
Distributed and Parallel Databases 1 (1993), 103-128

© 1993 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands

Dataflow Query Execution in a Parallel
Main-Memory Environment

ANNITA N. WILSCHUT

University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands

PETER M.G. APERS

University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands

ANNITA@CS.UTWENTE.NL

APERS@CS.UTWENTE.NL

Abstract. In this paper, the performance and characteristics of the execution of various join-trees

on a parallel DBMS are studied. The results of this study are a step into the direction of the design

of a query optimization strategy that is fit for parallel execution of complex queries.

Among others, synchronization issues are identified to limit the performance gain from parallelism.

A new hash-join algorithm is introduced that has fewer synchronization constraints than the known

hash-join algorithms. Also, the behavior of individual join operations in a join-tree is studied in a

simulation experiment. The results show that the introduced Pipelining hash-join algorithm yields a

better performance for multi-join queries. The format of the optimal join-tree appears to depend

on the size of the operands of the join: A multi-join between small operands performs best with a

bushy schedule; larger operands are better off with a linear schedule. The results from the simulation

study are confirmed with an analytic model for dataflow query execution.

Ke~,ords: parallel query processing, multi-join queries, simulation, analytical modeling

1. Introduction

During the last years much attention has been paid to the development of parallel
DBMSs. Using special purpose hardware has shown not to be successful; instead,

a parallel DBMS running on general purpose shared-nothing hardware appears

to be the right choice [8]. Also, various query processing strategies have been

implemented: dataflow query processing appears to be superior to control-flow

scheduling of queries [9, 19]. Therefore, this paper studies query processing in
a general purpose, shared-nothing, dataflow architecture.

Teradata [20], GAMMA [9], Bubba [5], HC16-186 [6], and PRISMA [1] are

examples of parallel DBMSs that actually were implemented. Each of these
systems exploits some sort of parallelism to speed up query execution. Within

a query, interoperator and intraoperator parallelism can be discriminated [17,

23, 26]. Orthogonal to this distinction, pipelining can be contrasted to (pure)
horizontal parallelism. This last type is called parallelism here, like in many

other papers, lntraoperator parallelism is the primary source of parallelism in
the projects mentioned above. This type of parallelism is well understood now,
and using it, efficient execution strategies can be found for simple queries. The
Wisconsin benchmark [3], which consists of such simple queries on large volumes

104 WILSCHUT AND APERS

of data is used to describe the performance of a system [6, 9].

A dataflow architecture, however, offers the possibility to also exploit interop-
erator parallelism and pipelining by allocating different relational operations to

different (sets of) processors. The potential of using different types of parallelism

for one query, turns query optimization into a difficult problem, that cannot be

solved using conventional query-optimization techniques, due to the large num-

ber of execution plans that is possible for one query. So far, little research has

been done in this research area although it is identified to be important for the

further development of parallel DBMSs [5, 8]. The query optimizers for most

parallel DBMSs are based on the theory developed in [18], however, this theory

is not particularly fit for parallel dataflow query processing. For example, only

linear query trees are considered, although this class of trees does not necessarily

include the optimal one for a parallel environment.

In a first attempt to understand the effect of various query tree formats, [17]

studies the behavior of right-deep and left-deep linear query trees for multi-join

queries. It is concluded in that paper, that right-deep scheduling has performance
advantages in the context of GAMMA. In [10] it is shown how arbitrarily shaped

query trees can be parallelized using the "exchange" operator, which splits a
(part of) a query tree into a number of subtrees that can be executed in parallel.

Although that paper makes clear that certain query trees can be parallelized, it

does not solve the problem of which (type of) query tree performs best.
In this paper, we study the execution of multi-operation queries. The ultimate

goal of this study is the design of a query optimizer for a parallel DBMS. As

we chose to study the execution of large complex queries, this query optimizer

should aim at reducing the response time of these complex queries, rather than

optimizing the throughput for some workload. Relational multi-join queries are

used as an example, because the join is an important, and expensive relational

operation. An outline of the path, we want to follow for this research is as follows:

Query optimization comes down to selecting an execution strategy with low costs

[14]. Because searching the entire space of possible strategies is not feasible,

most query optimizers are heuristic [4, 12]. Heuristics are based on insight in

the essentials of query execution. So, to design a heuristic query optimizer

for a parallel DBMS, it is essential to understand the behavior of execution

strategies for a query on a parallel DBMS. Modeling is a way to gain insight

in the essentials of parallel query execution. Two approaches to modeling were

used in our study: simulation and analytical modeling. Both approaches allow

studying the response time of different execution strategies, and the utilization

of participating processors. The resulting knowledge, should eventually lead to

formulation of query optimization heuristics. It should be emphasized that we

do not aim at a detailed quantitative model for a parallel DBMS, but rather

at a simple, understandable framework that, by its nature, yields insight in the

modeled phenomenon. However,. neither intuition, nor the sort of model that is

presented here can validate the heuristics that they yield, and so, these heuristics
have to be validated against a real dataflow DBMS, or a detailed simulation if

DATAFLOW QUERY EXECUTION 105

the former is not available. The methodology described in this paragraph, is

similar to the methodology that is common in science: Scientists try to understand

natural phenomena by modeling them. Subsequently, hypotheses are formulated,

that are based on the model, and these hypotheses are validated against reality

by experimentation.

This paper describes a first step on the path outlined above. First, the results

of a simulation study are described. This work resulted in the proposal of a

new join-algorithm that is fit for dataflow query execution. Also, the execution

characteristics of multi-join queries were studied. An attempt to fully understand

the results of this simulation study led to the development of an analytical model.

The first results of this analytical model confirm the results of our simulation

study. In the near future, we want to follow the path by extending the analytical

model. That step should lead to the formulation of query optimization heuristics.

The research reported in this paper is carried out in the context of PRISMA/DB

[1, 2, 13, 26]. PRISMA/DB is a parallel, main-memory, relational DBMS that runs

on a 100-node shared-nothing architecture. The implementation of PRISMA/DB

was finished in 1991, and [25] evaluates its performance. The fact that PRISMA

is a main-memory system plays an important role in our research. The price

of primary memory has fallen sharply during the last years. As this trend is

expected to continue, an interesting question arises: How can huge amounts of

memory be used? In this study this question is specialized into: Can a very large

primary memory yield performance gain in a DBMS? Therefore, we are willing

to accept using large amounts of memory, if performance gain is expected in

return.

The remainder of this paper is organized as follows: The next section describes

dataflow query execution in a main-memory environment. Section 3 presents

simulation results. Section 4 introduces the analytical model and its elaboration

for join operations and join trees. The last section summarizes and concludes

the paper.

2. Dataflow query execution

A main-memory parallel DBMS running on shared-nothing hardware has the

following features: The hardware consists of a number of processors that can

communicate via a message-passing network. Each processor hosts part of the

base-data. A processor can access its part of the base-data directly. If a processor

wants to access the data stored on another processor, the processor storing the

data has to send the data to the processor that needs it via the network.

A query on a relational database can be represented as a dataflow graph.

The nodes of such a graph represent eXtended Relational Algebra operations

[11]. Leaf nodes have base relations as operand, intermediate nodes work on

intermediate results. Each processor can run one or more operations processes.

In this paper, we want to study interoperator parallelism, and therefore each

106 WILSCHUT AND APERS

operation process is assumed to have a private processor. This assumption

implies that intermediate results have to be transported via the network to

another processor. Operation processes evaluate XRA-operations on their local

data, or on tuple streams that are sent to them via the message-passing network.

The result of the evaluation of an XRA-operation consists of a (multi)set of

tuples. Such a result can either be stored locally, in which case it can be accessed

by the local professor later on; or it can be sent to one or more other operation

processes. In the last case, the sending and the receiving operation processes

can run concurrently, forming a pipeline.

Network transport of tuples is modeled as follows: To transport a tuple from

a process to another, remote process, first, it has to be "wrapped" and put on

the network hardware by the sending operating system, then, it is sent over the

network, and finally, it has to be retrieved from the network and "unwrapped"

by the receiving operating system. So, sending a tuple over the network implies

CPU costs on the sending and receiving processor, and actual transmission, which

implies a delay. In general, the CPU costs involved, appear to be the limiting

factor, and, therefore, the rate at which tuples are transported over the network

is determined by the capacity of the CPUs that send and receive the tuples and

not by the capacity of the network hardware. So, tuple transport is modeled in

terms of CPU costs on two processors [8] and a constant transmission delay.

3. Simulation of dataflow query execution

This section describes the results of a simulation study. First, the simulation

program used is described, then we study join algorithms, and finally we describe

a simulation of multi-join queries.

3.1. ~ e s ~ u ~ r

To study the execution characteristics of a query, a simulator for parallel query

execution was developed. This was done, because at the time at which this

research was started, PRISMA/DB was not ready yet. Also, the simulator is a

flexible tool to study parallelism. The input to the simulator is a schedule for a

query. In such a schedule, the size, fragmentation and allocation of the operands

and the intermediate results can be specified. The output consists of a diagram

for each operation process that was used in the schedule. These diagrams plot

the processor utilization (on behalf of that operation process) against the time.

The (horizontal) time-axis can be scaled. Figure 1 shows an example of such a

diagram.

The simulator models local processing and network transport of tuples. The

local processing model uses simple cost formulas for relational operations. Net-

work transport of tuples is modeled as CPU-costs on the sending and receiving

DATAFLOW QUERY EXECUTION 107

o o-!lnf-
, , , 1,

time

Figure I. Sample output of the simulator.

processor according to the description above. The simulator is parameterized

with the costs of simple operations on tuples. Most important, the ratio between

the costs of local processing, and the CPU-costs related to network transport of

tuples is set by the parameters. The parameter values that were used in this
paper are measured from PRISMA/DB.

3.2. Join algorithms

The choice of a join algorithm influences the execution characteristics of a
multi-join query in different ways.

Firstly, the processing, I/O, and communication costs are influenced. Schneider

and DeWitt [16] give an overview of well-known join algorithms and evaluate their
performance for simple join-queries by experimentation. Hash-join algorithms

are shown to be the most efficient ones for equi-joins. Therefore, in our paper,
only hash-join algorithms are considered.

Secondly, the synchronization between the joins that participate in a more

complex join query, is determined by the join algorithm used. In this section, the

synchronization requirements of a well-known hash-join algorithm are studied.
Because those requirements are too tight to allow considerable performance gain

from pipelining, a new main-memory hash-join algorithm is proposed that has
fewer synchronization requirements [22].

The known hash-join algorithms, grace hash-join, simple hash-join, and hybrid

hash-join, are disk-based, and they only differ in the way disks are used. There-

fore, only one main-memory version of these algorithms is dealt with in this

paper. This algorithm is called simple hash-join here.

3.2.1. Simple hash-join. The simple hash-join algorithm consists of two phases

(see Figure 2). In the first phase, one entire operand is read into an in-memory
hash-table. In the second phase, the tuples of the other operand are read one

by one, each tuple is hashed and compared to the tuples in the corresponding
bucket in the hash-table of the first operand. If a match is found, an output
tuple is produced. This algorithm is asymmetric in its operands, although the
join-operation is conceptually symmetric. The result is only formed during the

second phase of the algorithm.

108 WILSCHUT AND APERS

Simple Hash-Join Pipelining Hash-Join

Figure 2. Simple hash-join and pipelining hash-join algorithm.

/ \ / \

~A ~B aC ~D ~A CB

/ \
~C oD

Figure 3. Simple hash-join and pipelining hash-join.

3.2.2. Pipelining hash-join. The pipelining hash-join algorithm (see Figure 2),

aims at producing its output tuples as early as possible in the process of calculating

the join, without decreasing the performance of the join operation itself. During

the join process a hash-table for both operands is built. The join process consists

of only one phase. As a tuple comes in, it is first hashed and used to probe that

part of the hash-table of the other operand that has already been constructed.

If a match is found, a result tuple is formed. Finally, the tuple is inserted in the

hash-table of its own operand. When the last tuple of one of the operands is

processed, the join process can stop building a hash-table for the other operand,

because this hash-table will not be used any more. Keeping this last feature

in mind, it is easy to see that the pipelining hash-join degenerates to a simple

hash-join when one operand is available to the join process entirely, before the

first tuple of the other operand arrives. The pipelining hash-join algorithm is

symmetric in its operands.

3.2.3. Evaluation of the s#nple hash-join and the pipelining hash-loin.

Figure 3 shows the execution characteristics of the simple hash-join processes,

and of the pipelining hash-join processes in a four-way multi-join

(~rA ~ aB) t~ (aC ~ ~rD)

DATAFLOW QUERY EXECUTION 109

as visualized by the simulator. The figure shows the join tree for this query; two

join symbols in each tree are replaced by the diagrams showing the execution

characteristics of the corresponding join processes. As explained in Section 3.1,

these diagrams plot the processor utilization of the processor executing the join

against the time. Because the characteristics of aA ~ aB and ~rC ~ aD are

identical, only one of these join symbols is replaced by a diagram. The time

axis in all diagrams is scaled to the response time of the query using the simple

hash-join algorithm.
The join processes read their input from selection processes, that produce

output at a limiting rate. This was done to make the distinction between the

two phases of the simple hash-join visible. The pipelining hash-join makes a

faster start than the simple hash-join, because tuples belonging to both operands

can be processed right from the beginning. Also, the pipelining hash-join starts

producing output earlier than the simple hash-join. So, the consumer of the

result of the pipelining hash-join can start earlier than the consumer of simple

hash-join. As a result, the response time of the evaluation with the pipelining

hash-join is better.
The CPU-utilization of the pipelining hash-join is increasing in time. This is

caused by the increasing probability to find matching tuples as the hash-tables are

filled. For join-operations that are higher up in a join tree this effect is enlarged

by the fact that the operand tuples arrive at the join process with increasing rate.

The difference in synchronization requirements described above shows that

the pipelining hash-join allows more interoperator pipelining than the simple

hash-join, and so it fits more naturally in a dataflow execution model.

It is the asymmetry in the simple hash-join algorithm that explains the difference

between left-deep, and right-deep scheduling reported in [17]. Using a symmetric

algorithm, like the pipelining hash-join yields the same performance for any linear

join-tree. In the next section, the behavior of linear join-trees, and other join-tree

formats is studied.

3.3. Multi-join queries

In this section, the trade-offs of using differently structured query trees for the

execution of multi-join queries are discussed. Also, the performance of the

simple, and the pipelining hash-join in multi-join queries are compared. Figure

4 shows a linear and a bushy join tree for an eight-way multi-join query.

3.3.1. Trade-offs in join-tree formats. First, some terminology is introduced. The
term hop is used for the transmission from one join operation to its parent (the

operation consuming its output) or its operand. The termination delay over one

or more hops is the difference in termination time of the adjacent join operations.

The term delay is used as a shorthand for termination delay.

1 10 WlLSCHUT AND APERS

D~

/ \ / \
D~ ~ D<~

/ \ / \ / \ / \

bushy join-tree

/ \

/ \
linear join-tree

t ~ \
/ \

Figure 4. A bushy and a linear join tree.

Various types of nodes in a join tree can be identified.

• The leaf-nodes in a tree have two base relations as operands. These base-

relations are available to the join process immediately.

• The intermediate nodes in a linear tree and some intermediate nodes in bushy

trees have one base relation and one intermediate result as operands. The

base relation is available to the join process immediately, but the join process

has to wait for the other operand to become available from the previous

join-operation.

• Bushy join trees contain join-processes that have two intermediate results as

operands. Such a join process has to wait for both operands, and, therefore,

the join process does not start immediately.

Having to choose a join tree for a join query, we are faced with the following

trade-off: The join processes in a linear join tree can all start immediately

hashing their base-relation operand; in this way, they fill the time waiting for

the other operand. On the other hand, a linear join tree contains the longest

possible pipeline, causing a larger number of delays on top of each other. The

pipelines in a bushy join tree are shorter than the ones in a linear one, but some

intermediate join processes have to wait for both their operands, what may lead

to large delays. In the next section, an experiment is described that shows that

the optimal format of the join tree for a multi-join depends on the size of the

operands.

5.3.2. An experiment To study the execution characteristics of various join trees,

a join between 16 relations that have equal numbers of equally sized tuples,

matching one tuple in each operand to exactly one tuple in another operand, is

studied. The tuples that result from a join operation are projected to the size

of the tuples in the operands. As the size of the tuples is equal throughout the

DATAFLOW QUERY EXECUTION 111

query, the size of the operands is determined by the number of tuples in them.

All join operations have a private processor. All possible join trees for this
query yield the same amount of joining and data communication costs. Also, the

individual joins in the query are equal in costs, and sizes of their operands. So,

any differences in response time are caused by differences in the synchronization

of the join tree that is used only.
In four subexperiments, the 16-way join described above is evaluated for

operands with resp 1000, 5000, 10,000, and 50,000 tuples. The response times

of those queries are measured with the simulator for a linear, and a symmetric

completely bushy tree. The response times are shown in Table 1.

Table 1. Response times in seconds.

1000 5000 10000 50000

pipelining hash-join

simple hash-join

bushy 3.9 16.2 31.1 149.0

linear 6.8 13.9 23.0 95.4

bushy 5.5 22.5 43.8 214.0

linear 7.0 15.4 25.8 109.5

First, we want to remark, that the pipelining algorithm outperforms the simple

hash-join in all cases. The difference in performance is larger for bushy scheduling

than for linear scheduling. This is caused by the fact that the pipelining hash-join

degenerates to the simple hash-join in join operations that are relatively close

to the root of a linear tree. In those join operations, the entire base-relation

operand is processed before the tuples of the other operand are available. In

the remainder of this section, only the schedules using the pipelining hash-join

are considered.
Apparently, the bushy scheduling performs better for small operands and linear

scheduling is better for large operands. Figures 5 and 6 show the execution

characteristics of linear and bushy query trees for small and large operands.

These figures show the join trees that were used (see Figure 4). Similar to

Figure 3, some join symbols are replaced by the simulator diagrams of the

corresponding join-processes. In each join tree, the time-axis of the diagrams is

scaled to the response time of the corresponding query.

From the diagrams in Figure 5, we see that in a linear tree, there is a constant

termination delay over the pipeline between two adjacent joins. This delay does

not depend on the number of tuples in the operands. Some diagrams show two

distinct phases in the processing of the join. The first phase is the construction of

a hash-table for the base-relation operand. The other phase is joining the other

112 W I L S C H U T A N D A P E R S

b,4
s ~

i

b,<3

1><1

linear 1000 tuples

~<~

t><~ "

t><] ~-

linear 10000 tuples

Figure 5. E x e c u t i o n c h a r a c t e r i s t i c s o f l i n e a r j o in t rees .

operand to this hash-table. In the lowermost join operation these two phases

are mixed, as described by the pipelining hash-join algorithm. The further up in

the join tree, however, the longer the join-operation has to wait for its second

operand. At a certain point, the complete hash-table for the base-relation is

read before the first tuple of the second operand arrives. From this point on, the

pipelining hash-join behaves similar to the simple hash-join. The point at which

the two operands of the join are processed completely separately is reached

earlier for small operands than for larger ones.

The diagrams for the bushy tree lead to the following observations. The

leaf-nodes show the same characteristics as the leaf-node of the linear tree.

The delay over one hop is larger than in case of a linear tree, because neither

operand is directly available. Within one query each hop yields approximately

the same delay. Moreover, a closer look at the characteristics shows that the

scaled diagrams are similar for the large and the small query. This means that

the entire experiment scales with the number of tuples in the operand, and

therefore, the delay over one hop is proportional to the size of the operands.

This proportionality is a surprising result that cannot be accounted for intuitively.

The difference in termination delay between linear and bushy trees can explain

the fact that bushy trees work better for small operands, and linear trees for

larger operands. In both cases the response time of the entire query is equal to

the sum of the execution time of a leaf-node join operation, and the accumulated

termination delay in the query. For both the linear and bushy tree, the execution

time of a leaf-node join operation is proportional to the number of tuples in one

DATAFLOW QUERY EXECUTION 113

, j , - ~

bushy 10000 tuples

, , ~

, / \ / \

/ \ ,

/ \ / \ / \ / \ / \ / ~ .~ .,..~ .,. ,~

bushy 1000 tuples

Figure 6. Execution characteristics of bushy join trees.

operand. This part of the response time is equal for a linear and a bushy tree with

equal operands. The accumulated termination delay, however, is the same for all

linear trees, and proportional to the number of tuples in the operands for bushy

trees. So, the accumulated termination delay for bushy trees grows linearly with

the number of tuples in the operands. The constant accumulated termination

delay for a linear tree is larger than the (small) delay of the bushy tree for small

operands, but smaller than the (large) delay the bushy tree with large operands.

So, at a certain operand size, the linear trees outperform the bushy ones. With

the parameter setting that was used in our simulation experiment, the break-even

point lies at about 2000 tuples.

The next section introduces a mathematical model for dataflows query section

that can explain the simulation results for bushy join-trees.

4. Analytical modeling of dataflow query execution

In this section, an analytical model for dataflow query execution is developed.

The key idea behind this model is the fact that the rates at which tuples are

transported, and processed in a dataflow system are modeled. As such, the

114 WlLSCHUT AND APERS

model views a query in execution as an "assembly line," in which the tuples

are the items to be transported along the operations processes which serve as

workers. The operation processes map the rate at which tuples are available to

them onto the rate at which they produce output tuples. This mapping depends

on the type of operations process, and on the resource (CPU capacity) that is

available.

First, a general model shows how an abstract relational operation maps its

input stream onto an output stream. The general model can be specialized to

model specific relational operations. In this paper, we describe the model for

the pipelining hash-join. Other relational operation, however can fairly easily be

modeled also [21]. Linking the models for individual join operations together

yields a model for a join-tree. That model can explain the surprising proportional

termination delay in bushy query trees, that was found in the previous section.

4.1. Some preliminaries

4.1.1. Resources in the model The model describes the rates at which tuples

are transported and processed in a dataflow system. Also, the utilization of the

processors participating in the dataflow system is modeled. Because, as described

above, the bandwidth of the message-passing network is assumed to exceed the
requirements of the application, the utilization of this hardware is not modeled.

This paper only deals with retrieval, and in a main-memory context, retrieval

does not need any disk-accesses. So, there is no need to model secondary storage

either. The only resource that has to be taken into account now is the CPU.

The resulting model is simple and consequently powerful: a complete analysis is

possible for some classes of queries.

4.1.2. Modeling discrete phenomena. Tuples are discrete entities. Our model,

however, is continuous. A continuous model for a discrete phenomenon is

possible if large numbers of events are described [15, 24]. The transition from

a discrete to a continuous model eliminates the need to use probability theory;

if, in a discrete model, there is a probability 0.5 that a tuple is generated, the

continuous model will generate half a tuple. This way of modeling has generally

been accepted in physics and biology, and can be used here without problems.

4.1.3. Entities and dimensions. The rate at which tuples are transported and

processed, and the utilization of processors are modeled. To do so, the costs

of certain operations are expressed. Tuple transport is expressed in number of

tuples per timeunit. The processor load is dimensionless, and has a maximum

of 1. The costs of operations are expressed in time units per tuple. Consider

as an example, an operation that processes tuples at rate z tuples/timeunit. The

processor spends A timeunits for the processing of one tuple. The resulting

processor load is Az (dimensionless).

DATAFLOW QUERY EXECUTION 115

r (t)

w (t)

x (t)

a (t)

output

I relational

operation

1 2

Figure 7. Formalism used to develop an analytical model for one data flow operation.

4.2. Definition of a dataflow model

Figure 7 summarizes the essentials of a dataflow operation. The large box

in this figure represents the processor; the small box represents the operation

process. Data is sent to the operation process at the bottom of the box; the

result is sent away at the top of the box.

4.2.1. Terminology. Each operation process has one or two operands. In this

paper, only the join, which is a binary operation is considered, so there are always

two operands. In Figure 7, each input stream contains two arrows: the first

arrow indicates the rate at which tuples are available to the operations process,

the second one represents the rate at which tuples are processed by the operation

process. The arrow in the output stream indicates the rate at which result tuples

are produced. The left column in Figure 7 shows the formalism used:

a(t) is the rate at which tuples of a particular operand are available to an

operation process at time t.

z(t) is the rate at which tuples of a particular operand are processed by an

operation process at time t.

w(t) is the processor utilization at time t.

r(t) is the rate at which tuples are produced at time t.

The functions a(t) and z(t) can be labeled with a subscript to indicate which

operand is meant.

A query in execution, consists of a number of communicating operation pro-

cesses. Time t = 0 is used to indicate the starting point of the entire query.

Some operation processes in the query may be idle at time t --- 0. T is used for

the time at which an operation process is ready.

116 WILSCHUT AND APERS

4.3. Some relationships

From the description of dataflow query execution, the following relationships can

be deduced:

An operation process cannot process tuples in an operand before they have

arrived at its input stream. This can be modeled as

/0 /o gt in [0, T] : a(r) dr > x(r) dr

The processor utilization is a function of the rate at which the operand tuples

are processed:

w(t) = W(x~(t), x2(t)) (1)

The rate at which tuples are produced is also a function of the rate at which the

operand tuples are processed:

= re(x l (t) , x=(t))

If a CPU works at full capacity, its utilization is 1. Therefore, w(t) can never

be larger than 1.

Our model discriminates between the rate at which operand tuples are available,

and the rate at which they are processed. This is done, because these two may

differ, if the operation process cannot keep up with the rate at which tuples are

sent to it. This observation leads to the definition of two different modes in

which an operation process can work.

input-limited mode Tuples are sent to the operation process at such low rate,

that the operation process can keep up with this rate. Now,

w(t) < 1 and x~(t) = aj(t) for both operands.

CPU°limited mode Tuples are sent to the operation process at such high rate,

that the receiving processor cannot keep up with this rate, so

w(t) = 1 and there is an operand for which x~(t) < aj(t).

This discrimination leads to the central equation in this paper:

xj(t) = aj(t) if process input-limited

xj(t) meets w(t) = 1 if process CPU-limited (2)

This equation is used to evaluate the behavior of an operation process. An outline

of such an evaluation is as follows: Equation (1) expresses the CPU-utilization

as a function of the rates at which operand streams are processed. In the input-

limited mode of an operation process z~(t) = a~(t), and W((al(t) , a2(t)) < 1. In

CPU-limited mode, the join operation cannot keep up with rate at which tuples

DATAFLOW QUERY EXECUTION 117

arrive so W((al(t), a2(t)) > 1. ~e re fo re , evaluation of PV((al(t), a2(t)), and

comparing the result to 1 (the maximal CPU-utilization) can reveal whether an

operation process is input-limited, or CPU-limited at time t. If an operation

process is input-limited, the rate at which operand streams are processed is clear

(a(t)). If, on the other hand, the process appears to be CPU-limited, then

solving equation W((xl(t), x2(t)) = 1, for zj(t) shows at what rate each operand

tuple-stream is processed.

Knowing the functions xj(t) and mapping R, the rate at which tuples are

produced by an operation process, r(t), can be calculated. The result of an

operation process can be sent as input to another operation process. Those

tuples are assumed to arrive at the receiving operation process with some delay 1

at the rate at which they are produced by the producing operation process.

So, then function a(t) for a consumer is known, and we are in the position to

evaluate the behavior of this consumer process.

Summarizing, the model maps the rate at which operand tuples are available,

to the rate at which result tuples are produced. To describe a query tree, the

result of the evaluation of one operation can be used as input to a next one.

• In the remainder of this section, the model developed above is specialized to

describe the pipelining hash-join. After that, the results of this evaluation are

used to study bushy join-trees. In all cases, the goal is full characterization of

the participating operations in terms of x(t), w(t), r(t), and T, given the rate at

which operand tuples are available (a(t)).

4.4. Pipelining hash-join

In this section, it is assumed that the operand tuples from both operands are

available at a nonlimiting rate, so, the operation process only processes in its

CPU-limited mode. The more general case, in which the join-process works

both input-limited, and CPU-limited, is dealt with afterwards. Both operands

are equal in size: they contain n tuples. The selectivity of the join operation is

assumed to be Q: the result contains on 2 tuples.

From the description of the pipelining join algorithm, it is clear that the join

algorithm processes tuples from both operands at the same rate (x(t)). The goal

of this section is finding x(t), and deriving T, and r(t) from x(t).
During the join operation, each operand tuple has to be made available to

the join-process, its hash-value has to be calculated, it has to be inserted in a

hash-table and it has to be compared to the tuples in the corresponding bucket

of the other operands hash-table. These costs are assumed to be constant during

the join-process (A). 2 If a match is found, a result tuple is generated. The

costs associated with producing one tuple (concatenation, projection, storage or

network transport) are assumed to be constant too (S). The distinction between

work dedicated to processing operand tuples and to generating result tuples is

essential. Through this distinction, insight is gained in how an operation process

118 WILSCHUT AND APERS

maps its input streams onto an output stream.

4.4.1. The model. The development of the model for a join operation derives

an equation for the load of the processors as a function of the rate at which

the operand tuples are processed. Solution of this (integral) equation yields the

maximum rate at which a join process can process its input.

The tuples in both operands are processed at the same rate (z(t)). Note, that

this rate is time dependent. The model will reveal that this rate decreases with

the time. So, the amount of work the processor spends on processing input

tuples is equal to

2Ax(t)

There is a factor 2 in this expression, because tuples from both operands are

processed.

The amount of work spent on generating the result is calculated as follows:

The number of tuples in the entire first operand that join with one tuple in the

second operand is equal to

Qn

Therefore, the number of tuples that a tuple, arriving at time t, matches with

is proportional to the number of tuples that have already arrived in the other

operand. The number of tuples that have arrived in an operand at time t is

equal to

0 t x('r) d'r

So, the number of result-tuples that is formed upon the arrival of one tuple at

time t is equal to

p x('r) dT

Using this expression, the amount of work spent on generating the result can be

formulated as

/: 2osx(t) dr

Again, the factor 2 is caused by the fact that tuples from both operands are

processed.

The CPU-utilization is equal to the sum of the amount of work spent on

processing the input, and the amount of work spent on generating the output.

Z'
w(t) = 2Ax(t) + 2oSx(t) x(r) dr (3)

DATAFLOW QUERY EXECUTION 119

Q 1In 2In

,(t)

n(2A + 2S)

z(t)

T n(2A + S)

Figure 8. Execution characteristics of two join operations as produced by the analytical model.

The join-operation process in its CPU-limited mode, so equation (2) can be
specialized to:

f0 t x(t) meets 2Az(t) + 20Sx(t) x(r) d-r = 1 (4)

4.4.2. Finding the rate at which operand tuples are processed. We are now ready

to find z(t) from equation (4). This integral equation can be solved using
elementary calculus [21]:

1

x(t) = 2v/O St + A 2 (5)

The bottom row of Figure 8 shows two diagrams that plot x(t) against t. As

expected, x(t) decreases in the time, because, as the join processes proceeds,

more effort has to be spent on generating result tuples, because the hash-tables
are filled.

4.4.3. Termination of the join-process. The join operation is ready at time T. At
this time, n tuples per operand have been processed:

d r =

Substitution of equation (5) and then solving this equation for T yields:

T = 2An + QSn 2 (6)

120 WILSCHUT AND APERS

This result is reasonable: 2n operand tuples and on ~ result tuples have to be

processed. This processing costs 2An + oSn 2 units of time. The CPU-utilization

is equal to 1 during the entire join-process, so, the join process will end at

2An + oSn 2.

4.4.4. The output stream. The rate at which result tuples are produced can be

derived from equation (4):

fo
t 1 - 2Ax(t)

r(t) = 2#x(t) x(r) dr = S

Substitution of (5) yields

= 1 , l o s t + A2 (7)

The top row of Figure 8 shows diagrams that plot r(t) against the time. r(t) is

increasing in time, because the probability of finding a match in the join-process

increases with the time.

4.4.5. Two join-processes with different selectivily. Figure 8 shows some diagrams

of the characterization of two different join-processes? Two join-operations are

illustrated: one in which the selectivity of the join was chosen to be 1In so that

the result contains n tuples, and another in which the selectivity of the join is

2/n, so that the result contains 2n tuples. The first join-operation is in the first

column of diagram in the figure, and the second join-operation is in the second.

The topmost diagrams show the rate at which result tuples are generated as

a function of the time. This rate in increasing in the time due to increasing

probability of finding a match. At the very beginning of the join-operation r(t)

is equal to zero, due to the fact that no tuples to form a match with have arrived

yet. As expected, the second join-operation produces tuples at a higher rate

than the first one.

The middle diagrams show the processor-utilization as a function of the time.

As the join-operations are CPU-limited during the entire operation, the processor

utilization is equal to 1. In these diagrams, an additional curve shows what portion

of the CPU-effort is spent on processing input tuples (area below the curve),

and what proportion is spent on generating output (other area). We see that the

less selective join-operation spends a larger portion of its effort on generating

output, and that in both cases the amount of work related to generating output

increases, at the expense of processing input.

The bottom diagrams show the rate at which input tuples are processed.

As expected this rate is decreasing, and this effect is stronger for the second

join-operation.

The model developed in this section, yields an analytical expression for the

rate in which output tuples are produced (equation (7)). In the next section the

DATAFLOW QUERY EXECUTION 121

output stream of a single join-operation is used as input to a next join-operation:

in this way join trees are studied.

4.5. Symmetric bushy join trees

The behavior of symmetric bushy join trees is analyzed. Figure 4a shows a

symmetric tree for an eight-way join. It is assumed that the operands are equal

in size (each operand contains n tuples) and that the join operations match one

tuple in their left operand to exactly one tuple in their right operand, so the

selectivity (0) of the join-operations is equal to 1/n. Each join-operation has

a private processor. The bushy join tree in the simulation experiment that Was

described in Section 3 corresponds to the sort of join trees that are modeled here.

It is clear that the join-operations that have two base relations as operands, all

have the same execution characteristics. These join operations are called level0

joins. The join operations that join the results of level0 joins again have the

same characteristics. They are called levell joins. In the same way, level2, level3

and even higher levels can be defined.

4.5.1. The model Here, the models for individual join-operations, like the one

developed in the previous section are linked together to describe a bushy join

tree.

It is assumed, that the base operands are available to the level0 joins at

nonlimiting rates. Therefore, the characteristics of these joins are as described

in a previous section. To describe the other levels, some notation conventions

are needed. In this section, subscripts are used to indicate the level of the join-

operation. Due to the symmetry of the problem, we do not need to discriminate

between the two input streams of one join-operation. So, xl(t) denotes the rate

at which tuples of either levell join-operand are processed.

The level0 joins operate in their CPU-limited mode from the beginning on.

Higher level joins, however, are expected to show an increase in their CPU-

utilization: they start input-limited, and after some time they switch to CPU-

limited. The following symbols are used to describe this:

0i The time at which a CPU executing a level/join is saturated. So, at this time,

the join process switches from its input-limited to its CPU-limited mode. 00

is equal to 0.

~ The number of tuples that have been collected in the hash-table of an operand

of a level/join at time 0~. 7-[0 is equal to 0 and 7-ti = of °~ x(~-) dr.

Result tuples from one level are sent as input to a join-operation in the next

level. So,

= (8)

122 WILSCHUT AND APERS

Now, we can derive the model for a join-operation at level/of a bushy join tree.

Equation (8) is used to characterize the input rate, and the central equation of

this paper (2) is used to model the operation process. Furthermore, an expression

for CPU-utilization (3) for the pipelining join is derived in the previous section.

The combination of these three equations, and the definition of 0~ yields the

model for level i of a bushy join tree:

x~(t) = r~_l(t) if 0 _< t < o~

xi(t) meets 2Axi(t) + 2 xi(t) xi(r) dr = 1

In these equations ri(t) is defined by

2 f t
ri(t) = "~zi(t) Jo xi(r) dr

if t > O~

Finding the rate at which operand tuples are processed.

be solved explicitly for xi(t) [21]. LevelO was solved in the previous section:

1
• 0(t) =

2 ~ o S , t + A~

For i > O, xi(t) can expressed recursively as

These equations can

(9)

/

=) r~<(t) if 0 < t < e~
~i(t)

I ~ , _ l (t - 6) if t > o, (lO)

where

/o ri(t) = xi(t) xi(r) dr (11)

Also it can be derived that

Oi = a + i6 (12)

where a and 6 are constants that areproportionaI to n. Finally it can be concluded

that

~ = ~ j , i, j > O (13)

DATAFLOW QUERY EXECUTION 123

Note that, although this solution is formulated recursively, it is well-defined,

because it is initialized with x0. This solution looks rather complex, but it can

be interpreted in the following way.

• Two phases can be discriminated in a join-process: The startup phase, in which

the join-process does not saturate its processor, and the main phase, in which

the join-process is CPU-limited. In a level0 join the startup phase has length 0

(so, there is no startup phase).

• The main phases of subsequent join levels are similar, apart from a translation

in time. This implies that the main phase of each subsequent level starts

and ends 8 time units after its predecessor.

• The startup phase of a join-operation takes longer for higher levels, but the

number of tuples that are processed (~), and consequently the amount of

work that is done during startup is equal for each level.

Termination of the processes. In the previous section the termination time for

level0 joins was derived:

To = 2An + ~Sn 2 (14)

Because each subsequent level does the same amount of work during its startup

phase, and its main phase is translated 8 with respect to its predecessor, it is

easy to see that

T~ = T0 + i8 (15)

From this result, it can be concluded that the termination delay of subsequent

join levels is proportional to n. Also the response time of the entire query

is proportional to n. These statements confirm the surprising results from our

simulation study (see Section 1).

4.5.2. Examples. Figure 9 show diagrams that plot w(t) against the time for

level0 through level3. Similar to the diagrams for w(t) in Figure 8, an additional

plot in the diagrams shows that portion of the CPU-time is spent on processing

the input. Figure 9 has two columns of diagrams: the first column is on a 16-way

join between operands of 1000 tuples; the second one shows the same join with

operands of 1500 tuples. The time axis of all diagrams is scaled in the same way.

Comparison of the diagrams in one column shows that the termination delay

between subsequent levels is constant. Comparison of all diagrams shows that

the termination delay is proportional to the number of tuples in one operand.

4.5.3. Consequences for optimization and scheduling of multi-join queries. Although

the model for join trees has to be extended to cover general join trees, it can now

already be indicated how the sort of results that the model yields (with the results

124 WILSCHUT AND APERS

level3

level2

levell

levelO

1000 1500

Figure 9. Execution characteristics of join-operations in a bushy schedule.

for symmetric bushy trees as an example), can be used for query optimization,

and query scheduling. Apparently, the results not only indicate the amount of

work that has to be done on behalf of one relational operation; they also give an

indication of when this work has to be done and how busy a processor will be.

The following examples illustrate how this scheduling information can be used.

• A query optimizer, having to select an execution strategy for a query, can use

both the amount of work that has to be done and the timing information. It

is possible that a more expensive schedule (in terms of total processing costs)

has very good timing characteristics, so that its response time is very good. If

response time is the important figure in the system, such a schedule should be

selected.

• The knowledge about when processors are busy can be used by a scheduler:

A processor that is assigned to a relational operation can be used for other

purposes (possibly another relational operation) during the time that it is idle.

• The model for bushy query trees shows that in the execution of a join, a

startup, and a main phase can be discriminated. If the scheduling of a join

at level/ is postponed until time i6, the main phase of the join is left the

same, and the startup phase uses the processor at full capacity during a shorter

period of time. Therefore, postponing the scheduling of a level/ join until

time i6 does not affect the response time of the entire query. In Figure 10,

the characteristics of a level2 join are shown. The left diagram shows the

characteristics of a join that is scheduled immediately after query startup, the

DATAFLOW QUERY EXECUTION 125

Figure I0. Scheduling of join-operations in a bushy tree.

right one shows the characteristics when the join is scheduled at time 26.

Although a limited type of join trees was modeled in this section, we feel that

the model increased our insight in the working of the pipelining join algorithm,

and its cooperation with its producers and consumers. Specifically, the fact that

the model can predict when the higher level join-operation needs CPU capacity

is encouraging. Also, the fact that postponing the scheduling of certain join-

operations to some extent does not influence the response time to the entire

query can be used easily in a scheduler: two different relation operations can

be scheduled subsequently to one processor.

5. Conclusions and future work

The work reported in this paper is a part of our research on query optimization

strategies for a parallel dataflow DBMS. In the introduction to this paper, a

methodology to do this research was outlined. It was illustrated that gaining

understanding of parallel dataflow query processing is an essential step. This

understanding should used to design a heuristic query optimizer for a parallel

dataflow DBMS.

The work reported in this paper was introduced as a step into the direction

of understanding parallel dataflow query execution. Looking back, we are faced

with some questions: "What insight was gained from our study?", "How can

this knowledge be used?", and "How can this knowledge be validated?". These

questions are now answered in turn.

What did we learn from our study?

• The simulation study showed that different aspects of the algorithms which

are used for relational operations in a query tree are important. Apart from,

of course, the CPU-costs of an algorithm, also its synchronization with the

processes that produce and consume its input and output is important to

yield a good performance. It has shown that the well-known simple hash-

join algorithm has synchronization requirements that are too tight to allow

performance gain from pipelining. A new hash-join algorithm, the pipelining

hash-join, was proposed that is expected give good performance in a dataflow

system. Algorithms for other relational operations can be studied in the same

126 WILSCHUT AND APERS

way. Pipelining algorithms are possible for many relational operations.

• The simulation study of various join-tree formats gave insight in the behavior

of individual join-processes in relationship to their position in a join tree. It

was shown that the time at which a join-operation can start processing depends

on the position of the join-operation in the join tree, and on the sizes of the

operands. Regular linear, and bushy trees were studied extensively. Other

join-tree formats need additional study.

• The mathematical model which was developed in this paper confirms some of

the simulation results. Also, the model can predict the effect of changes in

the scheduling of join-processes, as indicated in the previous section.

How can this knowledge be used? The gained insight can be used in several

ways. Firstly, pipelining algorithms should be used in dataflow systems. Secondly,

a query optimization design, based on the ideas developed in this paper becomes

feasible. Knowing the CPU-costs, and the delays that are incurred in a join tree,

the response time to a join-query can be calculated. This cost evaluation can be

used in combination with known query optimization techniques, that search (part

of) the space of possible execution strategies to find the cheapest one. Finally,

the insight in the timing requirements can be used in a scheduler, as illustrated

in Figure 10.

How do we validate this knowledge. Currently, we are planning experiments

on the latest version of PRISMA/DB.

Following the path of our research requires the study of more general join

trees. Some preliminary work in this direction has been done and the results are

encouraging. We plan to incorporate other relational operations in our model,

and we want to study the effect of distributing individual relational operations.

Although the model was only evaluated for a limited class of queries, we can

now already make statements about the scheduling of operations in query trees.

It should be emphasized that, as explained in the introduction, these statements

have to be validated.

This paper is about parallel query execution. The concrete results of our

study are worthwhile, and they probably eventually will be used to design new

query execution strategies. We feel, however, that apart from the concrete

results, the approach to obtaining them also is a contribution to the database

research. The experimental approach which is adopted from science, combined

with mathematical modeling of the observed phenomena, is, to our opinion, a

viable methodology to tackle certain problems in computer science.

Notes

1. The transmission delays can easily be handled in our model, and their influence

on the results is simple. The formalism is complicated by using them however,

DATAFLOW QUERY EXECUTION 127

and also, the transmission delay is assumed to be small compared to the

time needed to evaluate a relational operation. Therefore, we choose not to

incorporate them in the model in this paper.

2. Actually these costs are increasing slightly during the join process, due to the

fact that hash-buckets are filled. Using a good hash-table though, minimizes

this increase.

3. Part of the symbolic manipulation and the generation of plots of the results of

this manipulation was carried out using the symbolic manipulator Maple [7].

References

1. E America (ed.), Proc. PRISMA Workshop Parallel Database Systems, Springer-Verlag: New York,

1991.

2. EM.G. Apers, C.A. van den Berg, J. Flokstra, EW.EJ. Grefen, M.L. Kersten, and A.N. Wilschut,

"PRISMA/DB: A parallel main-memory relational DBMS." To appear in IEEE transactions on

Knowledge and Data Engineering.

3. D. Bitton, D.J. DeWitt and C. Turbyiill,"Benchmarking database systems-A systematic approach,"

in M. Schkolnick and C. Thanos (eds.), Proc. 9th Int. Conf. Very Large Data Bases, Florence, Italy,

VLDB Endowment: Saratoga, CA, 1983.

4. E Bodorik and J.S. Riordon,"Heuristic algorithms for distributed query processing," in S. Jajodia,

W. Kim and A. Silberschatz (eds.), Proc. Int. Symposium on Databases Parallel Distributed Systems,

Austin, Texas, IEEE Press: Montvale, NJ, pp. 107-117, 1988.

5. H. Boral, W. Alexander, L. Clay, G. Copeland, S. Danforth, M. Franklin, B. Hart, M. Smith, and

E Valduriez,"Prototyping Bubba, a highly parallel database system, IEEE Trans Knowledge Data

Eng., Vol. 2, no. 2, pp. 4-24, 1990.

6. K. Bratbergsengen and T. Gjelsvik,"The development of the CROSS8 and HC16-186 (Database)

computers," in H. Boral and E Faudemay (eds.), Proc. 6th Int. Workshop Database Machines,

Deauville, France, June 1989, Springer-Verlag: New York, pp. 359-372, 1989.

7. B.W. Char, K.O. Geddes, G.H. Gonnet, M.B. Monager, and S.M. Watt, Maple Reference Manual,
WATCOM: Waterloo, Canada, 1988.

8. D.J. DeWitt and J. Gray,"Parallel database systems: The future of database processing or a passing

fad?," ACM SIGMOD Record, vol. 19, no. 4, pp. 104-112, 1990.

9. D.J. DeWitt, S. Ghandeharizadeh, D.A. Schneider, A. Bricker, H. Hsiao, and R. Rasmussen,"The

GAMMA database machine project," IEEE Trans. Knowledge Data Eng., vol. 2, no. 1, pp. 44-62,

1990.

10. G. Graefe,"Encapsulation of parallelism in the volcano query processing system," in H. Garcia-

Molina, H.V. Jagadish (eds.), Proc. ACM-SIGMOD 1990 Int. Conf. Management Data, Atlantic City,

NJ, ACM Press: New York, pp. 102-111.

11. EW.EJ. Grefen, A.N. Wilschut, and J. Flokstra,"PRISMA/DB1 User Manual," Universiteit Twente,

Enschede, The Netherlands, Memorandum INF91-06, 1991.

12. M. Jarke and J. Koch,"Query optimization in database systems," Comput. Sum., vol. 16, no. 2,

pp. 111-152, 1984.

13. M.L. Kersten, EM.G. Apers, M.A.W. Houtsma, H.J.A. van Kuijk, and R.L.W. vande Weg,"PRISMA

: A Distributed main memory database machine," in Proc. 5th Inter. Workshop Database Machines,
Karuizawa, Japan, 1987.

14. E. van Kuijk,"Semantic query optimization in distributed database systems," Ph.D. thesis, University
of Twente, 1991.

15. A. Okubo, Diffusion and Ecological Problems: Mathematical Models, Springer-Vedag: New York,
1980.

128 WILSCHUT AND APERS

16. D.A. Schneider and D.J. DeWitt,'~ performance evaluation of four parallel join algorithms in a

shared-nothing multiprocessor environment," in J. Clifford, B. Lindsay and D. Maier (eds.), Proc.

ACM-SIGMOD 1989 Inter. Conf. Management Data, Portland, OR, ACM Press: New York, 1989

(Also appeared as ACM SIGMOD Record, vol. 18, no. 2, 1989.)

17. D.A. Schneider and D.J. Dewitt,"Tradeoffs in processing complex join queries via hashing in

multiprocessor database machines," in D. McLeod, R. Sacks-Davis and H. Sehek (eds.), Proc.

16th Int. Conf. Very Large Data Bases, Brisbane, Australia, Morgan Kaufmann: Palo Alto, CA, pp.

469--480, 1990.

18. P.G. Selinger, M.M. Astrahan, D.D. Chamberlin, R.A. Lorie and T.G. Price,'~ccess path selection in

a Relational Database Management System," in Proc. ACM-SIGMOD 1979 Int. Conf. Management

Data, Boston, MA, pp. 82-93, 1979.

19. W.B. Teeuw and H.M. Blanken,"Control versus data flow in distributed database machines,"

Universiteit Twente, Enschede, The Netherlands, Memorandum INF91-02, 1991.

20. Teradata Corporation,"Teradata,"DBC/1012 Database Computer Concepts and Facilities," C02-

0001-00, 1983.

21. A.N. Wilschut,"A model for dataflow query execution in a parallel main-memory environment,"

Universiteit Twente, Enschede, The Netherlands, Memorandum INF91-34, 1991.

22. A.N. Wilschut and P.M.G. Apers, "Pipelining in query execution," in N. Rishe, S. Navathe, and

D. Tal (eds.), Proc. Int. Conf. Databases, Parallel Architectures and their applications, Miami, IEEE

Press: Montvale, NJ, 1990.

23. A.N. Wilschut, EM.G. Apers, and J. Flokstra,"Parallel query execution in PRISMA/DB," in E

America (ed.), Proc. PRISMA Workshop Parallel Database Systems, Noordwijk, The Netherlands,

Springer-Verlag: New York, 1991.

24. A.N. Wilschut and EG. Doucet,"Theoretical studies on animal orientation: A model for kinesis,"

Theoret. Biol. vol. 127, pp. 111-125, 1987.

25. A.N. Wilschut, J. Flokstra, and EM.G. Apers,"Parallelism in a main-memory system: The per-

formance of PRISMA/DB.," in Proc. 18th Int. Conf. Very Large Data Bases, Vancouver, Canada,
1992.

26. A.N. Wilschut, EW.EJ. Grefen, EM.G. Apers, and M.L. Kersten, "Implementing PRISMA/DB

in an OOPL.," in H. Boral and E Faudemay (eds.), Proc. 6th Int. Workshop Database Machines,
DeauviUe, France, Springer-Verlag: New York, pp. 359-372, 1989.

