
DATABASE PARTITIONING IN A CLUSTER OF PROCESSORS 
EXTENDED ABSTRACT* 

Domenico SaccA 
CRAI 

Rende, Italy 

and Cio Wiederhold 
Computer Science Department 

Stanford University, Stanford CA 

1. INTRODUCTION 

III a tlisLribuLcd tlaL:rb:~~! sysLcrn Lhc parlilioning and nlloca- 
Lion of Lbc dalabasc over Lhc processor nodes of Lbc nclwork 
is a critical aspccl of dnlnbasc design clTort. A poor distribu- 
tion can lead to higher loads and hence higher costs in the 
nodes or in the communicalion network, so that Lhc system 
cannoL handlo the required set of transactions. 

We consider hem a system where mull;iple processors are 
clustcrcd at one localion in order to increase the system’s 
processing capability. The local network used in such a sys- 
tem has typically a high communication bandwidbh but any 
single processor will have inadequate processing and input- 
output capacity to deal with the transaction load. We de- 
velop and evaluate algorithms which perform in a computa- 
tionally feasible manner the design steps of partitioning and 
allocation of a database to the processors. 

More precisely, we investigate the optimal non-redun- 
dant partitioning and allocalion of a database to a number 
of processors nodes. Given is a set of source relations of 
the dalebase and their attributes and a set of transactions 
which are Lo be executed during some period of interest. 
A transaction performs operations on some subset of the 
database. The initial network node, associated with every 
transaction, is not prcspecified, but Lo be assigned as part of 
the design. 

This problem dillcrs from the problem in distributed sys- 
tems where the processors are remote from each other and, 
presumably, close to their users. In those systems a trans- 
action enters a known, local processor node, and the final 
response is issued from that node as well. The unclustered 
model with local transactions has been treated previously in 
the literature, for instance in [Ap82] and [CNWSI]. 

We model the content of the database aa a collection 
of relations. The given conceptual relations may be too 
large to be effectively assigned Lo single processors. We will 
consider initially how the relations can be fragmented, and 
will then allocate those fragments to the processor nodes. 
The possibility that files may be fragmented is not corisidered 
in treatments of the file allocation problem, as surveyed for 
instance in [DoFo82]. 

Once the database is put into operation each transac- 
Lion will ncccss some subset of Lhe luplcs and Lhc altrihules 
of each original relation. In order Lo complsLe Lransactions 

which cl0 no1 lincl all LlicGr dill;\ on Lhr wme processor, a 
scheduling algorilhlu is irivohctl which 0pLiiliircs Lhc proccss- 
ing over Lhc nc%work. WC do 1101 invcsligalc this scheduling 
nl;;oriLhm ilsell’, but simply assume that il exisls, and that 
1%~ can use it in order Lo obltiin the costs for Lhe cxccution of 
a given transaction over a proposed database allocation for 
some specitied but ficlitious processor network. 

In this presenlation Lhc following scclion will formu- 
late our problem precisely. In Sec. 3 we show the intrinsic 
complexily of the problem, present the heurislic greedy with 
first-fit algorithms WC propose, and prove statements about 
their behavior. The conclusions WC draw from this work are 
presented in See. 4. Further background material, proofs, 
conjectures on the feasibility of the solutions, design algo- 
rithms, and evaluations can be found in [SWSS]. 

2. FORMULATION OF THE DATABASE PARTI- 
TIONING PROBLEM 

2.1 The General Database Partitioning Problem 

We investigate the optimal non-redundant parlitioning and 
allocation of dalabase in a cluster of processes. Given is 
P = {P ,*..., P,}, a small set of processor nodes of a densely 
and reliably interconnected network. Associated with every 
proccsssor P; of P is the input-output capacity Cl;, expressed 
in Lerms of maximum number of blocks that can be processed, 
and Lhc processor capacity CC;, cxprcssed in terms of maxi- 
ITIUIII number of cycles of the processor. Furthermore, a.s- 
socialed with each pair of processors (P;, fj) is the com- 
munication capacity CMij, cxprcsscd in terms of maximum 
volume of messages that can be transmitted bebween the two 
processors. 

We also have a set of source relations R = {RI,. . . , R,}. 
We denote the set of attributes of each relation Ri of R by 

Ai. WC C:III split the relations into fragmenls for allocalion 
Lo processors in order Lo salisfy Lhc capacily constrainls of 
those processors. 

*This work was pcrformcd and supported xl the Il)M Rwc:rrch Laboratory, San Jose CA, while Lbe aut,hors were 
rcspccl.ivcly on lcavc rrom CRAI and on partial lcavc from SL:ml’ord tJnivctsiLy. 

242 



sec. 2 Sacc5 and Wiederhold 

Fragments ‘l’r;cdilional terminology in allocation for 
dislributcd syslcms uses the nolions of replication, and vcr- 
tical and horizontal p;lrtitioning. Vcrticnl pnrtilioning allo- 
cates columns of a relation over distinct nodes. Horirontal 
partilioning allocates rows of a relation over dislinct nodes. 
In this analysis we do not consider replication of relations, 
although tuple-identifiers (TIDs) [Godd80] will bc replicated 
as a byproduct of vertical partitioning. 

Hy combining verlical and horizontal partitioning, we 
can associate to any relalion R; of R a set of fragments 
F(R;) = {Fit,..., Fi’;,}. Given a set of fragments F(R;) 
for all R; in R, we denote by F = {F,, . . . , Ff} a set of 
fragments such that 

F = (j (VU) 
i=l 

. Since WC may define several different fragmentations of any 
relation R; in R (for instance, by choosing different subsets 
of A; for the vertical partitioning, or by providing dilfcrent 
predicate expressions on some attribute of 4 for horizontal 
partitioning) there could be several sets of fragments F as- 
sociated with R. 

Transactions A set of transactions T = (2’1,. . . , I!‘,} 
perform some operations on R (or on F if we refer to a set of 
fragments of R). Each transaction 2’; of T is executed dur- 
ing some period of interest with frequency q; and performs 
operations opi on some subset x of R (or F). In general, 
a transaction Ti in T will access only some rows and some 
columns of each relation (or fragment) ?C;, in xi, thus it 
performs operation only on a fragment of Xi,. Associated 
with each transaction Ti in T is an initial network node PT., 
which is not prespecified, but to be assigned as part of the 
design. 

Allocation Given the set of transactions T and a some 
set of fragments F, let 0 = TUF be the set of objects to 
be allocalcd on the network. Furthermore, given a set of 
fictitious processor nodes N = {NI, . . . , N,}, where N not 
necessarily equals P, an allocation of 0 to N, denoted by 
L(0, N), is a mapping of 0 into N. In the case that N = P, 
the allocation L(0, N) represents a possible real allocation 
of the objcc(,s (fragments and .transacLions) to the processors 
P of the network. 

Objective The objective of this analysis is t.o find an 
allocalion design L for the set, of fragments F and-the set 
of transaction T, so that an aggregate cost function is min- 
imirrd, while the capacity constraints {CIi, CCi,CMi,i = 
1 , . . ., p} are observed. The elements of the cost arc the load 
paramctcrs produced at execution time by a transaction op- 
timiror as part of its planning. Tho analysis mod4 is limited 
by the capabilily or the optimizer, lhat is no design should 
be produced which implies a transaction processing strategy 
which will not bc gcncratcd by the optimizer. 

Cost evaluation In order to rv:du:~lc the cosl function 
ol’somr proccs:;or conligurat ion WC invoke at drsign time Lhc 
prog:r:4rri which is c:vc~nlu;dly 1.0 bc us~l for lhc opl.in~iz:~tion 

of transaction execution. Such a program dclcrmines the 
execution load components once for each transaclion 7: in 
T. 

The cost evaluation hlnction cef is a mapping defined 
as follows: Given a set F of fragments of R, a set N of 
nodes (not necessarily equal to P), the set of objects 0 = 
T U F, and an allocation L(0, N), te/(L(O, N)) is the triple 
< vi,vc,vm >, where 

i) vi = {&I,..., vi,,} and vii is the load in terms of the 
number of block accesses required in the node N;. 

ii) vc = {VC~,... ,ZJC,} and vq is the load in teims of the 
number of processor cycles consumed by the node 
Ni. 

iii) vm = {vmijll 5 i,i 5 TI} and vmi,j is the load due to 
the message traffic generated betwoen the nodes N; 
and Nj or, more generally, the communication cost 
between the two nodes. 

Notice that vi,vc,vm represent the costs necessary to ex- 
ecute the transactions in T on the fictitious network of nodes 
N. Such costs can bc determined analytically from the gene- 
rated allocation and knowledge of the available access stra- 
tegies and the transactions [W83]. Estimates of such costs 
are produced for one transaction at a time by a transac- 
tion execution optimizer (like the optimizer in System R* 
[WSA81]) as part of its planning. 

The problem of database allocation to the nodes in a 
cluster of processors is the following: 

The DBNCP-Problem over Relations: 

Let R be a set of re\aations, T be a set of transactions, P be 
a set of p processors, and ce/ be a cost evaluation function. 
Find a set F of fragments of R and an allocation L(O,P), 
where 0 = T UF, such that the cost 

k(Vii + VCi) + 2 2 V?Tlij is minimum 
i=l 

subject to 

i=S j=l 

i) Vii 5 Cli for all l’i in P 

ii) VCi 5 CC, for al/ Pi in P 

iii) vmij 5 CMij for all Pi, Pi in P. 

where < vi, vc,vm >= Cef(L(0, P)). 1 

We note that this problem is diNcrcnt from the dalabasc 
parlitioning problems trcnlcd in litcralurc (see, for instance 
[Ap82,CNW81]). In parlicular, in this cast the inilial not- 
work node of each transaction is not prcdefincd. This means 
that WC cannot ncglccl the capncily construct as it is assumed 
in previous works, bcrausr othcrwisc~ wc would lind a lrivial 
soluLion, I.ti:ll, is :rlloc:~l.ing all t.r:tns:rcl.ions arid rrlalioris in 
only 0110 processor. 

243 



Database Partitioning in a Cluster of Processors 

2.2 The database partitioning problem with a defined 
set of fragments 

WC note that the DI~NCP-problem considers any possible 
frngmcntntion of tho r&lions in R. If we assume that a set 
F of fragments is given, a variant of the DTINCP-problem is 
the following: 

The DBNCP-Problem over fragments 

Let F be a set of fragments of a given set of relations R. 
Lcl T be a set of transactions, P bc a set of p processors, 
and GJ be an cost evaluation function. Find an allocation 
L(O,P), where 0 = T UF, such that 

9 D i-l 

-&ii + VCi) + 2 c v7nij is minimum 
i=I i=Pj-I 

subject to 

constraints i), ii), iii) of the DBNCP-problem over rek- 
tions. 1 

We note that, in general, the solution of this second 
problem is not a solution of the general problem. However, 
if the initial set of fragments contains units of allocation, i.e., 
clemc!r:tary objects of allocation that cannot be further frag 
mcn~.od, then the solution of the DRNCP-problem over a set 
of prcdcfined fragments is also the solution of the DBNCP- 
problem over relations. 

This means that, since the transactions cannot be frag- 
mcnted, WC have lo find an initial set F of fragments such 
that each fragment in F will not be further partitioned but 
only, eventually, combined. In [SW831 a method, following 
(Ap82], is proposed to obtain the initial units of allocation. 

From now on, we will consider as input of the DBNCP- 
protlrm over fragmcuts either a set of functional elementary 
objrcts or whatever set of fragments has been predefined by 
f,hc dntabasc designer. The sire of lhc set of fragments is 
polynomially bound by the sixc of lhc input of lhc> DUNCP- 
problem over relations. Our conjccturcl is that such an ap- 
pro:ich gives a good suboptimal solution of the DI3NCP- 
problem over relations. Furthermore, since the optimal solu- 
tion of both problems cannot be found in a reasonable time, 
as WC shall prove in the next section, the ahove assurnption is 
the only one suitable to provide polynominal-time heuristic 
algorithms. 

I!cforc concluding with lhc formulation of the dalabasc 
partitioning problems WC point out that, aflcr the solution 
of the problem is found, a postanalysis will recombine any 
fragrncnts of the same source relations which arc allocated 
in1.o lhr same prot&or. 

3. HEURISTIC ALGORITHMS FOR THE PARTI- 
TIONING PROBLEM 

3.1 Complexity of the Problem 

The solution of the two database partitioning problems in- 
troduced in the previous section is strongly dependent on the 
rost evaluation runction ce/. It is obvious that, ir the com- 
putation of such a function requires exponential time in the 
size of the relations in R and the transactions in T, we do 
not have any hope to find a solution, even suboptimal, in a 
reasonable amount 0r time. 

In this paper, we suppose that the evaluator computes 
the costs in polynomial time. This is not a strong assump- 
tion since the optimizer must compute, in order to bc practi- 
cal, the cost of transactions in a reasonable amount of time. 
However, we have to point out that such a computation can- 
not be considered as an clcmentary computer operation. This 
means that in our complexity analysis we will cvaluatc how 
many times the optimizer cost function is invoked separately 
from the evaluation of the number of simple operations. This 
analysis is found in Sec. 3.3. 

Despite the above simplifying assumption, the complexi- 
ty of the two partitioning problems is still hard. In fact, 
we have proven not only that there is no polynomial-time 
algorithm to solve the problem, unless P = UP [CJ79], but 
also that no polynomial-time algorithm is able to find a 
feasible solution of the problems. 

THEOREM 1. Finding a feasible or optimal solution 
of the DIUVCP-problem over relations or over fragments is 

NP-hard. 

The proof of Theorem I can be found in [SW83]. 

From Theorem 1 we decide that we cannot find a solution 
of the database partitioning problem, even only a feasible 
and not optimal solution, in a reasonable amount of time, 
without using heuristic procedures. 

In the next sections we will give heuristic algorithms 
for the solution of the DDNCP-problem, based on combin- 
ing the greedy mclhod [11S76] and the First-Fit algorithm 
iJDUCC74]. Since a feasible solution of the DUNCP-problem 
over fragments is also a fcasiblc solution of lhc DUNCP- 
problem over r&lions, and since starting from prcdcfincd set 
of clcmcntary fragments is more suitable to provide hcuris- 
tic algorithms, we only consider the DIINCP-problem over 
fragments. 

3.2 The greedy and the first-fit algorifhme. 

Our task is to sclcct fragments from a large set of fragments 
and nllocatc them to the processors. Al the same lime trans- 
actions have to bc allocated. Fragments should bc comhincd 
with other fragments and transactions should be allocated 
with fragments if placing them togcthcr Iwds to a great 
bcnclit in lcrms of reduction of cornrn~lnic:,l.ion, Cl’U, or 
IO load. ‘I’hcir :rlIdcal.ion lo processor nodes is subject lo 
Cilp:KilJ constraints. 

244 



sec. 3 SaccA and Wiedarhold 

Gre~ly selection of fragments ‘l’l~c :~~pr~t or M~I~YL- 
ing rr:iglllc-flls s~rggc:sLs a grcrdy rilcLllot1, i.cL.. an nlgorithm 
which works in sLa~;cs, corlsi(l(,ri!lg one inpul nl ,2 Liner AL 
each stage, an 0pLimal “h::d” solution is found for a par- 
Liculnr input. Such solul.ions may or may not Icatl Lo Lho 
optimal solulion of i.hr problem. IIowcvcr, most or the time 
such :I mclhod will rcsulL in Agorithms Lhat gcncrnte subop- 
tirnal solulions. In our case, the greedy method reduces to 
the I’ollowing algorithm. 

Wo sLarL lrom tho set 0 01’ o objects (transactions and 
r&Lion fragments) and WC consider n set or n nodes N such 
that n = o- 1. For all pairs of objects O;, Oi, we Consider an 
alloc::ltion on L(0, N) such that one node N,, of N contains 
Lhc combination of two objects 0,, 0, :md that each of the 
remaining nodes contains only one object of 0 - {O;,Oj}. 
I,eL tCij be the total cost or this allocation, 

n n i--1 

tCij = fJ?Jii + VCi)+ 2 2 W&j 

i=l I=2 j=l 

whcrc < vi,~c,vm >= Ce/(L(O,N)). 
Wr select, the pair of nodes Oi,Oi for which tcij is 

minimum and the capacity constraints of the problem are 
satisliod. WC then modify the set of objects 0 by replacing 
Lhr object Oi, Oj with thr compound object. In further stage, 
we rcpcat the above step by considering Lhc modified set 
of objccLs 0 and by reducing the number or nodes by one. 
ISvrnLunlly, the algorithm stops when either n = p or no 
1.~0 nodrs can br f’urther combined. If’ the nlgorithm reaches 
tbr shgr whc,rr n = p Lhc compound objrcts in 0 drfinc Lhc 
lin:ll allocntion or Lhc objects in the processors. The greedy 
rncthod I’;lils il’ it reaches the point whrrr no nodes can be 
rombinrd while n > p, nlthough a fcasiblc solution of the 
problrnl may exist. 

Wr noLc that the same algorithm wns proposrc! in [Ap82] 
l’or the solution or ii database partitioning problern without 
capacity constr:GnLs but with prcdrGncd starting point of 
each LransncLion. In thnl nnper it was shown Lhat such an ap- 
plication gives n gooc! suboptimal solution or the prcdefincd 
trnnsnct.ion entry problem. 

ht US now annlyar the qoodncss of this grrt=dy nlgo- 
riLlrm l’or l,h(> solut.iorl of Lhr cnl.iro problem. OnforlunaLcly, 
our conjcc:Lurc~ is 1.11:11. Lhis :dgorithm is very unlikrly Lo give 
:l I’c+ble solution oi’ t!l(n xllocat.ion p!rasc or the problem. 
Consider. !‘or simplicity, L.lnC. 1 a ’ the CPU !oad associated with 
the I’rxgmcnts is indrpcndcnt from thrir allocat,ion. In this 
case, fillding n reasib!c> soluLion corresponds to finding a solu- 
tion ol’th(> Isin-l’acking problem, whcrc Lhc fragments arc the 
items Lo bc insrrLc4 in Lhr bins, rcprescntcd by Lhr proccs- 
sors. II, is Iknown in 1.11~ lilcr:lturc (Tar instnncc, scr [C.l79, 
.11)1:(:(;71]) Lh:~t any ;tlgoriLhm I!l:rl. start il. nrw bin More :\I1 
I.hr non-empty bins arc l’ull, gives a poor solution Lo (.hc bi;i- 
packing problem. In oLhcr worcls, any “good” approximate 
;~lloc~:~l.ion :i!goril.hrn iriusl, bc aI, Ir;tsL a “VirsL-lit” algorithm. 

First-fit nllocation Itc~considrr Lllc b:hsic* grrctdy :rlf;o- 
ril hrll. Any Liinc~ it coinbiric5 Iwo obj(~cLs, which wcrc n(‘v(‘r 

rombinc~d brforc, it sL:lrt.s what alnounb Lo a r~ew bin al- 
, though lhcrc arc bins not, yrt full. Iler~cc, WC hnvc to modify 

Lhc :dlocaLion phase of the grrcdy algorithm in order to meet 
the above-mentioned property ol’ First-fit algorithms. 

We could USC some other bctler algorithm for the bin- 
packing problem, like the “Fir&fit Decreasing” algorithm in 
15741. Ilowcver, in these approaches the selection phase is 
also driven by the allocation algorithm. Since allocation is 
based on the capacity constraints ol’ the processors we loose 
the optimality objective used for selection. 

However, in the case of the simple First-fit algorithm 
WC have the freedom to select fragment combinations on 
the basis of the greedy method since we the only constraint 
is to never introduce too many bins. In particular, there 
should never be more bins than the number of available 
processors. Since we believe that in reality the capacity 
constraints cannnot be too restrictive, a first-fit allocation 
approach should permit the design to respect the constraints. 

3.3 Analysis of the greedy first-fit algorithm for 
various cases of capability. 

The greedy first-fit algorithm described above allows for the 
solutions of the partitioning problems over fragments to the 
capacity limits specified for the processor network. In par- 
ticular, as shown in [SW83], the cost evaluation function 
which computes Ce/ is in all cases computed O(o) times, 
where o is the initial number of objects to bc allocated. 
I lowcver, the complexity or the algorithm in Lcrms of clemen- 
tary operations (i.e., all operations but calls to cost evelua- 
tion function) is different for the various cases of capacity 
constraints. We considered all such cases. The algorithm 
is rnotlified only in the part which checks the capacity con- 
straints. We prcscnt the results found in [SW831 in a table. 

The Table shows that the proposed First-fit Crcedy al- 
gorithm runs in all but the most general case in 0(0~p~/~) 
time. The general case where the algorithm does not ap- 
pear Lo run in polynomial time occurs when the network is 
not homogenous. Such networks, having links of unequal 
capacity or, more likely, absent links between processor pairs 
are common in long-haul networks. These are not the type of 
nrtworks which nrc addressed in our analysis, since l’or these 
networks the initial assumption that the entry point for the 
transaction GUI be assigned arbitrarily is highly unlikely. 

245 



Database Partitioning in a Cluster of Processors 

CPU IO Communication Algorithm 
case Capacity Capacity Capacity Complexity 

1 Equal for Unlimited Unlimited O(03P) 
all processors 

2 DilTcring Unlimited Unlimited 
3 Differing Equal for 

O(03P logp) _ 
Unlimited O(o3p logp) 

all processors 
4 Differing Differing Unlimited w”P5’2) 
5 Differing Dilfering Equal for all pairs o(03P5’2) 

of processor nodes 
6 DilIering IJnlimited Unlimited exponential 

Recall that o is the number of objects (fragments and transactions) and p is the number of processor nodes. 

4. CONCLUSION 

We have addressed the problem of distributing a database 
over a lixcd number of processors. The processors and the 
network connecting them have limited processing and trans- 
mission capacities. The relations of the database are frag- 
mented to provide suitable units of allocation. The entry 
point of the query transactions is not constrained, The com- 
plexity of the general problem is shown to be UP-hard so that 
an heuristic algorithm is called for. This algorithm should 
not only provide a feasible solution but a solution that is 
near lo optimal as well, these two criteria are related since 
without finding a low cost solution no solution which satisfy 
the processor constraints may be found. 

The database is fragmented prior to the analysis so that 
an appropriate granularity for distribution is obtained. The 
heuristic algorithm assigns the fragments to processors. It 
combines a greedy algorithm for the sclcction of candidate 
fragments to be assigned with a first-fit bin-packing algo- 
rithm for the allocation of the selected fragments to the 
processor nodes. 

We point out that the greedy first-fit algorithm requires 
O(03) calls to the cost evaluation functions (o is the number 
of initial objects to be allocated), in order to obtain the in- 
formation needed to make design decisions. In most cases the 
cost evaluation function is the query optimization program of 
the database management system over hypothetical defined 
network. One invocation of the function has to consider all 
specified transactions. This means that in typical cases the 
database designer cannot afford to call it a large number of 
times. In order to reduce the number of such computations, 
three other techniques are presented in [SW831 to drive the 
greedy sehzction of the algorithm. These techniques allow for 
a reduced number of calls to the optimizer (namely, O(l), 
O(o) and O(o*) times). 

The faster techniques appear to be applicable in earlier 
stages of the selection algorithm. Furthermore, they are 
especially attractive in the early stages when the value of 
o > > p. Experimental results have been obtained for some 
of the techniques and appear in [SW831 in order to verify the 
analytical results summarized in this paper. 

ACKNOWLEDGEMENT 

This work was performed in the context of a larger research 
project on A Highly Available Transaction Support System at 

the IBM San Jose Research Laboratory under the leadership 
of Mario Schkolnick. We profited greatly from discussions 
with members of the laboratory. Jayne Pickering helped with 
entering the text into the ‘&Xsystem [Kn79], which was used 
to prepare this report. Gio Wiederhold is receiving partial 
support from ARPA, contract N39-82-C-250. 

REFERENCES 

]Ap82] Apers,P.M.G.: Query Processing and Data Allocation 
in Distributed Database Systems; Thesis 1982, Ma- 
thematical Centrum, Vrije Univ., Amsterdam. 

]Casey72] Casey,R.G. : “Allocation of Copies of a File in an 
Information Network”; Proc. 1972 SJCC, AFIPS 
Vol.40, pp.617-625. 

[Chu68] Chu,Wesley W. : “Optimal File Allocation in a 
Multicomputer Information System”; Information 
Processing-68, Proc. IFIP Congress, North-Holland 
1968, pp.F80-F85. 

[Co711 Cook&A. : “The complexity of theorem-proving 
procedure”; Proc. 3rd ACM Symposium on Theory 
of Computing, ACM, New York, pp.lSl-158. 

246 



[CNIVBI] Cc@., N:rvathe,S., and Wiedcrhold,G. : Oplimal 
Design of Dislribuled Dalabases; Stanford Univ., 
CA, CS Itcport No.S’l’AN-CS-81-884, Dec.1981. 

(CODl>SO] Codd,E.F. : “Extending the Database Relational 
Model to Capture More Meaning”; ACM TODS, 
Vol. 4 No.4, Dec.1979, pp.397-434. 

[DoFo82] Dowdy,L.W.snd Foster,D.V.: “Comparative Models 
of the File Assignment Problem”; ACM Computing 
Surveys, Vol.14 No.2, June 1982, pp.287-313. 

[JDUGG74] Johnson,D.S., Demers,A., Ullman,J.D., Garey, 
M.R., and Craham,R.L. : “Worst-case pcrfor.mance 
bounds for simple one-dimensional 
packing algorithms”; SIAM Journal on Computing, 
vo1.3, pp.299-325. 

[GJ79] Garey,hf.R. and Johnson,D.S.: Computers andlntrac- 
tibility - A guide to the Theory of NP-Completeness; 
W.II.Freeman and Co., 1979. 

[GJS76] Garey,M.R., Johnson,D.S., and Stockmeyer,L. 
: “Some simplified NP-complete graph problems”; 
Theoretical Computer Science, Vol.1, pp.237-267. 

[J74] Johnson,D.S. : “Approximation Algorithms for Combi- 
natorial Problems”; JCSS, Vol.9, 1974, ~~~256-278. 

[Kn79] KnuLh,D.E. : ‘&X and MIZTAFONT, New Directions 
in Typesetting; Digital Press, 1979. 

[MoLc77] MorganJ1.L. and Levin,K.D. : “Optimal Program 
and Data Locations in Computer Networks”; 
CACM, Vol.20 No.5, May.1977, pp.315-322. 

[SW831 Sacch,D. and Wiedcrhold,C. : Database Partitioning 
in a Cluster of Processors; Stanford University, 
Computer Science Department, KBMS project, Mar. 
1983. 

[W83] Wicderhold,G. : Database Design, second edition; 
McGraw-Hill, 1983. 

[WSASI] Williams,R., Selinger,P., et al: R-*: an Overview 
of the Architecture; IBM Res. Rep. It53325 (40082), 
Dec.81. 

247 


