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Abstract 

Advanced technical applications like routing systems 
or electrical network management systems introduce 
the need for complex manipulations of large size 
graphs. Efficiently supporting this requirement is now 
regarded as a key feature of future database systems. 
This paper proposes an abstraction mechanism, called 
Database Graph View, to define and manipulate 
various kinds of graphs stored in either relational, 
object oriented or file systems. A database graph view 
provides a functional definition of a graph which 
allows its manipulation independently of its physical 
organization. Derivation operators are proposed to 
define new graph views upon existing ones. These 
operators permit the composition, in a single graph 
view, of graphs having different node and edge types 
and different implementations. The graph view 
mechanism comes with an execution model where 
both set-oriented and pipelined execution of graph 
operators can be expressed. The graph view operators 
form a library which can be integrated in database 
systems or applications managing persistent data with 
no repercussion on the data organization. 

1 Introduction 

The efficient manipulation of graphs becomes an 
important challenge for advanced database systems 
addressing technical applications. Geographical 
information systems, routing systems, military systems 
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and more generally applications managing networks 
have to perform complex computations (e.g. shortest 
path, maximum capacity path, bill of materials) on 
voluminous graphs [Cruz881. Nodes and edges of the 
graphs are generally represented by complex objects 
stored in databases or files under various forms. Nodes 
and edges of different types can be linked in the same 
graph (e.g. power stations, connectors, switches) making 
difficult the traversal of the graph by a recursive 
algorithm [Impr931. In some applications, the same 
graph may have to be seen at different levels of detail. 
In such a case, only the most detailed level is stored in 
the database and higher levels have to be computed 
based on the detailed one (e.g. the connection between 
two power stations may be derived by aggregating basic 
electrical lines supporting the connection). Finally, some 
connections between nodes and edges may result from 
complex calculus that must be computed at traversal time 
(e.g. two power stations are connected if all the 
elementary electrical lines materializing the connection 
are in operational state). 

Considerable research efforts focused on the 
integration of transitive closure operators in database 
systems to support complex queries on recursively 
defined data [VB86, AJ87, Lu87, PTV90, IRW931. 
Generalized transitive closure operators integrating 
computations on node and edge labels have also been 
defined to cope with practical graph traversal problems 
[Agr87, ADJ88, CN89, DAJBl]. Most of these works 
have been conducted in the relational realm thereby 
laying down a re/lational representation of the graphs 
(e.g. ((origin, destination, labelEdge))). Recent 
proposals define languages to query graphs where nodes 
and edges are represented by typed objects. In the 
GraphLog [CM901 and Gram [AS921 languages, regular 
expressions are used to specify a set of relevant paths in 
graphs where nodes and edges may have different types. 
This constitutes a first step to satisfy the requirements 
stated above. However, these proposals are more 
concerned with query expression than with execution of 
graph operators on specific graph implementations. 

This paper focuses on database mechanisms to 
handle graphs issued from different paradigms and data 
models. The database graph view model is introduced to 
allow the definition of graph operators without 
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precluding a specific graph representation in the 
database. A database graph view (or graph view for 
short) is a functional definition of a graph specifying the 
way this graph should be traversed, independently of its 
implementation. Each graph view defines a specific 
underlying graph over the database objects. Thus, 
several underlying graphs can be defined on the same set 
of objects by means of several graph views. An 
important feature of the model is that graph views can be 
defined on existing databases without reconsidering the 
data organization. In addition, either general purpose 
graph operators (e.g. generalized transitive closure) or 
application-dependent graph operators can exploit the 
graph view model. 

Derivation operators are proposed to define new 
graph views by composing already existing ones. Unary 
derivation operators can be used to select some nodes 
and edges in a graph view and to project the labels of the 
resulting nodes and edges on relevant values. Binary 
derivation operators can be used to build a graph view 
resulting from the union, the intersection or the 
difference of two graph views. Precise rules are given to 
properly define node and edge identifiers in order to 
guarantee a clear semantics for the binary operators 
when applied on graph views having different node and 
edge types. We show that graph operators like 
generalized transitive closure operators can be applied 
on derived graph views either in a pipelined mode or in a 
set-oriented mode. In the former case, derivation rules 
are evaluated each time the successors of a node have to 
be accessed while in the later case, the derived graph view 
is materialized prior to the graph operator execution in 
order to speed up the recursive process. The best strategy 
depends on several parameters among them the size of 
the underlying graph and the number of traversed edges 
during the processing of the graph operator. We started 
the implementation of the graph view model in the 
IMPRESS Esprit project. We currently validate it in three 
different contexts, namely a Geographical Information 
System (GIS), an electrical network maintenance system 
in Spain and a milk dispatching system in Uruguay. 

This paper is organized as follows: Section 2 
introduces the database graph view model. This includes 
the definition of a graph view and the semantics of the 
derivation operators that make possible the definition of 
complex graph views derived from already existing ones. 
Section 3 focuses on query processing on graph views. 
Different operatiorfal implementations of graph views are 
first discussed. Then some hints are given for a query 
optimizer to exploit both pipelined and set-oriented 
execution modes these implementations can support. 
Section 4 gives our conclusions. 

2 Database Graph View 

2.1 Application Sample 

The database graph view model aims at supporting the 
requirements of technical applications managing data 
organized as graphs. Throughout this paper, we use a 

routing system application to illustrate these 
requirements and to motivate the solutions we propose. 
This routing system uses the database presented in 
Figure 1 that could be stored in a GIS. Two initial 
graphs are explicitly defined in this database, namely a 
Road graph and a Railway graph. While the railway 
segments are directly connected to train stations, 
materializing the connections between road segments 
and cities requires a geometrical calculus (i.e. r.origin c 
c.shape, where r is a road segment, c is a city and c is a 
geometric operator checking the inclusion of a point 
into a region). In addition, we can define the CityTrain 
graph as an abstraction of the Railway graph. CityTrain 
is concerned only with the train connection between 
cities thereby aggregating in a single node all the stations 
located in the same city and in a single edge all the 
connections between these stations. Clearly, there is a 
need for an abstraction mechanism to map the nodes and 
edges of the Road, Railway and CityTrain underlying 
graphs and the objects physically stored in the database. 

class City ( 
CityName name; 
int population; 
Region shape; ) 

class Station ( 
StationName station-name; 
CityName city-name; ) 

class RoadSegment ( 
Point origin, destination; 
RoadType roadtype; 
Length length; ) 

class RailwaySegment [ 
StationId origin, destination; 
Time duration; 
. . . I 

name Cities : set (City); - .- 
name RoadSegments : set (RoadSegment); 
name RailwaySegments : set (Railwaysegment); 

Figure 1: Routing database represented in an 
object oriented form 

A typical requirement of the routing system over this 
database could be to query the graph of strategic roads, 
defined as the graph composed of cities and roads such 
that the roads connect cities which are not served by the 
train. Defining this graph upon the Routing database is 
a tedious task for the application designer. This 
introduces the need for ad-hoc operators to properly 
derive new underlying graphs from existing graphs 
having different node and edge types. 

2.2 Graph View Formal Definition 

We can identify two main elements that participate in the 
scenario presented above. First, a set of objects which 
compose the database defined using a particular data 
model and second, a set of underlying graphs defined 
over this database. We fmt give a formal definition of a 
graph view to fix a non ambiguous semantics for the 
underlying graphs that can be represented. 

Conceptually, let Sz be the set of objects of the 
database. Let S = [Cl, C2, . . . . Cn) be the database 
scheme. Each Ci is a collection of objects composed of 
attributes of the form Aj : tj where Aj is the attribute 
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BuildNodeSet is 

(roadtype : RoadType, distance : Length)) 

Select C.CityID, (C.name, Cpopulation) from C in Cities 

BuildEdgeSet is 

Select R.RoadSegmentID, Cl.CityID, C2.CityID, (Rroadtype, R.length) 
From Cl in Cities, C2 in Cities, R in RoadSegments 
Where R.origin c Cl .shape /’ hero, c is a geometric operator */ 
and R.destination c CP.shape 

Figure 2: Operational definition of the Road graph view 

IDefineGraphView Road (CityID, RoadSegmentID, (name : CityName, population : ht), 

name and tj is the corresponding attribute domain or 
type. Let D be the universal domain defined as the 
union of all attribute domain values of the database. 

A dufubuse graph view of R is a labelled multigraph 
G = (N, E, LN. LE. Incidence, LabelNode, LabelEdge) 
where, 

l N is the set of nodes (node identifiers) of the 
database graph view taken from n. 

l E is the set of edges (edge identifiers) of the 
database graph view taken from fX 

l LN is a set of node labels taken from D. 

l LE is a set of edge labels taken from D. 

l Incidence is a function from E into N x N. 

l LabelNode is a function from N into LN. 

l LabelEdge is a function from E into LE. 

According to this definition, a graph view consists of 
a set of nodes and a set of edges with associated labels. 
The nodes and edges are derived from objects of R. 
Each node and edge must be uniquely identified within a 
graph view. This does not preclude a single node or 
edge to be derived from several objects of a or a single 
object of 62 to participate in the definition of several 
nodes or edges of the same or different graph view(s). 
The relations between edges and nodes are given by the 
Incidence function which allows in particular to define 
the neighbours of a node. Considering edges and their 
labels apart allows to have multiple edges with the same 
valuation between a given pair of nodes. Either directed 
or undirected underlying graphs can be defined 
depending on whether or not the Incidence function 
distinguishes between (n, m) and (m. n) (where n, m E 
N). 

The scheme of a database graph view is a tuple of 
the form (NodeIdType. EdgeIdType, NodeLabelType, 
EdgeLabelType) where, 

l NodeIdType is the type of the node identifiers in N. 

l EdgeIdType is the type of the edge identifiers in E. 

l NodeLabelType is the type of the LN’s labels. It 
has the form (Al : tl, A2 : t2. . . . . Ap : tp). 

l EdgeLabelType is the type of the IX’s labels. It has 
the same form as NodeLabelType. 

We introduce the notion of scheme for graph views 
to properly define derivation operators involving graph 
views having same NodeIdType and EdgeIdType but 
having different NodeLabelType and EdgeLabelType. 

2.3 Graph View Operational Definition 

The operational definition of a graph view corresponds 
to the implementation of the graph view model. This 
definition must fix the rules to identify the nodes and the 
edges of the underlying graph defined by a graph view. 
It must also provide a way to traverse the elements of this 
graph and to access their labels, independently of the 
graph implementation in the database. Different 
operational definitions can be given for a graph view, 
depending on the data model used to define the database 
and on the graph operators that will be applied to the 
graph view. The most appropriate way to fix the 
operational definition of a graph view is a matter of 
query optimization, discussed in Section 3. 

To illustrate the principle, we just give a possible 
operational definition for the Road graph view according 
to the database scheme presented in Figure 1. For 
clarity, this definition is expressed using a SQL-like 
syntax in Figure 2. 

The complete scheme of the graph view is fixed by 
the DefineGraphView statement. In this example, the 
nodes (resp. edges) are identified by the identifiers of 
City instances (resp. RoadSegment instances). N, LN 
and LabelNode are defined by the function 
BuildNodeSetO which delivers the set of cities of interest 
together with their labels. E, LE, LabelEdge and 
Incidence are defined by the function BuildEdgeSetO 
which &livers the set of edges with their extremity nodes 
and their labels. The extremity nodes of each edge are 
determined by a geometric computation on the database 
objects. This points out the generality provided by the 
graph view mechanism. Although quite different in its 
expression, this definition conforms to the semantics of 
the formal definition introduced in Section 2.2. Pros 
and cons of this definition are discussed in Section 3. 
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2.4 Graph View Derivation 

Complex graph views can be built by a recursive 
application of unary and/or binary operators on already 
defined graph views. Unary operators allow to select a 
subset of nodes and edges in a graph view and to project 
the labels of these nodes and edges on relevant values. 
Binary operators allow the construction of a graph view 
resulting from the union, the intersection or the 
difference of two graph views. 

The derivation operators separate the structural 
treatment from the label treatment of the operand graph 
views. The structural part of the graph is given by N, E 
and the Incidence function, while the label part is given 
by LN, LE, LabelNode and LabelEdge. Separating the 
structural part of the graph from its label part allow to 
compose graphs that can have different NodeLabelType 
and EdgeLabelType. Note that the binary operators are 
properly defined only for operand graph views having 
the same type for their structural part (i.e. same 
NodeIdType and same EdgeIdType). To illustrate the 
semantics of each derivation operator, we will use 
comparable graph views, namely CityRoad and 
CityTrain, having the following schemes: 

CityRoad (CityName, CityName x CityName, City. 
(roadtype:RoadType, 1ength:Length)) 

CityTrain (CityName, CityName x CityName, City, 0) 

In the following, we define the semantics of the 
derivation operators in terms of the usual notions in the 
set theory. Ni, Ei, LNi, LEi, Incidencei, LabelNodei and 
LabelEdgei denote the elements of a graph view instance 
Gi. In the figures, nl. n2, . . . . nu denote node identifiers 

(N elements) while el, e2, . . . . q denote edge identifiers 
(E elements). 

Union 

The union operation is denoted by y. The union of two 
graph views consists of the union of the nodes and edges 
of the graph operands and of the aggregation of their 
labels. For example, we can derive the complete 
transportation network between cities by performing the 
union of the CityRoad and CityTrain graphs. The 
following example shows the structural result of the 
union of two graphs. For clarity, labels are not 
considered in the example but can be easily deduced 
from the definition. 

G (NodeIdTypeI , EdgeIdTypel , 

(NodeLabelTypel u(null))x(NodeLabelType2u( null)), 

(EdgeLabelTypel u (null)) x(EdgeLabelType2u (null))) 

l N=NluN2 
l E=EluE2 

l LN = (.LNI u (null)) x (LN2 u (null)) 

l LE = (LE1 u (null)) x (LE2 u (null)) 

l Incidence (e E E) = if e E EI then Incidence1 (e) 
else Incidenq (e) 

l LabelNode (n E N) = (LabelNode, (n), LabelNode (n)) 

l LabelEdge (e E E) = (LabelEdgel (e), LabelEdge (e)) 

Remarks: LabelNodei(n) = null if nL Ni and 
LabelEdgei (e) = null if e e Ei 

This definition leads to two remarks. First, the 
incidence functions of Gl and G2 generally &liver the 
same result when applied to the same edge. In particular 
cases. this result may be different due to an ambiguous 
identification of edges (see Section 2.5 for a detailed 
example). In such a case, the definition presented above 
chooses the incidence function of Gl. Other possible 
choices could be to select the incidence function of G2 
or to discard the corresponding edge. Second, the labels 
of the nodes and edges resulting from the union are 
built by aggregating the labels issued from the two 
operand graphs into a tuple of the form (labell, label2). 
This could be meaningless when the two operand graphs 
have the same NodeLabelType and EdgeLabelType. 
For conciseness, we do not introduce an extra definition 
to handle this case. This second remark applies as well 
to all the binary derivation operators. 

Intersection 

The intersection operation is denoted by n. The 
intersection of two graph views basically consists of the 
intersection of the nodes and edges of the graph 
operands and of the aggregation of their labels. For 
example, we can derive the graph of cities connected 
both by train and by roads by doing the intersection 
between the CityRoad and CityTrain graphs. The 
following example shows the structural result of the 
intersection of &vo graphs. 
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G = Gl n G2 is defined by: 

G (NodeIdTypel , EdgeIdTypel , 

NodeLabelType1 x NodeLabelType2, 

EdgeLabelTypel x EdgeLabelType2) 

l N=Nl nN2 
.E= (e E El A E2 / Incidence1 (e) = Incidence2 (e)) 

l LN=LNlxLN2 

.LE=LE1xLE2 

l Incidence (e E E) = Incidence1 (e) = Incidence2 (e) 

l LabelNode (n E N) = (LabelNode (n), LabelNode (n)) 

l LabelEdge (e E E) = (LabelEdgel (e), LabelEdge (e)) 

Note that the E set of the graph view result is not 
merely the intersection of the edges of the graph view 
operands. Otherwise, an inconsistent graph may be 
produced if there is an edge in both graphs for which the 
respective incidence functions give a different result. An 
edge with extremity nodes that do not belong to N could 
be generated (see Section 2.5 for an example). 

Node Difference 

The node difference operation is denoted by -Node. The 
node difference between two graph views Gl and G2 
yields a subgraph of Gl containing only the nodes of Gl 
which do not belong to G2 and the edges connecting 
these nodes. The node difference between the CityRoad 
and the CityTrain graphs builds the graph of cities which 
are only connected by roads (and that could claim for a 
connection to the railway network). The following 
example shows the structural result of the node 
difference of two graphs. 

B 

d 
G 

G = G, xde G2 is defined by: 

G (NodeIdTypel, FgeIdTypel, 

NodeLabelTypel, EdgeLabelTypel) 

l N=N1-N2 
.E= (e E El /3 n, m E N. Incidence (e) = (n, m)) 

.LN=LNl 

l LE=LE1 

l Incidence (e E E) = Incidence1 (e) 

l LabelNode (n E N) = LabelNode (n) 

l LabelEdge (e E E) = LabelEdgel (e) 

Edge Difference 

The edge difference OpemiOn iS denoted by -Edge’ The 
edge difference between two graph views Gl and G2 
yields a partial graph of G, containing the edges which 
do not belong to G2. The edge difference between the 

CityRoad graph and the graph of blocked roads (i.e. a 
temporary graph determined by an helicopter pilot) 
delivers the graph of available roads. The following 
example shows the structural result of the edge 
difference of two graphs. 

G = G1 -Edge G2 is defined by: 

G (NodeIdTypel, EdgeIdTypel, 

NodeLabelTypel , EdgeLabelTypel) 

l N=N 1 

l E =El-E2 

l LN =LN1 

l LE=LEI 

l Incidence (e E E) = IncidenceI (e) 

l LabelNode (n E N) = LabelNode (n) 

l LabelEdge (e E E) = LabelEdgel (e) 

Selection 

The selection operation is denoted by PQNode, QEdge. 
The selection applied to a graph view yields a graph 
whose nodes and edges satisfy respectively the predicates 
QNode and QEdge. The attributes that appear in QNode 
(resp. QEdge) must be attributes of NodeLabelTypel 
(resp. EdgeLabelTypel). One of these two predicates 

can be omitted if the selection is applied only to nodes 
or to edges. These predicates can be expressed by SQL- 
like predicates or by user-defined functions depending 
on the way the graph view model is integrated in a 
system. The following example shows how to obtain 
from the CityRoad graph the subgraph corresponding to 
the cities whose population is greater than 6OOK that are 
connected by roads longer than 400 Km. 
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G = %Node, Qmge K+) is &dined by: 

G (NodeIdTypel, EdgeIdTypel, 

NodeLabelTypel, EdgeLabelTypel) 

l N = (n E N, / QNode (LabelNode (n))) 

l E = (e E El / QEdge (LabelEdgel (e)) A 3 n, m E N, 

Incidence (e) = (n, m)) 

.LN=LN1 

l LE=LE1 

. Incidence (e E E) = Incidence1 (e) 

l LabelNode (n E N) = LabelNode* (n) 

l LabelEdge (e E E) = LabelEdgel (e) 

Projection 

The projection operation is denoted by &Node, p~gc. 
The projection of a graph view G, yields a graph 
containing the nodes and edges of G, whose labels are 
the projection of the labels of Gl according to PNode 

and PEdge. One of these two parameters can be omitted 
if the projection is applied only to nodes or to edges. 
npNode (NodeLabelTypel) means that the type of the 
node label aggregates the types of the NodeLabelTyper 

attributes referenced in PNode. The same applies to 
npEdge(EdgeLabelTypel) and PEdge. The fOllOwing 

figure shows the result of a projection on the Road 
graph. 

I rl) 1 mis 
BIWI 

Il 
FNodc: CityName t 

EE 

P 

Tovbuc 

G = &Node, pmge (Gl) is defined by: 

G (NodeIdTypeI, EdgeIdTypel, 

npNode(NodeLabelTypepel), 

xpR+(EdgeLabelTypel)) 

l N=N 1 

l E = El 

l LN = (hi / hI = ltpNc& (lnl), lnl E LNl) 

l LE = (le / le = ‘cPNode (lel), lel E LEl ) 

l Incidence (e E E) = Incidence1 (e) 

l LabelNode (n E IV) = ltpNode (LabelNode (n)) 

l LabelEdge (e E E) = zpEdge (LabelEdgel (e)) 

Example of a derivation expression. Graph views can 
be derived from already defined ones by complex 
expressions of derivation operators. Suppose that the 
transport network in the region R3 is blocked and we 
want to travel by car in the region Rl and by train in the 
region R2. We can obtain the graph of available railways 
and roads by the following expression. 

2.5 Nodes and Edges Identification 

All the binary derivation operations are based on the 
node and edge identifiers. These identifiers are defined 
according to the application needs, resulting in more 
flexibility in defining graphs over existing databases. 
The examples given below illustrate how the choice of 
these identifiers impacts the semantics of different 
graphs defined on the same data : 

1. Road = (CityId, RoadSegmentId, -, -). In this case 
both identifiers are defined by the database object 
identifiers. Graph view schemes in which 
EdgeIdType is different from NodeIdType x 
NodeIdType allow the definition of multigraphs (i.e. 
graphs having several edges between two nodes). 

2. CityRoad = (CityName, CityName x CityName, -, -). 
This is an usual definition for graphs that are not 
multigraphs. The identifiers correspond to some 
attributes of the database. 

3. CityTrain = (CityName, CityName x CityName, -, -). 
In this case, each node (resp. edge) identifier results 
from the aggregation of a set of objects at the 
database level. 

This flexibility requires adding conditions in the 
definition of the binary derivation operators to deal with 

graphs where EdgeIdType is not NodeIdType x 

NodeIdType nor object identifiers. Taking no 
precaution in such cases may lead to an ambiguous 
identification of edges in the graph resulting from the 
derivation. Let us consider the following graph view 
schemes: 

G, = (Region, Point x Point, -, -) 

G, = (Region, Point x Point, -, -) 
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Assume that the database represents the situation 
pictured in Figure 3. That is, the edge is uniquely 
identified by (pl, p2) in Gl and G2 but Incidence1 ((~1, 
p2)) = (A, B) while Incidence2 ((pl. p$) = (C, D). When 
computing G, nG2, the intersection of nodes is empty 
while the intersection of the edges gives (pt. ~2). Thus, 

only the edges whose extremity nodes belongs to the 
intersection of nodes have to be kept in the result (see 
Section 2.4). 

Gl G2 

Figure 3: Ambiguous identification of edges 

3 Query Processing on Graph Views 

Section 3.1 comments on the three abstraction levels 
identified in the graph view model, namely the database, 
the base graph view and the derived graph view levels. 
Section 3.2 presents different alternatives to implement 
base graph views on top of the database level. The way 
derived graph views are mapped on the base graph view 
level is discussed in Section 3.3. Section 3.4 introduces 
optimization strategies to efficiently handle queries on 
either base graph views or derived graph views. Finally, 
Section 3.5 discusses the different alternatives to 
integrate database graph views in existing database 
systems or applications. This throws light on the way 
graph operators interacts with graph views. 

3.1 Abstraction Levels 

Each derivation operator produces a new derived graph 
view from one or two existing graph view(s). The 
derivation rules between graph views can themselves be 
expressed by a graph where the nodes represent graph 
views or operators and the edges represent derivation 
links (see Figure 4). Graph views defined upon database 
objects are called base graph views while graph views 
defined upon already existing graph views are called 
derived graph views. Each graph view defines an 
underlying graph on the objects physically stored in the 
database. 

Graph operators and queries can be applied on either 
base graph views or derived graph views. Efficient 
mechanisms are required to extract base graph views 
from the database and then, derived graph views from 
base graph views. These translations hide from the 
graph operators first the physical representation of the 
underlying graphs in the database and second the 
derivation rules between graph views. These translation 
mechanisms are the foundation of the graph view model. 

Database 

Figure 4 : Derivation tree of a graph view 

3.2 Traversing the Underlying Graph of a Base 
Graph View 

There are basically two methods to extract a base graph 
view from a collection of database objects. The first 
method consists in materializing the underlying graph 
defined by the base graph view by building dynamically 
its collection of nodes and its collection of edges prior to 
the execution of any graph operator. These two 
collections must conform to a predefined scheme 
understandable by all graph operators. The second 
method consists of defining a function, called Succ(), 
which delivers for an input node of the underlying graph 
the set of nodes connected to it. The graph operators 
can then recursively invoke the Succ() function to 
traverse the underlying graph. To make these two kinds 
of translations possible, the following functions have to 
be included by the DBA in the operational definition of 
each base graph view G: 

BuildNodeSet + 
((n, LabelNode (n)) / n E N ) 

BuildEdgeSet + 
((e, n, m, LabelEdge (e)) / n, m E N A e E E A 

Incidence (e) = (n, m)) 

Succ (n E N) + 
((e, m, LabelNode (m). LabelEdge (e) / e E E A m E N 

A Incidence (e) = (n, m)) 

As stated in Section 2.3, BuildNodeSet() and 
BuildEdgeSet() implement all the elements that enter in 
the, formal definition of a graph view (i.e. N, E. 
Incidence, LN. LE. LabelNode and LabelEdge). These 
two functions build a pseudo-relational form of the 
underlying graph. We selected this representation for 
two reasons. First, most of the graph operators proposed 
in the database literature make the assumption that the 
graphs are stored as relations. Thus, all the principles 
introduced to speed up the recursive process on such 
graphs can be exploited in the graph view context. 
Second, this representation is well adapted to the storage 
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(roadtype : RoadType, distance : Length)) 

BuildNodeSet is bee Figure 2) 
BuildEdgeS& is (see Figure 2) 

SuccKityID) is 
Select R.RoadSagmentID, C2.ID, (C2.name, C2population), (Rroadtype, R.length) 

From Cl in Cities, C2 in Cities, R in RoadSegments 

Where Cl is CityID 

and R.origin c Cl .shape 

DefineGraphView Road (CityID, RoadSegmentID, (name : CityName, population : int), 

I and R.destination c CZ.shape A 

Figure 5: Succ() definition for the Road graph view 

of intermediate results in a query execution plan 
involving graph operators. One may argue that if the 
underlying graph edges are materialized by direct links 
(i.e. object identifiers) in the database, the traversal of 
these links is less costly than traversing a relational 
representation of the underlying graph. However, if any 
derivation operator is applied to the underlying graph - 
thereby producing an intermediate graph - object 
identifiers can no longer be used to traverse the graph, as 
indices referencing tuples on base relations cannot be 
directly used on intermediate relations. 

The Succ() function provides a direct way to access 
the database objects from the underlying graph defined 
on them. It avoids the construction of an intermediate 
representation of the graph. When edges are not 
materialized by direct links in the database, it incurs an 
extra calculation each time the successors of a node have 
to be accessed during the graph traversal. The result of 
Succ(n) aggregates for each successor m of n, the 
identifier of the m node, the label of m and the identifier 
and the label of the edge linking n to m. Any traversal 
recursion algorithm - even those integrating restrictions 
and computations on the nodes and edges labels - can be 
built on the Succ() function basis. However, the graph 
algorithms having to enumerate all the entry nodes of a 
graph (e.g. to perform cycle detection or connectivity 
checking) require the BuildNodeSet() function in 
addition to Succ(). This is due to the fact that Succ() 
implements the Incidence, LN, LE, LabelNode and 
LabelEdge elements of the formal definition of a graph 
view but considers only the subset of N and E accessed at 
traversal time. As a consequence, restraining the 
operational definition of a base graph view to the SuccO 
function restrains the computation on this graph view to 
path traversal problems. We give in Figure 5 the 
definition of the SuccO function that must be part of the 
operational definition of the Road base graph view 
introduced in Section 2.3. Obviously, the 
BuildNodeSetO, BuildEdgeSetO and Succ() functions 
can be expressed with any programming language to 
cope with performance or storage structure constraints. 

Note that the BuildNodeSet(), BuildEdgeSetO and 
Succ() functions correspond to the implementation part 
of the graph view model while the N, E, Incidence, 
LabelNode and LabelEdge elements defined in Section 

2.2 fix the semantics of the underlying graph as well as 
the semantics of the derivation operators. A DBA 
attempting to define a graph view has only to be aware 
of the implementation part of the model (i.e. of the 
operational definition of the graph view). 

3.3 Traversing the Underlying Graph of a Derived 
Graph View 

The translation of a derived graph view G into a 
collection of base graph views (Gl, G2, . ..Gn) can be 
done by deriving the functions BuildNodeSet(), 
BuildEdgeSet() and Succ() from the corresponding 
functions defined on the base graph views Gl, G2, . ..Gn. 
This translation can be automatically done with no 
intervention from the DBA part. Each derivation rule 
between graph views comes with a derivation rule for the 
three aforementioned functions. The table presented in 
Figure 6 gives for each derivation operator the way to 
derive the three functions defining the resulting graph 
view from the functions of the operand graph views. 

To illustrate these derivation steps, let us consider the 
derivation tree presented in Figure 4. In this example, 
the SuccO function automatically derived for graph view 
G6 corresponds to the functional expression given 
below. Note that the Succ() functions of the base graph 
views Gl, G2 and G3 are the only ones to access the 
database objects. 

Succg(n) = (&cl(n) n Succ2(n)) u (oQ(Succ3(n))) 

3.4 Pipelined vs. Set-Oriented Query Processing 

Let us now consider the execution of graph operators 
over database graph views. For the sake of conciseness, 
we focus on the processing of the generalized transitive 
closure operator (integrating computations on the nodes 
and edges labels) considered as a key operator of future 
database systems. While important research efforts 
focused on developing new algorithms and new data 
structures to support it efficiently, less studies addressed 
query optimization problems. One important 
contribution in this area IDAJ911 considers the 
optimization of generalized transitive closure queries of 
the form: 

Q = Agg (0 (Con (Paths (G)))) 
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* =, Q and lI respectively denote the join, semi-join, selection and projection relational operators. 
asrkciated to relational operators 

When 

, 12 , , . . . . n denote attribute positions and i+j the concatenation of attributes i and j. 

Figure 6: Derivation rules for BuildNodeSetQ BuildEdgeSetO and Succ() 

where G is an input relation materializing a graph. 
Paths0 enumerates all the paths of G. For each path, 
Con0 concatenates the labels of the path edges into a 
unique path label. 00 selects all paths satisfying some 
predicates applied on the path label’s and/or on the origin 
and destination nodes of paths. Finally, Agg() 
aggregates the paths having same origin and same 
destination as well as the labels of these paths. The 
contribution leads to a precise classification of the 
selection criteria attached to cr in the query expression. 
Whenever possible, these selection criteria are applied on 
G before starting the recursive process or are evaluated 
as soon as possible during the recursive process to prune 
unneeded paths. Such optimization rules can be 
exploited in the database graph view context as well. 

Let G be a graph view itself resulting from a 
potentially complex expression involving graph view 
derivation operators. If we note D(G1, G2. . ..Gn) the 
derivation expression of G from the base graph views 
Gl, G2, . . . . Gn, the query to be optimized becomes: 

Q = Agg (d (Con (Paths (D(G1, G2, . ..Gn))))) 

In the graph view context, either the graph view G is 
materialized by composing the functions BuildNodeSet() 
and BuildEdgeSet() of Gl, G2, . ..Gn and the transitive 
closure is applied on this materialization, or the transitive 
closure is directly applied on G by using a Succ() 
function derived from the Succ() functions of Gl, G2, 
. . .Gn. We will refer to these two strategies respectively as 
the set-oriented strategy and the pipelined strategy. 
Indeed, materializing G leads to a set-oriented evaluation 

of the expression D(G1, G2. . ..Gn) while this expression 
is evaluated in a pipelined mode for each Succ() 
invocation performed by the Paths0 operator. Roughly 
speaking, the best strategy depends on the size of the 
underlying graphs, the cost of each Succo invocation, 
the percentage of edges traversed during the recursive 
process and the presence of indices. 

Suppose that a user queries the Road graph view to 
find the shortest path between node A and node B 
traversing only the main roads. This can be expressed 
aS: 

Q = Min(length) oc Add(1engt.h) Paths (Road) 

Where, 

C = Grigin=A and De.stination=B and roadtype=?nain road” 

As stated in [DAJ91], the Paths0 operator can take 
advantage of predicates of the form Origin=A to 
enumerate only the relevant paths (Cinitial selection 
criteria). In addition, the predicate roadtype= “main 
road” can be pre-processed to reduce the size of the 
Road graph before invoking Paths0 (Cpreprocess 
criteria). The query optimizer can naturally exploit this 
second optimization by dynamically building a 
temporary graph view: 

bfaidhd = e QEdge:rmdtypd‘main mad”@oad) 

and by applying Paths0 on it. The query optimizer can 
add-derivation operators in a query expression for 
optimization purpose without explicitly creating new 
graph view schemes in the database. 
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1 sUCCMainRoad(cit@) = oQEdg&oadtype=“main mad”) G.SucdCiqID) 

which semantically corresponds to 

sllCCMainRoad(cityID) iS 

Select R.RoadSegmentID, C2.ID, (C2.name, CIL.population), (R.roadtype, R.length) 
Prom Cl in Cities, C2 in Cities, R in RoadSegment 

Where Cl is CityID 
and R.origin c Cl .shape 

and R.destination c C2.shape 

and Rzoadtype = “main road”; 

Figure 7: Pipelined version of the SuccO function 

Succ(CityID) is 

Select R.RoadSegmentID, CZID, (CZ.name, CZ.population), (R.roadtype, R.length) 
Prom Cl in Cities, C2 in Cities, R in MainRoadSegment 

Where Cl is CityID 

and R.origin c Cl .shape 

and R.destination c CZ.shape 

Figure 8: Hybrid version of the SuccO function 

SUCC(n) is 

Select G.EdgeId, G.NodeId2, G.LabelNode2, G.LabelEdge 
From G in h4aterialized-Graph-Vi /* result of the materialization phase */ 

Where G.NodeIdl = n 

Figure 9: Set-oriented version of the Succ() function 

We present below three strategies to evaluate the 
optimized version of Q: 

Min(length) (TC’ Add(length) Paths (MainRoad). 

where, 

c’ = Origin=A and Destinstion=B 

In a pure pipelined evaluation of Q, the query 
optimizer invokes the Paths0 operator with as parameter 
the derived SUCCMai&,&) function detailed in Figure 7. 
This semantically corresponds to pushing down the 
predicate roadtype=“main road” to the SuccO function 
of the Road graph view. This solution should be the best 
if few edges are traversed during the processing of the 
shortest path, especially if the restriction can be speeded 
up via an index (e.g. index on roadtype in the example). 

If no index permits to speed up the restriction, a 
more efficient solution is to evaluate the restriction on 
the RoadSegment class in a set-oriented way before 
invoking the Paths0 operator. The restriction will 
produce an intermediate object set called 
MainRoadSegment and the Succ() function given as 
parameter to the Paths0 operator has to be slightly 
changed by the query optimizer (see Figure 8). Note 
that this solution is practical only in the case where the 
query optimizer understands the programming language 

used to define Succ() (e.g. SQL). This strategy is a mix 
between a set-oriented and a pipelined evaluation of the 
query. 

Finally, suppose that the spatial inclusion predicates 
(R.origin c Cl.shape) and &destination c C2.shape) 
are very costly to evaluate and that a spatial index is 
defined on these attributes. It could be more efficient to 
materialize the view in a set-oriented way in order to 
produce an intermediate graph that can be efficiently 
treated by the Paths0 operator. This can efficiently be 
done by a join operation between the result of invoking 
the BuildEdgeSetO function attached to the graph view 
definition (doing the assumption that the implementation 
of BuildEdgeSet() exploits the spatial index) and the 
result of the BuildNodeSet() function. In this case, the 
Succ() function given as parameter to the Paths0 
operator is built from the standard one defined on 
graphs stored in a relational form ((NodeIdl, NodeIdZ 
EdgeId, LabelNodel, LabelNode2, LabelEdge)) (see 
Figure 9). 

The query optimizer has the ability to perform either 
pure pipelined evaluation or pure set-oriented evaluation 
for the same query and can even mix both in the same 
execution plan. If the queried graph view is derived by a 
more complex expression than the one presented above, 
the query optimizer may choose to materialize any 
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nodes of the derivation graph. More precise hints for 
accurate query optimization remain to be defined. 

3.5 Integrating the Graph View Model in Existing 
Systems 

The graph view model can be tightly integrated in 
existing database systems. As pictured in Figure 10, 
different components have to cooperate in order to 
query database graph views. First, the scheme of the 
graph views as well as their operational definitions have 
to be declared and registered in a metabase. For 
DBMS’s supporting SQL-like languages, the examples 
of graph view declarations given throughout the paper 
illustrate well this step. The predicates involved in the 
selection and projection derivation operators can be 
expressed as formulas of this language. The query 
language has to be extended with operators dedicated to 
graph management (e.g. [MS90. DA931) that can be 
applied on graph views. The query optimizer must also 
be extended to deal with graph operators (e.g. alpha- 
algebra operator [Agr87]) and to exploit the different 
evaluation strategies defined in Section 3.4. Finally, the 
graph operators themselves must traverse the underlying 
graphs through a Succ() function given as parameter by 
the query optimizer. 

One may ask if the database graph view mechanism 
can be directly supported by a standard view mechanism 
without impacting the underlying DBMS. Three 
observations are important to answer this question. First, 
a standard view mechanism may be used to define the 
database graph views (the examples given along the 
paper are expressed using a SQL style). Second, we 
could express the derivation operators using it (Figure 6 
shows that they can be expressed using relational 
operators) but the complex algebraic expressions have to 
be written by the application programmer. Database 
graph views provide a tool specific to an application 
domain. Finally, to use the graph operators on the 
database graph views and to take advantage of the given 
evaluation strategies, the extensions mentioned above are 
inevitably needed. 

Extended Query Optlmlxer 

Figure 10: Graph views integration in a DBMS 
architecture 

The graph view model can also be the basis of a 
graph operator library dedicated to applications 
managing graphs defined using a particular data model 
and stored in any repository (e.g. files). We are defining 
such a library integrating path traversal algorithms in the 
IMPRESS project [CGPT93]. This requires the 
management of an independent metabase to register the 
graph view definitions and to define rules to translate 
these definitions into the types of the data managed by 
the application (e.g. C types). Although we do not 
address this issue, such a library could be completed with 
high level languages to query graphs [CM90]. 

4 Conclusion 

The database graph view model addresses three 
important requirements of technical applications 
managing large and complex graph structures. First, the 
model implements an abstraction mechanism which 
provides the application designer with the ability to 
define various underlying graphs on top of objects 
stored in databases or in files. Connections between 
nodes and edges may be either represented by physical 
links between objects or dynamically computed at 
traversal time. This enables to cope with complex graph 
organizations that cannot easily be mapped on 
predefined storage structures for graphs. Second, the 
model comes with a collection of powerful derivation 
operators. Graphs having different node and edge types 
can be combined using these operators to derive ad-hoc 
underlying graphs satisfying specific application 
requirements. The semantics of these operators 
integrates both the set of nodes, the set of edges and the 
labels of the operand graphs. Third, the model supports 
different execution strategies for graph operators 
exploiting graph views. The pipelined, set-oriented and 
hybrid execution strategies may outperform each other 
depending on the size of the queried graph and on the 
number of edges visited at traversal time. This opens 
new perspectives in the optimization of graph queries. 

Our future work will focus on performance analysis 
of the proposed operators in the context of the three 
different technical applications we are working on. Our 
objective is to define precise rules for a query optimizer 
to fully exploit the different execution strategies 
identified in this paper. 
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