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Database Saliency for Fast Image Retrieval
Yuan Gao, Miaojing Shi, Dacheng Tao, Fellow, IEEE, and Chao Xu, Member, IEEE

Abstract—The bag-of-visual-words (BoW) model is effective

for representing images and videos in many computer vision
problems, and achieves promising performance in image retrieval.

Nevertheless, the level of retrieval efficiency in a large-scale

database is not acceptable for practical usage. Considering that

the relevant images in the database of a given query are more

likely to be distinctive than ambiguous, this paper defines “data-

base saliency” as the distinctiveness score calculated for every

image to measure its overall “saliency” in the database. By taking

advantage of database saliency, we propose a saliency-inspired fast

image retrieval scheme, S-sim, which significantly improves

efficiency while retains state-of-the-art accuracy in image retrieval.

There are two stages in S-sim: the bottom-up saliency mechanism

computes the database saliency value of each image by hierarchi-

cally decomposing a posterior probability into local patches and

visual words, the concurrent information of visual words is then

bottom-up propagated to estimate the distinctiveness, and the

top-down saliency mechanism discriminatively expands the query

via a very low-dimensional linear SVM trained on the top-ranked

images after initial search, ranking images are then sorted on

their distances to the decision boundary as well as the database

saliency values. We comprehensively evaluate S-sim on common

retrieval benchmarks, e.g., Oxford and Paris datasets. Thorough

experiments suggest that, because of the offline database saliency

computation and online low-dimensional SVM, our approach

significantly speeds up online retrieval and outperforms the

state-of-the-art BoW-based image retrieval schemes.

Index Terms—Bag-of-visual-words (BoW), bottom-up saliency,

database saliency, image retrieval, top-down saliency.

I. INTRODUCTION

B AG-OF-VISUAL-WORDS (BoW) representation has

been effectively adopted in a number of computer vision

problems, e.g., image retrieval [1]. Visual images are ranked

using term frequency inverse document frequency (TFIDF) of

visual words computed efficiently via an inverted index [2].

The advantage of the algorithm is the high efficiency, while

the disadvantage is the low effectiveness for lack of spatial
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information among the visual words. For example, similar to

a word identification, when we receive three letters, “a, e, r,”

how to decide it is the word “are” or “ear”, even just a part

of “hear”? Therefore, many re-ranking methods are proposed

to improve retrieval performance. Representative schemes in-

clude spatial re-ranking [1], [3], query expansion (QE) [4], [5],

and relevance feedback [6], [7]. Geometric structure [8], [9]

and text/meta features [10]–[12] are also taken into account to

improve precision, and significant improvements are achieved

in state-of-the-art BoW-based retrieval schemes.

Despite the promising performance after re-ranking, how-

ever, the level of retrieval efficiency in a large-scale database

is not acceptable for practical usage. The existing re-ranking

schemes either come at the cost of manual intervention [6], [7]

or are time-consuming [10]–[12] for online search. Candidate

visual images from a short ranked list have to be spatially ver-

ified before queries can be expanded or the list re-ranked [1],

[4], [5]. To improve re-ranking efficiency, we propose a novel

concept in this paper: database saliency.

In large-scale image retrieval, the number of relevant images

in the database for a given query, regardless of its identity, is

extremely small compared to the entire image collection. That

is to say, queries are always discriminative to the entire data-

base. One of the main challenges, in the retrieval for a query

image, is thus to distinguish relevant images from images that

are similar (in TFIDF scoring) to query as well but are irrelevant

actually. Building upon this observation, we claim that query’s

relevant images in the database are more likely to be distinctive

images than ambiguous images. In this paper, we define data-

base saliency as the distinctiveness score calculated for every

image to measure its overall saliency in the database. Less dis-

tinctive images that are associated with smaller weights are re-

garded as less relevant.

The distinctiveness of visual images is computed offline, in-

dependently of the query. As a new strategy of exploiting the

saliency in a database, database saliency can be integrated with

any standard image retrieval architecture, and is always benefi-

cial to retrieval performance. In this paper, we plug it into the

discriminative query expansion [5] and propose a saliency-in-

spired fast image retrieval scheme, S-sim. We demonstrate that

S-sim significantly improves efficiency and at least retains state-

of-the-art accuracy in image re-ranking by simply evaluating a

very low dimensional linear SVM.

There are two stages in the proposed method: the bottom-up

saliency mechanism computes the database saliency value of

each image by hierarchically propagating a posterior probability

in it, while the top-down saliency mechanism discriminatively

expands the query from top-ranked images after the initial

search. It is similar in spirit to [13], in which saliency is mod-

eled using both top-down visual cue (color) and bottom-up

1520-9210 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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Fig. 1. Overview of the proposed saliency-inspired fast image retrieval scheme. In the offline stage, image saliency detection is carried out first in database images

(yellow frames); database saliency values for , and are computed by formulating posterior probabilities , and hierarchically in each

salient window; every image is thus associated with a distinctiveness score, i.e., , and , which is illustrated by the brightness of the square in the grey

bar. In the online stage, given a query image, we first obtain its initial search results using TFIDF scoring; positive (green “+”) and negative (red “-”) samples are

selected from the top and bottom of the ranked list, respectively; every sample is represented by a 1024-dimensional BoW vector describing the salient window

(yellow frame) in it; an SVM is learnt on the positive and negative samples to compute the distance from decision boundary. Initial search results are re-ranked

by either (D-sim) or both and (S-sim). False alarms are marked with red boxes.

visual cue (shape), but is different in detail given that the

bottom-up saliency is not true saliency; we only employ the

concept of saliency in the database rather than the visual cues

conventionally used in image saliency.

Fig. 1 explains the proposed approach: the bottom-up

saliency mechanism is carried out offline, while the top-down

saliency mechanism is evaluated at the query time. In the

offline stage (green block), we make use of image saliency,

which is different from the proposed database saliency, to

detect the salient window in each database image as its rep-

resentative [14]. We compute the database saliency value of

each salient window (e.g., window ) using the visual word

co-occurrence matrix [15], [29]: a posterior probability (e.g.,

, denotes the visual word set inside .) is calculated

in a hierarchical model, namely salient window, local patch,

and visual word (feature). Visual word concurrent information

is (e.g., ) is propagated bottom-up to local patches

by multiplying them together (e.g., ), while the con-

ditional probabilities on the patch level are further aggregated

to produce an estimation of window distinctiveness, .

Every salient window is thus associated with a distinctiveness

weight in the database, which is illustrated by the brightness

of the square, the larger is, the brighter it is located in the

grey bar. At query time (red block), we evaluate a top-down

discriminative query expansion by first conducting TFIDF

scoring. False alarms are marked with red boxes. Salient win-

dows from top-ranked images of initial returned list are used as

positive samples, while negative samples are selected from the

bottom of the ranked list. A weight vector is discriminatively

learnt via a very low-dimensional linear SVM. Each candidate

in the searched list is thus associated with an online weight

that depends on the distance from the decision boundary.

The initial search results are accordingly re-ranked (denoted

by S-sim) by the learnt weight in SVM together with the

distinctiveness weights in the database saliency.

II. RELATED WORK

This section first reviews the literature in image retrieval in

two aspects: 1) visual ranking by exploiting distinctiveness of

images, and 2) query expansion from initial returned list; after-

wards, it details the comparison with one of the closest work to

this paper, discriminative query expansion [5].

Visual Ranking. Exploiting the distinctiveness of visual

images in the database is an actively researched topic [9],

[16]–[20]. In [16], [17], only the query’s discrimination was

measured, and the performance was limited; in [18]–[20],

[9], specific similarity measures were learnt and significant

improvements were obtained by taking into account the neigh-

borhood of the image space, e.g., k-nearest neighbors (k-NN).

The only unsatisfactory aspect of these works is the ranking

time: the whole database has to be ranked several times for

each query as a result of its k-NN [9], [19], [20].

To tackle this computational concern, we exploit the visual

image’s distinctiveness from a different perspective: each image

is represented by its most salient window inside [14]. A pos-

terior probability of the salient window is calculated to stand

for the database saliency value of the area. We derive a for-

mula to approximate the posterior probability. It is based on

a hierarchical model, which separates a salient window into

several small patches [21], and then into local features [22].

The hierarchical model includes the spatial information implic-

itly, and is widely exploited in [23]–[26]. The basic element in

the model is the co-occurring conditional probability of visual

words [15], [27]–[29], it is propagated partially similar to the
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Dirichlet process in [24]. In Section III the discussion, we show

that the proposed database saliency indeed shares the same intu-

ition with [18], [9] by querying every image with the rest of the

database. Except that in this work, we do not really query each

image, but propose an offline unsupervised manner, it saves un-

necessary computation in the online stage.

Query Expansion. Cosine similarity based visual ranking is

not accurate, retrieval performance can be further boosted by

expanding the query from the initial returned list. Typical query

expansion schemes include average query expansion (AQE)

[30], [4], discriminative query expansion (DQE) [5], and visual

query suggestion [31], [32]. This paper follows the architecture

of [5] by learning an SVM from the top-ranked images of the

initial returned list. It is not a novel idea, and many works have

re-ranked images by either their classified labels [11], [7], [10]

or their distances to the decision boundary [5].

It has been observed that [4], if the top-ranked images con-

tain enough true positives, the re-ranking results of the learnt

SVM are significantly better than the initial search results; con-

versely, if no correctly retrieved images are in the top-ranked

list, or very few, the learnt SVM does not help. To enhance

the learning performance, active learning [33], relevance feed-

back [6], [7], spatial verification [1], [4], or text/meta features

[10], [11] are added to refine the positive samples. Despite the

encouraging improvements they achieve, these techniques are

time-consuming for online search.

Comparison With DQE. DQE [5] learns the weight vector

discriminatively from the spatially verified BoW vectors. Spa-

tial verification is performed to refine the positive samples from

the top-ranked images, and -dimensional BoW vectors ( is

the number of feature dimensions of BoW vectors, it can be re-

duced less than 10k in the end) are utilized to represent images

and input to a linear SVM. Accordingly, the overhead of gath-

ering negative training data and training the linear SVM is

on average on a 3 GHz single core machine. Notwithstanding,

considering the time of gathering positive training data, which

is indeed the spatial verification time, the entire overhead is still

not efficient for online search.

By embedding database saliency into this architecture, it

is computed offline to re-weight the discriminative learning,

spatial verification is consequently no longer indispensable

in SVM. Instead, the detection results of image saliency are

used to estimate the location (ROI) of the queried objects

in the retrieved images. Compared to spatial verification in

DQE, image saliency detection is not accurate, however, is

carried out offline and further advantageously utilized in a very

low-dimensional (1k) linear SVM, which allows us to achieve

significant increase in speed with at least comparable accuracy

to state-of-the-art BoW-based image retrieval schemes.

III. DATABASE SALIENCY

Image Saliency. Generally, each image is specifically repre-

sented by the window area with the highest saliency in it, which

is the most distinctive part of an image and can be taken to cal-

culate its distinctiveness in the database. For image of multiple

landmarks, we could use the entire image to calculate the on-

line weight and distinctiveness weight for re-ranking. In

spite of this, in most standard retrieval benchmarks, e.g, Oxford

and Paris datasets, each image is mainly composed of one land-

mark, and single salient window detection works best in image

retrieval and is adopted by default in the following section. We

use an effective saliency detection method [14] to detect the

salient area of an image. A sliding window-based paradigm is

used in [14] and window saliency is optimized according to a

specifically defined window composition cost function which

encodes different visual cues such as appearance, position, and

size in the window.

Image saliency is arranged in re-ranking instead of ranking

because its detection is not precise enough to locate the queried

object in each image, several objects or parts of objects might

be included in the salient area that can lower the recall due to

ignoring some target objects in the initial ranking. However, in

re-ranking, the ignored objects are just moved down on the re-

trieval list rather than removed from the list. In general, it is

observed that, retrieving a specific salient region rather than

the whole image effectively helps to prevent negative visual

words being brought into SVM in query expansion and there-

fore avoids a mismatch with the background object in a natural

image; SVM generalizes better on the top-ranked salient win-

dows than on the top-ranked images.

Bottom-Up Database Saliency. This section computes the

database saliency value of each image. Rather than using visual

cues, such as appearance, position, and size in image saliency,

we are more concerned with the statistical distinctiveness of an

image, as we claim that query-relevant images in the database

are more likely to be distinctive than ambiguous. To measure

the distinctiveness, we make use of visual word co-occurrence

matrix [15], [29], and propagate the visual word concurrent

information by simply formulating a posterior probability in

each salient window.

What property of the posterior probability can be used for

image retrieval? Given all features in the salient window area,

we wish that these features denote the area completely and

uniquely, that is, the posterior probability of the window ,

given all features , should be, . Similar to the word

“and”, when we get three letters “a, d, n”, we can definitely

determine that they denote unique “and”. So the larger

is, the better the completeness and uniqueness of is, and we

gain more confidence from the group of features , and can

rank the salient window higher.

The computation of is not easy. First, features have

to be quantized into visual words . Thus, needs to be

changed to . Then, the key point is the representation

of , is just a group of visual words in a region. We pro-

pose a hierarchical model, is separated into a group of affine

invariant patches , and is partitioned into a group of vi-

sual words . is decomposed along

the hierarchical model, while image’s distinctiveness is thus cal-

culated in a bottom-up fashion. Supposing each visual word is

approximately independent of other visual words in a window,

we have [34]

(1)

Since each visual object is perceptually decomposed into a set

of generic components, likewise, is mathematically
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decomposed into amplified scale-invariant local patches .

Each visual word can occur in a small number of patches,

and all the other are zeros

(2)

we drop the joint term in (2) for better performance in prac-

tical implementation. Each is composed of the visual words

lying in patch and belonging to window

(3)

Without considering the mutual dependencies between

in the patch, similar to (1), we have

(4)

Substituting (2)(3)(4) into (1), we approximate to

(5)

where (superscript omitted in ) is a special con-

ditional probability, and must appear in the same affine

invariant patch, named the co-occurring conditional probability

of visual words [15], [29]. can be obtained from the

statistics of the database. Usually, , it is diffi-

cult to calculate (5), we take a logarithm to the right hand side

of it and define a visual object’s distinctiveness weight as

(6)

is independent of the query and related to . We take

obtained for the salient window as the saliency of that image

in the database. For images with multiple landmarks or smaller

objects, is directly calculated in the entire image.

Variant. Several assumptions and simplifications are made in

(1) (6). In the Appendix, we present a full formulation of

database saliency, denoted by database saliency variant ( - ).

We show that the difference between and - is simply

a matter of window or patch prior simplification. Both the data-

base saliency value and its variant keep the essence of the pos-

terior probability : indicating the uniqueness and com-

pleteness of the salient window and its features, to help re-rank

corresponding images.

Discussion. Through (6), we analyze the proposed distinc-

tiveness measurement. Imagine every visual image (supposing

it is represented by one salient window) in the database is taken

as a query: the candidate relevant images of each query are thus

retrieved via the inverted file index in the BoWmodel. Every vi-

sual word in the query has an entry in the inverted file followed

by a list of all the visual images in the database in which the

word occurs. To simplify this, we assume the same list length

of candidate images for each visual word. Suppose is

normalized to over the entire database. To calculate ,

we assign a very small value to when it is zero.

1. If any two visual words occur independently in different

images, all the in (6) are zeros, and . Each

retrieved image shares only one common word with the query,

Fig. 2. Illustration of the top-ranked retrieval results for two queries on Oxford

dataset. The two rows of search results correspond to the initial TFIDF scoring

and D-sim re-ranking results. Each grey square beneath the image represents

its distinctiveness weight in the context of brightness. False alarms are marked

with red boxes.

and the number of whole candidates is , where is the

visual word number in the query. The query is ambiguous and

retrieves many candidates in the database which are not really

relevant.

2. If there two visual words and that always occur to-

gether and all the other words independently occur, the condi-

tional probability (or ) is 1, while all

the other are zeros. is thereby larger than ,

and the candidate lists of and are the same in the inverted

file because of their co-occurrence. The number of all candi-

dates retrieved by the query is , of them

share two common words , with query.

3. If any of the two visual words occur together, their co-oc-

curring probability is 1: , is therefore the

largest, . The number of candidates is , and they

all share common words with the query. The query is very

distinctive, and retrieves a small number of candidates from the

database which are very likely to be relevant.

The observations apply to more generalized case as well:

when and the list length of candidates

for each visual word is not the same in the inverted file,

therefore belongs to ( ) and database saliency endeavors to

relate images’s distinctiveness with the number of its retrieved

images and the common words of those images shared with the

query. Larger distinctiveness weights are supposed to be asso-

ciated with those images, when we query them in the database,

which have fewer candidates yet share more common words

with the retrieved candidates.

We represent each image’s distinctiveness weight with a

grey square, as illustrated in Fig. 2, each grey square beneath

the image represents the distinctiveness weight of its salient

window, the larger is, the brighter the square is. We choose

two query landmarks, All_souls and Bodleian, in Oxford dataset

and obtain their top-ranked results using TFIDF scoring. False

alarms are marked with red boxes, and their distinctiveness
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weights are of smaller values and darker squares, while rele-

vant images have brighter squares and larger distinctiveness

weights. If we re-rank the initial search results using to

weight the cosine similarity, the performance (D-sim) is im-

proved as shown in Fig. 1 and Fig. 2. The result is consistent

with our assumption that a query’s relevant images are more

likely to be distinctive than ambiguous in the database.

IV. ONLINE QUERY EXPANSION

Query Expansion.We follow the architecture of DQE [5]: an

SVM weight vector is discriminatively learnt from a shortlist

(the initial search results). Top-ranked images are usually uti-

lized as positive samples , while negative samples are

collected from the bottom of a ranked list, because the proba-

bility of finding relevant images in the bottom of ranked list is

very low.

Each salient window is described by the frequency histogram

of visual words obtained by assigning each SIFT descriptor to

its closest visual word. The visual word vocabulary size is 1024

for fast online query expansion, because it is able to describe the

salient window appropriately without incurring much computa-

tional complexity [24]. Every salient window is thus represented

by a BoW descriptor vector with the entries ( )

being the visual word frequency histograms. Note that, except

for the small vocabulary used for learning SVM, the vocabulary

size used for visual word co-occurrence matrix construction and

TFIDF scoring is usually large and reaches 1M.

Given an image described by its salient window ( ), is

the window descriptor vector and is its label. for the

positive sample, otherwise . The same as that in DQE,

we train a linear SVM using these positive and negative BoW

vectors to obtain a weight vector . The learnt weight vector

is used to calculate image distance from the decision boundary

. We denote by the result of .

We name the sum of and as the saliency-inspired

weighting score, , of which is a measurement of the de-

tected salient window’s relevance to the query while is a

measurement of the salient window’s distinctiveness in the data-

base. The larger is, the more relevant the salient window is

to the query; the smaller is, the more irrelevant the salient

window is to the query window; despite that is calculated

independently of the query, the larger it is, the more relevant

to the query the salient window is regarded as being. There-

fore, relies on both online and offline contri-

butions, can be either positive or negative. For database images

contain a number of scene types rather than single landmark,

and are computed over the entire image instead of a

single salient window, we have tried to utilize multiple salient

windows and sum their weights together in one image, unfortu-

nately, we couldn’t find sufficient benefits.

Ranking images are sorted on the value as well as the cosine

similarity value in TFIDF scoring.We therefore summarize

our saliency-inspired ranking function S-sim as

(7)

where the parameter is introduced to adjust the contribution of

in S-sim. We slightly modify (7): is weighted by when

Fig. 3. mAP results for visual object re-ranking in multiple schemes on Oxford

dataset. Sim denotes the original cosine similarity measure, C-sim, D-sim, and

S-sim denote that Sim is respectively weighted by , , and . RF means

adding user feedback. HA and SA denote hard- and soft-assigned vocabularies.

it is negative, otherwise we set to zero. We find an interesting

phenomenon in the real implementation: we are more inclined

to remove irrelevant images by subtracting a large value in the

similarity measure [9]; by contrast, adding a positive term to

up-weight the relevant images usually does not work, or the

improvement is negligible. It suggests that removing irrelevant

images is much easier, since the majority images in the database

are irrelevant to certain query.

Discussion. Though neither nor is accurate enough,

the corresponding distinctiveness weight and the online query

expansion weight have complementary effect as illustrated in

Fig. 3, the combination of and guarantees a reliable es-

timation of an image’s relevance to a query.

We interpret this from a probabilistic view: in [35], Platt pro-

posed to approximate the posterior by a sigmoid

function via the SVM output

(8)

The parameters ( ) are found by minimizing the negative

log likelihood of training samples referring to [35]. The SVM

prior is proved to be simply a Gaussian process (GP) over

[36], is determined by the distribution of trainings. Thus,

indeed discloses the likelihood value that an image is drawn

from the distribution of either positive or negative samples. On

the other hand, is related to , which describes the

distinctiveness of an image drawn from the entire database.

can also be interpreted as a probability in language model [37],

if we multiply the three probabilities together (it is not as good

as the sum in (7) in practice), it is indeed a joint probability of

the three different manners of relevance estimation.

Regarding and , they are both some manner of

measurements underlying the visual distribution inside certain

image, and in two aspects they complement, 1) computes

the probability from the object view, while

decomposes into local patches; 2) measures a sim-

ilarity score between certain image and images from top-ranked

list, while measures a dissimilarity score between an image

and images over the entire database. Recall the claim we make,

the number of relevant objects in the database for a given

query, regardless of its identity, is extremely small compared

to the entire image collection. In complement of and ,

we select a small group of images distinctive to the entire
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database and refine the selection in consistent with distribution

generalized from the top-ranked images in TFIDF scoring.

Computation Cost. The proposed S-sim is similar to DQE,

but much faster. The time complexity of DQE is

(9)

where the first term corresponds to the time complexity of spa-

tial verification before expanding the query. Candidate images

in the initial returned list are verified via RANSAC

(10)

denotes the length of the verified list. For each can-

didate image in the list, is the time complexity

of RANSAC, where is the time cost of computing a single

model, is the time cost of fitting one point, is the number of

feature points, and is the iteration. The second term

is the computational complexity for training an SVM [38]

(11)

where is the number of support vectors, is the number

of feature dimensions of BoW vectors, and is the size

of the training set. The third term , the computational

complexity for query expansion, is the computational cost of

testing SVM

(12)

and denote a multiplication and addition of two real values,

respectively [39].

Compared to DQE, the time complexity of S-sim is

(13)

where and

. Instead of using spatial verifica-

tion, we adopt offline image saliency detection to roughly locate

the salient window in an image, and a saving in computation

is achieved. In addition, a very low dimensional BoW vector is

used in this paper, . The dimensionality is 1k compared

to around 10k used in DQE after truncating the BoW vectors [5];

in other words, , our method runs much faster

than DQE.

V. EXPERIMENTAL RESULTS

A. Dataset and Evaluation Protocol

Oxford5k [1]. This dataset of 5062 images is a standard image

retrieval test set, which we call Ox for short. 55 images of 11

Oxford landmarks are selected as the query images, and their

ground truth retrieval results are provided.

Paris6k [9] contains 6390 images by querying the associated

text tags for famous Paris landmarks, such as “Paris Eiffel

Tower” or “Paris Arc de Triomphe”. Similar to Oxford5k, 55

query images are selected from Paris landmarks, and their

ground truth are provided as well.

INRIA Holidays [40]. This dataset is a set of images which

mainly contains holidays photos. We name it Ho for short. It in-

cludes a large variety of scene types (natural, man-made, water

and fire effects, etc.).

UKB. The University of Kentucky Benchmark dataset [41]

consists of 10200 images grouped into 2550 subsets of corre-

sponding images. Each subset contains four images. For a given

query, the system is expected to return the four relevant images

in the first four positions.

ImageNet [42]. Approximately 100k and 500k images are

randomly sampled from 10M images in ImageNet, which we

respectively call I1 and I2 for short. We use I1 and I2 as distrac-

tors to implement the test on a large-scale.

Evaluation Protocol. Evaluation of impact of parameters is

first conducted on Oxford dataset. SIFT files and visual word

vocabularies were downloaded from the Oxford VGG website.1

Single salient object is extracted in each image, the training

ratio and BoW vector’s dimension in SVM are respective

and 1024 by default, whilst vocabulary size

for TFIDF scoring is 1M. To evaluate the performance on

large-scale, we add and images from ImageNet

dataset as distractors. In this case, the evaluation is performed

on the 55 Oxford queries, since the images from ImageNet are

not relevant to queries. Performances on Paris, Holidays and

UKB are presented in the end, of which Holidays and UKB

are used to discuss two critical issues in this paper, which are

the failure of image saliency detection and database saliency

computation.

Overall comparisons are carried out with other representative

approaches such as [3], [15], [16], [19], [9], [8], [21], [18], [43],

[5], [20], [2]. The baseline follows the architecture of [1]. The

performance for Oxford, Paris and Holidays datasets is mea-

sured in terms of the average precision (AP), which is defined

as the area under the precision-recall curve for each query. The

AP score is computed for each query ad averaged to obtain a

mean average precision (mAP). For the UKB dataset, the score

is standardly computed as the average number of correct images

in the top-4 positions (4-recall@4), the best score is 4. Notice

that, to make a quick test on UKB, we train a vocabulary from

Holidays.

B. Impact of Parameters

Parameter . Fig. 4(a) shows the mAPs with variation of pa-

rameter . The optimal performances occur when is smaller

than . When , the ranking result is de-

termined by the original cosine similarity in (7); when

, the ranking result is determined by the weighting term

. This shows that the initial TFIDF scoring output is necessary

as an anchor, so that we re-rank the visual images in the returned

list. Note that the selection of is generally related to the dataset

size: for datasets like Oxford and Paris that have the same scale,

we can roughly choose the optimal around .

Training Ratio. We evaluate different combinations of

training samples. We select positive samples from the

top-ranked list, and negative samples from the bottom

of the ranked list. Results are given in Table I for various

choices of and . For each choice, we use 10-fold cross

validation during the training stage. The improvement achieved

1[Online] Available: http://www.robots.ox.ac.uk/vgg/data/
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Fig. 4. (a) mAPs for Oxford dataset with different values of parameter

. (b) Left: mAP values correspond to different hard-assigned vocab-

ulary sizes in SVM. Right: Comparisons of baseline and S-sim with different

hard-assigned vocabulary sizes in TFIDF scoring. (a) Parameter variation.

(b) Effect of vocabulary size.

TABLE I

MAP VALUES FOR DIFFERENT TRAINING RATIOS ON THE OXFORD

DATASET; HA [1] AND SA [3] DENOTE HARD- AND SOFT-ASSIGNED

VOCABULARIES, RESPECTIVELY

by the proposed S-sim over the baseline [1] is clear in Table I.

Increasing tends to include more irrelevant samples into

positive samples in SVM, which biases the online learning.

Generally, we consider that top 10 is a reliable choice. The

choice of hardly affects mAP in a range of . By

default, we choose the training ratio as for all the

queries.

Effect of Vocabulary Size. We evaluate the effectiveness of

S-sim in the Oxford dataset for different hard-assigned vocab-

ularies, as shown in Fig. 4(b). The mAPs of baselines and the

corresponding improvements obtained by S-sim are shown by

the blue line and red line, respectively.

The left figure shows that when we fix the vocabulary size

for co-occurrence matrix construction and TFIDF scoring to

1M, and change the vocabulary size for learning SVM from

128 to 8k, the mAP value does not change significantly. Due

to the polysemy in all the small visual vocabularies [21], the

vocabulary does not effectively outperform the 512 vocabu-

lary. In real implementation, we choose the vocabulary size as

TABLE II

LARGE-SCALE EVALUATION. MAP AND AVERAGE TIME OVERHEAD PER

QUERY. VOCABULARY SIZE IS 1M USING HARD ASSIGNMENT

1024 for SVM. The same mAP can also be obtained by using

high-dimensional SVM and spatial verification as in DQE [5],

despite the good performance, it is very time-consuming for on-

line search.

The right figure shows corresponding mAP values when we

fix the vocabulary size for SVM to 1024 and change the TFIDF

scoring vocabulary size from to 1M. For the large vocabu-

lary, significant improvement has been achieved at every point

compared to the baseline. However, for the small vocabularies,

mAP increments are very trivial, most initial search results are

irrelevant (mAPs are lower than 0.5), and the online weight

learnt from the top-ranked salient images is not reliable, neither

is the distinctiveness weight computed from the co-occurrence

matrix. To overcome this dilemma and guarantee efficiency, we

suggest adding user feedback and show our results in the fol-

lowing section.

C. Results for Visual Object Re-Ranking

Experiments are carried out on both hard- and soft-assigned

(HA [1] and SA [3]) and 1M Oxford vocabularies. mAP

values are reported accordingly using different weighting

techniques.

Fig. 3 provides the re-ranking results (C-sim and D-sim) de-

pending on whether we utilize the query expansion score

or the distinctiveness score to weight . We can see that,

even though is computed offline independently of the query,

we can still achieve an improvement by embedding it into the

TFIDF scoring scheme. It supports our motivation that a query

object’s relevant objects are more likely to be distinctive rather

than ambiguous. On the other hand, compared with C-sim and

D-sim, their combination S-sim apparently yields superior re-

sults. It increases mAPs to 0.65 and 0.681 on HA and SA

vocabularies with 26.5% and 28.7% increments, and to 0.787

and 0.835 on the 1M HA and SA vocabularies with 28.3% and

30.5% increments, by comparing with baselines.

By adding user relevance feedback (RF) to refine the top-

ranked salient samples in the discriminative query expansion,

the mAP can be further enhanced. The highest mAPs can reach

0.697 and 0.850 on the 100k and 1M soft-assigned vocabularies.

Since adding RF is laborious work, we only ask the user to label

the relevant salient objects from the top 10 ranked images.

D. Large-Scale Evaluation

To implement the proposed method on a large-scale database,

we carry out the experiment by adding the ImageNet (100k and

500k images denoted by I1 and I2) dataset to the Oxford (Ox)

datasets. The results are provided in Table II, the mAP improve-

ments are impressive. It also shows the average query time over-

head for each query (Note that we don’t really rank the entire
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TABLE III

MAPS FOR DIFFERENT DATASETS COMPARED TO THE STATE-OF-THE-ARTS. WE PRESENT S-SIM

RESULTS BY USING SOFT-ASSIGNMENT VOCABULARIES IN OXFORD AND PARIS DATASETS

Note: The mAP 0.847 is reported from Table I in [5] without using RootSIFT and SPAUG, which is with the same setting of S-sim. The mAP 0.818 is obtained

from our own implementation.

TABLE IV

TIME ELAPSED IN THE SVM IN DQE AND S-SIM ON OXFORD AND

PARIS DATASETS. SP DENOTES SPATIAL VERIFICATION

dataset, instead, for those images with very small ranking values

we ignore them directly.). Since the database saliency is com-

puted offline, the time overhead of S-sim is in the same order of

magnitude as that for TFIDF scoring. Additional time is mainly

required for SVM training and test, which does not necessarily

grow up with the database size, because we choose the same

number of training samples for SVM.

The additional memory overhead is simply to record the

database saliency value for each image. They are 821KB and

3946KB for and , respectively. Regarding

the offline process of database saliency computation, we need

to load the visual word co-occurrence matrix into the memory,

as suggested in [15], by setting a limit of the length of the

co-occurrence list, we could keep the storage overhead around

500 MB regardless of the database size.

E. Comparisons

Table III shows the comparison of our method with other

state-of-the-art approaches [15], [16], [19], [9], [8], [21], [18],

[43], [5], [2], [20] in Oxford, Paris and Holidays datasets. Most

of these methods employ additional techniques such as soft

(multiple) assignment [15], [43], [21], geometric verification

[21], [43], [5], [8] and k-NN2 re-ranking [20], [19], our results

(S-sim) are competitive among them.

Specifically, we compare our work with one of the closest

works, DQE [5], in Table IV. Time of gathering negative

training data and training the linear SVM reported in [5] is

on Oxford dataset on a 3 GHz single core machine.

To make a fair comparison, we implement it on a 2.4 GHz

dual-core machine as the same with S-sim. Time elapsed

includes SVM training and test. We also report the spatial

verification time in DQE which is not counted in [5]. Although

the mAP of S-sim is slightly lower than DQE, its speedup of

time efficiency over DQE is impressive.

More importantly, we propose a new concept database

saliency, it could be either adopted independently (Fig. 1,

D-sim) or plugged into standard retrieval architecture (Fig. 1,

S-sim). Unlike other representative approaches, i.e., [19], [20],

2k-NN re-ranking is very time-consuming. Accordingly, the mAPs of [19],

[20]without k-NN re-ranking are respective 0.752 and 0.780 on Oxford dataset,

0.741 and 0.736 on Paris dataset, which are inferior to S-sim.

TABLE V

S-SIM RESULTS ARE REPORTED IN TERMS OF MAP AND 4-RECALL@4 FOR

OXFORD, PARIS, HOLIDAYS, AND UKB, ACCORDINGLY. “ “ REFERS TO

THE USAGE OF SALIENT WINDOW (SW FOR SHORT), WHILE “ ”

INDICATES USING THE ENTIRE IMAGE FOR SVM TRAINING

AND DATABASE SALIENCY COMPUTATION, “ “ MEANS NO

VALUE. 1M HARD-ASSIGNED VOCABULARIES ARE USED

TABLE VI

LARGE-SCALE EVALUATION ON HO + I1 AND UKB + I1 USING 1M

HA VOCABULARY. HO + I1 AND UKB + I1 SIGNIFY HOLIDAYS AND

UKB DATASETS PLUS 100K IMAGES FROM IMAGENET. MAP AND

4-RECALL@4 ARE REPORTED, RESPECTIVELY

we re-rank the whole dataset at most once, which is much more

efficient.

F. Discussion

In this section, we discuss two critical issues in this paper:

1) image saliency detection fails to detect the queried object

in database image, and 2) database saliency fails to distinguish

relevant images as there exist no noisy images in the database.

We add two datasets, Holidays and UKB, in the test.

In Holidays dataset, images include a number of scene types

rather than simply the building landmarks, image saliency de-

tection could possibly detect very smooth or flat area with the

highest salience, i.e., sky, water and fire effects. Few features

can be extracted in this area to represent the image and for sure

the queried object is not in this salient window. We can not

train an SVM or compute database saliency from such a salient

window. To tackle this problem, we propose to use the entire

image to compute the database saliency and re-rank. Table V re-

ports the corresponding results. It is worth of remarking that,

1) we conduct the same test by using multiple salient windows

in one image, we find that increasing the number of salient win-

dows does not clearly affect or improve the mAP, and 2) in Ox-

ford, Paris and UKB, single salient window is capable of de-

tecting the queried object and works best.

Observing that the mAP (4-recall@4) improvement over

baseline on Holidays and UKB is not as impressive as that on

Oxford and Paris. This is because, given any image in Holidays

and UKB, it is relevant to certain query in the benchmark test

and should be treated as distinctive, the proposed database

saliency is thereby no longer rational. To address this issue,
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we augment the database by adding distractors from 100k

ImageNet dataset. Table VI shows that S-sim is much more

effective in this context.

VI. CONCLUSION

In this paper, we have demonstrated that a significant im-

provement in visual image re-ranking can be achieved by ex-

ploiting saliency in the database.Wemeasure the distinctiveness

of each visual image in the database. The distinctiveness score

is calculated in a hierarchical manner in the salient window of

each image. By taking advantage of this database saliency, we

propose a saliency-inspired fast image retrieval scheme: salient

windows from top-ranked images are taken as positive samples

after the initial search, a very low-dimensional linear SVM is

discriminatively learnt for online query expansion. The initial

returned list is re-ranked according to the distinctiveness weight

and online weight, and experimental results on several standard

benchmarks prove the efficiency and effectiveness of the pro-

posed scheme.

The image salience utilized in this paper is only a rough de-

tection of the queried object in each image. In future work, we

could run some structure-from-motion tools, i.e.,[44], [45], to

discover semantic-level objects and precisely identify important

visual words and their concurrent combinations associated with

each semantic objects.

APPENDIX

Database Saliency Variant. This appendix details the variant

mentioned in Section III. It provides a full formulation of (1)–(6)

without simplifications

(14)

Similar to (2) and (3), each visual word can occur in a small

number of patches , while each is composed of a group

of visual words ,

(15)

(16)

Similar to (14), we can write (16) as

(17)

Substituting (17) and (16) into (15) and (14), we have

(18)

(19)

Comparing (19) with (5), the difference simply lies on the esti-

mation of the window and patch priors, and . Basi-

cally, we have no prior idea of the distinctiveness of any window

or patch in the database, we assume them to be the same over

the database, , , and similar to

(6), we take a logarithm to the right hand side of (19) and define

the database saliency variant - as

-

(20)

where . Referring to (6), can be regarded as

a simplification of (20) without considering the second term,

which only varies with the number of visual words in

window .

We make a toy test of (20): given that we know the number

of noise images in a database is , the number of distinctive

images is then given by , where is the image

collection size, we propose to approximate by

, and by , by supposing that each

image is only represented by one salient window, each window

is composed of patches, and each patch is associated with

exactly one visual feature. We conduct the experiment on the

Oxford and Paris datasets using 1M HA vocabulary, the mAPs

are 0.656 and 0.704, respectively. Although it is less effective

than S-sim, we still obtain benefits in this toy example.
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