
D&-I-AB&%SE DESIGN 1-OOI-S 0

fiN EXPERT SYSTEM FcPPROFcCH

Mokrane BOUZEGHOUB, George5 GARDARIN
Elisabeth METAIS

Projet SABRE
Laboratoire MASI, Institut de Programmation

Univer5it# Paris VI, 4, place Jussieu 75230
and

INRICS, BP.105 78153 Le Chesnay Cedex France

CIBSTRCICTt In this paper, we report on
the implementation of SECSI, an expert

system for database design written in
Prolog. Starting from an application
description given with either a subset

of the natural language, or a formal

language, or a graphical interface,
the system generates a specific

semant i c network portraying the
application. Then, using a set of
design rule5, it completes and

simplifies the semantic network up to

reach flat normalized relations. All
the design is interactively done with
the end-user. The system is
evolutive in the sense that it also
offers an interactive interface which
al 1 ows the database design expert to

modify or add design rules.

1. INTRODUCTION

Today, relational technol ogy is
wide1 y spread. Many users are designing
their databases with the rel at i onal
model. However, using the relationnal
model as a conceptual design tool is
somewhat controversial CKENT793. Indeed,
the relational concepts of domain ,
attribute, relation, referential

constraint , functional and mu1 t i valued
dependencies are neither simple to use
nor sufficient to capture the semantics
of the user’s applications. To enhance

the semantics, integrity constraints may
be used, but their expression i 5 not

al ways easy nor natural for the

end-user.

To capture the semantics of the real
world with more preciseness and

naturalness, many researchers have

proposed several so-called semantic data

models, such as SHN CSMIT773, SHN+
CBROD811, RN/T CCODD791, SDM CHANM801,

TAXIS ~MYL0817, LAURA tBROW831, NORSE

CBOUZ83al. Objects are generally
assemb 1 ed together using some kind of

constructs borrowed from semantic
networks used in CIrtif icial
Intelligence. Except some differences in

the formalization and the way of

expressing certain constraints, these
models offer similar concepts of object,

classif ication, aggregation,association,
and generalization.

Using semantic data models is far

from being sufficient to make the design
process easy for large applications.
Indeed the design process is an

iterative, long and tedious task. It is
characterized by a certain
indetermination in the way of choosing
data stuctures and constraints. Several
different schemas may describe the same

reality. The design process is also
characterized by an intuitive and

empirical methodology. Consequently, the

quality of the schema obtained i s
heavi 1 y dependent on the database

administrator “s exper i ence and insight

in the database design.

Even if a method01 ogy produces a

“good” conceptual schema, it is not

trivial at al 1 to translate it into a
physical database schema. The conceptual

to physical schema mapping is dependent

from both the user application (e.g. the
transactions) and the database system

(relational ,networI::). Consequent 1 y) an
accurate and efficient internal schema
i5 difficult to produce from a good

conceptual schema without automat i c

tools and human interactions.

Proceedings of VLDB 85, Stockholm 8:

Sever al design tools have alrrady
been proposed CCERI83, DAVI83, WAS882,

COBB84, TAHN84, DAENS4 3 for database

design. Some of them are attractive and
original, but most of them suffer from

the f 011 owing shortcomi rigs:
(1) They are not completly integrated;
in other words, they do not constitute a
complete system but a set of sparse

programs which rare1 y interface each

other.

(2) They are not evolutive; some change

in the design rules of ten implies
reprogramming the whole tool.

At the beginning of 1982, starting
from this analysis of the database

design state of the art, we proposed a

new approach based on expert systems

techniques CBOUZ83bl. This approach is
supported by an original tool called

SEC8 I (an acronym for Systeme Expert en

Conception de SystOmes d’Informrtions1
which has been implemented in PROLOG, on

top of SADRE, a relational database

management system. The system ’

strongly based on a semantic data mod::

CBOUZ83a1, the relational technology and

certain artificial intelligence
techniques as expert systems.

An expert system is an intelligent
program which is devoted to a specific

domain of application and where there

exists enough knowledge to infer one or

several solutions, but where there does

not exist any precise or performant

algorithm which performs the same

results. This approach is chatacterized
by an original architecture which
distinguishes between :

a know1 edge base which contains

concepts, facts, rules and skills,
- an inference engine which is a set of

management techniques of the knowledge

base,

- and a friendly external interface by
which the end-user interacts with the

system.

The power of an expert system is
characterized by the content of its

know1 edge base and its capabilities to
work as efficiently as possible like a
human expert CLAUR81, HAYE833.

SECSI is intended to have the same

characteristics of the expert systems,

but it is not designed to replace the

human expert. Its know1 edge base is
organized as modules of rules; a set of

modules compose an abstract level of
C::nowl edge; going down the levels offers

gradual refinement of know1 edge. Thus

the knowledge base is specified in such

a way that it is easy to integrate new

dasi gn rules and to update the existing
ones as soon as the know1 edge
progresses. SECS I is not designed as a
black box providing useful services but

as an open system which is able to
explain and to transfer its expertise to
the end-user and to 1 earn new
know1 edge.

The purpose of this paper is to
present the architecture and the
implementation of SECSI. This paper is
organized as follows. In section 2, we
introduce the object i ves and the
architecture of SEC31 . In section 3, we
present the various external interfaces
of SECS I. The section 4 is devoted to
the internal representation of knowledge
which is based on a specific semantic
network and production rules. They are

both represented by Prolog clauses. In
section 5, we detail the logical design
process which is currently implemented.

2. OBJECTIVES AND CIRCHITECTURE OF SECSI

2.1. OBJECTIVES

SECSI has been designed as an
integrated intelligent tool for helping
the user in the tedious process of
database design. The design of SECSI was
directed by the following specific
objectives :
(1) To constitute a knowledge base

composed of all useful concepts and
al gor i thms developped in the relational
theory and in the semantic data models
area. This will be especially helpful
for common designer who are not
necessar i 1 y expert in database design

theory. This knowledge base may also
include some experimental and specific
rules related to the user’s experience
in database design and to a specific
domain of application (banking,
reservation, medicine...).
(2) To define an interactive

methodological environment which permits
to perform as far as possible the design
steps with incomplete specifications,
and which permits to backtrack to any

step in order to change some

5pecif ications or to integrate new

information.
(3) To identify for each design step the

general or specific principles of

reasonning, and to provide as detailed
explanations as possible about these
principles, the models, and the rules on

which they are based
(4) To build an open system of tools

which enables in one hand to integrate

new theoretical concepts and design
rules, and in the other hand to

transf ert its experti se both via its
usual use and via explanations and

justifications of its results.
(5) To facilitate interaction with the

human designer by offering him a
semantical 1 y rich and easy to use
interface.

This too1 is qua1 if ied as an expert

system in the eens that:
-- it offers an evolutive knowledge base,
- it accepts incomplete specifications,
“- it justifies and explains its results,

-- it permits to backtrack to any design
step in order to change specifications
or to ask for explanations.

Of course, all these objectives are
far from being thoroughly reached with
the current implementation. However, the

architecture of SEW1 allows us to
pursue them.

2.2. SYSTEH ARCH I TECTURE

The general architecture of SECSI is
portayed in figure 1. Like most expert

systems CLAUR82,HAYE841, SECSI is
organiqed around an expert knowledge
base composed of a set of design rules
(BR) and a set of facts (BF). The set of

rules captures the design methodology
while the set of facts describes the

user ’ s application. In the current

I
Fiq. 1: General architecture of SECSI.

version of SECSI, Pro1 og acts as the
inference engine of the system. Using
the set of design rules, this inference
engine carries out the deduction

process. It first generates a normalized

rel at i onal schema composed of a set of

permanent relations with their keys, a

set of virtual relations derived from

the formerm by given queries, and a set

of integrity constraints. The integrity
constraints include domains, referential
and inclusion constraints. It should be
extended to more general constraints in
the near future.

A SECSI session is organized in
steps. Whenever a step is activated, the

aystem may ask for complementary

information and the end-user may ask for

explanations. Whenever a schema has been

generated by SECSI , the user can

desagree with the result. In this case,
the session may be restarted at any of

the design steps according to the user

request. As soon as the schema satisfies
the user’s needs, the design process is

termi nated and the schema is stored in

the Sabre meta-base.

The external interfaces address two

different experts : the expert in
database design (shortly refered here as

the expert 1 and the specialist in the

specification of applications (shortly
ref ered here as the end-user). The

expert is responsible of the creation
and the modification of the base of

design rules. The end-user is in charge

of the creation and the modification of

the base of facts describing the
application. In the following, we
explain in more detai 1s the var i ous
interfaces and the corresponding process
of SECSI (Figure 2).

Fiq.2: Interfaces and orocesses of SECSI

SECS I offers the LEARN function to
the expert and the ACCEPT, RUN and HELF
functions to the end-user (see figure

2). LEARN enables the expert to

84

introduce and update the design rules.
Such rules are introduced by using
either graphical interface or production

rules. In the first version they are
directly written in Prolog. ACCEPT
enables the end-user to introduce, to
list and to update the description of an

application. Three languages are offered
to the end-user by the ACCEPT process :

a restricted natural 1 anguage
(ACCEPT-NATURAL), a simple declarative
1 anguage (ACCEPT-SHORT) and a graphical
interface (ACCEPT-GRAPHICS). The DESIGN
process yields a normalized relational
xhema from an application description
(RUN) and brings out explanations about

the produced schema and the applied
rules (EXPLAIN). HELP informs and
assists the end-user about the model
used, the applied design rules and the
functioning of the system itself
(HELP-DESIGNER). Also, we plan that this

module may help students learning data
models and database design
(HELP-STUDENT) from predef i ned t-u1 es and

examples.

2.3. THE LIHITS OF THE SYSTEH

The database design methodology may
be seen as three complementary phases:

(1) view specification,and integration
(2) logical schema design and

(3) physical schema design.
The first version of SECS I which is
described in this paper is only
concerned by the second phase (i.e.
logical design) including some aid in
schema specification and consistency
verification. The objective of this
first version is to learn expert systems

and to show through one design phase how

do they apply to database design.
We are specifying a second and a third
version for view integration and
physical design.

Currently, the system only helps in
the design of the data structure and
integrity rules, that is the passive
components of an information system. It
is of no help for the transaction design
phase. However, SECSI does not ignore
the influence of potential transactions
both on the conceptual and the physical
sjtructure of the database. Indeed, the
physical design process should integrate
information about transaction
frequencies, volumes and required level
of response time for the main
transactions.

3. END-USER AND EXPERT INTERFACES
3.1. HOW TO DESCRIBE AN APPLICATION

To specify the data structures of an
application, the end-user may choose
bet ween three types of interfaces: a
simple but formal declarative language,
a restricted subset of the natural
1 anguage and a graphical interface. He

may also use two or all of them.

The declarative language is derived
both from programming language type
declarations and from functional
1 anguage constructs (5ee for example
DAPLEX CSHIP811). It is defined by a
very simple grammar which is illustrated
by the example given figure 3. This
grammar permits to declare IS-A
rel at i onshi ps: STUDENT : PERSON,

n-ary associations between entities:
ENROLLED(STUDENT,COURSE),

including hierarchies as in the network
and in the hierarchical model

EMPLOYEE(DEPARTMENT),

attributes that characterise entities
with their basic types:

NAME(PERSON): TEXT,
and some constraints as functional and
mu1 ti val ued dependencies:

NAMEtDEPARTMENT) -> ADDRESStDEPARTMENT).

EtPLDEE:fTRm. NNEF’ERSN) : TEXT.
STUDENT : PERSDN. RDDREssIDEPKfTlENr) : TEXT.
STWF : EWLOYEE. ME(-) = WVH,DB).
TEAafR:EWLOYEE. !mmFwEE) : INTEER.
IwsTRucToR:TEIy)ER. sNMYEwLDYEE) : REAL.
-:TGXtER. TELuExtER) : INiE6ER.
tE&D-W-SECTloN : SWF. f-Wt!3SMWElt) : TEXT.

DI~H~F-L~WWIT : STNF, TEAMI?. FREE-GIFT(STWF) : RE#.

NBm?(sNDEKI) : INmER.

DATE(W) : INTE6ER.

EsKlNsIu~mm,wuIsE). NmER(anss) : INTEEI?.
6IvEN~BY miss, IHsTRucToR) .)(RIEXDlRSE) : TEXT.

ENa.LEDcinumT,couRsE). DaYKzw?sE) : TEXT.

EmDYEEmEPiwmT). HmRaImsI3 : INTE6ER.
cu\ss(cmF(sE). l?aM(wuIsE) : INTEER.

WE(DEpARTfENl) -> W(D).

SSNEWLDYEE) -1 lWEW’PLDYEE1, Sk.W(EtFlBYEE).

wEKllu?%) -) RcKw(wuIsE), DaYuxmE), HouI(wuAsEI.

Fio.3: Example of the declarative
lansuacle descrintion.

The natural language based interface
offers a very restricted subset of
French which makes the specification
readable and easily communicable. In
fact, it appeared quickly not feasible
to start with very complex
specifications in French. One reason is
that natural language understanding is
very complex and constitutes a vast

domain of research in itself; another io
that an information system designer is
an expert who has his own jargon and who

needs synthetic and unambiguous powerful

tool 5 instead of subject-verb-complement

sentences. Hence, we limited our natural
language interface to a strict
translation in a more natural form of

our declarative 1 anguage. An example

corresponding to a sample of the
pr eviou5 declarative language interface
is given in figure 4.

DEPm lwwfss MO NlyEs KE TEXTS.
EJPLOYEE’SSII IS Aw INTESER.
EtPLOYEEWMY IS A RERL.

AF%lFESSORISRE9WSI&EaAalu?X
AaASSIs61~BYANINSTRucTaR.
ASTUDENTISENUXlEDINMWlIRECMSES.

AKFMTKNTtYYEDETERNIM3~UEPMMNT-.
AN EmmEE’ssN DETERHIM Ml EWLrwEE’S M.
I ErPLmEE’ssN DETERtlIlEs A !%wW.

Fio.4: fin example of descriotion
in natural 1 anauaqe.

Fiu.5: An examole of the qraphical
interface.

The graphical interface may be either

a direct implementation of the semantic
network we utilize to represent the

internal knowledge, or one of the
traditional data model 6 such as the

Entity Relationship model and the
Codasyl network data model. fin example
of a semantic network corresponding to

the previous example in figure3 is given
in figure 5. The semant i cs of the
different arcs will be espl aned in
secstion 4.

3.2. HOW TO SPECIFY DESIGN RULES

As for the end-user, the experts need

powerful 1 anguages to speci+y their

expertise in database design. We

envision to offer the experts two types

of interfaces : a declarative language
based on if -then statements and a

graphical too1 for espressing mappings

between two types of semantic network.

The declarative 1 anguage should

accept statements of the form:

IF CONDITION THEN CICTION.
The condition expresses a relationship
between two objects. F’ossible

relationships are:
- AGGREGATION OF / ATTFiIBUTE OF,

- CLCISS OF / INSTANCE OF,

- GENERALIZATION OF / SFECIfiLISATION OF,

- ASSOCIATION OF / FARTNER OF,
-- ERUIVALENT TO.

For example, suppose we have to specify
as a design rule the inheritance
property in the generalization
hierarchies; it can be written as the

production rule portrayed in figure 6.

IF X IS A GMERIILIZI~TION OF Xl
MDAISANaTTRIWTEff x
MDXISAPMTKROFR

TWIIISfwATTRIWlEa xi
tWD Xl IS R FWTM OF R.

Fio.6: An example of a rule expressed
in a declarative form.

The graphical interface is a very
convenient tool to express mapping rules
bet ween two types of semantic network.
As the conceptual modeling is often a
question of schema representation and

schema mapping, this latter facility ic;
very important. &Je shall see later that
most of the design rules are mapping
rules, thus having facilities to
visualize these rules will probably
increase the friendliness of the system.
Generating rules from examples may also
be an attractive issue. However, many

86

rules cannot be expressed by graph
transformations; in this case production

rules should be used.

41 AZ A3 111 A2 w

Fiq.7: An example of rule expressed as

a graph transformation.

The two preceding interfaces will be
compiled, and processible rules will be

generated. In the first version of SECSI
which is currently running, these two
interfaces are not yet implemented;
rules are directly represented as Prolog
clauses.

4. INTERNAL REPRESENTCITION OF KNOWLEDSE

As stated before, we have two types of

knowledge: facts and rules. To represent

this knowledge, we use a combination of
two models: semantic networks to

represent facts and production rules to
represent application constraints and

design rules. The following sub-sections
deal with these two kind of models.

4.1. INTERN&L REPRESENTATION OF FCICTS

To i mp 1 emen t the base of facts, we

use a specific kind of semantic network

because of the privileged position of
this too1 between database models and

natural 1 anguages. Our semantic network

presented hereafter contains most of the

concepts of semantic data models like
aggregation, generalization and

classification. The main differences

with these models are, first, the

formalization with a few basic
constructs (a, r, c, 9); second, the

categorization of the different nodes
and arcs and the distinction between two

types of aggregation (aggregation of

attributes called aggregation, and

aggregation of entities called
association). Moreover, several
constraints may be added on each kind of
arcs and nodes.

We are now going to present a more

formal definition of this semantic data

model. Our semantic network is defined
as a triple (NC,AC,IC) where NC stands

for the category of nodes, AC the

category of arcs and IC the category of

constraints, such that for each element
f of CIC, there exists an application :

f: NC X NC -----> CTrue,False>
such that f (ni ,nj) is true if there
exists an arc of class f between ni and

nj , and false otherwise. The elements of

NC can be classified in two ways :
(1) Atomic objects (attributes and

values) and molecular obiects (entities
and instances) .

(2) Classes (attributes or entities) and
elements of classes (values or
instances).
The elements of these different
categories of nodes are connected by the

following categories of arcs:

- f4gqreqation arc denoted a(X,Y)

specifies that X is a part of Y or that

Y has the property X. This arc links an

atomic object to a molecular object. For

example, using the application portrayed

figure 5, we can write a(NAME,PERSON),
a(&DDRESS,PERSON).

- Association arc denoted r(Y,Z)

specifies that Y is involved in the

association Z. fin association connects

molecular objects (entities or
instances). For example, the binary
relationship ENROLLED(STUDENT,COURSE)

may be written as:
r(STUDENT,ENROLLED),

r(COURSE,ENROLLED).

- Classification arc denoted c(X,Y)

specifies that X is an element of the

class Y. Classification are not
recursive and can only link a value to
its attribute class or an instance to
its entity-class. For example, we have

c(PfiRIS.ADDRESS) -

c((COMPUT-SCE P&IS>,DEPARTMENT)

where <COMPUT. SC. PARIS> is a tuple
representing an instance of DEPARTMENT.

- Generalisation arc denoted g (Y ,Z)

specifies that Y is a sub-class of Z. It
corresponds to the we1 1 -known is-a
relationship. It may be used recursively
in a hierarchy of objects and has the

transitivity property. For example, we
have ’ the application,
g(STUDEN+:PERSON) an~l~~~ROF,TEACHER).

.- Eouival ence arc denoted e(Zl,Z2)
specifies that two nodes are equivalent.
This arc is especially useful when it is

important to see the same object in

different ways. For example,
e(STUDENT,PUPIL), e(STUDENT,SPORTSMAN)

specify that STUDENT, SPORTSMAN and

PUPIL are equi val ent classes if we
assume that al 1 students practice one

sport. More generally, e(X,Y) is
equivalent to the two following
assertions g(X,Y) and g(Y,X).

The previous arcs can be interpreted
in the reverse direction respectively as
particularization (P) 9 partnership (01,
instantiation (i), specialization (s)
and equivalence (el arcs.

Some constraints have to be added to

these arcs and nodes to enhance the

semantics of the preceding network. Most

of them may be expressed by additional
nodes and/or arcs, or by appropriate
expressi on5 of predicates. We list
hereafter some type6 of these
constraints :

- Domain constraint: Each attribute has

EY
domain which is extensionally defined

enumerating its val ues, or
intensionally defined as a basic data
type (integer, real, or text). Moreover,

data type values can be constrained by
any predicate.

- Intersection constraint: There is an

intersection between two classes Xl and
X2 when it exists a third class X3 such

that the predicates g (X3,X1) and
g(X3,X2) hold. For example, with the
university application, the two classes
STUDENT and INSTRUCTOR intersect because

g(STUD-INSTR,STUDENT)
and g(STUD-INSTR,INSTRUCTOR).

- Union constraint: expressed with
respect to a generalization hierarchy.
It specifies whether the union of all
specialization c 1 asses is equal or not
to the root class of the hierarchy. Let

Xl ,..Xn be the subclasses of X and let
I, Ii be repecti\elly the elements of X
and Xi, then if $J Ii = I, X is called
a completely specialized class,
otherwise X is called a partially
specialized class.

- Cardinalitv constraint:This constraint
is assoc i at ed with r arcs and a/p arcs
(keep in mind that p is the reverse of

a). Cardinalities are represented by a

pair of values (m,n) which specifies on
the one hand whether the relationship is
total (m>U) or partial (m=(J), and on the

other hand whether the relationship is
functional (n=l) or not (n>ll. For

example, if r(STUDENT,ENROLLED) has the

cardinal i ty (1,4) 'I this means that a
student has at least one enrollment and

at most 4 enrollments. If p (TEACHER,TEL)

has the cardinality (C),2) then it means

that a teacher may have zero, one or two

telephone numbers. In general, the
relevant values are 0 or 1 for m and 1
or N for n (with N>l).

- Functional deoendency constraint: We

consider here functional dependencies

between attributes of the universal
relation schema composed of all the

attributes of a semantic network. As in

our semantic network we do not assume

the uniqueness of attribute names, we

qualify each attribute by the name of

its entity. For example, a possible
functional dependency is :
N&ME(DEPARTMENT) -->ADDRESS(DEPfiRTMENT).

4.2. INTERNAL REPRESENTATION OF RULES

Three important classes of design

rules have been distinguished.

The first class includes consistency
enforcement rules and structural
transformation rules which act upon the
semant i c network. Consistency
enforcement rules enable the system to

verify and to maintain the consistency
of the conceptual model described with
the semantic network. Structural
transformation rules enable the system

to transform the semantic network in a
normalized and/or optimized relational
schema.

The second class of rules co1 lects
general know1 edge. First, this category
includes the definition of the types of

arcs and nodes of the semantic network

and the general propert i es of these

types. Second, it also contains the

definition of relational concepts (i.e.
relation, attribute, domain functional
dependency) and properties (i.e.
firmstrong ‘a inference rules and normal

forms). Finally, as we manipulate sets
and lists of objects, general knowledges
about set theory and 1 ists are also
included in this second class.

The third class of rules is composed

of a hierarchy of meta-rul es which
control the sequence of design steps and
se1 ect the rules to apply at each step

and the facts over which these rules

operate.

Al 1 these cl asses of rules are
encoded in Prolog. Figure 8 portrays the

a8

inheritance rule of figure 7 expressed

in Prolog. g and a are predicates which
specify respectively the generalization
and aggregat i on arcs. r refers to an
association.

inheritance <- gC*Xl,*X), a(tA,tX),
insert~clause(a~*A,*Xl~~,
delete-clause(a(*fi,*X)).

inheritance <- g(SXl,tX), r (tX,tR),

ins-ert-clause(rI*Xl,SR)),
delete-clause(r (tX,tR)).

Fiq. 8 : _. The inheritance rule in Proloq

Another example is a meta-rule which
describes a depth-first strategy to
r;earch and suppress generalisation
hierarchies (see figure 9). s is the

specialization arc of the semantic
network, x, y, z, w are Prolog variables
standing for the node of the

generalization hierarchy; transform is a

structural transformation rule.

depth(tx) <- s(tx,ty),

s(*y,*z))

11%
depth (ty).

depthttx) <- sItw,tx),

insert-clause(father(Sw,tx)),
transform(*x).

depth($x) <- father(tw,Sx),

depth (tw) I

depth(Sx)(-delete-clause(father (ty,lrz)).

Fiq . 9: An example of a meta-rule
pxpressed in Proloq.

One we1 1 -known principle of expert

system design is that the modularity and

the independence of rules greatly
enhance the evolutivity of the system.

This is a good phi 1 osophy. But

unfortunately , when we have a large base

of knowledge, this important principle
decreases the performances of the

-,ystem, especially when the Prolog
interpreter does not provide a

sophisticated search strategy. That is
why in some cases we have turned aside
from this principle. Indeed, as in some
design steps several rules have some
overlapping premises, we have choosed to
built trees composed of these premises
and where each path from the root down

to the leaves corresponds to a given

rule.

5. THE LOGICCIL DESIGN PROCESS

The logical design process generates,

from an external description of an

application, a sound conceptual schema

stored as a semantic network with
associated constraints. Then, a fourth
normal form relational schema with
associated integrity constraints is
produced. The global process is divided
in step5 which are more precisely
described below.

This process is performed in a
combination of a forward and a backward

chaining. The general principle is to
successively transform a given
5pecification, trying all the rules
until no rule is applicable. This is the
definition of the forward chaining. Hut
at each design step, we may use a
backward chaining to enforce a
consistency constraint for example, or
to verify that a given information is
not redundant (i.e. not derivable from

another information). This is especially
the case of functional dependencies.

5.1. THE STEPS OF THE HETHODOLOGY

The first step is called the
yerification step. It performs the
validation of the application
description in order to generate a sound

and consistent conceptual schema. In
addition to the syntactic controls, this

step checks and solves the problem of
homonymous and synonymous i nf ormati ons.
It also detects generalization cycles.
The system tries to evacuate the
possible inconsistencies with the
end-user’s help.

The second step is called the
relational step. It pert: orms the
interactive acquisition of constraints
and the choice of first normal form
relations. Constraints such as
intersecti on and union of classes,
cardinalities of relationships
(aggregation and assoc i at i on 1 and

functional dependencies between
attributes are acquired. Normal form
rel ati ons are constructed by suppressing

generalization hierarchies and
separating multivalued attributes.

The last step is called the

normalisation step. Normalization is
carried out using both the functional
dependencies between attributes given in

the initial specification, and the

cardinalities of associations which
allow the system to infere some
functional and mu1 t i -val ued

dependencies. The normalization process

iS composed of two phases : partial

normalization using local functional

dependencies (between attributes of the
Sdme entity), and total normalization
I..I si n g global functional dependencies
(between attributes of different
entities).

The result of the logical design
process is a set of 4NF relations with
their keys (both unique and multiple
keys), a set of virtual relations with

their deriving relational queries, and a

set of constraints including domain
constraints and inclusion constraints
(in particular, referential integrity

constraints). The method01 ogy is
characterized by a sequence of steps

which alternatively require algorithmic
tasks (e.g. verification and

normalization) and human decisions (e.g.
acquisition of constraints and choice of

entities and relationships). The

.following paragraphs describe in more
details how steps two and three are

implemented to produce a normalized
relational schema.

5.2 PRODUCTION OF A NORMALIZED

RELATIONAL SCHEHA

Starting with a sound semantic

network, the production of a normalized

relational schema is performed during
the relational and the normalization
steps, as stated above. Each step is
composed of three actions. The

relational step encompasses the
following actions :
h'l) The supression of the generalization
hierarchies.

R2) The acquisition of aggregation

constraints (cardinalities) and the

separation of multivalued attributes to
obtain 1NF relations.
HZ) The acquisition of functional

dependencies between attributes of each

1NF relation.

The normalization step includes the

following actions :
Nl) A partial normalization process

using a simplified synthesizing
algorithm CBEER791.
N2) The acquisition of association
constraints (cardinalities) and the

suppression of the association arcs.
N3) A complete normalization process

using the decomposi t i on algorithm
CFAG177, ZANIGll.

I n the first version of SECSI, these

s i x actions are processed in the given
order. However, the order of the first
three actions may be changed. The chosen

order has the advantage of getting
cardinalities and functional
dependencies more precisely. Indeed, a
functional dependency which is valid for
the TEACHER attributes is not
necessarily valid for the PERSON
attributes. For example, we may have
NAME (TEACHER) -->ADDRESS (TEACHER) and not

NAME(PERSON)-->ADDRESS(PERSON). It is

the same problem for cardinalities which

may hold at the specialization levels
and not at the generalization levels.
But changing the action order could
improve performances because attributes
are not dupl i cated by inheritance

properties and the dialogue of the
constraints acquisition would be
shorter. In the second version of SECSI,

we implement some meta-rules to decide
wether it is interesting to begin by
step Rl, R2 or HZ. These meta-rules are
essentially based on the number of
attributes and specialization entities.
'The next sub-sections detail each of the

preceding actions.

5.2.1 The suppression of generalization
hierarchies

The problem is to choose between

different nodes of a generalization
hierarchy which node(s) must be kept as
possible relation(s) and which one must

be replaced either by new attributes, or
virtual relations, or integrity

Fio. 10: Examples of structural,
jzransformations of oeneraliratio~

hierarchies.

constraints. The general principle is to

I:: eep the “more semantically referenced”

nodes (i.e. the nodes which are
surraounded by the greatest nk.kmber of
arcs). The main criterias used are the

90

number of specialization nodes, the
number of specific attributes of each

node 7 the intersection and the union
constraints, and the depth of the

hierarchy. For ex amp 1 e:

IF X HA!? HLRE TIW 3 SPECIAIZ~~TIDI ENTITIES
MD THESE SPECIlyIsIlWNS HAVE NO SPECIFIC ATTRIBUTES
kND THESE SPECIIyIZA~IoNs DO MJT PMTICIPAlE TO WY f6SOCIATIoN
AND THERE IS Ml IHlERsECTIoN BETWEEN THESE SFECIIYJSAWMS
AND TH w~ac DF SPECIALIZATIM CLRssEs IS EBW. m TH

SENEfWIZATION CLASS
MN ADD A NEW &~IBUlE NMED “ROLE’ TO THE %5REEAUJN OF X

WHICH DCMN IS THE SEWNCE OF WtES ff THE
SPECIALIZATION ENTITIES,

DELETE TH spECI#IZ6~IoN ENTITIES OF X.

multivalued dependencies as an

independency of two sequences of

attributes (or as two merged but

different objects), this phenomenon is

detected and solved during the previous
dialogue and non-trivial multivalued
dependencies does not hold further.

However, we shall see later that this
approach is not sufficient to detect ali
the possible multivalued dependencies.

‘This rule is illustrated in figure lob.

5.2.2. The acquisition of aggregation
cardinalities

First, certain cardinalities are
given by the end-user in his

specification or acquired by a
quest i on-answer i ng dialogue such as the

.following one :

SECSI) CCULD MY Tm tkW WERAL ADDRESSES?

USER !YES.

SECSI 1 CtUD ANY m tW’E SEVERAL PHaE WBE!W

USER (YES.

SEeSI)IsMPHM-DEPEWW DNWEIWGS?
USER ! No.

SECSI ? MID INVERSO-Y?
USER <YES.
SECSI>FOR~RDDRESSISMRE~ORSEMR#TEIWLRS!
USER < B#k

.s......**.

Some other cardinality constraints
may be inferred from the functional
dependencies. For example, if the

functional dependency:

NAME (DEPARTMENT 1 -- ::4DDRESS (DEPARTMENT)

is given in the description and if the

departement has only one name, then

SECS I infers that the department has

nnly one address.

At the end of this dialogue, the

system has transformed the base of facts

(i.e. the semantic network) and provides
the first normal form relations by
applying transformation rules as those

illustrated in figure 11.

The previous dialogue is very

:i mportant because it prevents some

mu1 tivalued dependencies to occur. In a

certain sense, it prepares the schema

.for being in 4NF. But it may appear as a

surpri5ing approach to “normal ixe in

4NF I’ during the first normal form

process. Indeed, if we interprete the

F==. 11: Exam les of structural

jzransformation of

Iqqreqati on

5.2.3. The acquisition of functional
dependencies

Functional dependencies can be

acquired from four different sources:

(1) the user ‘5 description of the
application explicitely specifies

certain functional dependencies,

(2) the cardinalities of the aggregation
arcs enable the system to inf ere
functional dependencies. For example, if

an EMPLOYEE has only one SSN and only
one ADDRESS, and for each SSN there is

one EMF’LOYEE, then SECS I infers the

f r~nctional dependency SSN-- ::.ADDRESS.

This is a direct application of the

transitive in,ference rule of functional

dependencies if we assume that EMF’LOYEE

plays a role of an attribute : if
SSN --I::. EMPLOYEE and EMPLOYEE--? ADDRESS

then SSN --> ADDRESS,

(3) a dialogue with the end-user is also

possible. As for cardinalities, SECSI

asks questions of the form :

!ECsI > IKES TIE WE ff EWLOYEE DETEPMtE HIS SkiMY?
USER <Ml.
SEC’3 > Ml rylK IWD ADDRESS OF EtWYEE DETERJGN HIS SALARY?
.*.......*

During this dialogue, the system is

directed by Armstrong"s inference rules
which enable SECSI to der i ve new

.functional dependencies from those given

tJY the user. The system asks questions
only for those functional dependencies

it could not derive. However, even in
this case, this dialogue phase may

somewhat appear as very tedious and

tiring for the user. Thus instead of

searching for possible functional

dependencies, we try first to search for

impossible dependencies. This is done

with the help of some examples Of tUpleS

given by the end-user. For es amp 1 e ,
SEC!31 asks the following questions:

sEc.SI~W~SE,~XUDYW~I~E~~~EEX~SWTUPLES
OF THE REL4TIoN TDW3t!%N,~,~,TEL),

(5 TUPLES AT MISTl?
LlsER(1234 DWWr PIWS 2224775

(1234 DWrBT tk%EILLE 662532
<25lwxnmND GRMOBLE Mb542
(3oM PERRIER PMIS 2740755
< 3wJ PERRIER LYON 42bD30
(.

From these tuples of the TEACHER

relation, SEC31 infers that the

,following functional dependencies do not

hold: NAME --> ADDRESS, ADDRESS --> TEL,

ADDRESS --> NAME, NAME --> TEL,

(SSN,NFItlE) --> ADDRESS.

Thus the number of possible candidate
dependencies is reduced. However, from

this estension of the relation TEACHER,

SECSI can say nothing about SSN-->NAME,

TEL-- >ADDRESS, . . . Another way to avoid
the combinatory explosion in functional
dependencies acquisition is to reduce

the number of attributes in the left
hand side of functional dependencies.
Indeed, it does not practically appear

as an important constraint to limit this
number to four or five attributes.
Figure 12 synthesizes the functional

dependency acquisition principle.

tVSTMM'S
MEREWE RUB

r-L
ENTITYMlRImITES

CARDINkITIES 4 I= b
MNIW COVERING

ff
EXW!B

!

FWCT. DEwmENc.

LEER’S tCULENTW

INFLRWTION

Fis. 12: Acquisition of Functional

Dependencies.

5.2.4. Partial normalization process

This process is considered as partial
because it concerns only the attributes
and functional dependencies of a unique
entity and it does not handle functional
dependencies between attributes of
different entities which are not already
acquired. This process is also called
partial as it is only applied for
entities which do not appear as targets
of association arcs (r-1.

This normalization process is based

on the second version of the

synthesinzing algorithm of CREER791.

During the previous dialogue phase,

whenever a functional dependency ho1 ds ,

SECS I applies the membership algorithm
which consists of testing whether a
functional dependency is implied or not

by those already existing in the base of

facts. Then the minimal covering is
progressi vel y built and third normal
form relations deduced with all their
possible keys.

Al though the Prolog language is not

adapted to this type of algorithms, the
efficiency remains acceptable as the
number of attributes of an entity is not

generally very high.

5.2.5. Acquisition of association
cardinalities

Association cardinalities are either
given in the initial description of the
application or interactively acquired
from the end-user with the following
dialogue:

5ECSI)I#YEMHf'RWES4IRDERESPDNSIBLEffoKYaE
msEvERALwusEs?

USEN (SMIWL.
sEcsI>IyIYExHcRRsEWEoKYMcRWEWLRE5aNsIBLEs?
MN (ON.
SEC51 >WESfWCtWEEXISTYITHOUTAREPDNSIW?
USER <Ml.
.

This dialogue determines the (m,n)

coup 1 es of values from which SECS I

inf et-s some functional and multivalued
dependencies. For ex amp 1 e , the dialogue

above produces two couples of

cardinalities (O,N) and cl,11 from which
SECS I infers functional dependencies:

1:: ey (COURSE I-- 3~ ey (PROFESSOR) .

The key variable is later replaced by
the corresponding I:: eys found in the

normalization process. If the user

becomes a little familiar with the
system, he may introduce directly his
couple5 of cardinalities to avoid the

92

preceding dialogue.

The deci si on of suppressing

association arcs depends on the number

of arcs involved in each association,
the cardinality of each association arc
r , and the number of attributes of this
association. When associations are
organized into a hierarchy, a meta-rule
specifies the strategy to search this
hierarchy. Figure 13 shows some
transformation rules depending on the
cardinalities of r. Whenever an arc r is
~1 i mi nated, a referential constraint is
created between the association and the

involved entity, or between the involved

entities.

FiQ. 13: Examples of structural
transformations of associations.

5.2.6. Complete normalization process

The suppression of association arcs
moves attributes from one entity to
another and introduces new functional
and multivalued dependencies that make

some relations not normalized. Thence,

SECS I has to proceed anot her

normalization process based on the

decomposition algorithm CFAG177,

ZANI811. This process concerns all the
entities which are not yet normalized by

the partial normalization process (i.e.
entities which are the targets of r

arcs).

The principle of these algorithms is

to eliminate by pro-j ecti on all the

functional and multivalued dependencies

whose the left hand side is not the key
of the relation. The process is finite
but the relation schemas obtained depend

on the order in which dependencies are

considered. AS in the partial
normalization process, the efficiency

remains acceptable as generally,
entities have not more than two or three
dozens of attributes.

5.3. The final results

When the design process descr i bed

above is terminated, we obtain the
,following results:

(1) A set of basic relations in 4NF and

the various keys of these relations.
Figure 14 shows the normalized
relational schema produced from the
university example portrayed in the same

.f igure. Notice that in the results some

new attributes appears (e.g.
TEACHER.ROLE and STAFF.ROLE) which were
not in the initial description. They
have been created to replace
specialization entities which have been

suppressed during the action 5.2.1 of

.t h e design. Some other attributes are

dupl i cated in different relations; they

replace the association arcs r that have

been deleted in the design action 5.2.6
These attributes are prefixed by the

.f irst three characters of the name of

the entity from where they have been

derived (CLA.NUMBER,COU.NQME,STU.NUMBER)

nr by the association which has caused

the attribute migration. Also in the

same ex amp 1 e , there are some surprising
names of relations FREE-GIFT-STAFF,

ADDRESS-TEL-TEACHER coming from the

normalization process. These will later
be renamed with the user’s help (for

example put LOCATION instead of

ADDRESS-TEL-TEACHER. The key(s) of each

relation are specified. As for relation
names, some attributes composing the
C::eys may be prefixed by entity names.

(2) A set of virtual relations and the

de-f inition of the corresponding

relational queries which permit to

der i ve them from the database real

relations. These virtual relations

correspond to some entities given in the

initial description and which have

disappeared during the design process.

However, with respect to the user, these

objects (e.g. F’ERSON, EMPLOYEE) which

exist in the real world must exist in
the conceptual schema exactly as other

objects (STUDENT,COURSE). Notice that

all the transformed entities are nnt
necessar i 1 y replaced by virtual

relations; some of them are replaced by

role attributes (e.g. INSTRUCTOR,

PROFESSOR). However, sometimes, both

93

virtual relations and roles are
necessary to capture the semantics of

the real world (e.g. HEAD-OF-LABO). In
the ex amp1 e portrayed figure 14,

relational queries are simply
represented by relational operators.

EJaluED(cLIHuneER-s-IwlTE)

TEfmER(DEp-NcyL~YIwE~~)

SWfF(W-‘-Nf#E%UU?Y~SSNST~)

.5WDENT(NWNuneERf

lJltX!Z(TEA-SSNRWnDRYHRIE:HOUR)

cuIss(MmER-TEft~1

DEPMENT(ADLRESSWdE)

FREE-RIFT-STIYF (STR-523 FREE-GIFT)

ADDRESS-TEL-TEmEFi (TEHSN TEL RDDRESS 1

wNsm1NTs

keyEtRCUED) : CiJ+MBlcws(IyES-

key(TERDER) : SSN

key CiWUW : SSN

key(SNDMI) : NUtl68?

keyUMtSE) : WE

keyKLAS9 : CW-WE NWBER

key(DEPMtiENT) : WE

keyWREE-RIl+STRFF) : !iTA-SSN FREE-GIFT

keyMDDFESS-EL-TERCtERI : TECSSN I\wREss

VIRTW REUTIONS

PERW = LMlN(STlJDENTLtWEl ~IWNEI STIYFINAI’EI I

EmmE= WJN(SWF lEKzli3)
DIR-ff-L&U = REST(JOIN1 STWF TERCtER

I STIyF.RU = TEKtER.RfU)

! TEMtER.RoLE = 'DIR-DFJf&Ul~)

tt lKMINCWNWINlS
STIYFXILE = (DIR-OF-L&R0 HEAD-IF-SECTI~)
TEi3lXR.RU-E = (DIR-DF-LARD INST!ilXToR PROFESSOR)

ca.#?&WE=(RIDBlWH)

ttREmMn1llLfWD IKIIJSION cMn?AINTS
EwaLED.- = cLAss.NIlER
Et&UlED.UkNH=CLMS.WE
ENmLED.- = !amNT.m
aRss.- = calRsE.NRIE
TERctER.DEP+M = DEPmTlENT.NM
sTIyF.DEP* = DEFRRT?ENT.FyyIE
FREE--6In-SWF.STkW = ST!xF.!iSN
RDDRESS-TEL-TEmER.TER-SSA q lEMm.ssw

t) oTtER!zwW1cccWSTRfWrs
cam!iE.NI-ssN = TEmER.ssN MID TEKtER.RaE = 'PROFESSOR'
aASs.TEn-SSN=TEIY)IER.SSNANDTEMxR.RaJ='INSTRUCmR'

Fis.14: An examole of aaplication run

with SECSI.

(3) A set of constraints like domains

referential and other general semantic
constraints. Domain constraints are

relevant for new attributes generated
during the design procesjs. (especially
roles). Referential dependencies are

generated to replace the real world
associations. They are essential

information without which rel at i on al

joins of tables cannot be done

efficiently and the database integrity
cannot be maintained. Semantic
constraints are all other constraints
composed of a conjunction or disjunction
of predicates and which capture a given

semantics graphically expressed in the
semantic network or in the user ’ 5

application in general. All these
constraints are expressed in a specific
1 anguage described in CSIMO841, that is
the language of the SFIBRE system.

&CONCLUDING REMARKS &ND FURTHER

RESEARCH DIRECTIONS

We have described the main .featut-es

of an expert system for database design.
This system is written in PROLOG and

runs on MULTICS at INRIA. The main
originalities of the system are :
(1) It does integrate a complete

method01 ogy for database design,
starting from a naive description of the

application and using intensively
dialogues with the end-user.

(2) It is strongly based on a semantic
data model which is implemented as a
semantic network in the system.

(3) It encompasses most of the *simple
theory about database design (e.g.
normalization, dependency inference
rules . . . 1 which is expressed as PROLOG

clauses.
(4) It is evolutive in the sense that we

can add new design rules in the system.

(5) It is a too1 integrated in the
relational DBMS SABRE in order to
facilitate database design and
creation.

However, the system is far from being

complete. Many points have to be

improved including the graphical
interface, the expert interface, the
design algorithms and the explanation of

the decisions... Further steps which are

not Yet addressed in the current

implementation are the view integration
and the physical design. New versions
integrating these aspects are currently

in specification.

The substantial results al ready

achieved with the first version of SEES1

lead us to state that expert systems are

very suitable to database design. They

introduce a new design style in the
manner of directing the dialogues,
correcting the i nconsi stencl es and

justifying the results. They also

94

:i. nt reduce new capabilities for database

restructuring. Expert systems may also
mpen new possibilities in database

teaching.

REFERENCES

CBADA811 BARR A.

Representation of Knowlidae

DAVIDSON J.
(in Handbook

of AI, Barr $ Fei genbaum ed. , Comp. See

Depart., Stanford U;ivercity)
CBEER793 DEER I . 1 BERNSTEIN P. A.

"Computational problems related to the

d2i qn of normal form relation schemes”

ACM Transact On Databases, vol4,nbl,
march 1979.

CBOUZ83al BOUZEGHOUB M. “MORSE: A

Functional her y 1 anquaae and its

;zemant i c data model. INRIA RR270 and

Proceed of 84 Trends and Application

conf on Databases, IEEE-NBS Gaithersburg
(USA), 1984.

CBOUZ83bl BOUZEGHOUE M. et GARDARIN G.

“The desisn of an expert system for

jatabase desi qn” in New Applications of
Databases. Gardarin and Gelenbe edit.

Academic Press 1983.
CBOUZ841 UOUZEGHOUB M., GARDARIN G.,

METAIS M. “SECSI : Une application des

;i;vstemes experts a la concepti on des

Pases de donnees relationnelles" Actes
collogue internat. d"Intelligence
Artificielle, Marseille act. 1984.
CBROW831 BROWN & STOTT-PARKER LAURA: A

formal Database model and her Losical
Resisn Methodology Proceed.
i;lorence 1983.

VLDB Conf ,

CBROD811 BRODI M.L. ‘I On Modellinq
Behavi out-al Semantics of Data Bases

(Proceed of 7th VLDH Conf IEEE 1981)

CBROD841 BRODIE M., MYLOPOULOS J. ,
SCHMIDT Y. On Conceptual Modellins:
perspectives from Artificial
Intelligence. Data Bases and Prouramminq

;l anquaqes. Springer-Verlag, NY 1984.
[CARL831 CARLIS J.V., MARCH S.T.,

DICKSON G.W. Physical Database Desisn: A
DSS Approach. in Information and

Management 6 (1983) .

CCERI831 CERI S. (edit) “Methodoloav and

;rools for Database Design. North Ho1 land

1983.

CCHEN761 CHEN P.P. “The Entitv

Relationship Model - Toward a Unified

\jiew of Data” (ACM TODS Vl, Nl, March

1976)
CCOBB841 COBB R.E. FRY J.P. and TEOREY

“r . J . “The Database iesianer's Workbench.

Information System Sees nb 32, 1984.

CCODD791 CODD E. F. Extendincl the

[Jatabase Relational Model to capture

more Meani nq. ACM Trans. On Databas
sstems, 4,4 Dee 79.
CDaEn841 DAtabase Engineering Revue

vo17 nb4, dec84. Special issue on
Database Desi qn Aids, Methods and

Environments.

CDAVI831 DAVIS C.G. et al (edit) Entity
Relationshin Approach to Software

Enaineerinq. North Ho11 and tQb1 . Co

1983.
CFA81771 FAGIN R. Multivalued
Dependencies and a New Normal Form for

Relational Databases. ACM Trans.

Database Systems, vo12,nb3 sept 77.

CGARD821 GARDARIN 0. “Bases de Donnkes:

11 es svstbmes et 1 eurs 1 anqaqes” edit .

Eyrolles Paris 1983.
CGARD831 GARDARIN G. et al Desian of a

multiprocessor Relational Database

System. Proceed IFIP Cogress, Paris Sept

1983.

CHAMH811 HAMMER N. and McLEOD D. D&

Base Descriotion with SDM: A Semantic

Data Model (ACM TODS V&, N3, Sept 81)
CHCIYE831 HAYES-ROTH F., WATERMAN D.A.,

LENAT D.B. Buildins Expert Svstems

Addison-Wesley pub. Co. Inc. 1983
CHAYE841 HAY&ROTH F. The Knowledcle

Based Expert Svstem: tutorial.
Computer revue ~0117, nb9, gept 1984.

CKENT791 KENT W. Limitations of

Record-Based Information Models. ACM
Trans. Database Systems 4,1,1979.

CLAUR821 LAURIERE J.L. Les svstemes

experts (AFCET TSI No 1 et 2 1982)
CMYL0801 MYLOPOULOS J. BERNSTEIN P. A.

WONG H.K.T. A 1 ansuane facility for

desi uni nq database intensive

applications" ACM TODS vol5,nb 2, 1980.
CSHIP811 GHIPMAN D. W. The Funct i onal
Data Model and the Data Lansuase DAPLEX

ACM TODS Vb, Nl, MAR 81

CSIflO841 SIMON E. and VALDURIEZ P.

pesi qn and Implementation of an

Extendible Intesritv Subsystem ACM

SIGMOD 1984, ACM Ed.

CSMIT771 SMITH J.M. and SMITH D. C. P.

pata Bases Abstractions Asaresation and

Generalization ACM TODS June 77
CTAHN841 Tan TAHN JOO, TAN KAH POH, GOH

AH MOI, DATADICT: A’data analysis and

loqical database desi an tool. Proceed.

VLDB Conf. Sinsapore. Aug 1984.

CULp1c1803 ULLiAkl J;D. -"Principles of

Database Systems” computer See Press,

1980.
CWASS821 WASSERMAN A.I. and SCHNEIDER

H.J. editors Automated tools for

Information System Desi on, North Ho1 1 and

F’ubl. Co. 1982.

CZANI813 ZCINIOLO C and MELKANOFF M.A. !&

the Design of Relational Database
Fkhemata. Trans. Database Systems ACM,

vol 6, nb 1, march 1981.

Permission to copy without fee all or part of this material is

grauted provided that the copies are not made or distributed for di.

rect commercial advantage, the VLDB copyright notice and the title
of the publication and its date appear, and notice ia given that copy
ing is by permission of the Very Large Data Base Endowment. To

copy otherwise, or to republish, requires a fee and/or special permis-

sion from the Endowment.

