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Abstract. In this paper, the performance and characteristics of the execution of various join-trees 

on a parallel DBMS are studied. The results of this study are a step into the direction of the design 

of a query optimization strategy that is fit for parallel execution of complex queries. 

Among others, synchronization issues are identified to limit the performance gain from parallelism. 

A new hash-join algorithm is introduced that has fewer synchronization constraints than the known 

hash-join algorithms. Also, the behavior of individual join operations in a join-tree is studied in a 

simulation experiment. The results show that the introduced Pipelining hash-join algorithm yields a 

better performance for multi-join queries. The format of the optimal join-tree appears to depend 

on the size of the operands of the join: A multi-join between small operands performs best with a 

bushy schedule; larger operands are better off with a linear schedule. The results from the simulation 

study are confirmed with an analytic model for dataflow query execution. 
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1. Introduction 

During the last years much attention has been paid to the development of parallel 
DBMSs. Using special purpose hardware has shown not to be successful; instead, 

a parallel DBMS running on general purpose shared-nothing hardware appears 

to be the right choice [8]. Also, various query processing strategies have been 

implemented: dataflow query processing appears to be superior to control-flow 

scheduling of queries [9, 19]. Therefore, this paper studies query processing in 
a general purpose, shared-nothing, dataflow architecture. 

Teradata [20], GAMMA [9], Bubba [5], HC16-186 [6], and PRISMA [1] are 

examples of parallel DBMSs that actually were implemented. Each of these 
systems exploits some sort of parallelism to speed up query execution. Within 

a query, interoperator and intraoperator parallelism can be discriminated [17, 

23, 26]. Orthogonal to this distinction, pipelining can be contrasted to (pure) 
horizontal parallelism. This last type is called parallelism here, like in many 

other papers, lntraoperator parallelism is the primary source of parallelism in 
the projects mentioned above. This type of parallelism is well understood now, 
and using it, efficient execution strategies can be found for simple queries. The 
Wisconsin benchmark [3], which consists of such simple queries on large volumes 
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of data is used to describe the performance of a system [6, 9]. 

A dataflow architecture, however, offers the possibility to also exploit interop- 
erator parallelism and pipelining by allocating different relational operations to 

different (sets of) processors. The potential of using different types of parallelism 

for one query, turns query optimization into a difficult problem, that cannot be 

solved using conventional query-optimization techniques, due to the large num- 

ber of execution plans that is possible for one query. So far, little research has 

been done in this research area although it is identified to be important for the 

further development of parallel DBMSs [5, 8]. The query optimizers for most 

parallel DBMSs are based on the theory developed in [18], however, this theory 

is not particularly fit for parallel dataflow query processing. For example, only 

linear query trees are considered, although this class of trees does not necessarily 

include the optimal one for a parallel environment. 

In a first attempt to understand the effect of various query tree formats, [17] 

studies the behavior of right-deep and left-deep linear query trees for multi-join 

queries. It is concluded in that paper, that right-deep scheduling has performance 
advantages in the context of GAMMA. In [10] it is shown how arbitrarily shaped 

query trees can be parallelized using the "exchange" operator, which splits a 
(part of) a query tree into a number of subtrees that can be executed in parallel. 

Although that paper makes clear that certain query trees can be parallelized, it 

does not solve the problem of which (type of) query tree performs best. 
In this paper, we study the execution of multi-operation queries. The ultimate 

goal of this study is the design of a query optimizer for a parallel DBMS. As 

we chose to study the execution of large complex queries, this query optimizer 

should aim at reducing the response time of these complex queries, rather than 

optimizing the throughput for some workload. Relational multi-join queries are 

used as an example, because the join is an important, and expensive relational 

operation. An outline of the path, we want to follow for this research is as follows: 

Query optimization comes down to selecting an execution strategy with low costs 

[14]. Because searching the entire space of possible strategies is not feasible, 

most query optimizers are heuristic [4, 12]. Heuristics are based on insight in 

the essentials of query execution. So, to design a heuristic query optimizer 

for a parallel DBMS, it is essential to understand the behavior of execution 

strategies for a query on a parallel DBMS. Modeling is a way to gain insight 

in the essentials of parallel query execution. Two approaches to modeling were 

used in our study: simulation and analytical modeling. Both approaches allow 

studying the response time of different execution strategies, and the utilization 

of participating processors. The resulting knowledge, should eventually lead to 

formulation of query optimization heuristics. It should be emphasized that we 

do not aim at a detailed quantitative model for a parallel DBMS, but rather 

at a simple, understandable framework that, by its nature, yields insight in the 

modeled phenomenon. However,. neither intuition, nor the sort of model that is 

presented here can validate the heuristics that they yield, and so, these heuristics 
have to be validated against a real dataflow DBMS, or a detailed simulation if 
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the former is not available. The methodology described in this paragraph, is 

similar to the methodology that is common in science: Scientists try to understand 

natural phenomena by modeling them. Subsequently, hypotheses are formulated, 

that are based on the model, and these hypotheses are validated against reality 

by experimentation. 

This paper describes a first step on the path outlined above. First, the results 

of a simulation study are described. This work resulted in the proposal of a 

new join-algorithm that is fit for dataflow query execution. Also, the execution 

characteristics of multi-join queries were studied. An attempt to fully understand 

the results of this simulation study led to the development of an analytical model. 

The first results of this analytical model confirm the results of our simulation 

study. In the near future, we want to follow the path by extending the analytical 

model. That step should lead to the formulation of query optimization heuristics. 

The research reported in this paper is carried out in the context of PRISMA/DB 

[1, 2, 13, 26]. PRISMA/DB is a parallel, main-memory, relational DBMS that runs 

on a 100-node shared-nothing architecture. The implementation of PRISMA/DB 

was finished in 1991, and [25] evaluates its performance. The fact that PRISMA 

is a main-memory system plays an important role in our research. The price 

of primary memory has fallen sharply during the last years. As this trend is 

expected to continue, an interesting question arises: How can huge amounts of 

memory be used? In this study this question is specialized into: Can a very large 

primary memory yield performance gain in a DBMS? Therefore, we are willing 

to accept using large amounts of memory, if performance gain is expected in 

return. 

The remainder of this paper is organized as follows: The next section describes 

dataflow query execution in a main-memory environment. Section 3 presents 

simulation results. Section 4 introduces the analytical model and its elaboration 

for join operations and join trees. The last section summarizes and concludes 

the paper. 

2. Dataflow query execution 

A main-memory parallel DBMS running on shared-nothing hardware has the 

following features: The hardware consists of a number of processors that can 

communicate via a message-passing network. Each processor hosts part of the 

base-data. A processor can access its part of the base-data directly. If a processor 

wants to access the data stored on another processor, the processor storing the 

data has to send the data to the processor that needs it via the network. 

A query on a relational database can be represented as a dataflow graph. 

The nodes of such a graph represent eXtended Relational Algebra operations 

[11]. Leaf nodes have base relations as operand, intermediate nodes work on 

intermediate results. Each processor can run one or more operations processes. 

In this paper, we want to study interoperator parallelism, and therefore each 
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operation process is assumed to have a private processor. This assumption 

implies that intermediate results have to be transported via the network to 

another processor. Operation processes evaluate XRA-operations on their local 

data, or on tuple streams that are sent to them via the message-passing network. 

The result of the evaluation of an XRA-operation consists of a (multi)set of 

tuples. Such a result can either be stored locally, in which case it can be accessed 

by the local professor later on; or it can be sent to one or more other operation 

processes. In the last case, the sending and the receiving operation processes 

can run concurrently, forming a pipeline. 

Network transport of tuples is modeled as follows: To transport a tuple from 

a process to another, remote process, first, it has to be "wrapped" and put on 

the network hardware by the sending operating system, then, it is sent over the 

network, and finally, it has to be retrieved from the network and "unwrapped" 

by the receiving operating system. So, sending a tuple over the network implies 

CPU costs on the sending and receiving processor, and actual transmission, which 

implies a delay. In general, the CPU costs involved, appear to be the limiting 

factor, and, therefore, the rate at which tuples are transported over the network 

is determined by the capacity of the CPUs that send and receive the tuples and 

not by the capacity of the network hardware. So, tuple transport is modeled in 

terms of CPU costs on two processors [8] and a constant transmission delay. 

3. Simulation of dataflow query execution 

This section describes the results of a simulation study. First, the simulation 

program used is described, then we study join algorithms, and finally we describe 

a simulation of multi-join queries. 

3.1. ~ e s ~ u ~ r  

To study the execution characteristics of a query, a simulator for parallel query 

execution was developed. This was done, because at the time at which this 

research was started, PRISMA/DB was not ready yet. Also, the simulator is a 

flexible tool to study parallelism. The input to the simulator is a schedule for a 

query. In such a schedule, the size, fragmentation and allocation of the operands 

and the intermediate results can be specified. The output consists of a diagram 

for each operation process that was used in the schedule. These diagrams plot 

the processor utilization (on behalf of that operation process) against the time. 

The (horizontal) time-axis can be scaled. Figure 1 shows an example of such a 

diagram. 

The simulator models local processing and network transport of tuples. The 

local processing model uses simple cost formulas for relational operations. Net- 

work transport of tuples is modeled as CPU-costs on the sending and receiving 



DATAFLOW QUERY EXECUTION 107 

o o-!lnf-  
, ,  , 1, 

time 

Figure I. Sample output of the simulator. 

processor according to the description above. The simulator is parameterized 

with the costs of simple operations on tuples. Most important, the ratio between 

the costs of local processing, and the CPU-costs related to network transport of 

tuples is set by the parameters. The parameter values that were used in this 
paper are measured from PRISMA/DB. 

3.2. Join algorithms 

The choice of a join algorithm influences the execution characteristics of a 
multi-join query in different ways. 

Firstly, the processing, I/O, and communication costs are influenced. Schneider 

and DeWitt [16] give an overview of well-known join algorithms and evaluate their 
performance for simple join-queries by experimentation. Hash-join algorithms 

are shown to be the most efficient ones for equi-joins. Therefore, in our paper, 
only hash-join algorithms are considered. 

Secondly, the synchronization between the joins that participate in a more 

complex join query, is determined by the join algorithm used. In this section, the 

synchronization requirements of a well-known hash-join algorithm are studied. 
Because those requirements are too tight to allow considerable performance gain 

from pipelining, a new main-memory hash-join algorithm is proposed that has 
fewer synchronization requirements [22]. 

The known hash-join algorithms, grace hash-join, simple hash-join, and hybrid 

hash-join, are disk-based, and they only differ in the way disks are used. There- 

fore, only one main-memory version of these algorithms is dealt with in this 

paper. This algorithm is called simple hash-join here. 

3.2.1. Simple hash-join. The simple hash-join algorithm consists of two phases 

(see Figure 2). In the first phase, one entire operand is read into an in-memory 
hash-table. In the second phase, the tuples of the other operand are read one 

by one, each tuple is hashed and compared to the tuples in the corresponding 
bucket in the hash-table of the first operand. If a match is found, an output 
tuple is produced. This algorithm is asymmetric in its operands, although the 
join-operation is conceptually symmetric. The result is only formed during the 

second phase of the algorithm. 
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Figure 2. Simple hash-join and pipelining hash-join algorithm. 
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Figure 3. Simple hash-join and pipelining hash-join. 

3.2.2. Pipelining hash-join. The pipelining hash-join algorithm (see Figure 2), 

aims at producing its output tuples as early as possible in the process of calculating 

the join, without decreasing the performance of the join operation itself. During 

the join process a hash-table for both operands is built. The join process consists 

of only one phase. As a tuple comes in, it is first hashed and used to probe that 

part of the hash-table of the other operand that has already been constructed. 

If a match is found, a result tuple is formed. Finally, the tuple is inserted in the 

hash-table of its own operand. When the last tuple of one of the operands is 

processed, the join process can stop building a hash-table for the other operand, 

because this hash-table will not be used any more. Keeping this last feature 

in mind, it is easy to see that the pipelining hash-join degenerates to a simple 

hash-join when one operand is available to the join process entirely, before the 

first tuple of the other operand arrives. The pipelining hash-join algorithm is 

symmetric in its operands. 

3.2.3. Evaluation of the s#nple hash-join and the pipelining hash-loin. 

Figure 3 shows the execution characteristics of the simple hash-join processes, 

and of the pipelining hash-join processes in a four-way multi-join 

(~rA ~ aB)  t~ (aC ~ ~rD) 
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as visualized by the simulator. The figure shows the join tree for this query; two 

join symbols in each tree are replaced by the diagrams showing the execution 

characteristics of the corresponding join processes. As explained in Section 3.1, 

these diagrams plot the processor utilization of the processor executing the join 

against the time. Because the characteristics of aA ~ aB and ~rC ~ aD are 

identical, only one of these join symbols is replaced by a diagram. The time 

axis in all diagrams is scaled to the response time of the query using the simple 

hash-join algorithm. 
The join processes read their input from selection processes, that produce 

output at a limiting rate. This was done to make the distinction between the 

two phases of the simple hash-join visible. The pipelining hash-join makes a 

faster start than the simple hash-join, because tuples belonging to both operands 

can be processed right from the beginning. Also, the pipelining hash-join starts 

producing output earlier than the simple hash-join. So, the consumer of the 

result of the pipelining hash-join can start earlier than the consumer of simple 

hash-join. As a result, the response time of the evaluation with the pipelining 

hash-join is better. 
The CPU-utilization of the pipelining hash-join is increasing in time. This is 

caused by the increasing probability to find matching tuples as the hash-tables are 

filled. For join-operations that are higher up in a join tree this effect is enlarged 

by the fact that the operand tuples arrive at the join process with increasing rate. 

The difference in synchronization requirements described above shows that 

the pipelining hash-join allows more interoperator pipelining than the simple 

hash-join, and so it fits more naturally in a dataflow execution model. 

It is the asymmetry in the simple hash-join algorithm that explains the difference 

between left-deep, and right-deep scheduling reported in [17]. Using a symmetric 

algorithm, like the pipelining hash-join yields the same performance for any linear 

join-tree. In the next section, the behavior of linear join-trees, and other join-tree 

formats is studied. 

3.3. Multi-join queries 

In this section, the trade-offs of using differently structured query trees for the 

execution of multi-join queries are discussed. Also, the performance of the 

simple, and the pipelining hash-join in multi-join queries are compared. Figure 

4 shows a linear and a bushy join tree for an eight-way multi-join query. 

3.3.1. Trade-offs in join-tree formats. First, some terminology is introduced. The 
term hop is used for the transmission from one join operation to its parent (the 

operation consuming its output) or its operand. The termination delay over one 

or more hops is the difference in termination time of the adjacent join operations. 

The term delay is used as a shorthand for termination delay. 
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Figure 4. A bushy and a linear join tree. 

Various types of nodes in a join tree can be identified. 

• The leaf-nodes in a tree have two base relations as operands. These base- 

relations are available to the join process immediately. 

• The intermediate nodes in a linear tree and some intermediate nodes in bushy 

trees have one base relation and one intermediate result as operands. The 

base relation is available to the join process immediately, but the join process 

has to wait for the other operand to become available from the previous 

join-operation. 

• Bushy join trees contain join-processes that have two intermediate results as 

operands. Such a join process has to wait for both operands, and, therefore, 

the join process does not start immediately. 

Having to choose a join tree for a join query, we are faced with the following 

trade-off: The join processes in a linear join tree can all start immediately 

hashing their base-relation operand; in this way, they fill the time waiting for 

the other operand. On the other hand, a linear join tree contains the longest 

possible pipeline, causing a larger number of delays on top of each other. The 

pipelines in a bushy join tree are shorter than the ones in a linear one, but some 

intermediate join processes have to wait for both their operands, what may lead 

to large delays. In the next section, an experiment is described that shows that 

the optimal format of the join tree for a multi-join depends on the size of the 

operands. 

5.3.2. An experiment To study the execution characteristics of various join trees, 

a join between 16 relations that have equal numbers of equally sized tuples, 

matching one tuple in each operand to exactly one tuple in another operand, is 

studied. The tuples that result from a join operation are projected to the size 

of the tuples in the operands. As the size of the tuples is equal throughout the 
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query, the size of the operands is determined by the number of tuples in them. 

All join operations have a private processor. All possible join trees for this 
query yield the same amount of joining and data communication costs. Also, the 

individual joins in the query are equal in costs, and sizes of their operands. So, 

any differences in response time are caused by differences in the synchronization 

of the join tree that is used only. 
In four subexperiments, the 16-way join described above is evaluated for 

operands with resp 1000, 5000, 10,000, and 50,000 tuples. The response times 

of those queries are measured with the simulator for a linear, and a symmetric 

completely bushy tree. The response times are shown in Table 1. 

Table 1. Response times in seconds. 

1000 5000 10000 50000 

pipelining hash-join 

simple hash-join 

bushy 3.9 16.2 31.1 149.0 

linear 6.8 13.9 23.0 95.4 

bushy 5.5 22.5 43.8 214.0 

linear 7.0 15.4 25.8 109.5 

First, we want to remark, that the pipelining algorithm outperforms the simple 

hash-join in all cases. The difference in performance is larger for bushy scheduling 

than for linear scheduling. This is caused by the fact that the pipelining hash-join 

degenerates to the simple hash-join in join operations that are relatively close 

to the root of a linear tree. In those join operations, the entire base-relation 

operand is processed before the tuples of the other operand are available. In 

the remainder of this section, only the schedules using the pipelining hash-join 

are considered. 
Apparently, the bushy scheduling performs better for small operands and linear 

scheduling is better for large operands. Figures 5 and 6 show the execution 

characteristics of linear and bushy query trees for small and large operands. 

These figures show the join trees that were used (see Figure 4). Similar to 

Figure 3, some join symbols are replaced by the simulator diagrams of the 

corresponding join-processes. In each join tree, the time-axis of the diagrams is 

scaled to the response time of the corresponding query. 

From the diagrams in Figure 5, we see that in a linear tree, there is a constant 

termination delay over the pipeline between two adjacent joins. This delay does 

not depend on the number of tuples in the operands. Some diagrams show two 

distinct phases in the processing of the join. The first phase is the construction of 

a hash-table for the base-relation operand. The other phase is joining the other 
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Figure 5. E x e c u t i o n  c h a r a c t e r i s t i c s  o f  l i n e a r  j o in  t rees .  

operand to this hash-table. In the lowermost join operation these two phases 

are mixed, as described by the pipelining hash-join algorithm. The further up in 

the join tree, however, the longer the join-operation has to wait for its second 

operand. At a certain point, the complete hash-table for the base-relation is 

read before the first tuple of the second operand arrives. From this point on, the 

pipelining hash-join behaves similar to the simple hash-join. The point at which 

the two operands of the join are processed completely separately is reached 

earlier for small operands than for larger ones. 

The diagrams for the bushy tree lead to the following observations. The 

leaf-nodes show the same characteristics as the leaf-node of the linear tree. 

The delay over one hop is larger than in case of a linear tree, because neither 

operand is directly available. Within one query each hop yields approximately 

the same delay. Moreover, a closer look at the characteristics shows that the 

scaled diagrams are similar for the large and the small query. This means that 

the entire experiment scales with the number of tuples in the operand, and 

therefore, the delay over one hop is proportional to the size of the operands. 

This proportionality is a surprising result that cannot be accounted for intuitively. 

The difference in termination delay between linear and bushy trees can explain 

the fact that bushy trees work better for small operands, and linear trees for 

larger operands. In both cases the response time of the entire query is equal to 

the sum of the execution time of a leaf-node join operation, and the accumulated 

termination delay in the query. For both the linear and bushy tree, the execution 

time of a leaf-node join operation is proportional to the number of tuples in one 
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Figure 6. Execution characteristics of bushy join trees. 

operand. This part of the response time is equal for a linear and a bushy tree with 

equal operands. The accumulated termination delay, however, is the same for all 

linear trees, and proportional to the number of tuples in the operands for bushy 

trees. So, the accumulated termination delay for bushy trees grows linearly with 

the number of tuples in the operands. The constant accumulated termination 

delay for a linear tree is larger than the (small) delay of the bushy tree for small 

operands, but smaller than the (large) delay the bushy tree with large operands. 

So, at a certain operand size, the linear trees outperform the bushy ones. With 

the parameter setting that was used in our simulation experiment, the break-even 

point lies at about 2000 tuples. 

The next section introduces a mathematical model for dataflows query section 

that can explain the simulation results for bushy join-trees. 

4. Analytical modeling of dataflow query execution 

In this section, an analytical model for dataflow query execution is developed. 

The key idea behind this model is the fact that the rates  at which tuples are 

transported, and processed in a dataflow system are modeled. As such, the 
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model views a query in execution as an "assembly line," in which the tuples 

are the items to be transported along the operations processes which serve as 

workers. The operation processes map the rate at which tuples are available to 

them onto the rate at which they produce output tuples. This mapping depends 

on the type of operations process, and on the resource (CPU capacity) that is 

available. 

First, a general model shows how an abstract relational operation maps its 

input stream onto an output stream. The general model can be specialized to 

model specific relational operations. In this paper, we describe the model for 

the pipelining hash-join. Other relational operation, however can fairly easily be 

modeled also [21]. Linking the models for individual join operations together 

yields a model for a join-tree. That model can explain the surprising proportional 

termination delay in bushy query trees, that was found in the previous section. 

4.1. Some preliminaries 

4.1.1. Resources in the model The model describes the rates at which tuples 

are transported and processed in a dataflow system. Also, the utilization of the 

processors participating in the dataflow system is modeled. Because, as described 

above, the bandwidth of the message-passing network is assumed to exceed the 
requirements of the application, the utilization of this hardware is not modeled. 

This paper only deals with retrieval, and in a main-memory context, retrieval 

does not need any disk-accesses. So, there is no need to model secondary storage 

either. The only resource that has to be taken into account now is the CPU. 

The resulting model is simple and consequently powerful: a complete analysis is 

possible for some classes of queries. 

4.1.2. Modeling discrete phenomena. Tuples are discrete entities. Our model, 

however, is continuous. A continuous model for a discrete phenomenon is 

possible if large numbers of events are described [15, 24]. The transition from 

a discrete to a continuous model eliminates the need to use probability theory; 

if, in a discrete model, there is a probability 0.5 that a tuple is generated, the 

continuous model will generate half a tuple. This way of modeling has generally 

been accepted in physics and biology, and can be used here without problems. 

4.1.3. Entities and dimensions. The rate at which tuples are transported and 

processed, and the utilization of processors are modeled. To do so, the costs 

of certain operations are expressed. Tuple transport is expressed in number of 

tuples per timeunit. The processor load is dimensionless, and has a maximum 

of 1. The costs of operations are expressed in time units per tuple. Consider 

as an example, an operation that processes tuples at rate z tuples/timeunit. The 

processor spends A timeunits for the processing of one tuple. The resulting 

processor load is Az (dimensionless). 
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Figure 7. Formalism used to develop an analytical model for one data flow operation. 

4.2. Definition of a dataflow model 

Figure 7 summarizes the essentials of a dataflow operation. The large box 

in this figure represents the processor; the small box represents the operation 

process. Data is sent to the operation process at the bottom of the box; the 

result is sent away at the top of the box. 

4.2.1. Terminology. Each operation process has one or two operands. In this 

paper, only the join, which is a binary operation is considered, so there are always 

two operands. In Figure 7, each input stream contains two arrows: the first 

arrow indicates the rate at which tuples are available to the operations process, 

the second one represents the rate at which tuples are processed by the operation 

process. The arrow in the output stream indicates the rate at which result tuples 

are produced. The left column in Figure 7 shows the formalism used: 

a(t) is the rate at which tuples of a particular operand are available to an 

operation process at time t. 

z(t) is the rate at which tuples of a particular operand are processed by an 

operation process at time t. 

w(t) is the processor utilization at time t. 

r(t) is the rate at which tuples are produced at time t. 

The functions a(t) and z(t) can be labeled with a subscript to indicate which 

operand is meant. 

A query in execution, consists of a number of communicating operation pro- 

cesses. Time t = 0 is used to indicate the starting point of the entire query. 

Some operation processes in the query may be idle at time t --- 0. T is used for 

the time at which an operation process is ready. 
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4.3. Some relationships 

From the description of dataflow query execution, the following relationships can 

be deduced: 

An operation process cannot process tuples in an operand before they have 

arrived at its input stream. This can be modeled as 

/0 /o gt in [0, T] : a(r) dr > x(r)  dr 

The processor utilization is a function of the rate at which the operand tuples 

are processed: 

w(t) = W(x~(t),  x2(t)) (1) 

The rate at which tuples are produced is also a function of the rate at which the 

operand tuples are processed: 

= re(x l ( t ) ,  x=(t)) 

If a CPU works at full capacity, its utilization is 1. Therefore, w(t) can never 

be larger than 1. 

Our model discriminates between the rate at which operand tuples are available, 

and the rate at which they are processed. This is done, because these two may 

differ, if the operation process cannot keep up with the rate at which tuples are 

sent to it. This observation leads to the definition of two different modes in 

which an operation process can work. 

input-limited mode Tuples are sent to the operation process at such low rate, 

that the operation process can keep up with this rate. Now, 

w(t) < 1 and x~(t) = aj(t) for both operands. 

CPU°limited mode Tuples are sent to the operation process at such high rate, 

that the receiving processor cannot keep up with this rate, so 

w(t) = 1 and there is an operand for which x~(t) < aj(t). 

This discrimination leads to the central equation in this paper: 

xj(t) = aj(t) if process input-limited 

xj(t) meets w(t) = 1 if process CPU-limited (2) 

This equation is used to evaluate the behavior of an operation process. An outline 

of such an evaluation is as follows: Equation (1) expresses the CPU-utilization 

as a function of the rates at which operand streams are processed. In the input- 

limited mode of an operation process z~(t) = a~(t), and W((al( t ) ,  a2(t)) < 1. In 

CPU-limited mode, the join operation cannot keep up with rate at which tuples 
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arrive so W((al(t), a2(t)) > 1. ~e re fo re ,  evaluation of PV((al(t), a2(t)), and 

comparing the result to 1 (the maximal CPU-utilization) can reveal whether an 

operation process is input-limited, or CPU-limited at time t. If an operation 

process is input-limited, the rate at which operand streams are processed is clear 

(a(t)). If, on the other hand, the process appears to be CPU-limited, then 

solving equation W((xl(t), x2(t)) = 1, for zj(t) shows at what rate each operand 

tuple-stream is processed. 

Knowing the functions xj(t) and mapping R, the rate at which tuples are 

produced by an operation process, r(t), can be calculated. The result of an 

operation process can be sent as input to another operation process. Those 

tuples are assumed to arrive at the receiving operation process with some delay 1 

at the rate at which they are produced by the producing operation process. 

So, then function a(t) for a consumer is known, and we are in the position to 

evaluate the behavior of this consumer process. 

Summarizing, the model maps the rate at which operand tuples are available, 

to the rate at which result tuples are produced. To describe a query tree, the 

result of the evaluation of one operation can be used as input to a next one. 

• In the remainder of this section, the model developed above is specialized to 

describe the pipelining hash-join. After that, the results of this evaluation are 

used to study bushy join-trees. In all cases, the goal is full characterization of 

the participating operations in terms of x(t), w(t), r(t), and T, given the rate at 

which operand tuples are available (a(t)). 

4.4. Pipelining hash-join 

In this section, it is assumed that the operand tuples from both operands are 

available at a nonlimiting rate, so, the operation process only processes in its 

CPU-limited mode. The more general case, in which the join-process works 

both input-limited, and CPU-limited, is dealt with afterwards. Both operands 

are equal in size: they contain n tuples. The selectivity of the join operation is 

assumed to be Q: the result contains on 2 tuples. 

From the description of the pipelining join algorithm, it is clear that the join 

algorithm processes tuples from both operands at the same rate (x(t)). The goal 

of this section is finding x(t), and deriving T, and r(t) from x(t). 
During the join operation, each operand tuple has to be made available to 

the join-process, its hash-value has to be calculated, it has to be inserted in a 

hash-table and it has to be compared to the tuples in the corresponding bucket 

of the other operands hash-table. These costs are assumed to be constant during 

the join-process (A). 2 If a match is found, a result tuple is generated. The 

costs associated with producing one tuple (concatenation, projection, storage or 

network transport) are assumed to be constant too (S). The distinction between 

work dedicated to processing operand tuples and to generating result tuples is 

essential. Through this distinction, insight is gained in how an operation process 
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maps its input streams onto an output stream. 

4.4.1. The model. The development of the model for a join operation derives 

an equation for the load of the processors as a function of the rate at which 

the operand tuples are processed. Solution of this (integral) equation yields the 

maximum rate at which a join process can process its input. 

The tuples in both operands are processed at the same rate (z(t)). Note, that 

this rate is time dependent. The model will reveal that this rate decreases with 

the time. So, the amount of work the processor spends on processing input 

tuples is equal to 

2Ax(t) 

There is a factor 2 in this expression, because tuples from both operands are 

processed. 

The amount of work spent on generating the result is calculated as follows: 

The number of tuples in the entire first operand that join with one tuple in the 

second operand is equal to 

Qn 

Therefore, the number of tuples that a tuple, arriving at time t, matches with 

is proportional to the number of tuples that have already arrived in the other 

operand. The number of tuples that have arrived in an operand at time t is 

equal to 

0 t x('r) d'r 

So, the number of result-tuples that is formed upon the arrival of one tuple at 

time t is equal to 

p x('r) dT 

Using this expression, the amount of work spent on generating the result can be 

formulated as 

/: 2osx(t) dr 

Again, the factor 2 is caused by the fact that tuples from both operands are 

processed. 

The CPU-utilization is equal to the sum of the amount of work spent on 

processing the input, and the amount of work spent on generating the output. 

Z' 
w(t) = 2Ax(t) + 2oSx(t) x(r) dr (3) 
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Q 1In 2In 

,(t) 

n(2A + 2S) 

z(t) 

T n(2A + S) 

Figure 8. Execution characteristics of two join operations as produced by the analytical model. 

The join-operation process in its CPU-limited mode, so equation (2) can be 
specialized to: 

f0 t x(t) meets 2Az(t) + 20Sx(t) x(r) d-r = 1 (4) 

4.4.2. Finding the rate at which operand tuples are processed. We are now ready 

to find z(t) from equation (4). This integral equation can be solved using 
elementary calculus [21]: 

1 

x(t) = 2v/O St + A 2 (5) 

The bottom row of Figure 8 shows two diagrams that plot x(t) against t. As 

expected, x(t) decreases in the time, because, as the join processes proceeds, 

more effort has to be spent on generating result tuples, because the hash-tables 
are filled. 

4.4.3. Termination of  the join-process. The join operation is ready at time T. At 
this time, n tuples per operand have been processed: 

d r  = 

Substitution of equation (5) and then solving this equation for T yields: 

T = 2An + QSn 2 (6) 
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This result is reasonable: 2n operand tuples and on ~ result tuples have to be 

processed. This processing costs 2An + oSn 2 units of time. The CPU-utilization 

is equal to 1 during the entire join-process, so, the join process will end at 

2An + oSn  2. 

4.4.4. The output stream. The rate at which result tuples are produced can be 

derived from equation (4): 

fo 
t 1 - 2Ax(t)  

r( t)  = 2#x(t) x(r) dr = S 

Substitution of (5) yields 

= 1 , l o s t  + A2 (7) 

The top row of Figure 8 shows diagrams that plot r(t) against the time. r(t) is 

increasing in time, because the probability of finding a match in the join-process 

increases with the time. 

4.4.5. Two join-processes with different selectivily. Figure 8 shows some diagrams 

of the characterization of two different join-processes? Two join-operations are 

illustrated: one in which the selectivity of the join was chosen to be 1In so that 

the result contains n tuples, and another in which the selectivity of the join is 

2/n,  so that the result contains 2n tuples. The first join-operation is in the first 

column of diagram in the figure, and the second join-operation is in the second. 

The topmost diagrams show the rate at which result tuples are generated as 

a function of the time. This rate in increasing in the time due to increasing 

probability of finding a match. At the very beginning of the join-operation r(t) 

is equal to zero, due to the fact that no tuples to form a match with have arrived 

yet. As expected, the second join-operation produces tuples at a higher rate 

than the first one. 

The middle diagrams show the processor-utilization as a function of the time. 

As the join-operations are CPU-limited during the entire operation, the processor 

utilization is equal to 1. In these diagrams, an additional curve shows what portion 

of the CPU-effort is spent on processing input tuples (area below the curve), 

and what proportion is spent on generating output (other area). We see that the 

less selective join-operation spends a larger portion of its effort on generating 

output, and that in both cases the amount of work related to generating output 

increases, at the expense of processing input. 

The bottom diagrams show the rate at which input tuples are processed. 

As expected this rate is decreasing, and this effect is stronger for the second 

join-operation. 

The model developed in this section, yields an analytical expression for the 

rate in which output tuples are produced (equation (7)). In the next section the 
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output stream of a single join-operation is used as input to a next join-operation: 

in this way join trees are studied. 

4.5. Symmetric bushy join trees 

The behavior of symmetric bushy join trees is analyzed. Figure 4a shows a 

symmetric tree for an eight-way join. It is assumed that the operands are equal 

in size (each operand contains n tuples) and that the join operations match one 

tuple in their left operand to exactly one tuple in their right operand, so the 

selectivity (0) of the join-operations is equal to 1/n. Each join-operation has 

a private processor. The bushy join tree in the simulation experiment that Was 

described in Section 3 corresponds to the sort of join trees that are modeled here. 

It is clear that the join-operations that have two base relations as operands, all 

have the same execution characteristics. These join operations are called level0 

joins. The join operations that join the results of level0 joins again have the 

same characteristics. They are called levell joins. In the same way, level2, level3 

and even higher levels can be defined. 

4.5.1. The model Here, the models for individual join-operations, like the one 

developed in the previous section are linked together to describe a bushy join 

tree. 

It is assumed, that the base operands are available to the level0 joins at 

nonlimiting rates. Therefore, the characteristics of these joins are as described 

in a previous section. To describe the other levels, some notation conventions 

are needed. In this section, subscripts are used to indicate the level of the join- 

operation. Due to the symmetry of the problem, we do not need to discriminate 

between the two input streams of one join-operation. So, xl(t) denotes the rate 

at which tuples of either levell join-operand are processed. 

The level0 joins operate in their CPU-limited mode from the beginning on. 

Higher level joins, however, are expected to show an increase in their CPU- 

utilization: they start input-limited, and after some time they switch to CPU- 

limited. The following symbols are used to describe this: 

0i The time at which a CPU executing a level/join is saturated. So, at this time, 

the join process switches from its input-limited to its CPU-limited mode. 00 

is equal to 0. 

~ The number of tuples that have been collected in the hash-table of an operand 

of a level/join at time 0~. 7-[0 is equal to 0 and 7-ti = of °~ x(~-) dr. 

Result tuples from one level are sent as input to a join-operation in the next 

level. So, 

= (8) 
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Now, we can derive the model for a join-operation at level/of a bushy join tree. 

Equation (8) is used to characterize the input rate, and the central equation of 

this paper (2) is used to model the operation process. Furthermore, an expression 

for CPU-utilization (3) for the pipelining join is derived in the previous section. 

The combination of these three equations, and the definition of 0~ yields the 

model for level i of a bushy join tree: 

x~(t) = r~_l(t)  if 0 _< t < o~ 

xi(t) meets 2Axi(t) + 2 xi(t) xi(r) dr = 1 

In these equations ri(t) is defined by 

2 f t 
ri(t) = "~zi(t) Jo xi(r) dr 

if t > O~ 

Finding the rate at which operand tuples are processed. 

be solved explicitly for xi(t) [21]. LevelO was solved in the previous section: 

1 
• 0(t)  = 

2 ~ o S ,  t + A~ 

For i > O, xi(t) can expressed recursively as 

These equations can 

(9) 

/ 

= ) r~<(t) if 0 < t < e~ 
~i(t) 

I ~ , _ l ( t  - 6) if  t > o, ( lO)  

where 

/o ri(t) = xi(t) xi(r) dr (11) 

Also it can be derived that 

Oi = a + i6 (12) 

where a and 6 are constants that areproportionaI to n. Finally it can be concluded 

that 

~ = ~ j ,  i, j > O (13) 
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Note that, although this solution is formulated recursively, it is well-defined, 

because it is initialized with x0. This solution looks rather complex, but it can 

be interpreted in the following way. 

• Two phases can be discriminated in a join-process: The startup phase, in which 

the join-process does not saturate its processor, and the main phase, in which 

the join-process is CPU-limited. In a level0 join the startup phase has length 0 

(so, there is no startup phase). 

• The main phases of subsequent join levels are similar, apart from a translation 

in time. This implies that the main phase of each subsequent level starts 

and ends 8 time units after its predecessor. 

• The startup phase of a join-operation takes longer for higher levels, but the 

number of tuples that are processed (~),  and consequently the amount of 

work that is done during startup is equal for each level. 

Termination of the processes. In the previous section the termination time for 

level0 joins was derived: 

To = 2An + ~Sn 2 (14) 

Because each subsequent level does the same amount of work during its startup 

phase, and its main phase is translated 8 with respect to its predecessor, it is 

easy to see that 

T~ = T0 + i8 (15) 

From this result, it can be concluded that the termination delay of subsequent 

join levels is proportional to n. Also the response time of the entire query 

is proportional to n. These statements confirm the surprising results from our 

simulation study (see Section 1). 

4.5.2. Examples. Figure 9 show diagrams that plot w(t) against the time for 

level0 through level3. Similar to the diagrams for w(t) in Figure 8, an additional 

plot in the diagrams shows that portion of the CPU-time is spent on processing 

the input. Figure 9 has two columns of diagrams: the first column is on a 16-way 

join between operands of 1000 tuples; the second one shows the same join with 

operands of 1500 tuples. The time axis of all diagrams is scaled in the same way. 

Comparison of the diagrams in one column shows that the termination delay 

between subsequent levels is constant. Comparison of all diagrams shows that 

the termination delay is proportional to the number of tuples in one operand. 

4.5.3. Consequences for optimization and scheduling of multi-join queries. Although 

the model for join trees has to be extended to cover general join trees, it can now 

already be indicated how the sort of results that the model yields (with the results 
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Figure 9. Execution characteristics of join-operations in a bushy schedule. 

for symmetric bushy trees as an example), can be used for query optimization, 

and query scheduling. Apparently, the results not only indicate the amount of 

work that has to be done on behalf of one relational operation; they also give an 

indication of when this work has to be done and how busy a processor will be. 

The following examples illustrate how this scheduling information can be used. 

• A query optimizer, having to select an execution strategy for a query, can use 

both the amount of work that has to be done and the timing information. It 

is possible that a more expensive schedule (in terms of total processing costs) 

has very good timing characteristics, so that its response time is very good. If 

response time is the important figure in the system, such a schedule should be 

selected. 

• The knowledge about when processors are busy can be used by a scheduler: 

A processor that is assigned to a relational operation can be used for other 

purposes (possibly another relational operation) during the time that it is idle. 

• The model for bushy query trees shows that in the execution of a join, a 

startup, and a main phase can be discriminated. If the scheduling of a join 

at level/ is postponed until time i6, the main phase of the join is left the 

same, and the startup phase uses the processor at full capacity during a shorter 

period of time. Therefore, postponing the scheduling of a level/ join until 

time i6 does not affect the response time of the entire query. In Figure 10, 

the characteristics of a level2 join are shown. The left diagram shows the 

characteristics of a join that is scheduled immediately after query startup, the 
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Figure I0. Scheduling of join-operations in a bushy tree. 

right one shows the characteristics when the join is scheduled at time 26. 

Although a limited type of join trees was modeled in this section, we feel that 

the model increased our insight in the working of the pipelining join algorithm, 

and its cooperation with its producers and consumers. Specifically, the fact that 

the model can predict when the higher level join-operation needs CPU capacity 

is encouraging. Also, the fact that postponing the scheduling of certain join- 

operations to some extent does not influence the response time to the entire 

query can be used easily in a scheduler: two different relation operations can 

be scheduled subsequently to one processor. 

5. Conclusions and future work 

The work reported in this paper is a part of our research on query optimization 

strategies for a parallel dataflow DBMS. In the introduction to this paper, a 

methodology to do this research was outlined. It was illustrated that gaining 

understanding of parallel dataflow query processing is an essential step. This 

understanding should used to design a heuristic query optimizer for a parallel 

dataflow DBMS. 

The work reported in this paper was introduced as a step into the direction 

of understanding parallel dataflow query execution. Looking back, we are faced 

with some questions: "What insight was gained from our study?", "How can 

this knowledge be used?", and "How can this knowledge be validated?". These 

questions are now answered in turn. 

What did we learn from our study? 

• The simulation study showed that different aspects of the algorithms which 

are used for relational operations in a query tree are important. Apart from, 

of course, the CPU-costs of an algorithm, also its synchronization with the 

processes that produce and consume its input and output is important to 

yield a good performance. It has shown that the well-known simple hash- 

join algorithm has synchronization requirements that are too tight to allow 

performance gain from pipelining. A new hash-join algorithm, the pipelining 

hash-join, was proposed that is expected give good performance in a dataflow 

system. Algorithms for other relational operations can be studied in the same 
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way. Pipelining algorithms are possible for many relational operations. 

• The simulation study of various join-tree formats gave insight in the behavior 

of individual join-processes in relationship to their position in a join tree. It 

was shown that the time at which a join-operation can start processing depends 

on the position of the join-operation in the join tree, and on the sizes of the 

operands. Regular linear, and bushy trees were studied extensively. Other 

join-tree formats need additional study. 

• The mathematical model which was developed in this paper confirms some of 

the simulation results. Also, the model can predict the effect of changes in 

the scheduling of join-processes, as indicated in the previous section. 

How can this knowledge be used? The gained insight can be used in several 

ways. Firstly, pipelining algorithms should be used in dataflow systems. Secondly, 

a query optimization design, based on the ideas developed in this paper becomes 

feasible. Knowing the CPU-costs, and the delays that are incurred in a join tree, 

the response time to a join-query can be calculated. This cost evaluation can be 

used in combination with known query optimization techniques, that search (part 

of) the space of possible execution strategies to find the cheapest one. Finally, 

the insight in the timing requirements can be used in a scheduler, as illustrated 

in Figure 10. 

How do we validate this knowledge. Currently, we are planning experiments 

on the latest version of PRISMA/DB. 

Following the path of our research requires the study of more general join 

trees. Some preliminary work in this direction has been done and the results are 

encouraging. We plan to incorporate other relational operations in our model, 

and we want to study the effect of distributing individual relational operations. 

Although the model was only evaluated for a limited class of queries, we can 

now already make statements about the scheduling of operations in query trees. 

It should be emphasized that, as explained in the introduction, these statements 

have to be validated. 

This paper is about parallel query execution. The concrete results of our 

study are worthwhile, and they probably eventually will be used to design new 

query execution strategies. We feel, however, that apart from the concrete 

results, the approach to obtaining them also is a contribution to the database 

research. The experimental approach which is adopted from science, combined 

with mathematical modeling of the observed phenomena, is, to our opinion, a 

viable methodology to tackle certain problems in computer science. 

Notes  

1. The transmission delays can easily be handled in our model, and their influence 

on the results is simple. The formalism is complicated by using them however, 
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and also, the transmission delay is assumed to be small compared to the 

time needed to evaluate a relational operation. Therefore, we choose not to 

incorporate them in the model in this paper. 

2. Actually these costs are increasing slightly during the join process, due to the 

fact that hash-buckets are filled. Using a good hash-table though, minimizes 

this increase. 

3. Part of the symbolic manipulation and the generation of plots of the results of 

this manipulation was carried out using the symbolic manipulator Maple [7]. 
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