
Database Graph Views :
A Practical Model to Manage Persistent Graphs1

Alejandro Gutihez TS Philippe Pucheral ? Hermaun Steffen $ Jean-Marc Thevenin ?t

(t) University of Versailles ($) Universidad de la Reptiblica (tt) University of Toulouse 1
PRiSM Laboratory Computer Science Department IFUT / SIG Laboratory

78ooO Versailles, France 11300 Montevideo, Uruguay 3 1042 Toulouse, France
(gutier, pucheral}@prism.uvsq.fr steffen@fmg.edu.uy thevenin@cix.cict.fr

Abstract

Advanced technical applications like routing systems
or electrical network management systems introduce
the need for complex manipulations of large size
graphs. Efficiently supporting this requirement is now
regarded as a key feature of future database systems.
This paper proposes an abstraction mechanism, called
Database Graph View, to define and manipulate
various kinds of graphs stored in either relational,
object oriented or file systems. A database graph view
provides a functional definition of a graph which
allows its manipulation independently of its physical
organization. Derivation operators are proposed to
define new graph views upon existing ones. These
operators permit the composition, in a single graph
view, of graphs having different node and edge types
and different implementations. The graph view
mechanism comes with an execution model where
both set-oriented and pipelined execution of graph
operators can be expressed. The graph view operators
form a library which can be integrated in database
systems or applications managing persistent data with
no repercussion on the data organization.

1 Introduction

The efficient manipulation of graphs becomes an
important challenge for advanced database systems
addressing technical applications. Geographical
information systems, routing systems, military systems

1 This work is partially funded by the Esprit project IMPRESS
no 6355

Permission to copy wthout fee all or part of this material is
granted provided that the copies are not maa% or distributed for
direct commercial advantage, the VLBD copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Enaknvment.

Proceedings of the 20th VLDB Conference
Santiago, Chile, 1994

and more generally applications managing networks
have to perform complex computations (e.g. shortest
path, maximum capacity path, bill of materials) on
voluminous graphs [Cruz881. Nodes and edges of the
graphs are generally represented by complex objects
stored in databases or files under various forms. Nodes
and edges of different types can be linked in the same
graph (e.g. power stations, connectors, switches) making
difficult the traversal of the graph by a recursive
algorithm [Impr931. In some applications, the same
graph may have to be seen at different levels of detail.
In such a case, only the most detailed level is stored in
the database and higher levels have to be computed
based on the detailed one (e.g. the connection between
two power stations may be derived by aggregating basic
electrical lines supporting the connection). Finally, some
connections between nodes and edges may result from
complex calculus that must be computed at traversal time
(e.g. two power stations are connected if all the
elementary electrical lines materializing the connection
are in operational state).

Considerable research efforts focused on the
integration of transitive closure operators in database
systems to support complex queries on recursively
defined data [VB86, AJ87, Lu87, PTV90, IRW931.
Generalized transitive closure operators integrating
computations on node and edge labels have also been
defined to cope with practical graph traversal problems
[Agr87, ADJ88, CN89, DAJBl]. Most of these works
have been conducted in the relational realm thereby
laying down a re/lational representation of the graphs
(e.g. ((origin, destination, labelEdge))). Recent
proposals define languages to query graphs where nodes
and edges are represented by typed objects. In the
GraphLog [CM901 and Gram [AS921 languages, regular
expressions are used to specify a set of relevant paths in
graphs where nodes and edges may have different types.
This constitutes a first step to satisfy the requirements
stated above. However, these proposals are more
concerned with query expression than with execution of
graph operators on specific graph implementations.

This paper focuses on database mechanisms to
handle graphs issued from different paradigms and data
models. The database graph view model is introduced to
allow the definition of graph operators without

391

precluding a specific graph representation in the
database. A database graph view (or graph view for
short) is a functional definition of a graph specifying the
way this graph should be traversed, independently of its
implementation. Each graph view defines a specific
underlying graph over the database objects. Thus,
several underlying graphs can be defined on the same set
of objects by means of several graph views. An
important feature of the model is that graph views can be
defined on existing databases without reconsidering the
data organization. In addition, either general purpose
graph operators (e.g. generalized transitive closure) or
application-dependent graph operators can exploit the
graph view model.

Derivation operators are proposed to define new
graph views by composing already existing ones. Unary
derivation operators can be used to select some nodes
and edges in a graph view and to project the labels of the
resulting nodes and edges on relevant values. Binary
derivation operators can be used to build a graph view
resulting from the union, the intersection or the
difference of two graph views. Precise rules are given to
properly define node and edge identifiers in order to
guarantee a clear semantics for the binary operators
when applied on graph views having different node and
edge types. We show that graph operators like
generalized transitive closure operators can be applied
on derived graph views either in a pipelined mode or in a
set-oriented mode. In the former case, derivation rules
are evaluated each time the successors of a node have to
be accessed while in the later case, the derived graph view
is materialized prior to the graph operator execution in
order to speed up the recursive process. The best strategy
depends on several parameters among them the size of
the underlying graph and the number of traversed edges
during the processing of the graph operator. We started
the implementation of the graph view model in the
IMPRESS Esprit project. We currently validate it in three
different contexts, namely a Geographical Information
System (GIS), an electrical network maintenance system
in Spain and a milk dispatching system in Uruguay.

This paper is organized as follows: Section 2
introduces the database graph view model. This includes
the definition of a graph view and the semantics of the
derivation operators that make possible the definition of
complex graph views derived from already existing ones.
Section 3 focuses on query processing on graph views.
Different operatiorfal implementations of graph views are
first discussed. Then some hints are given for a query
optimizer to exploit both pipelined and set-oriented
execution modes these implementations can support.
Section 4 gives our conclusions.

2 Database Graph View

2.1 Application Sample

The database graph view model aims at supporting the
requirements of technical applications managing data
organized as graphs. Throughout this paper, we use a

routing system application to illustrate these
requirements and to motivate the solutions we propose.
This routing system uses the database presented in
Figure 1 that could be stored in a GIS. Two initial
graphs are explicitly defined in this database, namely a
Road graph and a Railway graph. While the railway
segments are directly connected to train stations,
materializing the connections between road segments
and cities requires a geometrical calculus (i.e. r.origin c
c.shape, where r is a road segment, c is a city and c is a
geometric operator checking the inclusion of a point
into a region). In addition, we can define the CityTrain
graph as an abstraction of the Railway graph. CityTrain
is concerned only with the train connection between
cities thereby aggregating in a single node all the stations
located in the same city and in a single edge all the
connections between these stations. Clearly, there is a
need for an abstraction mechanism to map the nodes and
edges of the Road, Railway and CityTrain underlying
graphs and the objects physically stored in the database.

class City (
CityName name;
int population;
Region shape;)

class Station (
StationName station-name;
CityName city-name;)

class RoadSegment (
Point origin, destination;
RoadType roadtype;
Length length;)

class RailwaySegment [
StationId origin, destination;
Time duration;
. . . I

name Cities : set (City); - .-
name RoadSegments : set (RoadSegment);
name RailwaySegments : set (Railwaysegment);

Figure 1: Routing database represented in an
object oriented form

A typical requirement of the routing system over this
database could be to query the graph of strategic roads,
defined as the graph composed of cities and roads such
that the roads connect cities which are not served by the
train. Defining this graph upon the Routing database is
a tedious task for the application designer. This
introduces the need for ad-hoc operators to properly
derive new underlying graphs from existing graphs
having different node and edge types.

2.2 Graph View Formal Definition

We can identify two main elements that participate in the
scenario presented above. First, a set of objects which
compose the database defined using a particular data
model and second, a set of underlying graphs defined
over this database. We fmt give a formal definition of a
graph view to fix a non ambiguous semantics for the
underlying graphs that can be represented.

Conceptually, let Sz be the set of objects of the
database. Let S = [Cl, C2, Cn) be the database
scheme. Each Ci is a collection of objects composed of
attributes of the form Aj : tj where Aj is the attribute

392

BuildNodeSet is

(roadtype : RoadType, distance : Length))

Select C.CityID, (C.name, Cpopulation) from C in Cities

BuildEdgeSet is

Select R.RoadSegmentID, Cl.CityID, C2.CityID, (Rroadtype, R.length)
From Cl in Cities, C2 in Cities, R in RoadSegments
Where R.origin c Cl .shape /’ hero, c is a geometric operator */
and R.destination c CP.shape

Figure 2: Operational definition of the Road graph view

IDefineGraphView Road (CityID, RoadSegmentID, (name : CityName, population : ht),

name and tj is the corresponding attribute domain or
type. Let D be the universal domain defined as the
union of all attribute domain values of the database.

A dufubuse graph view of R is a labelled multigraph
G = (N, E, LN. LE. Incidence, LabelNode, LabelEdge)
where,

l N is the set of nodes (node identifiers) of the
database graph view taken from n.

l E is the set of edges (edge identifiers) of the
database graph view taken from fX

l LN is a set of node labels taken from D.

l LE is a set of edge labels taken from D.

l Incidence is a function from E into N x N.

l LabelNode is a function from N into LN.

l LabelEdge is a function from E into LE.

According to this definition, a graph view consists of
a set of nodes and a set of edges with associated labels.
The nodes and edges are derived from objects of R.
Each node and edge must be uniquely identified within a
graph view. This does not preclude a single node or
edge to be derived from several objects of a or a single
object of 62 to participate in the definition of several
nodes or edges of the same or different graph view(s).
The relations between edges and nodes are given by the
Incidence function which allows in particular to define
the neighbours of a node. Considering edges and their
labels apart allows to have multiple edges with the same
valuation between a given pair of nodes. Either directed
or undirected underlying graphs can be defined
depending on whether or not the Incidence function
distinguishes between (n, m) and (m. n) (where n, m E
N).

The scheme of a database graph view is a tuple of
the form (NodeIdType. EdgeIdType, NodeLabelType,
EdgeLabelType) where,

l NodeIdType is the type of the node identifiers in N.

l EdgeIdType is the type of the edge identifiers in E.

l NodeLabelType is the type of the LN’s labels. It
has the form (Al : tl, A2 : t2. Ap : tp).

l EdgeLabelType is the type of the IX’s labels. It has
the same form as NodeLabelType.

We introduce the notion of scheme for graph views
to properly define derivation operators involving graph
views having same NodeIdType and EdgeIdType but
having different NodeLabelType and EdgeLabelType.

2.3 Graph View Operational Definition

The operational definition of a graph view corresponds
to the implementation of the graph view model. This
definition must fix the rules to identify the nodes and the
edges of the underlying graph defined by a graph view.
It must also provide a way to traverse the elements of this
graph and to access their labels, independently of the
graph implementation in the database. Different
operational definitions can be given for a graph view,
depending on the data model used to define the database
and on the graph operators that will be applied to the
graph view. The most appropriate way to fix the
operational definition of a graph view is a matter of
query optimization, discussed in Section 3.

To illustrate the principle, we just give a possible
operational definition for the Road graph view according
to the database scheme presented in Figure 1. For
clarity, this definition is expressed using a SQL-like
syntax in Figure 2.

The complete scheme of the graph view is fixed by
the DefineGraphView statement. In this example, the
nodes (resp. edges) are identified by the identifiers of
City instances (resp. RoadSegment instances). N, LN
and LabelNode are defined by the function
BuildNodeSetO which delivers the set of cities of interest
together with their labels. E, LE, LabelEdge and
Incidence are defined by the function BuildEdgeSetO
which &livers the set of edges with their extremity nodes
and their labels. The extremity nodes of each edge are
determined by a geometric computation on the database
objects. This points out the generality provided by the
graph view mechanism. Although quite different in its
expression, this definition conforms to the semantics of
the formal definition introduced in Section 2.2. Pros
and cons of this definition are discussed in Section 3.

393

2.4 Graph View Derivation

Complex graph views can be built by a recursive
application of unary and/or binary operators on already
defined graph views. Unary operators allow to select a
subset of nodes and edges in a graph view and to project
the labels of these nodes and edges on relevant values.
Binary operators allow the construction of a graph view
resulting from the union, the intersection or the
difference of two graph views.

The derivation operators separate the structural
treatment from the label treatment of the operand graph
views. The structural part of the graph is given by N, E
and the Incidence function, while the label part is given
by LN, LE, LabelNode and LabelEdge. Separating the
structural part of the graph from its label part allow to
compose graphs that can have different NodeLabelType
and EdgeLabelType. Note that the binary operators are
properly defined only for operand graph views having
the same type for their structural part (i.e. same
NodeIdType and same EdgeIdType). To illustrate the
semantics of each derivation operator, we will use
comparable graph views, namely CityRoad and
CityTrain, having the following schemes:

CityRoad (CityName, CityName x CityName, City.
(roadtype:RoadType, 1ength:Length))

CityTrain (CityName, CityName x CityName, City, 0)

In the following, we define the semantics of the
derivation operators in terms of the usual notions in the
set theory. Ni, Ei, LNi, LEi, Incidencei, LabelNodei and
LabelEdgei denote the elements of a graph view instance
Gi. In the figures, nl. n2, nu denote node identifiers

(N elements) while el, e2, q denote edge identifiers
(E elements).

Union

The union operation is denoted by y. The union of two
graph views consists of the union of the nodes and edges
of the graph operands and of the aggregation of their
labels. For example, we can derive the complete
transportation network between cities by performing the
union of the CityRoad and CityTrain graphs. The
following example shows the structural result of the
union of two graphs. For clarity, labels are not
considered in the example but can be easily deduced
from the definition.

G (NodeIdTypeI , EdgeIdTypel ,

(NodeLabelTypel u(null))x(NodeLabelType2u(null)),

(EdgeLabelTypel u (null)) x(EdgeLabelType2u (null)))

l N=NluN2
l E=EluE2

l LN = (.LNI u (null)) x (LN2 u (null))

l LE = (LE1 u (null)) x (LE2 u (null))

l Incidence (e E E) = if e E EI then Incidence1 (e)
else Incidenq (e)

l LabelNode (n E N) = (LabelNode, (n), LabelNode (n))

l LabelEdge (e E E) = (LabelEdgel (e), LabelEdge (e))

Remarks: LabelNodei(n) = null if nL Ni and
LabelEdgei (e) = null if e e Ei

This definition leads to two remarks. First, the
incidence functions of Gl and G2 generally &liver the
same result when applied to the same edge. In particular
cases. this result may be different due to an ambiguous
identification of edges (see Section 2.5 for a detailed
example). In such a case, the definition presented above
chooses the incidence function of Gl. Other possible
choices could be to select the incidence function of G2
or to discard the corresponding edge. Second, the labels
of the nodes and edges resulting from the union are
built by aggregating the labels issued from the two
operand graphs into a tuple of the form (labell, label2).
This could be meaningless when the two operand graphs
have the same NodeLabelType and EdgeLabelType.
For conciseness, we do not introduce an extra definition
to handle this case. This second remark applies as well
to all the binary derivation operators.

Intersection

The intersection operation is denoted by n. The
intersection of two graph views basically consists of the
intersection of the nodes and edges of the graph
operands and of the aggregation of their labels. For
example, we can derive the graph of cities connected
both by train and by roads by doing the intersection
between the CityRoad and CityTrain graphs. The
following example shows the structural result of the
intersection of &vo graphs.

394

G = Gl n G2 is defined by:

G (NodeIdTypel , EdgeIdTypel ,

NodeLabelType1 x NodeLabelType2,

EdgeLabelTypel x EdgeLabelType2)

l N=Nl nN2
.E= (e E El A E2 / Incidence1 (e) = Incidence2 (e))

l LN=LNlxLN2

.LE=LE1xLE2

l Incidence (e E E) = Incidence1 (e) = Incidence2 (e)

l LabelNode (n E N) = (LabelNode (n), LabelNode (n))

l LabelEdge (e E E) = (LabelEdgel (e), LabelEdge (e))

Note that the E set of the graph view result is not
merely the intersection of the edges of the graph view
operands. Otherwise, an inconsistent graph may be
produced if there is an edge in both graphs for which the
respective incidence functions give a different result. An
edge with extremity nodes that do not belong to N could
be generated (see Section 2.5 for an example).

Node Difference

The node difference operation is denoted by -Node. The
node difference between two graph views Gl and G2
yields a subgraph of Gl containing only the nodes of Gl
which do not belong to G2 and the edges connecting
these nodes. The node difference between the CityRoad
and the CityTrain graphs builds the graph of cities which
are only connected by roads (and that could claim for a
connection to the railway network). The following
example shows the structural result of the node
difference of two graphs.

B

d
G

G = G, xde G2 is defined by:

G (NodeIdTypel, FgeIdTypel,

NodeLabelTypel, EdgeLabelTypel)

l N=N1-N2
.E= (e E El /3 n, m E N. Incidence (e) = (n, m))

.LN=LNl

l LE=LE1

l Incidence (e E E) = Incidence1 (e)

l LabelNode (n E N) = LabelNode (n)

l LabelEdge (e E E) = LabelEdgel (e)

Edge Difference

The edge difference OpemiOn iS denoted by -Edge’ The
edge difference between two graph views Gl and G2
yields a partial graph of G, containing the edges which
do not belong to G2. The edge difference between the

CityRoad graph and the graph of blocked roads (i.e. a
temporary graph determined by an helicopter pilot)
delivers the graph of available roads. The following
example shows the structural result of the edge
difference of two graphs.

G = G1 -Edge G2 is defined by:

G (NodeIdTypel, EdgeIdTypel,

NodeLabelTypel , EdgeLabelTypel)

l N=N 1

l E =El-E2

l LN =LN1

l LE=LEI

l Incidence (e E E) = IncidenceI (e)

l LabelNode (n E N) = LabelNode (n)

l LabelEdge (e E E) = LabelEdgel (e)

Selection

The selection operation is denoted by PQNode, QEdge.
The selection applied to a graph view yields a graph
whose nodes and edges satisfy respectively the predicates
QNode and QEdge. The attributes that appear in QNode
(resp. QEdge) must be attributes of NodeLabelTypel
(resp. EdgeLabelTypel). One of these two predicates

can be omitted if the selection is applied only to nodes
or to edges. These predicates can be expressed by SQL-
like predicates or by user-defined functions depending
on the way the graph view model is integrated in a
system. The following example shows how to obtain
from the CityRoad graph the subgraph corresponding to
the cities whose population is greater than 6OOK that are
connected by roads longer than 400 Km.

395

G = %Node, Qmge K+) is &dined by:

G (NodeIdTypel, EdgeIdTypel,

NodeLabelTypel, EdgeLabelTypel)

l N = (n E N, / QNode (LabelNode (n)))

l E = (e E El / QEdge (LabelEdgel (e)) A 3 n, m E N,

Incidence (e) = (n, m))

.LN=LN1

l LE=LE1

. Incidence (e E E) = Incidence1 (e)

l LabelNode (n E N) = LabelNode* (n)

l LabelEdge (e E E) = LabelEdgel (e)

Projection

The projection operation is denoted by &Node, p~gc.
The projection of a graph view G, yields a graph
containing the nodes and edges of G, whose labels are
the projection of the labels of Gl according to PNode

and PEdge. One of these two parameters can be omitted
if the projection is applied only to nodes or to edges.
npNode (NodeLabelTypel) means that the type of the
node label aggregates the types of the NodeLabelTyper

attributes referenced in PNode. The same applies to
npEdge(EdgeLabelTypel) and PEdge. The fOllOwing

figure shows the result of a projection on the Road
graph.

I rl) 1 mis
BIWI

Il
FNodc: CityName t

EE

P

Tovbuc

G = &Node, pmge (Gl) is defined by:

G (NodeIdTypeI, EdgeIdTypel,

npNode(NodeLabelTypepel),

xpR+(EdgeLabelTypel))

l N=N 1

l E = El

l LN = (hi / hI = ltpNc& (lnl), lnl E LNl)

l LE = (le / le = ‘cPNode (lel), lel E LEl)

l Incidence (e E E) = Incidence1 (e)

l LabelNode (n E IV) = ltpNode (LabelNode (n))

l LabelEdge (e E E) = zpEdge (LabelEdgel (e))

Example of a derivation expression. Graph views can
be derived from already defined ones by complex
expressions of derivation operators. Suppose that the
transport network in the region R3 is blocked and we
want to travel by car in the region Rl and by train in the
region R2. We can obtain the graph of available railways
and roads by the following expression.

2.5 Nodes and Edges Identification

All the binary derivation operations are based on the
node and edge identifiers. These identifiers are defined
according to the application needs, resulting in more
flexibility in defining graphs over existing databases.
The examples given below illustrate how the choice of
these identifiers impacts the semantics of different
graphs defined on the same data :

1. Road = (CityId, RoadSegmentId, -, -). In this case
both identifiers are defined by the database object
identifiers. Graph view schemes in which
EdgeIdType is different from NodeIdType x
NodeIdType allow the definition of multigraphs (i.e.
graphs having several edges between two nodes).

2. CityRoad = (CityName, CityName x CityName, -, -).
This is an usual definition for graphs that are not
multigraphs. The identifiers correspond to some
attributes of the database.

3. CityTrain = (CityName, CityName x CityName, -, -).
In this case, each node (resp. edge) identifier results
from the aggregation of a set of objects at the
database level.

This flexibility requires adding conditions in the
definition of the binary derivation operators to deal with

graphs where EdgeIdType is not NodeIdType x

NodeIdType nor object identifiers. Taking no
precaution in such cases may lead to an ambiguous
identification of edges in the graph resulting from the
derivation. Let us consider the following graph view
schemes:

G, = (Region, Point x Point, -, -)

G, = (Region, Point x Point, -, -)

396

Assume that the database represents the situation
pictured in Figure 3. That is, the edge is uniquely
identified by (pl, p2) in Gl and G2 but Incidence1 ((~1,
p2)) = (A, B) while Incidence2 ((pl. p$) = (C, D). When
computing G, nG2, the intersection of nodes is empty
while the intersection of the edges gives (pt. ~2). Thus,

only the edges whose extremity nodes belongs to the
intersection of nodes have to be kept in the result (see
Section 2.4).

Gl G2

Figure 3: Ambiguous identification of edges

3 Query Processing on Graph Views

Section 3.1 comments on the three abstraction levels
identified in the graph view model, namely the database,
the base graph view and the derived graph view levels.
Section 3.2 presents different alternatives to implement
base graph views on top of the database level. The way
derived graph views are mapped on the base graph view
level is discussed in Section 3.3. Section 3.4 introduces
optimization strategies to efficiently handle queries on
either base graph views or derived graph views. Finally,
Section 3.5 discusses the different alternatives to
integrate database graph views in existing database
systems or applications. This throws light on the way
graph operators interacts with graph views.

3.1 Abstraction Levels

Each derivation operator produces a new derived graph
view from one or two existing graph view(s). The
derivation rules between graph views can themselves be
expressed by a graph where the nodes represent graph
views or operators and the edges represent derivation
links (see Figure 4). Graph views defined upon database
objects are called base graph views while graph views
defined upon already existing graph views are called
derived graph views. Each graph view defines an
underlying graph on the objects physically stored in the
database.

Graph operators and queries can be applied on either
base graph views or derived graph views. Efficient
mechanisms are required to extract base graph views
from the database and then, derived graph views from
base graph views. These translations hide from the
graph operators first the physical representation of the
underlying graphs in the database and second the
derivation rules between graph views. These translation
mechanisms are the foundation of the graph view model.

Database

Figure 4 : Derivation tree of a graph view

3.2 Traversing the Underlying Graph of a Base
Graph View

There are basically two methods to extract a base graph
view from a collection of database objects. The first
method consists in materializing the underlying graph
defined by the base graph view by building dynamically
its collection of nodes and its collection of edges prior to
the execution of any graph operator. These two
collections must conform to a predefined scheme
understandable by all graph operators. The second
method consists of defining a function, called Succ(),
which delivers for an input node of the underlying graph
the set of nodes connected to it. The graph operators
can then recursively invoke the Succ() function to
traverse the underlying graph. To make these two kinds
of translations possible, the following functions have to
be included by the DBA in the operational definition of
each base graph view G:

BuildNodeSet +
((n, LabelNode (n)) / n E N)

BuildEdgeSet +
((e, n, m, LabelEdge (e)) / n, m E N A e E E A

Incidence (e) = (n, m))

Succ (n E N) +
((e, m, LabelNode (m). LabelEdge (e) / e E E A m E N

A Incidence (e) = (n, m))

As stated in Section 2.3, BuildNodeSet() and
BuildEdgeSet() implement all the elements that enter in
the, formal definition of a graph view (i.e. N, E.
Incidence, LN. LE. LabelNode and LabelEdge). These
two functions build a pseudo-relational form of the
underlying graph. We selected this representation for
two reasons. First, most of the graph operators proposed
in the database literature make the assumption that the
graphs are stored as relations. Thus, all the principles
introduced to speed up the recursive process on such
graphs can be exploited in the graph view context.
Second, this representation is well adapted to the storage

391

(roadtype : RoadType, distance : Length))

BuildNodeSet is bee Figure 2)
BuildEdgeS& is (see Figure 2)

SuccKityID) is
Select R.RoadSagmentID, C2.ID, (C2.name, C2population), (Rroadtype, R.length)

From Cl in Cities, C2 in Cities, R in RoadSegments

Where Cl is CityID

and R.origin c Cl .shape

DefineGraphView Road (CityID, RoadSegmentID, (name : CityName, population : int),

I and R.destination c CZ.shape A

Figure 5: Succ() definition for the Road graph view

of intermediate results in a query execution plan
involving graph operators. One may argue that if the
underlying graph edges are materialized by direct links
(i.e. object identifiers) in the database, the traversal of
these links is less costly than traversing a relational
representation of the underlying graph. However, if any
derivation operator is applied to the underlying graph -
thereby producing an intermediate graph - object
identifiers can no longer be used to traverse the graph, as
indices referencing tuples on base relations cannot be
directly used on intermediate relations.

The Succ() function provides a direct way to access
the database objects from the underlying graph defined
on them. It avoids the construction of an intermediate
representation of the graph. When edges are not
materialized by direct links in the database, it incurs an
extra calculation each time the successors of a node have
to be accessed during the graph traversal. The result of
Succ(n) aggregates for each successor m of n, the
identifier of the m node, the label of m and the identifier
and the label of the edge linking n to m. Any traversal
recursion algorithm - even those integrating restrictions
and computations on the nodes and edges labels - can be
built on the Succ() function basis. However, the graph
algorithms having to enumerate all the entry nodes of a
graph (e.g. to perform cycle detection or connectivity
checking) require the BuildNodeSet() function in
addition to Succ(). This is due to the fact that Succ()
implements the Incidence, LN, LE, LabelNode and
LabelEdge elements of the formal definition of a graph
view but considers only the subset of N and E accessed at
traversal time. As a consequence, restraining the
operational definition of a base graph view to the SuccO
function restrains the computation on this graph view to
path traversal problems. We give in Figure 5 the
definition of the SuccO function that must be part of the
operational definition of the Road base graph view
introduced in Section 2.3. Obviously, the
BuildNodeSetO, BuildEdgeSetO and Succ() functions
can be expressed with any programming language to
cope with performance or storage structure constraints.

Note that the BuildNodeSet(), BuildEdgeSetO and
Succ() functions correspond to the implementation part
of the graph view model while the N, E, Incidence,
LabelNode and LabelEdge elements defined in Section

2.2 fix the semantics of the underlying graph as well as
the semantics of the derivation operators. A DBA
attempting to define a graph view has only to be aware
of the implementation part of the model (i.e. of the
operational definition of the graph view).

3.3 Traversing the Underlying Graph of a Derived
Graph View

The translation of a derived graph view G into a
collection of base graph views (Gl, G2, . ..Gn) can be
done by deriving the functions BuildNodeSet(),
BuildEdgeSet() and Succ() from the corresponding
functions defined on the base graph views Gl, G2, . ..Gn.
This translation can be automatically done with no
intervention from the DBA part. Each derivation rule
between graph views comes with a derivation rule for the
three aforementioned functions. The table presented in
Figure 6 gives for each derivation operator the way to
derive the three functions defining the resulting graph
view from the functions of the operand graph views.

To illustrate these derivation steps, let us consider the
derivation tree presented in Figure 4. In this example,
the SuccO function automatically derived for graph view
G6 corresponds to the functional expression given
below. Note that the Succ() functions of the base graph
views Gl, G2 and G3 are the only ones to access the
database objects.

Succg(n) = (&cl(n) n Succ2(n)) u (oQ(Succ3(n)))

3.4 Pipelined vs. Set-Oriented Query Processing

Let us now consider the execution of graph operators
over database graph views. For the sake of conciseness,
we focus on the processing of the generalized transitive
closure operator (integrating computations on the nodes
and edges labels) considered as a key operator of future
database systems. While important research efforts
focused on developing new algorithms and new data
structures to support it efficiently, less studies addressed
query optimization problems. One important
contribution in this area IDAJ911 considers the
optimization of generalized transitive closure queries of
the form:

Q = Agg (0 (Con (Paths (G))))

398

* =, Q and lI respectively denote the join, semi-join, selection and projection relational operators.
asrkciated to relational operators

When

, 12 , , n denote attribute positions and i+j the concatenation of attributes i and j.

Figure 6: Derivation rules for BuildNodeSetQ BuildEdgeSetO and Succ()

where G is an input relation materializing a graph.
Paths0 enumerates all the paths of G. For each path,
Con0 concatenates the labels of the path edges into a
unique path label. 00 selects all paths satisfying some
predicates applied on the path label’s and/or on the origin
and destination nodes of paths. Finally, Agg()
aggregates the paths having same origin and same
destination as well as the labels of these paths. The
contribution leads to a precise classification of the
selection criteria attached to cr in the query expression.
Whenever possible, these selection criteria are applied on
G before starting the recursive process or are evaluated
as soon as possible during the recursive process to prune
unneeded paths. Such optimization rules can be
exploited in the database graph view context as well.

Let G be a graph view itself resulting from a
potentially complex expression involving graph view
derivation operators. If we note D(G1, G2. . ..Gn) the
derivation expression of G from the base graph views
Gl, G2, Gn, the query to be optimized becomes:

Q = Agg (d (Con (Paths (D(G1, G2, . ..Gn)))))

In the graph view context, either the graph view G is
materialized by composing the functions BuildNodeSet()
and BuildEdgeSet() of Gl, G2, . ..Gn and the transitive
closure is applied on this materialization, or the transitive
closure is directly applied on G by using a Succ()
function derived from the Succ() functions of Gl, G2,
. . .Gn. We will refer to these two strategies respectively as
the set-oriented strategy and the pipelined strategy.
Indeed, materializing G leads to a set-oriented evaluation

of the expression D(G1, G2. . ..Gn) while this expression
is evaluated in a pipelined mode for each Succ()
invocation performed by the Paths0 operator. Roughly
speaking, the best strategy depends on the size of the
underlying graphs, the cost of each Succo invocation,
the percentage of edges traversed during the recursive
process and the presence of indices.

Suppose that a user queries the Road graph view to
find the shortest path between node A and node B
traversing only the main roads. This can be expressed
aS:

Q = Min(length) oc Add(1engt.h) Paths (Road)

Where,

C = Grigin=A and De.stination=B and roadtype=?nain road”

As stated in [DAJ91], the Paths0 operator can take
advantage of predicates of the form Origin=A to
enumerate only the relevant paths (Cinitial selection
criteria). In addition, the predicate roadtype= “main
road” can be pre-processed to reduce the size of the
Road graph before invoking Paths0 (Cpreprocess
criteria). The query optimizer can naturally exploit this
second optimization by dynamically building a
temporary graph view:

bfaidhd = e QEdge:rmdtypd‘main mad”@oad)

and by applying Paths0 on it. The query optimizer can
add-derivation operators in a query expression for
optimization purpose without explicitly creating new
graph view schemes in the database.

399

1 sUCCMainRoad(cit@) = oQEdg&oadtype=“main mad”) G.SucdCiqID)

which semantically corresponds to

sllCCMainRoad(cityID) iS

Select R.RoadSegmentID, C2.ID, (C2.name, CIL.population), (R.roadtype, R.length)
Prom Cl in Cities, C2 in Cities, R in RoadSegment

Where Cl is CityID
and R.origin c Cl .shape

and R.destination c C2.shape

and Rzoadtype = “main road”;

Figure 7: Pipelined version of the SuccO function

Succ(CityID) is

Select R.RoadSegmentID, CZID, (CZ.name, CZ.population), (R.roadtype, R.length)
Prom Cl in Cities, C2 in Cities, R in MainRoadSegment

Where Cl is CityID

and R.origin c Cl .shape

and R.destination c CZ.shape

Figure 8: Hybrid version of the SuccO function

SUCC(n) is

Select G.EdgeId, G.NodeId2, G.LabelNode2, G.LabelEdge
From G in h4aterialized-Graph-Vi /* result of the materialization phase */

Where G.NodeIdl = n

Figure 9: Set-oriented version of the Succ() function

We present below three strategies to evaluate the
optimized version of Q:

Min(length) (TC’ Add(length) Paths (MainRoad).

where,

c’ = Origin=A and Destinstion=B

In a pure pipelined evaluation of Q, the query
optimizer invokes the Paths0 operator with as parameter
the derived SUCCMai&,&) function detailed in Figure 7.
This semantically corresponds to pushing down the
predicate roadtype=“main road” to the SuccO function
of the Road graph view. This solution should be the best
if few edges are traversed during the processing of the
shortest path, especially if the restriction can be speeded
up via an index (e.g. index on roadtype in the example).

If no index permits to speed up the restriction, a
more efficient solution is to evaluate the restriction on
the RoadSegment class in a set-oriented way before
invoking the Paths0 operator. The restriction will
produce an intermediate object set called
MainRoadSegment and the Succ() function given as
parameter to the Paths0 operator has to be slightly
changed by the query optimizer (see Figure 8). Note
that this solution is practical only in the case where the
query optimizer understands the programming language

used to define Succ() (e.g. SQL). This strategy is a mix
between a set-oriented and a pipelined evaluation of the
query.

Finally, suppose that the spatial inclusion predicates
(R.origin c Cl.shape) and &destination c C2.shape)
are very costly to evaluate and that a spatial index is
defined on these attributes. It could be more efficient to
materialize the view in a set-oriented way in order to
produce an intermediate graph that can be efficiently
treated by the Paths0 operator. This can efficiently be
done by a join operation between the result of invoking
the BuildEdgeSetO function attached to the graph view
definition (doing the assumption that the implementation
of BuildEdgeSet() exploits the spatial index) and the
result of the BuildNodeSet() function. In this case, the
Succ() function given as parameter to the Paths0
operator is built from the standard one defined on
graphs stored in a relational form ((NodeIdl, NodeIdZ
EdgeId, LabelNodel, LabelNode2, LabelEdge)) (see
Figure 9).

The query optimizer has the ability to perform either
pure pipelined evaluation or pure set-oriented evaluation
for the same query and can even mix both in the same
execution plan. If the queried graph view is derived by a
more complex expression than the one presented above,
the query optimizer may choose to materialize any

400

nodes of the derivation graph. More precise hints for
accurate query optimization remain to be defined.

3.5 Integrating the Graph View Model in Existing
Systems

The graph view model can be tightly integrated in
existing database systems. As pictured in Figure 10,
different components have to cooperate in order to
query database graph views. First, the scheme of the
graph views as well as their operational definitions have
to be declared and registered in a metabase. For
DBMS’s supporting SQL-like languages, the examples
of graph view declarations given throughout the paper
illustrate well this step. The predicates involved in the
selection and projection derivation operators can be
expressed as formulas of this language. The query
language has to be extended with operators dedicated to
graph management (e.g. [MS90. DA931) that can be
applied on graph views. The query optimizer must also
be extended to deal with graph operators (e.g. alpha-
algebra operator [Agr87]) and to exploit the different
evaluation strategies defined in Section 3.4. Finally, the
graph operators themselves must traverse the underlying
graphs through a Succ() function given as parameter by
the query optimizer.

One may ask if the database graph view mechanism
can be directly supported by a standard view mechanism
without impacting the underlying DBMS. Three
observations are important to answer this question. First,
a standard view mechanism may be used to define the
database graph views (the examples given along the
paper are expressed using a SQL style). Second, we
could express the derivation operators using it (Figure 6
shows that they can be expressed using relational
operators) but the complex algebraic expressions have to
be written by the application programmer. Database
graph views provide a tool specific to an application
domain. Finally, to use the graph operators on the
database graph views and to take advantage of the given
evaluation strategies, the extensions mentioned above are
inevitably needed.

Extended Query Optlmlxer

Figure 10: Graph views integration in a DBMS
architecture

The graph view model can also be the basis of a
graph operator library dedicated to applications
managing graphs defined using a particular data model
and stored in any repository (e.g. files). We are defining
such a library integrating path traversal algorithms in the
IMPRESS project [CGPT93]. This requires the
management of an independent metabase to register the
graph view definitions and to define rules to translate
these definitions into the types of the data managed by
the application (e.g. C types). Although we do not
address this issue, such a library could be completed with
high level languages to query graphs [CM90].

4 Conclusion

The database graph view model addresses three
important requirements of technical applications
managing large and complex graph structures. First, the
model implements an abstraction mechanism which
provides the application designer with the ability to
define various underlying graphs on top of objects
stored in databases or in files. Connections between
nodes and edges may be either represented by physical
links between objects or dynamically computed at
traversal time. This enables to cope with complex graph
organizations that cannot easily be mapped on
predefined storage structures for graphs. Second, the
model comes with a collection of powerful derivation
operators. Graphs having different node and edge types
can be combined using these operators to derive ad-hoc
underlying graphs satisfying specific application
requirements. The semantics of these operators
integrates both the set of nodes, the set of edges and the
labels of the operand graphs. Third, the model supports
different execution strategies for graph operators
exploiting graph views. The pipelined, set-oriented and
hybrid execution strategies may outperform each other
depending on the size of the queried graph and on the
number of edges visited at traversal time. This opens
new perspectives in the optimization of graph queries.

Our future work will focus on performance analysis
of the proposed operators in the context of the three
different technical applications we are working on. Our
objective is to define precise rules for a query optimizer
to fully exploit the different execution strategies
identified in this paper.

Acknowledgements

We wish to thank Joi51 Ducassou and Eloi Chabaud for
their active participation in the definition of the graph
view derivation operators. Special thanks are also due to
Cristina Comes and Raul Ruggia for their precious help
in improving the presentation of this paper. The first
author was partly supported by PEDECIBA (Uruguay).

401

References

[ADJ88]

LW871

[AJ87]

[AS921

Agrawal R., Dar S., Jagadish H.V., “On
Transitive Closure Problems Involving Path
Computations”, AT&T Bell Laboratories
Technical Memorandum, 1988.

Agrawal R., “Alpha: An Extension of
Relational Algebra to Express a Class of
Recursive Queries”, Proc. IEEE 3rd Int’l Conf.
on Data Engineering, Los Angeles, Feb. 1987,
pp. 580-590.

Agrawal R., Jagadish H.V., “Direct Algorithms
for Computing the Transitive Closure of
Database Relations”, Brighton, Proc. 13th Int’l
Conf. on Very Large Data Bases, Sept. 1987,
pp. 255-266.

Amann B., Scholl M., “Gram: A Graph Data
Model and Query Language”, ACM
ECHT’92, Milan, Dec. 1992, pp. 201-211.

lCGPl931 Cuerva J.. Gutikrez A., Pucheral P., Thevenin
J.M., “Specification of Graph Views and
Graph Operators”, IMPRESS Technical Report
N* W7-005-R75, July 1993.

[CM901 Consens M.P., Mendelzon A.O., “Graphlog: a
Visual Formalism for Real Life Recursion”,
Proc. ACM Symposium on Principles of
Database Systems, Nashville, 1990, pp. 404-
416.

[CN89] Cruz I.F.. Norvell T.S.. “Aggregative Closure:
An Extension of Transitive Closure”, Proc.
IEEE 5th. Int’l Conf. on Data Engineering,
Los Angeles, Feb. 1989, pp. 384-393.

[Cruz88] Cruz, I.F., “Domains of Application for the G+
Query Language”, Office and Database
Systems Research, ed. F.H. Lochovsky. CSRI,
Univ. of Toronto, 1988, pp. 141-159.

[DA931 Dar S., Agrawal R., “Extending SQL with
Generalized Transitive Closure”, IEEE
Transactions on Knowledge and Data
Engineering, Vol. 5, No 5, Oct. 1993, pp. 799-
812.

[DAJ91] Dar S., Agrawal R., Jagadish H.V.,
“Optimization of Generalized Transitive
Closure Queries”, Proc. 7th. Int’l Conf. on
Data Engineering, Kobe, April 1991. pp.
345-354.

[Impr93] IMPRESS partners, “Description of the
Dispatching Technical Information System”,
IMPRESS Technical Report N* W5-OOl-Rl,
May 1993.

[IRW93] Ioannidis Y., Ramakrishnan R., Winger L..
“Transitive Closure Algorithms Based on
Graph Traversal”, ACM Transactions on

[Lu87]

[MS901

[PTV90]

[VB86]

Database Systems, Vol. 18, No 3. September
1993, pp. 512-576.

Lu H., “New Strategies for Computing the
Transitive Closure of Database Relations”,
Proc. 13th Int’l Conf. on Very Large Data
Bases, Brighton, Sept. 1987, pp. 267-274.

Mannino M., Shapiro L., “Extensions to
Query Languages for Graph Traversal
Problems”, IEEE Transactions on Knowledge
and Data Engineering, Vol. 2, No 3, Sept.
1990, pp. 353-363.

Pucheral P., Thevenin J.M., Valduriez P.,
“Efficient Main Memory Data Management
Using the DBGraph Storage Model”, Proc.
16th Int’l Conf. on Very Large Data Bases,
Brisbane, August 1990.

Valduriez P., Boral H., “Evaluation of
Recursive Queries Using Join Indices”, Proc.
1st Int’l Conf. on EDBT, Venice, 1986, pp.
197-208.

402

