are valid only in case the

resolution is already quite high. This condition needs to be

checked independently, e.g., by repeating the determination

of the order of the method for several grid sequences. We

illustrate this for the predictions of the Taylor length scale. In

Fig. 2~a!, the estimated order p during the calculation is plot-

ted for two combinations of grid refinements, i.e., 962128

2192 and 12821922256. It is clear that the predictions of

p for both refinement series are basically the same as a func-

tion of time. Furthermore, p is seen to vary between 2 and 4,

which corresponds with the formal order of the spatial dis-

cretization schemes used for the convective and viscous

fluxes, i.e., fourth and second order, respectively. In Fig. 2~b!
the resulting absolute error estimate is plotted for both grid-

refinement series. From this it is clear that the simulation

error on the 2563 grid is lower than 0.531023 in absolute

value. This corresponds to a relative error for the Taylor

length scale lower than 0.7%. Similarly, the relative error for

the total energy has an upper limit of 0.06%, while the rela-

tive error for the skewness of the longitudinal velocity de-

rivative S3 does not exceed 6%.

For the case in which the initial Rel5100, a similar

analysis was performed. Here, the spatial discretization

scheme is fourth-order accurate for the convective as well as

for the viscous terms. The major incentive to switch to a

fourth-order scheme for the viscous terms was the observa-

tion that in case Rel550 a fully fourth-order scheme con-

verges already on 1283 grid cells to within the relative error

levels established earlier. In case Rel5100 the convergence

analysis leads to the requirement to use resolutions of up to

3843 grid points for the fully fourth-order scheme. Without

treating the viscous terms with the fourth-order scheme an

estimated resolution of 7683 grid points would have been

required. The two grid sequences used for the Rel5100 con-

vergence study were 12821922256 and 19222562384. A

similar analysis as before established that the finest grid in-

deed is adequate with relative error levels for the total kinetic

energy and Taylor length scale estimated as 0.06% and 3%.

For the skewness S3 , the predictions for p do not coincide. A

crude error estimation indicates that S3 ~in absolute value! is

approximately 20% too low.

FIG. 1. Direct simulation results for the case Rel550: ~a! total energy decay at different resolutions; ~b! Taylor length scale evolution at different resolutions.

FIG. 2. Direct simulation results for the case Rel550: ~a! order p for two different grid-refinement sets calculated by using the convergence of the Taylor

length scale; ~b! estimated error on the Taylor length scale for the 1923 and 2563 grids.
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B. Direct numerical simulation results

In this section we present some direct numerical simula-

tion results obtained on the finest grids, i.e., 2563 as Rel

550 and 3843 as Rel5100. In Fig. 3 a typical snapshot of

the vortical structures in the simulated homogeneous isotro-

pic turbulence is presented. With increasing Reynolds num-

ber a corresponding strong increase in the amount of small-

scale structures can readily be appreciated. The vortical

structures in Fig. 3 were visualized by directly plotting iso-

surfaces of the magnitude of the vorticity, i.e., uvu
5(v iv i)

1/2 where v i is the ith component of “Ãu. These

snapshots provide only a first global impression of the flow.

We proceed by considering the Reynolds number depen-

dence of some central properties.

In Fig. 4~a! the total kinetic energy decay for both Rey-

nolds numbers is plotted. The energy decay is virtually iden-

tical in both cases. This corresponds to the fact that at high

Reynolds numbers, the inertial-range turbulent scales of any

flow display to some degree universal behavior. Conse-

quently, also the large scale properties become Reynolds in-

dependent. The turbulent kinetic energy is such a large scale

property and is mainly determined by the ‘‘energy containing

eddies.’’ The small differences between the energy decay for

both Reynolds numbers can be understood by recognizing

that Rel550 is rather low for the existence of a universal

turbulent equilibrium range.

The evolution of the Taylor length scale is presented in

Fig. 4~b! while the corresponding Taylor Reynolds number is

plotted in Fig. 4~c!. In these plots, a transition interval be-

tween t50.0 and t50.2– 0.4 is clearly discernible. In this

time frame the Taylor Reynolds number grows to a maxi-

mum value before it starts to decrease monotonously. This is

not related to actual physical behavior of decaying homoge-

neous isotropic turbulence, but instead results mainly from

FIG. 3. Snapshots of vorticity: ~a! at t50.6 and Rel550, ~b! at t50.6 and Rel5100. Isolevels for ~a! and ~b! at 0.25uvumax .

FIG. 4. ~a! Energy decay for DNS of homogeneous isotropic turbulence; ~b!Taylor length scale; ~c! Taylor Reynolds number; ~d! skewness of the longitudinal

velocity derivative. Solid line: Rel550; dash-dotted line: Rel5100 for all plots.
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the evolution of the initial velocity field toward a physically

realistic turbulent velocity field. Primarily, in this time frame

phase correlations are developing properly among the Fou-

rier modes. Indeed, although the initial velocity field satisfies

the continuity equation and corresponds to a relevant energy

spectrum, the phases of the initial velocity are random and

the initial and short-time fields do not correspond to a physi-

cal flow.

In Fig. 4~d!, the skewness of the longitudinal velocity

derivative is shown. Again, the transition region is clearly

visible in which the skewness evolves from 0 to a value of

about 20.5. This is in good agreement with other data on the

skewness of the longitudinal velocity derivative, which range

for moderate to high Reynolds numbers from36
20.3 to

20.9. After the transition region, the skewness is nearly con-

stant in time in case Rel5100. This indicates the existence

of a universal equilibrium range.37 For Rel550 the skewness

varies considerably more, which indicates that this Reynolds

number is too low to display a universal equilibrium range.

C. The LES approach: Fundamentals and simulation
setup

In this section we formulate the incompressible LES ap-

proach that is followed here and describe the setup of the

individual large-eddy simulations.

The filtered, incompressible Navier–Stokes equations

can be written as

] tū i1] j~ ū iū j!1] i p̄2

2

Re
] jS̄ i j5] jt i j, i51, 2, 3,

~11!

where the spatial convolution filter is denoted by (•) and the

filtered solution is given by $ū i , p̄%. The filtering of the con-

vective terms gives rise to the divergence of the turbulent

stress tensor

t i j5 ū iū j2u iu j. ~12!

In addition,

S̄ i j5

1

2
S ] ū i

]x j

1

] ū j

]x i
D ~13!

denotes the filtered rate of strain tensor. Since the left-hand

side of Eq. ~11! corresponds to the Navier–Stokes operator

NS acting on the filtered solution $ū i , p̄% ~instead of $u i ,p%),

the large-eddy approach can be expressed in short-hand no-

tation as

NS~ ū i!5

]t i j

]x i

. ~14!

Hence, the filtered solution obeys Navier–Stokes dynamics

in which the subgrid-scale stress term is responsible for the

smoothing of the turbulent flow and pressure fields. Although

the filter determines all aspects of the closure problem for

t i j , in virtually all actual large-eddy simulations the filter

operator has only formal significance and is not performed

explicitly in a simulation.24 Ideally, the filter information

should be retained in explicit models of the turbulent stress

tensor. In practice, this is not the case and most existing

subgrid models only indirectly contain features of the

adopted filter such as the filter width D.

In this paper we adopt the Smagorinsky subgrid model

m i j
S which implies

t i j→m i j
S

52~CSD !2@A^2 S̄ i jS̄ i j&# S̄ i j , ~15!

where ^•& denotes a volume average. In this model the

smoothing of the solution is governed by the product of the

Smagorinsky constant CS and the filter-width D. The value of

the Smagorinsky constant can be estimated provided some

additional assumptions about the nature of the turbulent flow

are invoked. In literature various values have been sug-

gested, mainly ranging from CS50.1 to CS50.2, e.g., Refs.

38–40. However, we will not decide on a specific value for

CS here, but rather consider the product CSD as the relevant

parameter which we will refer to as the effective filter width.

An increase in the effective filter width will give rise to a

decrease in the wavenumber content of the numerical solu-

tions while the full turbulent flow is obtained in case the

effective filter width is reduced to zero.

Next to the effective filter width the grid spacing h of the

computational grid is an important parameter in the defini-

tion of the large-eddy approach. At constant effective filter

width a decrease in h will reduce the importance of discreti-

zation errors and gradually give rise to a ‘‘grid-independent’’

large-eddy solution corresponding to the Smagorinsky

model. The ratio D/h will be referred to as the subgrid reso-

lution. To achieve a good approximation of the grid-

independent solution a subgrid resolution of up to 6–8 may

be required.31 However, in most practical LES, the computa-

tional grid is not only considerably coarser than the corre-

sponding DNS grid, but—to reduce costs—also much

coarser than the dynamics of the LES equations would re-

quire for a ‘‘grid independent’’ solution. Typically, subgrid

resolutions of about 1–2 are adopted in applied flow re-

search. In the latter case the influence of spatial discretization

effects may be considerable. By systematically varying the

subgrid resolution one may infer the contaminating discreti-

zation effects from the database approach as we will show

momentarily.

For the Smagorinsky model, and similarly for other sub-

grid scale models, the ~effective! filter width reduces the dy-

namic contents of the filtered Navier–Stokes equations @Eq.

~14!# and only large turbulent scales remain in the LES so-

lution. Hence D induces a truncation of the Navier–Stokes

dynamics. This article focuses on the use of finite difference

based discretization techniques. The emphasis is on deter-

mining the effects of numerics within the already truncated

dynamics, for a standard LES system comprised of a basic

spatial discretization and the Smagorinsky model.

The initialization of the individual large-eddy simula-

tions is similar to the DNS initialization outlined before. The

same prescribed energy spectrum is imposed and the same

random number series is used for the initialization of the

phases in order to be able to compare the solutions obtained

at different resolutions. In fact, consider two resolutions

characterized by n1 and n2 with n1,n2 . We generate the
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Fourier components of the initial solution on the n2 grid such

that it contains exactly the same field as the n1 grid for the

modes shared by both grids. To these modes the required

number of additional small scale components are added to

complete the initial solution on the n2 grid. Roughly speak-

ing, the initial fields are generated ‘‘from inside out’’ in terms

of the wavenumber k . Filtering aspects of the generation of

the initial data will be further discussed in Sec. III B. Further,

the subgrid fluxes are determined using the same second-

order spatial discretization method as used for the viscous

fluxes. Corresponding to one direct numerical simulation at a

given Rel a large number of associated large-eddy simula-

tions is obtained by variation of the effective filter width and

the numerical resolution. In this way the modeling and nu-

merical error contributions to the total error can be individu-

ally controlled, which is the central point of departure for the

database analysis.

In Sec. III we will introduce specific measures for the

simulation errors and consider a detailed error decomposition

which allows one to assess the magnitude of the individual

errors.

III. QUANTIFICATION OF INTERACTING ERROR
DYNAMICS

In Sec. III A, a detailed error decomposition is presented

for the decay of the kinetic energy. The methodology used

was first presented in Vreman et al.29 and illustrated for tur-

bulent mixing layers. Here, we apply the analysis to homo-

geneous turbulence and consider the effects of Reynolds

number and numerical parameters on the error interactions.

Subsequently, in Sec. III B the role of the LES filter in the

definition of errors is studied. This leads to two related but

different definitions of the error contributions in LES, in

which LES is either compared with filtered or unfiltered

DNS data. We will establish the robustness of the primary

error behavior in terms of these error measures.

A. Detailed error decomposition for LES

It is common practice to compare LES predictions with

filtered DNS data. For this purpose we introduce an explicit

filter operation for which we adopt a Gaussian filter. In one

spatial dimension this can be written as a convolution

f̄~x ,t !5E
2`

`

G~x2j !f~j ,t !dj ~16!

with G(x2j) the filter kernel which is given by

G~x2j !5S 6

pD2D 1/2

expS 2

6~x2j !2

D2 D . ~17!

In three spatial dimensions filtering implies the consecutive

application of three one-dimensional filters. The filtering op-

eration is performed by Fourier transforming the DNS solu-

tion field, applying spatial convolution as a product in Fou-

rier space, and inverting the Fourier transform. Instead of the

Gaussian filter one could also consider the top-hat filter and

obtain both qualitatively and quantitatively similar results.41

In terms of the explicit filter it is now straightforward to

define the different error contributions in LES.29 Consider a

reference DNS and a variable of interest f, which may be

any specific flow quantity. The total error in f, obtained from

a LES, with filter width D and grid spacing h , is defined as

e total~D ,h !5fDNS2fLES~D ,h !. ~18!

Here, we explicitly identified the error as a function of the

filter width and the grid spacing. This total error e total can be

further decomposed into a contribution due to the discretiza-

tion and the subgrid modeling,29 i.e.,

e total5emodel1ediscr , ~19!

where

emodel5fDNS2fLES~D ,0!, ~20!

ediscr5fLES~D ,0!2fLES~D ,h !. ~21!

In these expressions fLES(D ,0) represents the grid-

independent prediction obtained from the Smagorinsky mod-

eled LES equations with filter-width D. This ‘‘grid-

independent LES’’ prediction provides a central point of

reference in the error decomposition, next to the reference

DNS data.

‘‘Grid-independent’’ LES does not correspond to ‘‘prac-

tical’’ large-eddy simulation as practitioners in the field

would typically consider. Roughly speaking, it is a LES on a

DNS grid in which the filter-width D is much larger than the

mesh-spacing. Consequently, the ‘‘grid-independent’’ LES

also contains contributions to length scales in the solution

which are much smaller than the filter width. However, the

dynamic importance of these ‘‘sub-D’’ flow components in

the modeled solution is very small due to the action of the

subgrid fluxes, e.g., through extra dissipation associated with

the Smagorinsky model.

The high-resolution predictions at fixed filter width pro-

vide a point of reference in which discretization error effects

are eliminated as much as possible from the solution to the

modeled LES equations. After all, in one interpretation of

large-eddy simulation, the continuous, modeled LES equa-

tions constitute a closed system of nonlinear partial differen-

tial equations with fixed, externally specified length-scale

given by the filter-width D. The continuous solution to these

equations is approximated accurately with the ‘‘grid-

independent’’ LES. Note that this yields, e.g., the grid-

independent solution to what could be called a ‘‘Smagorin-

sky fluid,’’ which is not necessarily also an accurate

approximation to filtered DNS predictions. All that is mini-

mized in such ‘‘grid-independent’’ LES is the discretization

error in the solution to the modeled equations corresponding

to a particular subgrid model. Clearly, grid-independent LES

requires very high resolutions and is not feasible ~nor re-

quired! in many cases. As such, ‘‘grid-independent’’ LES

should not be confused with a proposal to perform actual,

practical LES in this way.

The ‘‘grid-independent’’ LES allows for a detailed inter-

pretation of the interacting error-dynamics and we will use it

in this setting. It is introduced only to be able to assess the

type and rate of convergence of numerical solutions toward
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the continuous solution of the modeled LES equations, i.e.,

in this paper the system of flow equations including the Sma-

gorinsky closure. The grid-independent solution does not

correspond to the most accurate LES in the sense of minimal

total error. In this section we illustrate the reasons for this in

some detail.

We do not consider errors due to the temporal integra-

tion. We adopted an explicit Runge–Kutta time-stepping

method and restricted the time step in order to comply with

the stability requirements of this method. It was observed

that the error associated with the time stepping is negligible

compared to the numerical errors due to the spatial discreti-

zation.

The availability of reference DNS data as well as ap-

proximately grid-independent LES predictions allows one to

fully separate the contributions to the total error. We concen-

trate on the decay of the kinetic energy in order to illustrate

the approach. In Fig. 5~a!, the error decomposition for LES

on a grid with 323 grid cells, i.e., h51/32, is compiled. We

adopted an effective filter-width CSD5h/556.2531023 and

Rel5100. At a typical value for the Smagorinsky constant of

CS50.2, this setting corresponds to the case in which the

filter width equals the grid spacing on the 323 grid, i.e.,

D/h51. The grid-independent LES, keeping CSD constant,

is approximated at a resolution of 1283. We verified indepen-

dently that the grid independence of this LES is satisfactory;

in fact, a resolution of 963 would already have been quite

adequate for the error decomposition. It is clearly seen that

for times up to t'0.6 the total error is lower in absolute

value than one of its contributing components. This is due to

the fact that the numerical and discretization errors counter-

act in this time frame. This gives rise to a counter-intuitive

situation in which an improved simulation, e.g., at higher

spatial resolution, will yield results with a larger total error.

In fact, the proposed ‘‘improved simulation’’ corresponds to

a LES refinement toward the grid independent solution asso-

ciated with the adopted subgrid model. In the present case

such increased resolution simulations not only significantly

increase the computational cost but these simulations may

also be suboptimal with respect to accuracy in terms of dif-

ferences compared to filtered DNS predictions. As an ex-

ample, grid refinement at constant CSD results in a deterio-

ration of the LES results as can be observed in Fig. 5~b!. In

this figure results on 323 grid cells are compared with pre-

dictions at 643 and 963 cells, all with CSD56.2531023. We

observe that the discretization error effect decreases corre-

sponding to the improved numerical capturing of the Sma-

gorinsky solution. Rather than giving rise to a smaller total

error we notice that the total error approaches the modeling

error which by itself is larger than the total error on coarser

grids. Similar counteracting error behavior was also ob-

served in turbulent mixing layers.29

In Fig. 6~a! modeling errors are plotted for a 323 LES at

different filter widths. The magnitude of the Smagorinsky

term decreases with decreasing filter width. Figure 6~b! dis-

plays the corresponding discretization error effects. Here, the

reverse tendency may be observed, i.e., the discretization er-

ror effects increase ~in absolute value! with decreasing filter

width. In fact, due to a decreased filter width, the LES solu-

tion becomes less smooth, since the effective viscosity is

decreased, and therefore the numerical LES solution is rep-

resented less accurately on the same grid. As before, we ob-

serve that both errors have opposite signs. An overview of

modeling, discretization, and total error effects is collected in

Fig. 6~c!. We notice that at CSD50.2h the total error is

smaller than in the case CSD50.1h or CSD50.3h . This

arises from the different strengths of the counteracting mod-

eling and discretization errors for the three different large-

eddy simulations. These appear balanced best at CSD
50.2h . At CSD50.1h , the discretization error clearly domi-

nates the total error, while at CSD50.3h the modeling error

is dominant.

To illustrate the error contributions for flow properties

that involve a stronger contribution of the smaller scales we

consider the Taylor length scale in Fig. 7. The error decom-

position for a 323 LES with different filter widths shows that

the discretization and modeling error effects do not counter-

act. Again, we observe a decreasing modeling error effect

with decreasing filter width and a corresponding increase in

the discretization error effect. The decrease in the modeling

error effect with decreasing CSD is much stronger than the

increase in the discretization error effect for these three

cases. Since the error effects have the same sign, the Taylor

length scale is predicted most accurately in case the effective

filter width is smallest, i.e., for these three cases at CSD
50.1h .

FIG. 5. ~a! Error decomposition for a 323 LES with CSD5h/556.2531023; ~b! error decomposition of LES at CSD56.2531023 for three different

resolutions: ~no symbol! 323; ~s! 643; ~3! 963. In both figures: ~—! total error; ~---! modeling error; ~-•-! discretization error.
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The presented error decomposition provides a detailed

view of the intricate error interactions in LES. For certain

numerical and physical modeling parameters the basic errors

may counteract. This leads to an intriguing paradox related to

possible strategies that should be followed to further improve

LES predictions compared to some reference simulation.

While it is tempting to think that a higher resolution, a better

numerical method, or a more precise subgrid model would

always lead to improved accuracy of the predictions, the

counteracting property of the errors and their specific reverse

dependence on filter width can completely distort this im-

pression. Rather, the total error arises from a balance be-

tween modeling and discretization errors. Thus, it is not an

easy matter to predict a priori whether these errors will or

will not counteract and what the magnitude of the individual

error contributions is. In particular, these error contributions

and the type of interactions will depend also on the numeri-

cal and physical parameter setting. An overview of this be-

havior can be obtained from a full database analysis of a

systematically varied set of large-eddy simulations which we

will elaborate in Secs. IV and V. Before turning to this analy-

sis we first consider the role of the explicit filter in the defi-

nition of the error measures and the robustness of the corre-

sponding error behavior in Sec. III B.

B. Errors and filtering

The point of reference for the error analysis in Sec. III A

is the filtered DNS solution fDNS. However, many sgs mod-

els do not explicitly determine the LES filter, although in

view of Eq. ~14!, the sgs model is responsible for the

smoothing of the LES solution. In particular, the filter is not

explicitly defined for the Smagorinsky model considered

here. The only input for the model is the product CSD .

Hence, not only the filter shape but also the filter width are

not strictly defined. In literature, different values for CS are

quoted, ranging from 0.1,38 0.15,35 0.17,39 to 0.21.40 These

values are determined, e.g., through a determination of the

‘‘implicit’’ Smagorinsky filter shape35,40,42 or through empiri-

cal fitting of the model to DNS results, for example.38,39

Once a value for CS is fixed, the filter width also attains a

definite value. Figure 8 displays the total errors in the kinetic

energy arising in one and the same 323 LES at CSD50.2h as

a function of CS . The different filters correspond, respec-

tively, to CS50.1, 0.15, 0.2, and ` ~the last one indicating

no filtering at all! and each provides a different fDNS. The

FIG. 6. Modeling error ~a! and numerical error ~b! for a 323 LES at different filter widths: ~no symbol! CSD50.1h; ~s! CSD50.2h; ~3! CSD50.3h . In ~c!
the total error ~—!, the modeling error ~---! and the discretization error ~-•-! are collected.

FIG. 7. Error contributions on Taylor length scale in a 323 LES at different

filter widths: ~no symbol! CSD50.1h; ~s! CSD50.2h; ~3! CSD50.3h .

The total error ~—!, the modeling error ~---!, and the discretization error

~-•-! are collected.
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differences in error levels arising from the filter uncertainty

appear quite relevant although the global error evolution is of

comparable nature. In fact, the total error lines are related to

one another roughly by a relative shift corresponding to the

total error level at t50.

Formally, it is possible to define a priori the shape and

width ~corresponding to a value of CS) of the LES filter and

also apply this filter explicitly on the initial truncated LES

field. For all LES presented in the current paper, only trun-

cated initial conditions are considered and no extra filter is

added on these fields. The influence of an explicit initial filter

was checked for Gaussian filters corresponding to CS50.1,

0.15, 0.2 and various settings of CSD . The difference in total

error as a result of this initial filter operation is found to be

an order of magnitude lower than the level of the respective

errors themselves and negligible in most regions.

From the analysis shown in Fig. 8, it is clear that the

uncertainty in the filter width and—presumably to a lesser

extent—the filter shape has to be contributed for in a LES

error analysis. In order to avoid this uncertainty in the filter-

width definition, an alternative definition of the error mea-

sures is considered next to the classical definition given in

Ref. 29. For this purpose and to investigate the robustness of

the error behavior and corresponding conclusions we con-

sider an alternative error ê based on a comparison with the

unfiltered DNS predictions fDNS instead of fDNS. Hence, we

distinguish

ê total5fDNS2fLES~D ,h !, ~22!

êdiscr5fLES~D ,0!2fLES~D ,h !5ediscr , ~23!

êmodel5fDNS2fLES~D ,0!5emodel1~fDNS2fDNS!.
~24!

We observe that this change in definition does not affect the

discretization error. With this error definition the modeling

error is not zero even in case a ‘‘perfect’’ subgrid model

would have been adopted. In fact, only emodel would be zero

in this case and êmodel also includes the difference between

filtered and unfiltered DNS data. The main benefit of this

alternative error decomposition is that no explicit filtering is

required and the above-mentioned filter uncertainties are

hence avoided.

In the remainder of this paper, both error definitions will

be used and the corresponding error behavior will be com-

pared. Clearly, the error levels can differ considerably. How-

ever, as will be demonstrated, the primary findings related to

optimal simulation strategies are quite independent of these

definitions. In Sec. IV we introduce the ‘‘subgrid activity’’

parameter and consider the global error behavior. Moreover,

we identify parameter settings in which either the modeling

or the discretization error is dominant.

IV. SUBGRID ACTIVITY AND GLOBAL ERROR
BEHAVIOR

The global error behavior is studied here as function of

relevant numerical and physical parameters. An extensive

LES database was generated at different Reynolds numbers

and a variety of resolutions and filter widths. We consider

LES grids with n3 grid cells where n

P$16,24,32,48,64,96,128% at Rel550. For Rel5100 we

also considered n580. For sake of argument we assume

CS50.2 and consider a variety of filter widths D
P$1,2,...,9,10,12,14%/64. We recall that the length of the

side of the computational domain is set to one. The simula-

tions at n5128 provide the approximately grid independent

LES data. In total, several hundred separate large-eddy simu-

lations were performed and in order to display the main

trends in the error behavior the data are grouped in the same

framework as proposed by Geurts and Fröhlich.31 Compared

to this reference, the present database allows a much more

detailed assessment of the error behavior. We consider the

relation between total error and Reynolds number and the

importance of the error definition. We include the kinetic

energy, which is mainly dependent on large scale flow fea-

tures, and the Taylor length scale, which is located in the

inertial subrange and is an intermediate scale between the

integral length scale and the Kolmogorov scale.

In order to measure the importance of the subgrid model

in the evolution of the turbulent flow the subgrid activity

parameter s was introduced in Ref. 31. It is defined as

s5

« t

« t1«n
~25!

with « t the energy dissipation resulting from the sgs model

and «n the dissipation resulting from laminar viscosity,

where « t is calculated as ^m i j] jū i& and «n is obtained from

^2S i jS i j&/Re. To obtain a single value s for each LES run,

the nearly constant subgrid activity Eq. ~25! is averaged over

time. Different averaging procedures were tested, but no sig-

nificant influence on the resulting s values were observed.

The subgrid activity s quantifies the relative importance

of the subgrid scale stresses. By definition it varies between

0 and 1 where a value of 0 corresponds to DNS and 1 is

associated with LES at infinite Reynolds number. The value

of s is directly related to the filter-width D and measures the

‘‘distance’’ between a DNS resolving all flow features at suf-

ficiently high spatial resolution and an actual LES corre-

FIG. 8. Influence of the filter uncertainty on the total kinetic error level for

a 323 LES at CSD56.2531023 and Rel5100. Filter corresponding to CS

50.1 ~—!, CS50.15 ~---!; CS50.2 ~-•-!; no filter ~-s-!.
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sponding to a specific filter width and mesh spacing. The

estimate of s for a particular LES was found to be very

robust both at Rel550 and Rel5100, similar to the findings

reported in Ref. 31. The subgrid activity s is preferred over

the direct use of the filter-width D since the latter varies from

flow to flow, depending on the nondimensionalization of the

equations and, moreover, it is not well established for various

popular subgrid models as was discussed in Sec. III B and in

Ref. 24. In contrast, the definition of s in Eq. ~25! does not

suffer from these shortcomings and can be applied for gen-

eral subgrid models.

We concentrate on the total relative error which is de-

fined as

d5

*e total
2 dt

*fDNS
2dt

, d̂5

* ê total
2 dt

*fDNS
2 dt

~26!

in accordance with both error definitions in Sec. III. For the

determination of fDNS a Gaussian filter is used. With this

definition of the error measure each separate large-eddy

simulation gives rise to a single real number. This global

error definition makes it possible to effectively compare a

large number of simulations in a single coherent framework.

In Fig. 9~a!, the total error dE is plotted against the sub-

grid activity for the Rel550 case. We observe that for s

*0.4, the relative error as function of s is quite independent

of the resolution with the exception of the coarsest grids at

n516,24. In this regime the total error is dominated by mod-

eling error effects. In fact, the large-eddy solutions are con-

siderably smoothed and can already be represented accu-

rately on coarse grids, i.e., n>32. In this region (s*0.4),

the error is minimal at s50.4 and grows exponentially with

s for s→1. For s&0.4, the errors corresponding to different

spatial resolutions are scattered considerably. In this region

the total error is dominated by discretization error effects

which are seen to introduce a considerable and clearly un-

desired amount of uncertainty in the actual LES predictions.

The region around s'0.4 defines the cross-over region be-

tween modeling or discretization dominated total error be-

havior. The value s'0.4 roughly defines this cross-over

point denoted by sc . A similar error dependence was ob-

served in Ref. 31 for LES of a temporal mixing layer. The

cross-over point for this mixing layer flow was found at sc

'0.5 at a Reynolds number which is quite comparable to

Rel550. Figure 9~b! represents the total error behavior

evaluated with the alternative error definition d̂E . Although

error levels differ slightly, the main pattern is clearly un-

changed, including the cross-over point s'0.4. Hence, the

primary error pattern is robust with respect to the precise

definition of the error measure.

In Fig. 10, the relative error behavior at Rel5100 is

shown. Again, both error measures give rise to the same error

pattern, albeit at slightly different error levels. The main dif-

ference with the Rel550 case arises in a different cross-over

point which is now located at sc'0.8.

In both Figs. 9 and 10, it is clear that for s,sc , error

levels can be lower or higher than the cross-over values,

FIG. 9. Relative error dE ~a! and d̂E ~b! for the kinetic energy at Rel550.

FIG. 10. Relative error dE ~a! and d̂E ~b! for the kinetic energy at Rel5100.
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depending on resolution and s . This arises from the interac-

tions between modeling and discretization errors which were

found to counteract. Operating LES near s5sc clearly pro-

vides a ‘‘safe’’ option for refining LES at a controlled level

of discretization errors and consistent with an effective use

of computational resources. Higher subgrid activities would

yield a higher error, while lower values for s do not guaran-

tee an improvement in all cases. In Ref. 31 the dominance of

the modeling errors for s*sc was established. However, op-

erating LES near s5sc may be sub-optimal with respect to

realizing minimal total error at fixed computational cost.

Lower error levels may be realized without increasing the

computational cost, as a result of the counteracting balancing

of the contributing errors. This will be discussed in Sec. V.

The same total error analysis can be performed for the

Taylor length scale. The results for Rel550 and Rel5100

are presented in Figs. 11~a! and 11~b!, respectively. The re-

sults corresponding to n516 and n524 are not included in

order to display the main trends more clearly. Here as well

cross-over points can be distinguished at sc'0.4 and sc

'0.8 for Rel550,100, respectively. Although the error lev-

els for s&sc show a strong dependence on the spatial reso-

lution, the total error decreases monotonically for all resolu-

tions considered. Hence, in contrast with the findings for the

kinetic energy, an increased resolution is seen to provide a

better prediction. This corresponds directly with the detailed

error decomposition and the same sign of the error contribu-

tions presented in the previous section.

V. ACCURACY CHARTS, OPTIMAL REFINEMENT
STRATEGIES, AND COST ANALYSIS

In the following, we introduce so-called ‘‘accuracy

charts’’ in Sec. V A. These provide an effective means of

quantifying the global error behavior as function of resolu-

tion and CSD . Then, in Sec. V B, optimal refinement trajec-

tories in the ‘‘resolution-filter width’’ space are defined. Fur-

ther, the dependence of the accuracy charts and optimal

refinement strategies on Reynolds number and subgrid activ-

ity will be quantified.

A. Accuracy charts for the Smagorinsky model

Instead of quantifying total errors against subgrid activ-

ity, a more detailed impression of the error behavior may be

obtained by considering the total error as a function of the

numerical resolution n;1/h and effective subgrid resolution,

defined as the ratio of the effective LES filter width CSD and

the grid-spacing h . From contour plots of e total or ê total an

effective representation of the total errors in the individual

large-eddy simulations can be obtained.

In Fig. 12~a!, the total error contours for the kinetic en-

ergy are plotted as a function of CSD/h and n characterizing

the different large-eddy simulations at Rel550. We will re-

fer to this type of visualization as ‘‘accuracy charts.’’ This

accuracy chart allows one to interpret the effectiveness of

different simulation strategies in reducing the total error.

First of all, we may consider various simulations for which

FIG. 11. Relative error d̂l for the Taylor length scale at Rel550 ~a! and Rel5100 ~b!.

FIG. 12. Contours of d̂E@%# for the kinetic energy of LES at Rel550 ~a! and Rel5100 ~b!. Contour levels start at 1% ~2%! for the lower right contour and

increase in steps of 1% ~2%! for Rel550 (Rel5100). Bullets correspond to locations of individual LES runs.
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CSD/h is kept constant while n;1/h increases. Along these

horizontal lines in Fig. 12, CSD decreases linearly with h .

This corresponds to a popular choice in literature when re-

fining large-eddy simulations. As n increases the simulations

range from coarse, significantly filtered LES over finer, fil-

tered LES toward unfiltered DNS. The accuracy of the pre-

dictions will in most cases improve at an increasing compu-

tational cost which scales with n4. Moving along vertical

lines in the accuracy chart corresponds to changing the LES

filter width at constant spatial resolution and thus at constant

computational cost. At high values of CSD/h the turbulent

flow is represented in a strongly smoothed way and the de-

viation from DNS data becomes quite unacceptable. A third

important option for grid refinement arises from the choice to

keep the filter-width D constant while refining the grid. At

sufficiently high n the numerical solution will approximate

the grid independent solution to the modeled LES equations,

in this case the Smagorinsky solution. Since CSD is constant

in this case CSD/h is proportional to n . This refinement op-

tion corresponds to a set of straight lines through the origin

with slopes CSD . Since moving along such refinement lines

implies approaching a grid independent LES which is char-

acterized by modeling error only, the error contour lines co-

incide with these straight lines in the grid independent LES

region. This is clearly visible in the upper right corner of Fig.

12~a!. We also considered the accuracy chart corresponding

to dE instead of d̂E . The contour levels are slightly shifted in

comparison to Fig. 12~a! but the main error pattern is un-

changed. Likewise, in Fig. 12~b! d̂E is presented for the

Rel5100 case. Contour levels are considerably higher than

in the low Reynolds number case. However, the primary er-

ror pattern of both Reynolds number cases is remarkably

similar.

To summarize, the accuracy charts for the kinetic energy

exhibit the same patterns, quite independent of the error defi-

nition and with only a gradual dependence on the Reynolds

number. Hence, these charts appear as a ‘‘fingerprint’’ for the

accuracy with which a flow quantity can be predicted by a

specific LES system, i.e., the combination of a numerical

method and subgrid model. It gives an overview of the error

behavior under all sorts of numerical and physical parameter

settings and provides a useful tool to quantify and compare

the quality of different numerical methods and subgrid mod-

els. Further, accuracy charts provide an easy way to deter-

mine optimal working conditions for a LES system balanc-

ing optimal accuracy with computational cost.

In Fig. 13, the accuracy chart for the Taylor length scale

predictions is presented at Rel5100. Here, the observed pat-

tern differs significantly from that of dE , which is due to the

different nature of the interaction between modeling and dis-

cretization errors. Basically, the same observation was ob-

tained in Sec. IV, where these errors were studied as function

of the subgrid activity.

In Sec. V B we will use the accuracy-chart information

to determine optimal refinement strategies.

B. Optimal refinement strategies

Based on the information contained in an accuracy chart,

an optimal refinement strategy for a variable f can be deter-

mined. Consider for this purpose the error behavior ex-

pressed by df(n ,D/h). The optimal accuracy for a given

resolution n is obtained as

df ,opt~n !5 min
CSD/h

FdfS n ,
CSD

h
D G . ~27!

This minimum defines the optimal effective subgrid resolu-

tion (CSD/h)opt as a function of resolution and the optimal

accuracy trajectory is defined as the curve $n ,(CSD/h)opt%.

For every n the minimal error arises from the proper balanc-

ing between modeling and discretization errors.

In Fig. 14 the optimal trajectory for the kinetic energy is

plotted on the d̂E chart for Rel550 and Rel5100. From a

detailed error analysis ~cf. Sec. III A! in the vicinity of the

optimal trajectory it is found that the modeling and discreti-

zation error effects maximally balance each other. As an ex-

ample the optimal point for a 323 grid and Rel5100 is situ-

ated between CSD50.1h and CSD50.2h , which were

discussed in detail in Sec. III. In case CSD is increased at

constant n in the region above the optimal trajectory, the

modeling error will become dominant. In case CSD is de-

creased below the optimal trajectory, the numerical error will

dominate the total error. Especially at coarser resolutions the

corresponding increase in total error is very large. In Sec. IV,

s'sc was quantified as a ‘‘safe’’ region to operate LES.

Therefore, the s5sc trajectory is also displayed in Fig. 14. It

can clearly be seen that a gain in accuracy can be obtained at

constant computational cost when CSD is decreased from the

s5sc condition toward the optimal trajectory. This is particu-

larly relevant at high resolutions which allow an optimal

setting close to DNS. However, it is also clear that decreas-

ing CSD too much, and hence dropping below the optimal

trajectory, can yield a spectacular increase in error. This is

especially relevant at low resolutions in the lower left of the

accuracy chart. This specific region is rather small for Rel

550, but increases for Rel5100.

FIG. 13. Contours of d̂l@%# for the Taylor length scale of different LES at

Rel5100. Contour levels start at 12% for the lower right contour and in-

crease in steps of 8%. Bullets correspond to locations of different LES runs.
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In previous sections the error patterns and accuracy

charts based on the Taylor length scale were found to exhibit

important differences compared to errors based on the kinetic

energy. This was associated with differences in the interac-

tion between the basic error components. If an optimal re-

finement trajectory would be based on minimal dl(n ,D/h),

this optimal trajectory would obviously differ from that

based on kinetic energy errors. In Fig. 15, the accuracy

charts based on d̂l for Rel550 and Rel5100 are presented.

In addition, the optimal trajectories based on d̂E are dis-

played. As can be seen in both charts, the error in l is mini-

mal at CSD50.0, i.e., for the under-resolved DNS setting.

However, at small to medium resolutions, the error contours

are perpendicular to the coordinate axis, which indicates that

the location of the optimum is not sharply defined and a

region in the vicinity of CSD50 may serve to provide ac-

ceptable near-optimal parameter settings. The optimal refine-

ment trajectories based on d̂E appear not too far off for l.

Moreover, by the very nature of large-eddy simulation one

may put a larger emphasis on capturing flow quantities asso-

ciated with the larger retained scales, such as the kinetic

energy, compared to inertial range properties such as the Tay-

lor length scale. This is particularly true in relation to the

Smagorinsky model, which is known to provide too much

dissipation in the smaller retained scales and hence distorts

the prediction of these quantities much more than occurs for

the larger retained scales.

Finally, we turn to the optimal refinement strategies and

summarize the influence of the specific error definitions on

the optimal refinement strategy in Fig. 16~a!. As can be seen,

the lines based on dE are shifted upward slightly compared

to those based on d̂E . For Rel550, the difference is mar-

ginal. However, for Rel5100, a maximum shift of 10% is

observed. The difference induced by both error definitions

gives rise to an uncertainty in the optimal trajectory. It is

seen that one obtains an ‘‘optimal refinement band’’ shaded

gray in this figure. In Fig. 16~b!, the optimal refinement strat-

egies ~with uncertainty bands! are plotted as function of the

relative subgrid activity s/sc . For Rel5100, it is interesting

to notice that the optimal trajectory at low resolutions is at

constant subgrid activity s/sc'1. Hence, in this region the

subgrid model dominates the dissipation rate in the LES. At

higher resolutions, starting from n'48, the optimal trajec-

tory evolves toward s50 according to a power law

(;n23/2). In case the Smagorinsky model is used it hence

appears better to increase the resolution and decrease the

importance of the subgrid fluxes if one tries to obtain accu-

rate predictions. There is no such quasi-constant region at

Rel550. Here, the optimal trajectory at lowest resolution

also starts at s/sc'1 and the power law decay (;n23) to-

FIG. 14. Optimal trajectory and accuracy chart based on d̂E@%# for Rel550 ~a! and Rel5100 ~b!. Optimal refinement trajectory ~-•-!; line with s5sc ~---!

with sc50.4 in ~a! and sc50.8 in ~b!. Contour levels start at 1% ~2%! at the lower right contour and increase in steps of 1% ~2%! for Rel550 (Rel

5100).

FIG. 15. Optimal refinement strategy based on d̂E and accuracy chart based on d̂l@%# for Rel550 ~a! and Rel5100 ~b!. Optimal refinement trajectory ~-•-!;

line at s5sc ~---! with sc50.4 in ~a! and sc50.8 in ~b!. Contour levels start at 4% ~12%! at the lower right contour and increase in steps of 4% ~8%! for

Rel550 (Rel5100).
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ward no model LES arises directly. An extension of the da-

tabase to include other, higher, Reynolds numbers is needed

to classify whether this dependence of the power law expo-

nent on Reynolds number and the cross-over point scaling

are indicative of more general error behavior.

VI. CONCLUDING REMARKS

An extensive database was set up for the large-eddy

simulation of homogeneous isotropic turbulence. This data-

base consists of two reference direct numerical simulations at

two different initial Taylor Reynolds numbers, i.e., 50 and

100. Further, large-eddy simulations, using a Smagorinsky

subgrid model, were performed at different resolutions n and

subgrid resolutions D/h for both Reynolds numbers. This

allows one to obtain detailed information on the error behav-

ior, i.e., total, modeling as well as discretization errors, as

function of relevant physical and numerical parameters.

A detailed analysis of the different error contributions

was discussed. For the error in the total kinetic energy it was

observed that modeling and discretization errors may par-

tially cancel each other. Correspondingly, the total error can

be lower than its contributing parts. Depending on the spe-

cific subgrid resolution, this error interaction can be more or

less balanced. Similar effects were observed for the total

kinetic energy and the momentum thickness in a simulation

of a temporal mixing layer.29 It is tempting to hypothesize

that the error balancing may be effective in more general

situations. Further simulations of other, canonical flows is

required to assess this. When the same analysis was per-

formed for the Taylor length scale it was found that numeri-

cal and modeling error effects have the same sign.

A global error analysis and classification of errors was

performed, mainly based on the L2 norm of the total error.

We observed that an error definition with reference to a fil-

tered DNS provides similar error patterns compared to an

error definition that is based on unfiltered DNS data. Hence,

conclusions pertaining to optimal simulation strategies may

be globally inferred independent of the specific error defini-

tions.

First of all, the total errors of the large-eddy simulations

as a function of the subgrid activity s were evaluated. Visu-

ally, a cross-over point sc can be identified, which divides the

error behavior into two main regions. This cross-over point

depends on the Reynolds number and is situated at s'0.4

and s'0.8 for Rel550 and Rel5100, respectively. For s

*sc the total error is dominated by modeling error effects

and, roughly speaking, is a function of s only. The minimal

error in this region is situated at sc . For s&sc errors are

scattered considerably and dominated by discretization error

effects.

When an overview of errors is considered in the

$n ,CsD/h% plane, the full error behavior may be concisely

visualized. It is straightforward to obtain the optimal work-

ing conditions for large-eddy simulations from such accuracy

charts. These optimal trajectories were based on error levels

of the kinetic energy. It is shown that the optimal refining

trajectory differs considerably from the s'sc trajectory. At

high resolution, the latter corresponds to approximating the

grid independent Smagorinsky solution which approaches a

constant error level. Certainly for higher resolutions, the dif-

ference in accuracy is substantial and the optimal trajectory

approaches a DNS setting at high resolutions. These high

resolutions are, however, of limited practical relevance in

view of the desire in LES to significantly reduce computa-

tional costs. For the latter, the findings at low resolutions are

more meaningful in the context of LES at very high Rey-

nolds numbers.

When the optimal LES trajectories were plotted against

the subgrid activity, a decreasing power law relation between

s/sc and n was established. Hence, at high resolutions the

optimal trajectory approaches the no-model LES at an alge-

braic rate for the Smagorinsky model. The exponent for

Rel550 is twice that of the Rel5100 case. Further, for both

Reynolds numbers, the optimal trajectories start for low reso-

lutions approximately at sc , i.e., at coarse grids optimal ac-

curacy is consistent with constant subgrid activity, especially

at high Reynolds numbers.

The relevance of this database approach for different

subgrid models and different spatial discretization methods is

presently under investigation. From a collection of such da-

tabase analyses for various ‘‘building-block’’ flows it is ex-

pected that one may extract guidelines for determining a

FIG. 16. ~a! Optimal refinement strategy for different Reynolds numbers and error definitions: ~h! based on dE at Rel5100; ~s! d̂E at Rel5100; ~,! dE at

Rel550; ~n! d̂E at Rel5100. ~b! Optimal refinement strategies for Rel550 and Rel5100 as function of the relative subgrid activity s/sc , where sc50.4 at

Rel550 and 0.8 at Rel5100, respectively.
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priori numerical and physical parameter settings which allow

‘‘near-optimal’’ large-eddy simulations for general, practi-

cally relevant turbulent flow problems. The present study

provides a first step toward this goal.
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